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Abstract— Three different types of universal integral based on
level dependent capacities are introduced and discussed. Two ex-
tremal types are based on Caratheodory’s idea of inner and outer
measures, while the third type is introduced for copula-based univer-
sal integrals only.
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1 Introduction

Capacities (also called fuzzy measures) express the weights
of (measurable) subsets of a given universe X in a consistent
way. If, for example, X represents a set of criteria then a ca-
pacity m on X assigns to each group of criteria A ⊆ X a
weight m(A). Universal integrals aggregate the information
contained in a capacity m and in a (measurable) function f to
a single representative value. The range of f has no influence
on the capacity we are exploiting in the aggregation process.
In practical applications, however, there is often a need for a
different treatment of functions with small values and func-
tions with large values (or even in a more sophisticated way).

This idea of different weights for sets (groups of criteria)
at different levels can be expressed by means of a system of
capacities (level dependent capacities, see [1, 2, 3]). Note that,
motivated by multi-criteria decision problems, one approach
to a Choquet integral based on level dependent capacities was
proposed and discussed in [1, 2]. On the other hand, one type
of a Sugeno integral based on level dependent capacities was
introduced in [3] as a solution of the comonotone maxitivite
problem for aggregation functions.

The aim of this contribution is to introduce and to discuss
universal integrals based on level dependent capacities, i.e.,
we are looking for extensions of the concept of universal in-
tegrals [4] which originally was defined for capacities only.
Similar ideas generalizing classical measures are related to the
notion of Markov kernels [5], see also [6].

2 Preliminaries

Recall that a (binary) aggregation operator or aggregation
function [7, 8] is a function A : [0, 1]2 → [0, 1] which is non-
decreasing (in each component) and satisfies A(0, 0) = 0 and
A(1, 1) = 1. If a binary aggregation function A has neutral el-

ement 1, i.e., satisfies A(a, 1) = A(1, a) = a for all a ∈ [0, 1],
it is called a semicopula [9].

Universal integrals were introduced and studied recently
in [10, 4]. If the set H is defined by

H = {h : [0, 1] → [0, 1] | h is non-increasing with h(0) = 1}.
and if ⊗ : [0, 1]2 → [0, 1] is a semicopula then a non-
decreasing functional J : H → [0, 1] is called ⊗-consistent
if, for all a, b ∈ [0, 1], we have

J(b · 1[0,a] + (1 − b) · 1{0}) = a ⊗ b. (1)

A capacity space (X,A, m) is a triplet consisting of a non-
empty universe X , a σ-algebra A of subsets of X (the ele-
ments of A are called measurable subsets of X), and a capac-
ity m : A → [0, 1], i.e., m is isotone with boundary conditions
m(∅) = 0 and m(X) = 1. Furthermore, denote by F the
system of all A-measurable functions f : X → [0, 1]. Note
that, in our context, a function f : X → [0, 1] is called A-
measurable if, for each Borel subset B of [0, 1], its preimage
f−1(B) = {x ∈ X | f(x) ∈ B} is a measurable subset of X ,
i.e., belongs to the σ-algebra A. For details about capacity
spaces (also called fuzzy measure spaces) see [11, 12, 13, 14].

Definition 2.1 Let J : H → [0, 1] be a ⊗-consistent func-
tional. A J-universal integral IJ is a mapping which can be
defined for each capacity space (X,A, m) via IJ,m : F →
[0, 1] given by

IJ,m(f) = J(hm,f ), (2)

where the function hm,f : [0, 1] → [0, 1] is defined by
hm,f (t) = m({f ≥ t}) (observe that, because of the mono-
tonicity of m, we have hm,f ∈ H).

Note that two prototypical universal integrals are the Cho-
quet integral [15, 16, 17], in which case we have J = R, the
standard Riemann integral given by

R(h) =
∫ 1

0

h(t) dt (3)

(here ⊗ = Π, the standard product), and the Sugeno integral
[18, 11, 12, 17] which is related to J = S with

S(h) = sup{min(t, h(t)) | t ∈ [0, 1]} (4)
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(here ⊗ = Min, the greatest semicopula).
Next, we recall two important classes of universal integrals

(for more details see [10, 4]):

Proposition 2.2 Let ⊗ be a semicopula. The smallest univer-
sal integral I⊗ based on ⊗ is given by J⊗ : H → [0, 1],

J⊗(h) = sup{t ⊗ h(t) | t ∈ [0, 1]}, (5)

i.e., I⊗ = IJ⊗ .

Evidently, because of (5), we have

I⊗,m(f) = sup{t ⊗ m({f ≥ t}) | t ∈ [0, 1]}. (6)

Observe that for ⊗ = Min, IMin = IS is just the Sugeno
integral, while IΠ is the Shilkret integral [19]. If T : [0, 1]2 →
[0, 1] is a strict t-norm [20], then IT is the Weber integral [21].

Recall that a (two-dimensional) copula [22] is a binary ag-
gregation function C : [0, 1]2 → [0, 1] with annihilator 0 and
neutral element 1, i.e., satisfies C(a, 0) = C(0, a) = 0 and
C(a, 1) = C(1, a) = a for all a ∈ [0, 1], which is also 2-
increasing, i.e., for all a1, a2, b1, b2 ∈ [0, 1] with a1 ≤ a2 and
b1 ≤ b2 we have

C(a1, b1) − C(a1, b2) + C(a2, b2) − C(a2, b1) ≥ 0. (7)

This means that each copula C induces a probability measure
PC on the Borel subsets of [0, 1]2 via

PC([a1, a2] × [b1, b2])
= C(a1, b1) − C(a1, b2) + C(a2, b2) − C(a2, b1). (8)

Equivalently, a copula C is a semicopula which is supermod-
ular, i.e.,

C(a1, b1) + C(a2, b2)
= C((a1, b1) ∧ (a2, b2)) + C((a1, b1) ∨ (a2, b2)) (9)

for all (a1, b1), (a2, b2) ∈ [0, 1]2, where ∧ and ∨ are the
(pointwise) lattice operations on [0, 1]2, i.e, ∧ = min and
∨ = max.

Proposition 2.3 If C : [0, 1]2 → [0, 1] is a copula and PC

the probability measure on the Borel subsets of [0, 1]2 induced
by C, then the functional JC : H → [0, 1] given by

JC(h) = PC({(x, y) ∈ [0, 1]2 | y ≤ h(x)}) (10)

is C-consistent.

Given a copula C : [0, 1]2 → [0, 1], we shall denote the
universal integral IJC

simply by I(C). Since Π and Min are
copulas, we see that I(Π) = IR is the Choquet integral and
I(Min) = IS is the Sugeno integral. Therefore, we have two
different ways to define the Sugeno integral.

3 Level dependent capacities
The notion of level dependent capacities was introduced in [1],
see also [2].

Definition 3.1 Let (X,A) be a measurable space. A level de-
pendent capacity on (X,A) is a system M = (mt)t∈[0,1],
where each mt : A → [0, 1] is a capacity on (X,A).

A special example of a level dependent capacity is a Markov
kernel [5, 6], where each mt is a probability measure on
(X,A) and, for each A ∈ A, the function MA : [0, 1] → [0, 1]
given by MA(t) = mt(A) is A-measurable.

Given a level dependent capacity M = (mt)t∈[0,1] on
(X,A), for each A-measurable function f : X → [0, 1] we
define the function hM,f : [0, 1] → [0, 1], which accumulates
all the information contained in M and f , by

hM,f (t) = mt({f ≥ t}). (11)

In general, the function hM,f is neither monotone nor even A-
measurable (compare with the function hm,f ∈ H discussed
in Section 2). Following the ideas of inner and outer mea-
sures in Caratheodory’s approach [23], we introduce the two
functions (hM,f )∗, (hM,f )∗ : [0, 1] → [0, 1] by

(hM,f )∗ = inf{h ∈ H | h ≥ hM,f}, (12)
(hM,f )∗ = sup{h ∈ H | h ≤ hM,f}. (13)

Note that it is possible to show that for all t ∈ [0, 1]

(hM,f )∗(t) = sup{hM,f (u) | u ∈ [t, 1]}, (14)
(hM,f )∗(t) = inf{hM,f (u) | u ∈ [0, t]}. (15)

Evidently, both functions (hM,f )∗ and(hM,f )∗ are non-
increasing and, therefore, belong to H. If the level dependent
capacity M = (mt)t∈[0,1] is constant (i.e., mt = m for all
t ∈ [0, 1]) then the three functions considered in (11)–(13)
coincide, i.e., we have

hm,f = hM,f = (hM,f )∗ = (hM,f )∗. (16)

The three functions hM,f , (hM,f )∗ and (hM,f )∗ allow us to
introduce three different extensions of universal integrals for
level dependent capacities.

4 Extensions of universal integrals

If IJ is a J-universal integral then a mapping ĨJ which can
be defined on arbitrary measurable spaces (X,A) and arbi-
trary level dependent capacities M on (X,A) is called an
extension of IJ if, whenever the level dependent capacity
M = (mt)t∈[0,1] is constant (i.e., mt = m for all t ∈ [0, 1]),
we have ĨJ,M = IJ,m.

Using the functions in (12) and (13), two extremal exten-
sions of universal integrals can be introduced.

Definition 4.1 Let IJ be a J-universal integral. The upper
extension (IJ)∗ (respectively the lower extension (IJ)∗) of IJ

for an arbitrary measurable space (X,A), a level dependent
capacity M on (X,A), and an A-measurable function f ∈ F
are given by, respectively,

(IJ,M )∗(f) = J((hM,f )∗), (17)
(IJ,M )∗(f) = J((hM,f )∗). (18)

If the system M = (mt)t∈[0,1] is constant (i.e., mt = m for
all t ∈ [0, 1]) then we clearly have

IJ,m = (IJ,M )∗ = (IJ,M )∗, (19)

i.e., both (IJ)∗ and (IJ)∗ are indeed extensions of IJ .
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For extensions ĨJ,M of IJ which are non-decreasing in M
we get

(IJ,M )∗ ≤ ĨJ,M ≤ (IJ,M )∗. (20)

The approach of extending a known integral to more gen-
eral situations was applied, e.g., in the case of belief and plau-
sibility measures. Indeed, in the case of a belief measure m
[14, 16], the standard Lebesque integral (for probability mea-
sures) was applied to probability measures P ≥ m, and the
integral with respect to the capacity m (which, in general, is
non-additive) was in this case defined as the infimum of all
Lebesgue integrals (with respect to probability measures P
with P ≥ m). Similarly, for a plausibility measure m, all
probability measures P ≤ m were taken into account, and
then the supremum over all Lebesgue integrals (with respect
to probability measures P with P ≤ m) yields the integral
for the (non-additive) plausibility measure m. Observe that
in both cases the resulting integral is the Choquet integral
with respect to m. In our case, having a universal integral
IJ defined for any pair (m, f) of a capacity and a measur-
able function on the same space, we can compare such pairs
based on the corresponding hm,f : (m1, f1) ≤ (m2, f2) when-
ever hm1,f1 ≤ hm2,f2 (here (m1, f1) and (m2, f2) need not
be defined on the same measurable space, in general). Then
(IJ,M )∗(f) is just the infimum of all values (IJ,m)(g), the
infimum being taken over all (m, g) with hM,f ≤ hm,g . Sim-
ilarly, (IJ,M )∗(f) is just the supremum of (IJ,m)(g), where
the supremum is taken over all (m, g) with hM,f ≥ hm,g .

For a copula-based universal integral IC there is a third ex-
tension — however, it cannot necessarily be applied to any
measurable function f ∈ F .

Definition 4.2 Let C be a copula, (X,A) be a measurable
space and M = (mt)t∈[0,1] be a level dependent capacity on
(X,A).

(i) A function f ∈ F is called M -integrable if hM,f is a
measurable function.

(ii) For each M -integrable function f ∈ F the corre-
sponding C-based universal integral Ĩ(C) is defined by
Ĩ(C),M (f) = JC(hM,f ) (compare (10)), i.e.,

Ĩ(C),M (f) = PC({(u, v) ∈ [0, 1]2 | v ≤ hM,f (u)}).
(21)

Note that a similar extension is possible in the case of a uni-
versal integral Iµ based on a capacity µ on the Borel subsets
of ]0, 1[2 as proposed in [24], in which case

Iµ,M (f) = µ({(u, v) ∈ ]0, 1[2 | v < hM,f (u)}). (22)

Remark 4.3

(i) The generalization of the Choquet integral for level de-
pendent capacities as proposed in [1] is closely related
to the Riemann-integrability of the function hM,f . For
example, if X is a finite set (and A = 2X ), and if
the level dependent capacity M = (mt)t∈[0,1] has the
same measurability property as a Markov kernel, i.e., for
each A ⊆ X the function MA : [0, 1] → [0, 1] given by

MA(t) = mt(A) is measurable, then also hM,f is mea-
surable for each f : X → [0, 1]. Since hM,f is not neces-
sarily monotone, the Riemann integral in the original def-
inition of the Choquet integral should be replaced by the
Lebesgue integral (with respect to the standard Lebesgue
measure λ on the Borel subsets of [0, 1]), i.e., then (21)
turns into

Ĩ(Π),M (f) =
∫

[0,1]

hM,f dλ. (23)

However, based on Definition 4.1, we have two other ex-
tensions of the Choquet integral given by

(I(Π),M )∗(f) =
∫ 1

0

(hM,f )∗(x) dx, (24)

(I(Π),M )∗(f) =
∫ 1

0

(hM,f )∗(x) dx. (25)

(ii) Similarly, we have three possible extensions of the
Sugeno integral, namely,

Ĩ(Min),M (f) = λ({t ∈ [0, 1] | t ≤ hM,f (t)}), (26)
(I(Min),M )∗(f) = sup

t∈[0,1]

min(t, hM,f (t)), (27)

(I(Min),M )∗(f) = sup
t∈[0,1]

min
(
t, inf

u∈[0,t]
hM,f (u)

)
.

(28)

In [3] comonotone maxitivity of aggregation functions
was investigated and, without any reference to integrals,
(I(Min),M )∗ was found to be a solution, compare also [25].

Example 4.4 Let X = [0, 1], A be the σ-algebra of Borel
subsets of [0, 1], and define M = (mt)t∈[0,1] by

mt =


m∗ if t ∈ [

0, 1
4

]
,√

λ if t ∈ [
1
2 , 1

]
,

m∗ otherwise,
(29)

where m∗ and m∗ are the greatest and the smallest capacity
on (X,A), respectively, given by

m∗(A) =

{
0 if A = ∅,
1 otherwise,

(30)

m∗(A) =

{
1 if A = X,

0 otherwise.
(31)

If f = id[0,1] then we get

(hM,f )∗ = 1[0, 1
4 ] + 1√

2
· 1] 1

4 , 1
2 [ +

√
1 − f · 1[ 1

2 ,1], (32)

hM,f = 1[0, 1
4 ] +

√
1 − f · 1[ 1

2 ,1], (33)

(hM,f )∗ = 1[0, 1
4 ]. (34)

Consequently, we have for the corresponding extensions of the
Choquet integral

(I(Π),M )∗(f) ≈ 0.663, (35)

Ĩ(Π),M (f) ≈ 0.486, (36)
(I(Π),M )∗(f) = 0.25. (37)
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Figure 1: The functions (hM,f )∗ (left), hM,f (center), and (hM,f )∗ in Example 4.4

For the extensions of the Sugeno integral we get

(I(Min),M )∗(f) ≈ 0.618, (38)

Ĩ(Min),M (f) ≈ 0.368, (39)
(I(Min),M )∗(f) = 0.25. (40)

The Shilkret integral [19] can be considered either as the
smallest universal integral based on ⊗ = Π or as µ-based uni-
versal integral, where µ is the capacity on the Borel subsets
of ]0, 1[2 given by µ(E) = sup{x · y | (x, y) ∈ E}. Then

(I(Π),M )∗(f) ≈ 0.385, (41)

Ĩµ,M (f) ≈ 0.385, (42)
(I(Π),M )∗(f) = 0.25. (43)

5 Conclusions
Universal integrals based on level dependent capacities can
be seen as natural extensions of capacity-based universal inte-
grals acting on different subdomains with (possibly) different
capacities. Take, for example, X = {1, 2} and define the ca-
pacities v1, v2 : 2X → [0, 1] by v1({1}) = 1

3 , v1({2}) = 2
3 ,

and v2({1}) = 3
4 , v2({2}) = 1

4 . Both capacities are addi-
tive (i.e., discrete probability measures), and the correspond-
ing Choquet integrals are just weighted arithmetic means, i.e.,
W1(x, y) = x+2y

3 and W2(x, y) = 3x+y
4 . Consider the level

dependent capacity M = (mt)t∈[0,1] given by

mt =

{
v1 if t ≤ 1

2 ,

v2 otherwise.
(44)

Then, for (x, y) ∈ [
0, 1

2

]2
, we have

(I(Π),M )∗(x, y) = Ĩ(Π),M (x, y) = (I(Π),M )∗(x, y)
= W1(x, y), (45)

and for (x, y) ∈ [
1
2 , 1

]2
(I(Π),M )∗(x, y) = Ĩ(Π),M (x, y) = (I(Π),M )∗(x, y)

= W2(x, y), (46)

If (x, y) ∈ [
0, 1

2

] × [
1
2 , 1

]
then

(I(Π),M )∗(x, y) = Ĩ(Π),M (x, y) = (I(Π),M )∗(x, y)

= 8x+6y+5
24 . (47)

However, our three extensions of the Choquet integral lead
to three different extensions of W1 (restricted to

[
0, 1

2

]2
) and

W2 (restricted to
[
1
2 , 1

]2
): if (x, y) ∈ ]

1
2 , 1

] × [
0, 1

2

[
then

Ĩ(Π),M (x, y) = 18x+16y−5
24 , (48)

(I(Π),M )∗(x, y) = W2(x, y), (49)
(I(Π),M )∗(x, y) = W1(x, y). (50)

Note that Ĩ(Π),M is a continuous aggregation function while
(I(Π),M )∗ and (I(Π),M )∗ are non-continuous. Finally, observe
that Ĩ(Π),M is the ordinal sum extension of the aggregation
functions W1 and W2 as proposed in [26].

We expect applications of the functionals introduced here in
multi-criteria decision making, especially in situations when
the weights of the criteria are related to the cardinal values of
the score values.
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