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Summary

The main goal of this work is to formalize the
use of fuzzy systems represented by Takagi-
Sugeno form, so that the use of membership
functions is well understood when designing
the rules. It also aimed to apply these ideas
later when designing fuzzy controllers, where
dynamic models are used. First, static mod-
els are introduced. Second, some useful defi-
nitions are presented. Third, the main prop-
erties of normalized fuzzy systems are shown.
Fourth, we give examples of application in
which we use these fuzzy systems for func-
tion approximation. Fifth, we extend the re-
sults to dynamic systems. We finish with an
improvement of Takagi-Sugeno fuzzy model
that allows to obtain universal approxima-
tors for dynamic systems.

Keywords: T-S model, Fuzzy control, Dy-
namic models, Universal approximators.

1 STATIC FUZZY SYSTEMS

We will consider systems with n input variables
Z1,%2,-..,%y, and one output y (in the case of mul-
tiple outputs, the superposition principle may be ap-
plied). If each input variable z;, is given r; fuzzy val-
ues X}, X7,...,X]", then the fuzzy system contains
riTy...7T, rules, each one of the form:

Rivwin : [F(21isX)AND ... AND(z,isXin)

THENgtlzn (wl’ . .’:L,n) — yil...in

with iy € {1,...,m}, .., in € {1,...,mn}.
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If the input array x is defined as x = [z1,... ,:rn]T,
then the following compact notation may be used:

Ril...in IF(XZSX“Z")THEN:I)“l" (X) — yil---in

with Xitwin = [X{1.. Xi»]" and (xisXiin) =
ANDp | (zisX;]'). Attention may be paid to the fact
that, in general, % (x) will be a function of x, ex-
cept in the static case that is being considered now.

Finally, the output of the set of rules is obtained as:

) = it i W g ()
yx) = n _ S
Z;l:l cen Z:nzl wWeL-tn (X)

SO

E;}:l o E:::l wil---in (X)yilmin
S (x)
th

where wt i (x) is the weight of the rule (iy ...i,)",
for a specific value of x. If we define 1+ (1) as the
1

y(x) =

membership function associated to the fuzzy set X li’,
then the previous weight may be calculated as

n
W' ) = Ty a)
=1
with 0 < iy (m) <1, Vay, VI€{l,...,n}.
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2 DEFINITIONS

Definition 1 A fuzzy system is considered normal,
and is denoted by Normalized Fuzzy System (NFS),
when Vl € {1,...,n},

r
Z K (1) =1, Vay

=1



andp .« (1) is a convex function
1

We also define:

Ty = min{mlmxli, () =1}, Vipe{2,...,r}
:rlf’zfl = max{mlmX;l () =1}, Vie{l,...,rp—1}

xi = maz{|px (z) = 1}

i, = min{@|pyr (v) = 1}

being X; = [x1,x1r,] the universe of discourse.

If z;,, = a:fil,a:lil = {xl|quil(:rl) = 1} = Ty

mlt’l’ Vi, € {2, - ,7“1_1}.

Definition 2 The NFS is monotonic if Vi, €

{2,...,m — 1}, only exists one xi|pyi (z1) = 1, this
L

- _ 4+ _ )
means Ty = T = T,
Definition 3 The NFS is

o static if §itin(x) = yhin ) Vi, ... ip
e functional if §it-in (x) = fitin(X), Viy,...,i,

o linear i G = S el + el
Vit, ... in

Definition 4 The points (x™n | y't-in) € Re" !,
with xh i = [mlil,...,xmn]T, are called guided
points when the NFS is monotonic, or the points ob-
tained after replacing xy;, by x;; or :vlt.l if it is not
monotonic. In general, the notation for both cases will
be (X7+i1...in,yi1...in)'

These definitions are useful to present the following
properties, that may be applied to most usual fuzzy
systems.

3 PROPERTIES OF NFS

A NFS verifies the following properties, although their
demonstration is not given due to the limited size al-
lowed. Some of them may be found in [3].

Property 1 The only membership function that has

value in the points x; = x;;l_, Vip e {1,...,m},Vl €
{1,...n} is:

e (z57) = 6irjy

Property 2 Vx?;l <z, < xp,, only two membership
functions take value: i (71) and pyi+1(21). Fur-
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thermore, quil+1(a:l) =1- Pt (z1).

Property 3 Va; ¢ X, this means, out of the universe
of discourse, the only membership function that has

value is pix1(z;) or fixri (x1).

Property 4 > /'_, ...> " w" " (x) = 1, Vx
(see [4]).

Property 5 The output of the fuzzy system, y(x)
passes through the guide points.

Property 6 In non monotonic NFS, y(x) = yb -
(constant), if x; € [wl_il,w+ ], Yie{l,...,n}.

lig

Property 7 y(x) is constant outside the universe of
discourse.

4 FUNCTION APPROXIMATION
WITH NFS

Lemma 1 If it is possible to formulate y(x) as

y(x) = fri(x) = gi(r)...gnlzn), Vo €
(w13, T1iyy, ], VIEA{L,...,n — 1}, then it is possible to
approximate it with null error by using a static NFS.

The main conclusion is that the membership functions
of the NFS must be selected as follows:

gzil (z1) — glil (z1i,)
gl” (wlil+1) - gl” (wlil)

NX;I“(xl) =

g;l (xlil+1) - glil (1‘[)
ng (xlil+1) - ng (xlil)

P (@) = 1= pyines (21) =

It may be verified that the function gi (z;) = —3.522 +
2.52%, which is not monotonic in 0 < z; < 1 will lead
to non monotonic membership functions:

_gi(@1) —g1(0)

_ 2 _ 3
pxz(T1) = a1 =41 (0) 3.5x7 — 2.5z7 ¢ [0,1]

pxi(z1) = 1—3.527 +2.527 ¢ [0,1]

The solution to this problem would be by decomposing
the interval in two parts, taking as new point the one
in which g(z;) = 0, this means —7z; + 7.5z% = 0, so
z1 = 0.93, and y(0.93) = —1.016:

For 0 < 7 < 0.93, we have



_ 9i(®1)—g7(0)
~ 91(0.93)—g;(0)

= 3.442% — 2.462% € [0,1]

Hx?2 (1)

pxi (1) = 1—3.44a7 4 2.4627 € [0,1]

For 0.93 < z; <1, we have

Hx3 (1)

pixz (1) = 1+ 218.7527 — 156.2527 — 63.5 € [0,1]

Two examples of function approximation are given.

Example 1 y(z1) = z1|z1],

with

Ezxzample 2 y(x)

_ gi(z1)—g7(0.93)
~ 97(1)—g7(0.93)

—218.752% + 156.252% + 63.5 € [0, 1]

Vi € [—1, 1]

R' : IF(2,isX{) THEN) (z;) = —1
R? : IF(2,isX})THEN)?(z;)
R? : IF(21isX})THEN)?(z1) =

Bxl (z1) = .T%, Vay € [-1,0]

/,LX12(CE1) = 1—.’17%, Va1 € [_151]

V’Xf (1‘1) = 1‘%, Vi, € [07 1]

(2 + 2)(3 — sinza),

[172]7 V1'2 € [W/2)7r]

with

: IF(21isX{)AND(22isX3)THEN§"? (21, 25)
: TF(21isX7)AND(29isX5)THEN ! (z1, 22)
: IF(21isX7)AND(29isX2)THEN§** (1, 22)

4 — 22
pxi(r1) = —5 L, V€ (1,2
r? -1
pxz (1) = 13 Vo €[L,2]
/'LX21 (w2) = Sen(w2)a Vs € [71-/2777]
pxz(z2) =1 - sen(zs), Va2 € [7/2,7]

Vr, €

: IF(z1isX])AND(29isX3)THEN ' (z1,22) = 6

9
12
18

Corolary 1 Lets suppose that x; € [xyiy, z15,,,], VI €
{1,...,n}. Ifgf’ Vie {1,...,n} is monotonic in that
region, then y(x) is also monotonic. So, the limits of
y(x) in the previous region are its 2" guide points.

Corolary 2 In a NFS with linear membership func-

tions, if x; € [Ty, 715, ], VI € {l,...,n}, then y(x)

is m-linear with respect to pu, .« (1), VI € {1,...,n}.
1

In a functional NFS, y(x) has the same shape of the

membership functions.

These corolaries help to understand the function evo-
lution between the guide points, and will be important
when developing stability theorems.

5 DYNAMIC FUZZY SYSTEMS

The function approximation method shown in this
work is similar to those given by other authors [1], [2],
[6]. But the main contribution of this work is twofold:
to formalize it with a proper notation and making use
of what we call “normalised fuzzy systems”, and to
extend it to the approximation of dynamic fuzzy sys-
tems, by improving Takagi-Sugeno fuzzy model [5].

Takagi-Sugeno (T-S) model corresponds to a func-
tional NFS. A particular case, widely used due to its
application to fuzzy control, is the case in which it
becomes a linear NFS:

Rt . [F(x1isX))AND ... AND(z,isX')
THENj™ = (x) =Y a' a4+ af ™, Vi, ... ip
=1

The model becomes automatically dynamic just taking
xT =[z1,...,2,] = [z, %,..., D] and y = z". So,

Rivin - [F(2isX!"YAND ... AND(z" VisXin)
n . . . .
THENz™ =Y a0 gt Wiy, iy
=1

We will show now with an example that it is not pos-
sible to obtain a perfect approximator for the dynamic
model.

Example 3 & = z|z|, Vz; € [-1,1]

R': IF(2isX{)THEN#® = 2z + 1
R? . IF(2isX])THEN: =0
R? . IF(zisX})THEN® = 2z — 1



so & = zlz| for x = {-1,0,1} (guide points), and
% = {-22,0,2z} for x = {-1,0,1}. This means
that we are approxzimating both the funcion model and
its derivative in the guide points. Nevertheless when
we try to apply the previous method for x € [—1,0] we
obtain px1(z) = %, which has no sense for a mem-
bership function in x = —0.5. The same happens for
z € [0,1] We could choose, for example pix1(z) = —z
(i.e. triangular membership functions), but we would
obtain an approximation error.

6 LINEAR SYSTEMS WITH FUZZY
DINAMICS

We propose an improvement in T-S model that allows
to apply static NFS approximators to dynamic fuzzy
system. The idea consists on decomposing the fuzzy
system in n + 1 fuzzy sub-systems, one for each linear
sub-system coefficients. For ay,

Rivin : [F(2isX1)AND... AND(z™ VisX)
THENG ™ = al*™ Yiy, ... in

with different membership functios for each one. This
allows to obtain a perfect approximation, by taking:

_ o wiie (x ajt i

a(x) = — ——
Z;lzl S 22"21 wit-in (X)

and (" = 31 a(x)2Y + ag(x)

Example 4 & = z|z|,
two static NFS. For ag,

Vz; € [-1,1]. We will use

R' : IF(zisX{,)THENG, =1
R? . IF(zisX}))THENG =0
R? . IF(zisX})THENG) = -1

Vz € [-1,0]
pxz (z) =1-— 2, Vze[-1,1]
pxs (z) = 22, Vz €0,1]
For a,,
R' : IF(zisX{,)THENG] = 2
R?: IF(zisX?)THENG&? =0
R? . IF(zisX}))THENGS = 2

with
Bx1, () = —z, Vze[-1,0]
pxz (z) =z +1, Vee[-11]
pxs (z) =z, Va€l0,1]

Now the approzimator & = a1 (x)x + ag(x) allows null
error with the model.

7 CONCLUSION

The main result of this work is that a Normalized
Fuzzy System allows to draw easily the relation y(x),
from the shape of the membership function. In fact,
the use of NFS does not imply any drastical restriction,
because they are widely used (indeed without knowing
their properties), and they show the best performance
(see [3]).

Then, the method has been extended to T-S fuzzy
model, allowing the approximation of dynamic sys-
tems, which have their main use in fuzzy control. The
continuation of this work will be to extend this im-
proved T-S model to carry out stabilty analysis.
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