
On vertices of the k-additive monotone core

Pedro Miranda1 Michel Grabisch2

1. Faculty of Mathematical Sciencies, Universidad Complutense de Madrid
Madrid, Spain
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Abstract— Given a capacity, the set of dominating k-additive ca-
pacities is a convex polytope; thus, it is defined by its vertices. In
this paper we deal with the problem of deriving a procedure to obtain
such vertices in the line of the results of Shapley and Ichiishi for the
additive case. We propose an algorithm to determine the vertices of
the k-additive monotone core. Then, we characterize the vertices of
the n-additive core and finally, we explore the possible translations
for the k-additive case.
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1 Introduction
One of the main problems of cooperative game theory is to de-
fine a solution of a game µ, that is, supposing that all players
join the grand coalition X, an imputation to each player rep-
resents a sharing of the total worth of the game µ(X). In the
case of finite games of n players, an imputation can be writ-
ten as a n-tuple (x1, . . . , xn) such that

∑n
i=1 xi = µ(X). Of

course, some rationality criterion should prevail when defin-
ing the sharing.

In this respect, the core is perhaps the most popular solution
of a game. It is a well known fact that the core is nonempty if
and only if the game is balanced [1]. However, there are games
whose core is empty. It is then necessary to give an alternative
solution. In this sense, many possibilities have been proposed
in the literature, as the dominance core stable sets, Shapley
index, the nucleolus, etc. (see e.g. [2]).

On the other hand, Grabisch has defined in [3] the concept
of k-additive capacities, for a fixed value 1 ≤ k ≤ n. These
capacities generalize the concept of probability and they fill
the gap between probabilities and general capacities. More-
over, as they are defined in terms of the Möbius transform
and this transform can be applied to the characteristic func-
tion of any game (not necessarily monotone), the concept of
k-additivity can be extended to games as well.

In a previous paper we have defined the so-called k-additive
core. The basic idea is to remark that an imputation is nothing
other than an additive game, and if the core is empty, we may
allow to search for games more general than additive ones,
namely k-additive games, dominating the game. We have
presented a generalization of balanced games, the k-balanced
games, that are those admitting a dominating k-additive game
and no dominating (k − 1)-additive game.

We have seen that for general games, any game is either
balanced or 2-balanced. Moreover, the 2-additive core is not
a bounded polytope but an unbounded convex polyhedron.
However, when dealing with capacities, it makes sense to
study the k-additive monotone core and it can be easily seen

that in this particular case it is a convex polytope, whence it
can be defined through describing its vertices. This paper stud-
ies these vertices. In the framework of Game Theory, it has
been solved for the (1-additive) core by Shapley and Ichiishi.
The vertices of the (n− 1)-additive core has been obtained in
[4].

Moreover, there are other fields in which it is interesting
to find the set of probabilities dominating a capacity. For in-
stance, Dempster [5] and Shafer [6] have proposed a represen-
tation of uncertainty based on a “lower probability” or “degree
of belief”, respectively, to every event. Their model needs a
lower probability function, usually non-additive but having a
weaker property: it is a belief function [6]. This requirement
is perfectly justified in some situations (see [5]). The general
form of lower probabilities has been studied by several au-
thors (see e.g. [7, 8]). Moreover, in many decision problems,
in which we have not enough information, decision makers
often feel that they are only able to assign an interval value for
the probability of events. In other words, they do not know
the real probability distribution but there exists a set of proba-
bilities compatible with the available information. Let us call
this set of all compatible probabilities P1 and let us define
µ = infP∈P1

P ; then, µ is a capacity (but not necessarily a
belief function [9]); µ is called “coherent lower probability”,
and it is the natural “lower probability function”. Of course,
if P ′ is a probability measure dominating µ, it is clear that
EP ′(f) ≥ Cµ(f), for any function f , where Cµ represents
Choquet integral [10]. Chateauneuf and Jaffray use this fact
and that µ ≤ P, ∀P ∈ P1 in [11] to obtain an easy method for
computing a lower bound of infP∈P1

EP (f) whenever µ is 2-
monotone. Their method is based on obtaining the set of all
probability distributions dominating µ. The same can be done
for obtaining an upper bound. In this case, we can find a sim-
ilar motivation for studying the set of all k-additive capacities
dominating a capacity.

The paper is organized as follows: In next section, we give
the basic concepts about k-additive capacities and about the
set of dominating probabilities. Next, in Section 3 we provide
an algorithm for obtaining the set of all k-additive dominating
capacities. Section 4 is devoted to characterize the vertices for
the n-additive case and, in Section 5, we deal with possible
generalizations for the k-additive case.

2 Basic concepts

We will use the following notations: we suppose a finite uni-
versal set with n elements, X = {1, ..., n}. Subsets of X are
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denoted by capital letters A,B, and so on. The set of sub-
sets of X is denoted by P(X), and the set of subsets whose
cardinality is maximum k is denoted by Pk(X).

Definition 1 [12] A game over X is a mapping µ : P(X)→
R (called characteristic function) satisfying µ(∅) = 0.

If, in addition,

1. µ satisfies µ(A) ≤ µ(B) whenever A ⊆ B, the game µ

is said to be monotone;

2. µ satisfies µ(A ∪B) = µ(A) + µ(B) whenever A,B ⊆
X , A ∩B = ∅, the game is said to be additive;

3. µ satisfies µ(A ∪ B) + µ(A ∩ B) ≥ µ(A) + µ(B), for
all A,B ⊆ X, the game is said to be convex.

4. µ satisfies

µ(
k⋃

i=1

Ai) ≥
∑

K⊆{1,...,k}

K �=∅

(−1)|K|+1µ(
⋂

j∈K

Aj) (1)

for any family of k subsets A1, . . . Ak, k ≥ 2, the game
is said to be k-monotone.

Definition 2 A non-additive measure [13] or capacity [10]
or fuzzy measure [14] µ over X is a monotone game with
µ(X) = 1.

Note that any monotone game can be equivalently defined
through a capacity. The set of all capacities on X is a convex
polytope, that we will denote FM(X).

Definition 3 [15] Let µ be a game on X . The Möbius trans-
form (or inverse) of µ is a set function on X defined by

mµ(A) :=
∑
B⊆A

(−1)|A\B|µ(B), ∀A ⊆ X. (2)

The Möbius transform given, the original characteristic
function can be recovered through the Zeta transform [11]:

µ(A) =
∑
B⊆A

m(B). (3)

Let us turn to the concept of k-additivity. In order to define a
capacity, 2n − 2 values are necessary. The number of coeffi-
cients grows exponentially with n, and so does the complexity
of the problem. This drawback reduces considerably the prac-
tical use of capacities. Then, some subfamilies of capacities
have been defined in an attempt to reduce complexity. In this
paper we will use k-additive capacities.

Definition 4 [16] A game µ is said to be k-order additive or
k-additive for some k ∈ {1, . . . , n} if its Möbius transform
vanishes for any A ⊆ X such that |A| > k, and there exists at
least one subset A of exactly k elements such that m(A) �= 0.

In this sense, a probability is just a 1-additive capacity [16].
Thus, k-additive capacities generalize probabilities, that are
very restrictive in many situations as they do not allow inter-
actions between the elements of X . They fill the gap between
probabilities and general non-additive capacities. We will de-
note by FMk(X) (resp. Gk(X)) the set of all k′-additive
capacities (resp. games) with k′ ≤ k.

Let us introduce the concept of k-additive monotone core.

Definition 5 Let µµ∗ be two games. We say µ∗ dominates µ,
and we denote it µ∗ ≥ µ, if and only if

µ∗(A) ≥ µ(A), ∀A ⊂ X,µ∗(X) = µ(X). (4)

One of the main problems of cooperative game theory is to
define a solution of a game ν, that is, supposing that all players
join the grand coalition X, an imputation to each player rep-
resents a sharing of the total worth of the game ν(X). In the
case of finite games of n players, an imputation can be writ-
ten as a n-tuple (x1, . . . , xn) such that

∑n
i=1 xi = ν(X). Of

course, some rationality criterion should prevail when defin-
ing the sharing.

Definition 6 Let µ be a game. We say that a vector : x =
(x1, . . . , xn) ∈ R

n is an imputation for µ if it satisfies
n∑

i=1

xi = µ(X). (5)

An imputation represents a possible pay-off for the players,
i.e. supposing that all players agree to form the grand coali-
tion, it provides a possible sharing of the value µ(X) among
the players.

Remark 1 For any x ∈ R
n, it is convenient to use the nota-

tion x(A) :=
∑

i∈A xi, for all A ⊆ X , with the convention
x(∅) = 0. Thus, x identifies with an additive game for which
the values on singletons are xi.

The value xi is the asset player i receives when sharing
µ(X). Suppose that the imputation satisfies x(A) ≥ µ(A),
for all A ⊆ X . If this is the case, all players should agree
with their pay-off, as if they try to form other coalition dif-
ferent of X, the corresponding value for the coalition would
be worse than the value the coalition obtains with the additive
game x. In other words, any such (x1, . . . , xn) is a possible
satisfactory imputation for all players.

Definition 7 [17] Let µ be a game. The core of µ, denoted by
C(µ), is defined by

C(µ) := {x ∈ R
n | x(A) ≥ µ(A), ∀A ⊆ X,x(X) = µ(X)}.

Since by Remark 1 any x ∈ R
n induces an additive game,

the core can be equivalently defined as the set of additive
games dominating µ. When the core is nonempty, it is usu-
ally taken as the solution of the game. Note that for the case
of the core, given a dominating additive game, the value xi co-
incides with m(i). However, there are games with an empty
core. Then, the following definition arises:

Definition 8 [12] A game µ is balanced if C(µ) �= ∅.
For the special case of µ being a capacity, if (x1, . . . , xn) is

in the core, it follows that (x1, . . . , xn) determines a probabil-
ity distribution on X dominating µ. Thus, in this case, C(µ)
coincides with the set of all probabilities dominating µ.

When non-empty, the core is a convex polytope and its ver-
tices are known when the game is convex.

Definition 9 A maximal chain in 2X is a sequence of subsets
A0 := ∅, A1, . . . , An−1, An := X such that Ai ⊂ Ai+1,
i = 0, . . . , n− 1. The set of maximal chains of 2X is denoted
byM(2X).
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To each maximal chain C := {∅, A1, . . . , An = X} in
M(2X) corresponds a unique permutation σ on X such that
A1 = σ(1), A2 \ A1 = σ(2), . . . , An \ An−1 = σ(n). The
set of all permutations over X is denoted by S(X). Let µ be
a capacity. Each permutation σ (or maximal chain C) induces
an additive capacity φσ (or φC) on X defined by:

φσ({σ(i)}) := µ({σ(1), . . . , σ(i)})−µ({σ(1), . . . , σ(i−1)})
(6)

or
φC({σ(i)}) := µ(Ai)− µ(Ai−1), ∀i ∈ X, (7)

with the above notation.

Theorem 1 The following propositions are equivalent.

1. µ is a convex capacity.

2. All additive capacities φσ , σ ∈ S(X), belong to the core
of µ.

3. C(µ) = co({φσ}σ∈S(X)).

4. ext(C(µ)) = {φσ}σ∈S(X),

where co(·) and ext(·) denote respectively the convex hull of
some set, and the extreme points of some convex set.

(i)⇒ (ii) and (i)⇒ (iv) are due to Shapley [17], while (ii)⇒
(i) was proved by Ichiishi [18].

In a previous work [19] we have defined the so-call k-
additive monotone core.

Definition 10 For some integer 1 ≤ k ≤ n, the k-additive
monotone core of a capacity µ is defined by:

MCk(µ) := {φ ∈ FMk(X) | φ(A) ≥ µ(A), ∀A ⊆ X}.
If non-empty, it is easy to see that MCk(µ) is a convex

polytope. In next sections we will study its vertices, i.e. the
capacities such that they cannot be put as a convex combina-
tion of two other capacities in the polytope.

3 An algorithm for determining vertices of the
k-additive monotone core

Take µ ∈ FM(X). The polytopeMCk(µ) can be seen as a
subpolytope of FMk(X), given by the additional constraints

µ∗(A) ≥ µ(A), ∀A ⊆ X. (8)

I.e. we restrict the polytope to the measures µ∗ ∈ FMk(X)
dominating µ. Thus, we propose the following algorithm to
determine its vertices:

• Initialization: FMk(X).

• Take A ⊆ X and add the constraint µ∗(A) ≥ µ(A).

• Obtain the vertices and the adjacency structure (i.e.
whether two vertices are in an edge) of the new polytope.

• Repeat for any A ⊆ X,A �= X, ∅.
Let us analyze a step. We will denote by F1 the polytope

before introducing the new constraint µ∗(A) ≥ µ(A) and by
F2 the resulting polytope. For F1, we assume that we know
its vertices and its adjacency structure. The vertices of F2 are:

• Vertices of F1 satisfying the new constraint.

• New vertices, coming from the intersection of the hyper-
plane defined by µ∗(A) = µ(A) and F1. It can be easily
proved that these new vertices are in edges of F1.

Thus, in order to determine F2, it suffices to know the ver-
tices and the edges (whether two vertices are adjacent) of F1.

In order to apply this procedure again, let us determine the
adjacency structure ofF2. Consider µ1, µ2 two vertices ofF2.

We have several cases:

• µ1, µ2 are vertices of F1.

• µ1 is a vertex of F1 but µ2 is not.

• Neither µ1 nor µ2 are vertices of F1.

We will study whether µ1 and µ2 are adjacent vertices in
each situation.

Consider µ1, µ2 two vertices of F2 that are also vertices of
F1. If they are adjacent vertices in F1, then they are adjacent
in F2, as F2 is a subpolytope of F1 and we are done.

Lemma 1 Assume µ1, µ2 are not adjacent vertices in F1.

Then, if µ1, µ2 are adjacent vertices in F2, they satisfy
µ1(A) = µ(A) = µ2(A).

Moreover, the following holds:

Lemma 2 Consider µ1, µ2 two vertices of F1 and assume
they are adjacent vertices in F2. Then, if µ1, µ2 are not ad-
jacent in F1, necessarily µ1(A) = µ(A) = µ2(A).

Remark 2 It can be proven that if µ1, µ2 are in the conditions
of the previous lemma, then they are in a facet of dimension 2
of F1.

Moreover, the intersection of this facet with the hyperplane
µ∗(A) = µ(A) is exactly the segment [µ1, µ2]. Otherwise, if
we can find µ3 outside the segment and in the facet satisfying
µ3(A) = µ(A), we can build two linearly independent vec-
tors in the facet and in the hyperplane, whence the facet is
contained in the hyperplane and thus, the facet is contained
in F2. But this would imply that, as µ1, µ2 are not adjacent in
F1, they are not adjacent in F2, a contradiction.

Let us now turn to the case in which µ1 is a vertex of F1 but
µ2 is not. The conditions for µ1, µ2 being adjacent vertices in
F2 are given in next lemma.

Lemma 3 Consider µ1, µ2 two vertices ofF2 and suppose µ1

is a vertex ofF1 and µ2 is not. If they are adjacent inF2, then:

• If µ1(A) > µ(A), then µ2 is in an edge starting in µ1.

• If µ1(A) = µ(A), then µ1 and µ2 are in a facet of F1

of dimension 2. Indeed, the intersection of the facet with
the hyperplane µ∗(A) = µ(A) is the segment [µ1, µ2].

Moreover, the following can be proved:

Lemma 4 Consider µ2 a vertex of F2 such that µ2 is not a
vertex of F1. Then, there exists exactly one vertex µ1 of F1

such that µ1(A) > µ(A) that is adjacent to µ2 in F2.
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Finally, let us consider the case of µ1, µ2 being two vertices
of F2 that are not vertices of F1.

Lemma 5 Suppose µ1, µ2 are vertices of F2 that are not ver-
tices of F1. If they are adjacent vertices of F2, they are in the
same facet of dimension 2 of F1. Indeed, the intersection of
the facet with the hyperplane µ∗(A) = µ(A) is the segment
[µ1, µ2].

As a final remark about this section note that, in order to
apply this procedure, it is necessary to know the adjacency
structure of the polytopeFMk(X). As proved in [20, 21], the
problem of determining non-adjacency of vertices of a poly-
tope is, in some cases, NP-complete. The vertices of FM(X)
are {0, 1}-valued measures [22]. In [23] a characterization
of the adjacency in FM(X) = FMn(X) that allows us
to check whether two vertices are adjacent in quadratic time
has been obtained. The adjacency structure of FM1(X) and
FM2(X) is also known. However, the structure ofFMk(X)
for other values of k is more complicated [24] and the adja-
cency structure is not known (indeed, the vertices of the poly-
tope have not been obtained yet). In this last case, we are
forced to apply a similar algorithm with the additional con-
straints m(A) = 0 before applying the procedure.

4 The setMCn(µ).

The procedure stated in the previous section can be very time-
consuming and thus unfeasible in practice for big values of
|X|. Thus, it is interesting to look for a characterization of the
vertices of the k-additive core; in this line we have the results
of Shapley and Ichiishi [17, 18] for C1(µ) and the results in
[4] for Cn−1(µ) (the (n − 1)-additive core, not restricted to
capacities). In this section we provide a characterization of
vertices ofMCn(µ). We consider the following procedure.

• Let ≺ be an order on P(X) \ {X, ∅}. This order allows
us to rank the different subsets of X,

A1 ≺ A2 ≺ ... ≺ A2n−2. (9)

• Next, take a partition P = {U ,L} on P(X) \ {X, ∅},
where U or L could be empty.

• Initializing step: For ≺ and P fixed, let us define

µ0(Ai) = 1, µ0(Ai) = µ(Ai), ∀Ai. (10)

• Iterating step: For i = 1 until i = 2n − 2, do:

– If Ai ∈ U , then assign

µ≺,P(Ai) = µi−1(Ai). (11)

Redefine:
For µi, we put

µ
i(B) = max{µi−1(Ai), µ

i−1(B)}, if Ai ⊆ B (12)

µi(B) = µi−1(B), otherwise. (13)

For µi, we put

µi(B) = µi−1(B), ∀B ⊂ X. (14)

– If Ai ∈ L, then assign

µ≺,P(Ai) = µi−1(Ai). (15)

Redefine:
For µi, we put

µ
i(B) = min{µi−1(Ai), µ

i−1(B)}, if B ⊆ Ai (16)

µi(B) = µi−1(B), otherwise. (17)
For µi, we put

µi(B) = µi−1(B), ∀B ⊂ X. (18)

The idea of the procedure is the following: If we are in step
i, the values for A1, ..., Ai−1 are fixed. For Ai, if Ai ∈ U , we
assign to µ≺,P(Ai) the biggest possible value keeping dom-
inance, which is µi(Ai). Similarly, if Ai ∈ L, we assign
to µ≺,P(Ai) the smallest possible value keeping dominance,
which is µi(Ai). Once the value of µ≺,P(Ai) is fixed, we
need to actualize the lower and upper bounds for Aj , j > i.

These lower and upper bounds are stored in µi+1 and µi+1, re-
spectively. The Figure below explains the performance of the
algorithm for the special case of |X| = 2. In it, we can see that
MC2(µ) has four vertices. Note that µ itself is always a vertex
of MC2(µ), corresponding to the case L = P(X) \ {X, ∅}
and U = ∅. Thus, for the n-additive case, µ ∈ MCn(µ) and
it is the bottom element of this set. Similarly, the measure at-
taining value 1 for every subset is another vertex ofMC2(µ),
corresponding to the case U = P(X) \ {X, ∅} and L = ∅.
Thus, for the n-additive case, it is the top element of the set.
This also holds when |X| > 2.

µ({1})

µ({2})

µ

µmax

U = ∅

L = {{1}, {2}}

U = {{2}}

L = {{1}}

U = {{1}, {2}}

L = ∅

U = {{1}}

L = {{2}}

Note also that this procedure generalizes for the n-additive
case the Shapley-Ichiishi theorem for probabilities. In our
case, the total order on P(X)\{∅, X} plays the role of chains;
the value that is assigned to a singleton in the Shapley-Ichiishi
theorem is indeed the upper and lower bound for this value in
order to keep dominance. However, in our case we need two
”chains” instead of one because lower and upper bounds are
not the same for the general case.

Finally, remark that for the general case we do not need to
impose any additional condition on µ, while for the set C(µ) =
MC1(µ) convexity is required.

In next results we will prove that the function µ≺,P obtained
through this procedure is a vertex of MCn(µ) and that any
vertex can be obtained through a suitable choice of ≺ and P.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

79



Proposition 1 µ≺,P ∈MCn(µ).

The proof of this result is based on the following lemmas,
that provide us with additional properties of {µi(B)}2n−2

i=0 and
{µi(B)}2n−2

i=0 .

Lemma 6 For any B ⊂ X, the sequence {µi(B)}2n−2
i=1 is

nondecreasing. Similarly, the sequence {µi(B)}2n−2
i=0 is non-

increasing.

Lemma 7 µi, µi ∈ FM(X),∀i = 0, ..., 2n − 2.

Lemma 8 µi ≥ µi,∀i = 0, ..., 2n − 2.

Moreover, the following holds.

Proposition 2 µ≺,P is a vertex ofMCn(µ).

Finally, it can be seen that all the vertices can be derived
from this procedure.

Proposition 3 If µ∗ is a vertex of MCn(µ), there exists an
order ≺ and a partition P of P(X) \ {X, ∅} such that µ∗ =
µ≺,P .

Note that these results allows us to derive an upper bound
for the number of vertices ofMCn(µ).

Proposition 4 The number of vertices ofMCn(µ) is bounded
by 22n−2.

5 The case ofMCk(µ)

In this section we treat the general k-additive case. The basic
idea is to translate the results of the previous section to this
case. In order to translate the results, we will need to solve
two new problems:

• For a fixed value of µ(A), the possible lower and upper
bounds of µ(B), B �= A are not trivial, as it happened
for the n-additive case. Moreover, if we are dealing with
MCk(µ), it could be the case that µ �∈ FMk(X). Thus,
in the k-additive case, it could be the case that no such
bottom element for MCk(µ) exists, so we cannot de-
fine µ0. Similarly, the measure attaining value 1 for every
subset is no longer inMCk(µ), whence we cannot define
µ0.

• The structure of the polytope FMk(X) is not known for
k ≥ 3. Indeed, it has been proved in [24] that there are
vertices of FMk(X), k ≥ 3 that are not {0, 1}-valued
measures; moreover, we do not know the vertices of the
polytope. However, it could be the case that some of
these vertices are inMCk(µ). How can they be charac-
terized?

We will study in this section the particular case in which
µ ∈ FMk(X). Notice that in the n-additive general case, this
condition trivially holds. Of course, if µ ∈ FMk(X), then
MCk(µ) �= ∅ and has a bottom element (µ itself). Notice
again that this was the situation for the n-additive case.

• Let us consider a total order on Pk
∗ (X) := Pk(X) \ {∅}.

Notice that in the general case, we have considered an
order on P(X) \ {∅, X}. This total order allows us to
range the subsets in Pk

∗ (X): A1 ≺ A2 ≺ ... ≺ Ar,

where r =
∑k

i=1

(
n
i

)
.

• Next, take a partition P = {U ,L} on P(X) \ {X, ∅},
where U or L could be empty.

• Initializing step: Let us define µ0 := µ

• Iterating step: For i = 1 until i = r do:

– If Ai ∈ L, then µi = µi−1.

– Otherwise Ai ∈ U . It is easy to see that µi−1 ∈
FMk(X).
Let us consider the subset given by

{µ∗ ∈ FMk(X) |µ∗ ≥ µi−1,

µ∗(Aj) = µi−1(Aj), j = 1, ..., i− 1}. (19)

As FMk(X) is a polytope, so is this set. Thus, for
Ai, it follows that µ∗(Ai) can vary in an interval
[µi−1(Ai), s]. Take the subset of measures in the
set satisfying µ∗(Ai) = s. Let us denote this subset
by A0.

As before,A0 is a polytope. Then, for µ∗ ∈ A0, the
value µ∗(Ai+1) can vary in an interval [x−

1 , x+
1 ].

We define

A1 := {µ∗ ∈ A0 |µ∗(Ai+1) = x−
1 }. (20)

Now, the same can be done for A1 and consider-
ing Ai+2. We reiterate until Aj is just a singleton
(notice that necessarily Ar−i is a singleton). This
capacity is µi.

It can be checked that this algorithm coincides with the al-
gorithm of the previous section for the n-additive case. Let us
denote by µr the measure obtained in the last iteration.

Note that if k = 1 and µ is a probability, then the set
MC1(µ) = C(µ) = {µ} and the problem is trivial.

Now, the following can be proved:

Lemma 9 If µ ∈ FMk(X), the measure µr obtained in the
procedure is an extreme point ofMCk(µ).

However, this method does not obtain all the vertices of
MCk(µ), as next example shows:

Example 1 Consider |X| = 4 and the measure u{1,4} given
by u{1,4}(A) = 1 if {1, 4} ⊆ A and u{1,4}(A) = 0 otherwise.
Then, u{1,4} ∈ FM3(X). Consider the measure µ∗ given by

Subset 1 2 3 4 1,2 1,3 1,4
µ∗ 0 0 0 0 0.5 0.5 1

Subset 2,3 2,4 3,4 1,2,3 1,2,4 1,3,4 2,3,4
µ∗ 0.5 0 0 0.5 1 1 1

It has been proved in [24] that µ∗ is an extreme point of
FM3(X). On the other hand, µ∗ ≥ u{1,4}, whence µ∗ is an
extreme point ofMC3(u{1,4}). Let us check that µ∗ cannot be
obtained through the previous algorithm, no matter the order
considered.

Assume A1 ∈ U .
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• If A1 is a singleton, straightforward calculus shows that
we can obtain µ1(A1) = 1, whence µ∗ could not be de-
rived. The same holds if A1 is a pair different from {1, 4}
and {2, 3}.
• Suppose A1 = {2, 3} and consider the measure whose

Möbius transform is given by

m′({2, 3}) = 1,m′({1, 4}) = 1,m′({2, 4}) = 1. (21)

In this case, we obtain a 3-additive measure and thus, it is
possible to obtain µ1({2, 3}) = 1. Therefore, µ∗ cannot
be derived in this case.

• If A1 = {1, 2, 3}, then m′({1, 2}) = 1 gives
µ1({1, 2, 3}) = 1, whence µ∗ cannot be derived in this
case.

• For the other possibilities, we have u{1,4}(A1) = 1,
whence the value is fixed.

Consequently, it is not possible to obtain µ∗ if A1 ∈ U .

Thus, assume A1 ∈ L. This fixes µ1(A1) = u{1,4}(A1).

• If A1 ∈ {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, then
µ1(A1) = 0, whence µ∗ cannot be recovered.

• For other possibilities, we fix a value either 0 or 1.

But then, we can repeat the process for A2 with the same
results. Thus, µ∗ cannot be obtained through the procedure.

6 Conclusions
In this paper we have proposed an algorithm to obtain the ver-
tices of the k-additive monotone core. This procedure can
be applied to any value of k. However, it seems that it could
be very time-consuming. Next, we have derived the vertices
of the n-additive core; these results generalize the Shapley-
Ichiishi theorem for the general case. Finally, we have treated
the possible extensions for the k-additive case.

An important problem arising in the k-additive case is the
number of vertices of the k-additive core. For the general n-
additive case, the set of vertices of FM(X) coincides with
the n-th Dedekind number; simulations carried on for the k-
additive case seem to show that the number of vertices of
FMk(X) is even greater, due to vertices that are not {0, 1}-
valued. This problem could make unfeasible to store all the
vertices of the k-additive core in some cases.
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