Management of an estate agency
allowing fuzzy data and flexible queries

José Galindo! Juan M. Medina?

Juan C. Cubero?® Olga Pons?

leto. Lenguajes y Ciencias de la Computacién, Universidad de Mélaga (Spain). ppgg@lcc.uma.es

2Dpto. Ciencias de la Computacién e I.A., Universidad de Granada (Spain). {medina,carlos,opc}@decsai.ugr.es

Abstract

As main result of all our previous work, we have now
available o FSQL Server for Oracle Databases, pro-
grammed in PL/SQL. This server allows us to query
either a Fuzzy or Classic Relational Database with the
FSQL language (Fuzzy SQL). The FSQL language is
an extension of the SQL language which permits us
to write flexible (or fuzzy) conditions in our queries
to a fuzzy or traditional database. In this work we
present a management system for a real estate agency
in which some attributes of the landed properties may
be fuzzy, i.e., we can store imprecise information about
it. Besides, our system allows the user to make flexible
or fuzzy queries in order to retrieve the most relevant
properties of our database, starting with the customer
information. The goal is to retrieve the most interest-
ing landed properties according to the initial customer
preferences. Of course, we can obtain a membership
degree for each landed property in the fuzzy query re-
sult.

KEYWORDS: Fuzzy Management, Information Re-
trieval, Flexible Queries, Fuzzy SQL, Fuzzy Query
Languages, Fuzzy Relational Databases.

1 Introduction

In the last years, the management applications have
been popularized and widely extended. In these appli-
cations, the database management is very important.
Thus, many times the DBMS (Database Management
Systems) are used by the final users directly or through
an interface program (front-end).

On the other hand, the fuzzy databases have been
developed in the last years, rising up different mod-
els, among which they highlight the Prade-Testemale
model [8], the Umano-Fukami model [9], the Buckles-
Petry model [1], the Zemankova-Kaendel model [10]
and the GEFRED model by Medina-Pons-Vila [7].
This last model represents an eclectic synthesis of the
different models which have appeared to deal with
the problem of the representation and management of
fuzzy information in relational databases. One of the

main advantages of this model is that it consists of a
general abstraction which allows us to deal with differ-
ent approaches, even when these may seem disparate.

Besides, for the GEFRED model, the FSQL lan-
guage, a fuzzy (or flexible) query language based on
the SQL language, has been defined. This language
allows us to express sentences taking into account the
characteristics of imprecise information. Thus, as we
will see, the FSQL queries allow to express fuzzy con-
ditions, to calculate fulfillment degrees, to establish
fulfillment thresholds...

In this paper we intend to discuss about how to use
FSQL and a FRDB (Fuzzy Relational DataBase) for
the management of a company. We will study the
case of an estate agency, devoted to the sale and rent
of apartments, flats, houses, chalets, semi-detached
houses, building sites, coach houses, industrial plants...
Other applications for our FSQL Server can be found,
for example, in [2, 5].

First, we include a brief explanation of the main
advantages of the FSQL SELECT sentence, in order to
express fuzzy queries (a more detailed description of
this and other FSQL sentences can be found in [3,
5]). Next, we will expose briefly the information that
is stored in the database (fuzzy attributes types...).
Finally, we will study how a FRDB can improve the
information management system of an estate agency.

2 Flexible Queries with FSQL

The FSQL language [3, 4, 5] extends the SQL language
to allow flexible queries. We have extended the SELECT
command to express flexible queries and, due to its
complex format, we only show here an abstract with
the main extensions added to this command:

e Linguistic Labels: If an attribute is capable of
fuzzy treatment then linguistic labels can be de-
fined on it. These labels will be preceded with the
symbol $ to be easily distinguished. Every label
has an associated trapezoidal possibility distribu-
tion (Figure 1) or there is a similarity relationship
defined between each two labels in the same do-
main.

— —
a b c d
Figure 1: Trapezoidal possibility distribution.

e Fuzzy Comparators: In addition to the com-
mon comparators (=, >, etc), FSQL includes the
fuzzy comparators of Table 1. The definition of
these fuzzy comparators is shown in [4]. In the
same way as in SQL, fuzzy comparators can com-
pare one column value with one constant or two
column values of the same type. Necessity com-
parators are more restrictive than possibility com-
parators are, i.e. their fulfillment degree is always
lower than the fulfillment degree of their corre-
sponding possibility comparator.

Fulfillment Thresholds (v): For each sim-
ple condition a fulfillment threshold may be
established (default is 1) with the format:
<condition> THOLD v, indicating that the con-
dition must be satisfied with a minimum degree
v € [0,1]. The reserved word THOLD is optional
and it can be substituted by a traditional crisp
comparator (=, <, etc), modifying the meaning
of the query. The word THOLD is equivalent to the
use of the comparator >.

CDEG(<attribute>) function: This function
shows a column with the fulfillment degree of the
condition of the query for a specific attribute,
which is expressed in brackets as the argument.
If logic operators appear, the calculation of the
compatibility degree is carried out using the min-
imum T-norm and the maximum T-conorm, but
the user may change these functions. If the ar-
gument of the CDEG function is an attribute, then
the CDEG function uses only the conditions which
include that attribute. We can use CDEG(*) to
obtain the fulfillment degree of each tuple in the
condition (considering all its attributes, not just
one of them).

Character J: It is similar to the character * of
SQL but this one also includes the columns for
the fulfillment degrees of the attributes in which
they are relevant.

Fuzzy Constants: In FSQL we can use all the
fuzzy constants which appear in Table 2.

e Condition with IS: <Fuzzy Attribute> IS
[NOT] (UNKNOWN |UNDEFINED |NULL)

We have a painstaking FSQL Server [3, 5] to ob-
tain the answers to FSQL queries. It is programmed in
PL/SQL language for Oracle DBMS. The FSQL Server
has been programmed to work with fuzzy databases
(based on the GEFRED model [7]) and not only crisp
databases.

3 Information stored in the
database

The data can be classified in two categories:

e Traditional Database: It consists of all the
data stored in the relations but with a special for-
mat in order to represent fuzzy attribute values.
The fuzzy attributes are classified by the system
in 3 types:

— Type 1: These attributes are totally crisp
(traditional), but they have some linguistic
trapezoidal labels defined on them, which al-
low us to make the query conditions for these
attributes more flexible. Besides, we can use
all constants in Table 2 in the query condi-
tions with these fuzzy attributes.

— Type 2: These attributes admit crisp data
as well as possibility distributions over an
ordered underlying domain. With these at-
tributes we can store and use all the con-
stants shown in Table 2.

— Type 3: These attributes are defined on a
not ordered underlying domain, for instance
the hair colour. On these attributes some
labels are defined and on these labels a sim-
ilarity relation has yet to be defined. With
these attributes we can only use the fuzzy
comparator FEQ, as they have no relation of
order. Obviously, we cannot store or use the
constants trapezium, interval and approxi-
mate value of Table 2.

e Fuzzy Meta-knowledge Base (FMB): It stores
information about the FRDB in a relational for-
mat. It stores attributes which are capable to
fuzzy treatment and it will store different infor-
mation for each one of them, depending on their
type: a) Type 1: In order to use crisp attributes
in flexible queries we will only have to declare
them as being a fuzzy attribute Type 1 and store
the following data in the FMB: Trapezoidal lin-
guistic labels, value for the margin of the approx-
imate values (see Table 2) and minimum distance
for two values considered very separated (used in
comparators MGT /NMGT and MLT/NMLT). b) Type
2: They need to store the same data in the FMB
as the fuzzy attributes Type 1. ¢) Type 3: They
store in the FMB their linguistic labels, the simi-
larity degree amongst themselves...

Table 1: Fuzzy Comparators for FSQL.

| Possibility | Necessity | Significance
FEQ NFEQ Possibly /Necessarily Fuzzy EQual
FGT (FGEQ) | NFGT (NFGEQ) | Possibly/Necessarily Fuzzy Greater (or Equal) Than
FLT (FLEQ) | NFLT (NFLEQ) | Possibly/Necessarily Fuzzy Less (or Equal) Than
MGT (MLT) NMGT (NMLT) Possibly /Necessarily Much Greater (Less) Than

Table 2: Fuzzy constants that may be used in fuzzy comparisons of FSQL queries.

| F. Constant | Significance

UNKNOWN
UNDEFINED

Unknown value but the attribute is applicable.
The attribute is not applicable or it is meaningless.
NULL Total ignorance: We know nothing about it.

$[a,b,c,d] Fuzzy trapezoid (a<b<c<d): See Figure 1.

$label Linguistic Label: It may be a trapezoid or a scalar (defined in FMB).
[n,m] Interval “Between n and m” (a=b=n and c=d=m).

#n Fuzzy value “Approximately n” (b=c=n and n-a=d-n=margen).

4 Using FSQL in Management
Applications

Of course, the database schema for an estate agency
must include classic attributes (not only fuzzy at-
tributes), like the customers’ names, telephone num-
bers, addresses... In general, to give a greater ver-
satility to the system, you can define as many fuzzy
attributes Type 2 as you consider, instead of Type
1. However, it is important to take into account that
the fuzzy attributes Type 2 require in general more
quantity of space to be stored and more time to be
processed. So, we must choose between flexibility (in
the representation and fuzzy treatment) and eficiency
(in space of storage and time of CPU).

Examples of fuzzy attributes Type 1 are: number
of rooms, number of toilets, price of the community,
altitude of the floor... It can be observed that, in gen-
eral, the values of the previous attributes are usually
wellknown and without ambiguity.

In this particular case, most of the attributes are
Type 2. Thus, the database is as flexible as possible.
Among these are the sizes of the coach house, of the
garden or of the land (where proceed), highlighting
also the following ones:

e Price: Many times, the price is not fixed and
the salesman (owner) establishes an approximate
value.

e Area (m?): Sometimes, it is difficult to access
quickly to the title deed of the property or do an
exact measurement of its surface. Therefore, the
possibility to store approximate values was very
interesant for the consulted estate agents.

e Age: Perhaps, it is difficult and in general un-
necessary to know the exact age of the property,
although it is tremendously useful to know its ap-
proximate age. So, we can store that a house is
new, seminew, old or that it is approximately 8
years old, for example.

The considered fuzzy attributes Type 3 are the fol-
lowing ones, having each one their corresponding sim-
ilarity: lightness (sun), noise, sights, quality of the
furniture (if furnished apartment) and so on:

e District: This attribute has been implemented
with length 3, indicating that a landed prop-
erty may be situated among 3 areas, with differ-
ent degree. For example, {0.5/Center, 1/North,
0.7/Northwest } indicates that the property is sit-
uated in the North district, nearer to the North-
west district than to the town Center. The sim-
ilarity relation between the different districts de-
pend on the distance between them and on its
extension.

e Kind of landed property: This attribute
distinguishes among apartments, flats, chalets,
houses, semi-detached houses, building sites, in-
dustrial plants... For example, it can be estab-
lished that a chalet is similar to a semi-detached
house in degree 0.8. A customer that looks for
a chalet is a potential customer of the semi-
detached houses. Thus, this is taken into account
in order to show to our customer all the relevant
properties.

With a database schema like this, the type of differ-
ent queries that can be carried out are immense and
among them it highlights the comparison among the
relation of available properties and the relation of de-
mands of properties. The first relation stores the avail-
able properties we can operate with (to sell, to rent...)
and the relation of demands stores the general char-
acteristics of the properties that are being looked for
by the customers. Later, the relation of demands is
matched with the other relation using fuzzy necessity
comparators (Table 1) and thresholds strictly bigger
than zero, and ranking the result decreasingly by the
compatibility degree of every property. If the query re-
trieves too many properties then we can augment the

fulfillment threshold and, if the query retrieves too few
properties then we can use possibility comparators in-
stead of necessity ones, which are more restrictive.

Another possibility is to consult on-line the FRDB
at the same time as the customer indicates his pref-
erences. For example, let us suppose that a customer
indicates: “I am looking for a big chalet with about 7
rooms and in the Northern area”. Then, the following
FSQL query retrieves the properties that comply with
those conditions, ranking by the first attribute, which
is the compatibility degree:

SELECT CDEG(*), Sales.* FROM Sales

WHERE Kind FEQ $Chalet .5
AND Surface FGEQ $Big .5
AND Rooms FGEQ #7 .5

AND District FEQ $North .5 ORDER BY 1 DESC;

We have opted to use possibility comparators be-
cause quite a lot of elemental conditions are included,
in order to select a greater quantity of properties. In
the previous query, the semi-detached houses would
also be retrieved if this Kind of property has a similar-
ity degree greater or equal to 0.5 with regard to chalet.
If we look exclusively for chalets we must establish the
threshold to 1.

It is easy to note that the number of possible queries
and the utility of its answers is tremendous. Thus,
we will show first to each customer the property that
has a greater compatibility degree. In the case that
none of the retrieved properties satisfies the customer,
we can make a more flexible query, putting down the
thresholds (until 0), changing the fuzzy constants on
the right of the simple conditions, changing fuzzy com-
parators, eliminating not very important conditions or
exchanging some logical comparator AND by OR.

Naturally, the flexible query system does not assures
the accomplishment of operations, but it assures that
we find the property most accordant with the customer
needs and tastes. It is necessary to take into account
that when somebody looks for any type of property, he
rarely has a fixed idea, but looks for something with
some initial basic characteristics. It is frequent that
what the customer acquires finally is not very similar
to what he looked for at first.

Besides, this system allows the real estate agency to
maintain a large database without having to remem-
ber the characteristics of the properties. This prob-
lem makes impossible to handle many properties ef-
fectively, and it is solved by our proposed system.

5 Conclusions

We have presented a discussion in which it remains
clear how the fuzzy databases systems can provide a
lot of advantages to the enterprises that use traditional
databases. This is possible because we have a flexi-
ble query language, the FSQL language, which is very
similar to SQL and therefore it is easy to learn and

use. The FSQL language has a very similar syntax to
standard SQL and, furthermore, it is easily installable
on a system which uses Oracle as a DBMS. Of course,
the FSQL queries may be implemented in a program
in such a way that the user does not need to know
the FSQL syntax. Furthermore, we are now working
on the creation of a Visual FSQL Client program for
Internet (in Java). Others applications for FSQL are
shown in [2, 5, 6].

The power of this language, the great quantity of
implemented fuzzy comparators, the flexibility to es-
tablish fulfillment thresholds, the possibility to be in-
stalled and used on traditional DBMS and other shown
characteristics make that the advantages of FRDB are
easily evaluated and therefore, this means an impor-
tant step in the transfer of results of research to the
business world.

References

[1] B.P. Buckles, F.E. Petry, “Extending the Fuzzy
Database with Fuzzy Numbers”. Information Sciences
34, pp. 45-55, 1984.

[2] R.A. Carrasco, J. Galindo, M.A. Vila, J.M. Medina,
“Clustering and Fuzzy Classification in a Financial
Data Mining Environment”. 3th International ICSC
Symposium on Soft Computing, SOCO’99, pp. 713—
720, Genova (Italy), June 1999.

[3] J. Galindo, J.M. Medina, O. Pons, J.C. Cubero, “A
Server for Fuzzy SQL Queries”, in “Flexible Query
Answering Systems”, eds. T. Andreasen, H. Chris-
tiansen and H.L. Larsen, Lecture Notes in A.I. (LNAT)
1495, pp. 164-174. Ed. Springer, 1998.

[4] J. Galindo, J.M. Medina, A. Vila, J.C. Cubero,
“Fuzzy Comparators for Flexible Queries to Databas-
es”. Iberoamerican Conference on Artificial Intelli-

gence, IBERAMIA’98, Lisbon (Portugal), 1998.

[5] J. Galindo, “Tratamiento de la Imprecisién en Bases
de Datos Relacionales: Extensién del Modelo y
Adaptacién de los SGBD Actuales”. Ph. Doctoral
Thesis, University of Granada (Spain), March 1999.

[6] J. Galindo, M.C. Aranda, “Gestién de una Agencia
de Viajes usando Bases de Datos Difusas y FSQL”.
Turismo y tecnologias de la informacién, TuriTec’99,
Miélaga (Spain), September 1999.

[7] J.M. Medina, O. Pons, M.A. Vila, “GEFRED. A Gen-
eralized Model of Fuzzy Relational Data Bases”. In-
formation Sciences, 76(1-2), pp. 87-109, 1994.

[8] H. Prade, C. Testemale, “Fuzzy Relational Databases:
Representational issues and Reduction Using Simi-
larity Measures”. J. Am. Soc. Information Sciences
38(2), pp. 118-126, 1987.

[9] M. Umano, S. Fukami, “Fuzzy Relational Algebra
for Possibility-Distribution-Fuzzy-Relational Model of
Fuzzy Data”. Journal of Intelligent Inform. Systems,
3, pp. 7-28, 1994.

[10] M. Zemankova-Leech, A. Kandel, “Implementing Im-
precision in Information Systems”. Information Sci-
ences, 37, pp. 107-141, 1985.

