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Abstract— Recently, many scholars investigated interval, trian-
gular, and trapezoidal approximations of fuzzy numbers. These re-
searches can be grouped into two classes: the Euclidean distance
class and the non-Euclidean distance class. Most approximations in
the Euclidean distance class can be calculated by formulas, but cal-
culating approximations in the other class is more complicated. In
this paper, we study interval, triangular, and trapezoidal approxima-
tions under a weighted Euclidean distance which generalize all ap-
proximations in the Euclidean distance class. First, we embed fuzzy
numbers into a Hilbert space, and then introduce these weighted ap-
proximations by means of best approximations from closed convex
subsets of the Hilbert space. Finally, we apply the reduction princi-
ple to simplify calculations of these approximations.

Keywords— weighted trapezoidal approximation, triangular
fuzzy number, Hilbert space

1 Introduction
In practice, fuzzy intervals are often used to represent uncer-
tain or incomplete information. An interesting problem is
to approximate general fuzzy intervals by interval, triangu-
lar, and trapezoidal fuzzy numbers, so as to simplify calcu-
lations. Recently, many scholars investigated these approx-
imations of fuzzy numbers. According to the different as-
pects of distance, these researches can be grouped into two
classes: the Euclidean distance class and the non-Euclidean
distance class. The Euclidean distance class includes the in-
terval approximation (proposed by Grzegorzewski in 2002
[11]), symmetric triangular approximation (proposed by Ma
et al. in 2000 [18]), trapezoidal approximation (proposed
by Abbasbandy and Asady in 2004 [1]), and weighted tri-
angular approximation (proposed by Zeng and Li in 2007
[23]). The non-Euclidean distance class includes the rectan-
gle approximation under the Hamming distance (proposed by
Chanas in 2001 [6]), symmetric and non-symmetrical trape-
zoidal approximations under the Euclidean distance between
the respective 1/2-levels (proposed by Delgado et al. in 1998
[7]), and trapezoidal approximation under the source distance
(proposed by Abbasbandy and Amirfakhrian in 2006 [2]).
Some other approximations are also investigated, such as the
nearest parametric approximation (proposed by Nasibova and
Peker in 2008 [19]), trapezoidal approximation preserving the
expected interval (proposed by Grzegorzewski and Mrówka
[12, 13, 14], and improved by Ban [5] and Yeh [22] in 2008,
independently), approximation by π functions (proposed by
Hassine et al. in 2006 [15]), and polynomial approxima-
tion (proposed by Abbasbandy and Amirfakhrian in 2006 [3]).
Most approximations in the Euclidean distance class can be
calculated by formulas, but calculating the approximations in
the other class is more complicated. In this paper, we study

interval, triangular, and trapezoidal approximations under a
weighted Euclidean distance which generalize all approxima-
tions in the Euclidean distance class. In Section 2, we define
a weighted L2-distance on space of fuzzy numbers, and then
embed the space into the Hilbert space L2

λ[0, 1] × L2
λ[0, 1] by

applying the weighted L2-distance. In Section 3, we intro-
duce weighted approximations of fuzzy numbers by means of
best approximations from closed convex subsets of the Hilbert
space L2

λ[0, 1] × L2
λ[0, 1]. Some preliminaries are presented.

In Section 4-6, by applying the reduction principle [8, p.80]
we compute straightforwardly these approximations of fuzzy
numbers, and then propose several important theorems.

2 Embedding fuzzy numbers into the Hilbert
space L2

λ[0, 1] × L2
λ[0, 1]

By an inner product space we mean that it is a (real) vector
space V equipped with an inner product 〈·, ·〉 : V × V → R
obeying the following axioms:

1. 〈u, u〉 ≥ 0 for all u ∈ V , and 〈u, u〉 = 0 iff (if and only
if) u = 0,

2. 〈u, v〉 = 〈v, u〉, for all u, v ∈ V ,

3. 〈au + bv, w〉 = a〈u, w〉 + b〈v, w〉, for all u, v, w ∈ V
and all a, b ∈ R.

An inner product is a metric space if the distance is defined by

d(u, v) := 〈u − v, u − v〉 1
2 .

A completely inner product space is often called a Hilbert
space. It is well-known that the set of all L2-integrable func-
tions is a Hilbert space, denoted by L2

λ[0, 1], on which the
inner product is defined as

〈f, g〉λ :=
∫ 1

0

f(t)g(t)λ(t)dt,

where λ = λ(t) is a nonnegative function on [0, 1] with∫ 1

0
λ(t)dt > 0.

Another important Hilbert space is the product space
L2

λ[0, 1] × L2
λ[0, 1], which will be discussed in this paper. Its

inner product is defined by

〈(f1, f2), (g1, g2)〉λ :=
∫ 1

0

[f1(t)g1(t) + f2(t)g2(t)] λ(t)dt
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for all (f1, f2) and (g1, g2) ∈ L2
λ[0, 1] × L2

λ[0, 1]. We hence
obtain

d2
λ((f1, f2), (g1, g2))

=〈(f1 − g1, f2 − g2), (f1 − g1, f2 − g2)〉λ

=
∫ 1

0

(|f1(t) − g1(t)|2 + |f2(t) − g2(t)|2
)
λ(t)dt.

Recall that, a fuzzy number Ã can be represented by an
ordered pair of left continuous functions [AL(α), AU (α)]
(called the α-cuts of Ã), 0 ≤ α ≤ 1, which satisfy the fol-
lowing conditions: (1) AL is increasing on [0,1], (2) AU is
decreasing on [0,1], (3) AL(1) ≤ AU (1). Let F̃ denote the set
of all fuzzy numbers. The weighted L2-distance (Euclidean
distance) on F̃ is defined as

dλ(Ã, B̃) :=
[ ∫ 1

0

|AL(α) − BL(α)|2λ(α)dα

+
∫ 1

0

|AU (α) − BU (α)|2λ(α)dα
] 1

2 .

(1)

For more generality, we refer to [10] in which Grze-
gorzewski proposed two families of general distances on F̃.
Let Ã and B̃ be two fuzzy numbers. The fuzzy addition and
fuzzy subtraction operations on F̃ are defined as follows:

Ã + B̃ := [AL(α) + BL(α), AU (α) + BU (α)],

Ã − B̃ := [AL(α) − BU (α), AU (α) − BL(α)].

The above conditions (1)-(3) (the definition of fuzzy numbers)
imply that AL and AU ∈ L2

λ[0, 1], hence we define

i : Ã �→ (AL, AU ) ∈ L2
λ[0, 1] × L2

λ[0, 1].

In the following, we always use the interval notation [AL, AU ]
instead of (AL, AU ), although it may make little sense. Notice
that, the fuzzy addition operation coincides with the vector
addition on L2

λ[0, 1]×L2
λ[0, 1] and its inverse operation (vector

subtraction) is not the fuzzy subtraction “-”. Let the symbol
“�” denote the inverse operation, that is

Ã � B̃ := [AL(α) − BL(α), AU (α) − BU (α)],

which is often called the Hukuhara difference, see [17]. In
fact, Ã � B̃ may be not in F̃. From Eq.(1), we find that

d2
λ(Ã, B̃) = 〈Ã � B̃, Ã � B̃〉λ.

This shows that we can embed space of fuzzy numbers into
the Hilbert space L2

λ[0, 1]×L2
λ[0, 1]. We hence define an inner

product on F̃ inheriting from L2
λ[0, 1] × L2

λ[0, 1], that is

〈Ã, B̃〉λ :=
∫ 1

0

[AL(α)BL(α) + AU (α)BU (α)] λ(α)dα.

(2)

3 Approximations of fuzzy numbers
Let Ω be a subset of a Hilbert space V , then we call that:

1. Ω is a subspace iff u+v ∈ Ω and ru ∈ Ω for all u, v ∈ Ω
and all r ∈ R,

2. Ω is convex iff ru+(1− r)v ∈ Ω for all u, v ∈ Ω and all
r ∈ [0, 1],

3. Ω is chebyshev iff for each u ∈ V there exists a unique
element PΩ(u) ∈ Ω such that

d(u, PΩ(u)) ≤ d(u, x), ∀x ∈ Ω,

and then PΩ(u) is called the best approximation of u
from Ω.

It is well-known that every closed convex subset (closed sub-
space, finite dimensional subspace) is chebyshev, see [8, p.23-
24]. For any closed convex subset Ω, there is a sufficient and
necessary condition of the best approximation PΩ(u), as fol-
lows

〈u − PΩ(u), x − PΩ(u)〉 ≤ 0, ∀x ∈ Ω.

Furthermore, we also have

d(PΩ(u), PΩ(v)) ≤ d(u, v), ∀u, v ∈ V, (3)

refer to [21, Appendix C]. This implies PΩ is continuous.
While Ω is a closed subspace, then the above condition be-
comes

〈u − PΩ(u), x〉 = 0, ∀x ∈ Ω,

or equivalently

〈u, x〉 = 〈PΩ(u), x〉, ∀x ∈ Ω. (4)

In this paper, all elements in L2
λ[0, 1]×L2

λ[0, 1] of the form

[r1 + (r2 − r1)α, r4 − (r4 − r3)α]

are called extended trapezoidal fuzzy numbers. Let T denote
the subset of all extended trapezoidal fuzzy numbers. It is easy
to see that, an element Ã = [r1 +(r2 − r1)α, r4 − (r4 − r3)α]
is trapezoidal iff Ã ∈ F̃ ∩ T, that is

r1 ≤ r2 ≤ r3 ≤ r4. (5)

Also, a trapezoidal fuzzy number Ã is triangular (resp. sym-
metric trapezoidal, symmetric triangular, interval) iff r2 = r3

(resp. r2 − r1 = r4 − r3, r2 = r3 and r2 − r1 = r4 − r3,
r1 = r2 and r3 = r4). Let T̃, T̃s, ∆̃, ∆̃s, and Ĩ denote the sets
of all trapezoidal, symmetric trapezoidal, triangular, symmet-
ric triangular, and interval fuzzy numbers, respectively. It is
easy to verify that

1. T is a closed subspace of L2
λ[0, 1] × L2

λ[0, 1], and

2. F̃, T̃, T̃s, ∆̃, ∆̃s, and Ĩ are all closed convex subsets.

Hence, all of them are chebyshev. The best approximations of
u from T, T̃, T̃s, ∆̃, ∆̃s, and Ĩ are called the extended trape-
zoidal, trapezoidal, symmetric trapezoidal, triangular, sym-
metric triangular, and interval approximations of u, respec-
tively. Eq.(3) implies that these approximations are continu-
ous.

Theorem 1 (The reduction principle [8, p.80]). Let K be a
closed convex subset of an inner product space V and M be
any chebyshev subspace of V that contains K. Then, we have
that

PK(u) = PK(PM (u)) and

d(u, PK(u))2 = d(u, PM (u))2 + d(PM (u), PK(u))2.
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Now, let’s define four extended trapezoidal fuzzy numbers:

Ẽ1 := [1 − α, 0], Ẽ2 := [α, 0],

Ẽ3 := [0, α], Ẽ4 := [0, 1 − α].

Then, each element in T is a linear combination of Ẽi, 1 ≤
i ≤ 4, for instance

[r1 + (r2 − r1)α, r4 − (r4 − r3)α] =
4∑

i=1

riẼi.

This implies T = Span {Ẽ1, Ẽ2, Ẽ3, Ẽ4}. We also define two
other subspaces of L2

λ[0, 1] × L2
λ[0, 1] as follows

∆ := Span {Ẽ1, Ẽ2 + Ẽ3, Ẽ4},
I := Span {Ẽ1 + Ẽ2, Ẽ3 + Ẽ4} = Span {[1, 0], [0, 1]}.

It is easy to see that Ĩ ⊂ I, ∆̃s ⊂ ∆̃ ⊂ ∆, and T̃s ⊂ T̃ ⊂ T.
By applying the reduction principle, we obtain that

P
Ĩ
(u) = P

Ĩ
(PI(u)), (6)

P∆̃(u) = P∆̃(P∆(u)), P∆̃s
(u) = P∆̃s

(P∆(u)), (7)

P
T̃
(u) = P

T̃
(PT(u)), P

T̃s
(u) = P

T̃s
(PT(u)). (8)

4 The interval approximations
In 2002, Grzegorzewski first proposed interval approxima-
tions of fuzzy numbers [11]. Let’s extend his results to
the case of weighted L2-distance. We now start with com-
puting the best approximation PI(Ã) of any fuzzy number
Ã = [AL(α), AU (α)] from the subspace I. Unless otherwise
stated, we fix the following real numbers:

λ0 :=
∫ 1

0

λ(α)dα > 0

and

L0 :=
∫ 1

0

AL(α)λ(α)dα, U0 :=
∫ 1

0

AU (α)λ(α)dα.

From Eq.(2), we find that 〈[1, 0], [0, 1]〉λ = 0 and

〈[1, 0], [1, 0]〉λ = 〈[0, 1], [0, 1]〉λ = λ0.

Since I = Span {[1, 0], [0, 1]}, we may assume that

PI(Ã) = r[1, 0] + s[0, 1].

By applying Eq.(4), we can solve(
r
s

)
=

(〈[1, 0], [1, 0]〉λ 〈[0, 1], [1, 0]〉λ
〈[1, 0], [0, 1]〉λ 〈[0, 1], [0, 1]〉λ

)−1 (〈Ã, [1, 0]〉λ
〈Ã, [0, 1]〉λ

)

= λ−1
0

(
L0

U0

)
.

Hence, we obtain

PI(Ã) = [λ−1
0 L0, λ

−1
0 U0].

The fact AL(α) ≤ AU (α) implies L0 ≤ U0, hence PI(Ã) ∈ Ĩ.
By applying Eq.(6), we obtain the following theorem.

Theorem 2. Let Ã be a fuzzy number. Then, its interval ap-
proximation is P

Ĩ
(Ã) = [λ−1

0 L0, λ
−1
0 U0].

While λ(α) = 1, we get that λ0 = 1. Then, the above equa-
tion coincides with the Grzegorzewski’s formula [11, Equa-
tions (15) and (16)]. Also, the interval [L0, U0] is called the
expected interval of Ã, which is introduced by Dubois and
Prade [9] and Heilpern [16], independently.

5 The triangular approximations
Let λ = λ(α) be a nonnegative function on [0,1] with∫ 1

0
λ(α) dα > 0. In what follows, we fix

a :=
∫ 1

0

(1 − α)2λ(α)dα > 0,

b :=
∫ 1

0

α(1 − α)λ(α)dα > 0,

c :=
∫ 1

0

α2λ(α)dα > 0,

and

L1 :=
∫ 1

0

AL(α)αλ(α)dα, U1 :=
∫ 1

0

AU (α)αλ(α)dα.

By applying Schwarz inequality, we get

ac − b2 > 0.

In a similar manner, we start with computing P∆(Ã). Recall
that ∆ := Span {Ẽ1, Ẽ2 + Ẽ3, Ẽ4}, so we compute

 〈Ẽ1, Ẽ1〉λ 〈Ẽ2 + Ẽ3, Ẽ1〉λ 〈Ẽ4, Ẽ1〉λ
〈Ẽ1, Ẽ2 + Ẽ3〉λ 〈Ẽ2 + Ẽ3, Ẽ2 + Ẽ3〉λ 〈Ẽ4, Ẽ2 + Ẽ3〉λ

〈Ẽ1, Ẽ4〉λ 〈Ẽ2 + Ẽ3, Ẽ4〉λ 〈Ẽ4, Ẽ4〉λ




=


a b 0

b 2c b
0 b a


 .

Let P∆(Ã) = r1Ẽ1 + r2(Ẽ2 + Ẽ3) + r4Ẽ4. By applying
Eq.(4), we can solve


r1

r2

r4


 =


a b 0

b 2c b
0 b a




−1 
 〈Ã, Ẽ1〉λ
〈Ã, Ẽ2 + Ẽ3〉λ

〈Ã, Ẽ4〉λ




=
1
δ


2ac − b2 −ab b2

−ab a2 −ab
b2 −ab 2ac − b2





L0 − L1

L1 + U1

U0 − U1


 .

(9)

where δ = 2a(ac − b2) > 0. If we assume
∫ 1

0
λ(α)dα = 1

2

(that is a + 2b + c = 1
2 ) additionally, then the above P∆(Ã)

is equal to Zeng and Li’s weighted triangular approximation
[23]. Notice that P∆(Ã) may be not in F̃, refer to [21]. That
shows that P∆̃(Ã) �= P∆(Ã).

Lemma 3. Let Ã be a fuzzy number, and let

P∆(Ã) = r1Ẽ1 + r2(Ẽ2 + Ẽ3) + r4Ẽ4,

where r1, r2, and r4 are computed by Eq.(9). Then,

1. r1 ≤ r4,

2. if r2 ≤ r1, then

−(a + b)L0 + (a + 3b + 2c)U0 − 2(a + 2b + c)U1 ≥ 0,

3. if r2 ≥ r4, then

−(a + 3b + 2c)L0 + 2(a + 2b + c)L1 + (a + b)U0 ≥ 0.
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Proof. Omitted.

From Eq.(7), we find P∆̃(Ã) = P∆̃(P∆(Ã)). Eq.(5) im-
plies that an element

rẼ1 + s(Ẽ2 + Ẽ3) + tẼ4 ∈ ∆

is triangular iff r ≤ s ≤ t. By Lemma 3.1, we obtain that
P∆(Ã) /∈ ∆̃ implies either r2 < r1 or r2 > r4, hence the best
approximation (triangular approximation)

P∆̃(Ã) := r′1Ẽ1 + r′2(Ẽ2 + Ẽ3) + r′4Ẽ4

will satisfy r′2 = r′1 or r′2 = r′4, respectively. For instance,
suppose that the fuzzy number Ã has the approximation

P∆(Ã) = r1Ẽ1 + r2(Ẽ2 + Ẽ3) + r4Ẽ4 with r2 < r1.

Then, P∆̃(Ã) will belong to Span {Ẽ1 + Ẽ2 + Ẽ3, Ẽ4}, since
r′2 = r′1. So, we consider the best approximation of Ã from
Span {Ẽ1 + Ẽ2 + Ẽ3, Ẽ4}. We hence let

P∆̃(Ã) = r′1(Ẽ1 +Ẽ2 +Ẽ3)+r′4Ẽ4 = r′1[1, α]+r′4[0, 1−α].

By applying Eq.(4), we can solve
(

r′1
r′4

)
=

(
a + 2b + 2c b

b a

)−1 ( 〈Ã, [1, α]〉λ
〈Ã, [0, 1 − α]〉λ

)

=
1
δ

(
a −b
−b a + 2b + 2c

) (
L0 + U1

U0 − U1

)
,

(10)

where δ = (a + b)2 + 2(ac− b2), and we have substituted by

〈[1, α], [1, α]〉λ =
∫ 1

0

(1 + α2)λ(α)dα = a + 2b + 2c.

Notice that, the extended trapezoidal fuzzy number

Ẽ1 + Ẽ2 + Ẽ3 = [1, α]

does not belong to F̃. But, this does not effect results of our
computation. Applying Lemma 3.2, the reader can easily ver-
ify r′1 ≤ r′4 in Eq.(10), so that

r′1[1 − α, 0] + r′4[α, 1] ∈ F̃.

Hence, we obtain

P∆̃(Ã) = r′1[1, α] + r′4[0, 1 − α],

where r′1 and r′4 are computed by Eq.(10).
On the other hand, if Ã has the approximation

P∆(Ã) = r1Ẽ1 + r2(Ẽ2 + Ẽ3) + r4Ẽ4 with r2 > r4

then its triangular approximation leads to

P∆̃(Ã) = r′1[1 − α, 0] + r′4[α, 1],

where(
r′1
r′4

)
=

(
a b
b a + 2b + 2c

)−1 (〈Ã, [1 − α, 0]〉λ
〈Ã, [α, 1]〉λ

)

=
1
δ

(
a + 2b + 2c −b

−b a

) (
L0 − L1

L1 + U0

)
.

(11)

where δ = (a+ b)2 +2(ac− b2). Again, applying Lemma 3.3
the reader can easily verify r′1 ≤ r′4 in Eq.(11).

Theorem 4. Let Ã be a fuzzy number, and let

P∆(Ã) = r1Ẽ1 + r2(Ẽ2 + Ẽ3) + r4Ẽ4,

where r1, r2 and r4 are computed by Eq.(9). Then, the trian-
gular approximation P∆̃(Ã) can be determined in the follow-
ing cases:

1. If r1 ≤ r2 ≤ r4, then

P∆̃(Ã) = [r1 + (r2 − r1)α, r4 − (r4 − r2)α].

2. If r2 < r1, then P∆̃(Ã) = [r′1, r
′
4 − (r′4 − r′1)α], where

r′1 and r′4 are computed by Eq.(10).

3. If r2 > r4, then P∆̃(Ã) = [r′1 + (r′4 − r′1)α, r′4], where
r′1 and r′4 are computed by Eq.(11).

Next, we compute the symmetric triangular approximation
P∆̃s

(Ã) which was first proposed by Ma et al. [18]. Recall
that, an extended trapezoidal element

r1Ẽ1 + r2(Ẽ2 + Ẽ3) + r4Ẽ4 ∈ ∆

is symmetric triangular iff

r2 − r1 = r4 − r2 ≥ 0.

Hence, by substituting r2 = 1
2 (r1 + r4) we get

r1Ẽ1+r2(Ẽ2+Ẽ3)+r4Ẽ4 = r1[1−1
2
α,

1
2
α]+r4[

1
2
α, 1−1

2
α].

Let’s consider the best approximation P∆s(Ã) of Ã from the
subspace ∆s, where ∆s is defined by

∆s := Span {[1 − 1
2
α,

1
2
α], [

1
2
α, 1 − 1

2
α]}.

Suppose that

P∆s
(Ã) = r1[1 − 1

2
α,

1
2
α] + r4[

1
2
α, 1 − 1

2
α].

By applying Eq.(4), we can solve(
r1

r4

)

=
(

a + b + c
2 b + c

2
b + c

2 a + b + c
2

)−1 (〈Ã, [1 − 1
2α, 1

2α]〉λ
〈Ã, [ 12α, 1 − 1

2α]〉λ

)

=
1
δ

(
a + b + c

2 −(b + c
2 )

−(b + c
2 ) a + b + c

2

) (
L0 − 1

2L1 + 1
2U1

1
2L1 + U0 − 1

2U1

)
,

(12)

where δ = a2 + 2ab + ac. The reader can verify that r1 ≤ r4

for any Ã ∈ F̃. This implies P∆s
(Ã) ∈ F̃, so that

P∆̃s
(Ã) = P∆s

(Ã).

Theorem 5. Let Ã be a fuzzy number. Then, its symmetric
approximation is

P∆̃s
(Ã) = [r1 +

r4 − r1

2
α, r4 − r4 − r1

2
α],

where r1 and r4 are computed by Eq.(12).

While λ(α) = 1, we get that, a = 1
3 , b = 1

6 , and c = 1
3 .

Substituting into the above equation, we obtain

P∆̃s
(Ã) = [x0 − σ(1 − α), x0 + σ(1 − α)],

where x0 = L0+U0
2 and σ = 3

2 (−L0 + L1 + U0 − U1). This
formula coincides with [18, Equations (8) and (9)].
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6 The trapezoidal approximations
The (extended) trapezoidal approximation was first proposed
by Abbasbandy and Asady in 2004 [1]. Afterwards, Grze-
gorzewski and Mrówka proposed the (extended) trapezoidal
approximation preserving the expected interval [12]. Since
the expected interval of any fuzzy number Ã is equal to PI(Ã)
and I ⊇ T ⊇ T̃, by the reduction principle we get that these
two (extended) trapezoidal approximations are equal. Now,
we start with computing the extended trapezoidal approxima-
tion PT(Ã).

Because that T = Span {Ẽ1, Ẽ2, Ẽ3, Ẽ4}, we let

PT(Ã) = t1Ẽ1 + t2Ẽ2 + t3Ẽ3 + t4Ẽ4.

In the same vein, by applying Eq.(4) we can solve




t1
t2
t3
t4


 =




a b 0 0
b c 0 0
0 0 c b
0 0 b a




−1 

〈Ã, Ẽ1〉λ
〈Ã, Ẽ2〉λ
〈Ã, Ẽ3〉λ
〈Ã, Ẽ4〉λ




=
1

ac − b2




c −b 0 0
−b a 0 0
0 0 a −b
0 0 −b c







L0 − L1

L1

U1

U0 − U1




=
1

ac − b2




cL0 − (b + c)L1

−bL0 + (a + b)L1

−bU0 + (a + b)U1

cU0 − (b + c)U1


 .

(13)

While λ(α) = 1, the above equation coincides with Grze-
gorzewski’s formula [12, Equations (29)-(32)]. Note that, the
extended trapezoidal approximation PT(Ã) may be not in F̃,
refer to [4, 5, 20]. This is because that PT(Ã) may happen
t2 > t3.

Lemma 6. Let Ã be a fuzzy number, and let

PT(Ã) = t1Ẽ1 + t2Ẽ2 + t3Ẽ3 + t4Ẽ4,

where ti, 1 ≤ i ≤ 4, are computed by Eq.(13). Then,

t1 ≤ t2 and t3 ≤ t4.

Proof. Omitted.

From Eq.(8), we find

P
T̃
(Ã) = P

T̃
(PT(Ã)). (14)

Hence, if PT(Ã) is in F̃ (by applying Lemma 6, it is equivalent
to t2 ≤ t3), we obtain

P
T̃
(Ã) = PT(Ã).

Otherwise, we have t2 > t3. Consequently, Eq.(14) implies
that the trapezoidal approximation P

T̃
(Ã) will be restricted to

triangular fuzzy numbers ∆̃. This leads to

P
T̃
(Ã) = P∆̃(Ã).

By applying Theorem 4, we prove the following theorem
which is a generalization of [21, Theorem 4.4].

Theorem 7. Let Ã be a fuzzy number, and let

PT(Ã) = t1Ẽ1 + t2Ẽ2 + t3Ẽ3 + t4Ẽ4,

where ti, 1 ≤ i ≤ 4, are computed by Eq.(13). If t2 ≤ t3, then
the trapezoidal approximation of Ã is

P
T̃
(Ã) = [t1 + (t2 − t1)α, t4 − (t4 − t3)α].

Otherwise, by Eq.(9) compute

P∆(Ã) = r1Ẽ1 + r2(Ẽ2 + Ẽ3) + r4Ẽ4.

Then, the trapezoidal approximation P
T̃
(Ã) can be deter-

mined in the following cases:

1. If r1 ≤ r2 ≤ r4, then

P
T̃
(Ã) = [r1 + (r2 − r1)α, r4 − (r4 − r2)α].

2. If r2 < r1, then P
T̃
(Ã) = [r′1, r

′
4 − (r′4 − r′1)α], where r′1

and r′4 are computed by Eq.(10).

3. If r2 > r4, then P
T̃
(Ã) = [r′1 +(r′4 − r′1)α, r′4], where r′1

and r′4 are computed by Eq.(11).

Proof. Omitted.

In 1998, Delgado et al. [7] proposed a symmetric trape-
zoidal approximation of Ã under the Euclidean distance be-
tween the respective 1/2-levels. In the following, we turn to
study the symmetric trapezoidal approximation of Ã under a
weighted L2-distance. Recall that, an extended trapezoidal
fuzzy number t1Ẽ1 + t2Ẽ2 + t3Ẽ3 + t4Ẽ4 is symmetric trape-
zoidal iff

t2 − t1 = t4 − t3 ≥ 0 and t2 ≤ t3.

Let d = t2 − t1. By substituting t2 = t1 + d and t3 = t4 − d,
we obtain

t1Ẽ1 + t2Ẽ2 + t3Ẽ3 + t4Ẽ4 = t1[1, 0] + d[α,−α] + t4[0, 1].

Let Ts := Span {[1, 0], [α,−α], [0, 1]}. Suppose that the best
approximation of Ã from Ts is

PTs
(Ã) := t1[1, 0] + d[α,−α] + t4[0, 1].

By applying Eq.(4), we can solve

t1

d
t4


 =


λ0 λ1 0

λ1 2λ2 −λ1

0 −λ1 λ0




−1 
 〈Ã, [1, 0]〉λ
〈Ã, [α,−α]〉λ
〈Ã, [0, 1]〉λ




=
1
δ


2λ0λ2 − λ2

1 −λ0λ1 −λ2
1

−λ0λ1 λ2
0 λ0λ1

−λ2
1 λ0λ1 2λ0λ2 − λ2

1





 L0

L1 − U1

U0



(15)

where λi :=
∫ 1

0
αiλ(α)dα, i = 0, 1, 2, and

δ := 2λ0(λ0λ2 − λ2
1) > 0.

Lemma 8. Let Ã be a fuzzy number, and let

PTs
(Ã) = t1[1, 0] + d[α,−α] + t4[0, 1],

where t1, d, and t4 are computed by Eq.(15). Then, d ≥ 0.
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Proof. Omitted.

If PTs(Ã) ∈ F̃ (by applying Lemma 8, it is equivalent to
t1 + d ≤ t4 − d ), then it equals the symmetric trapezoidal
approximation P

T̃s
. Otherwise, we will have d > 1

2 (t4 −
t1). This shows that, in the case the symmetric trapezoidal
approximation

P
T̃s

(Ã) = t′1[1, 0] + d′[α,−α] + t′4[0, 1]. (16)

will satisfy d′ = 1
2 (t′4 − t′1). Substituting into Eq.(16) by

d′ = 1
2 (t′4 − t′1), we get

P
T̃s

(Ã) := t′1[1 − 1
2
α,

1
2
α] + t′4[

1
2
α, 1 − 1

2
α].

Since ∆s = Span {[1 − 1
2α, 1

2α], [ 12α, 1 − 1
2α]}, we get

P
T̃s

(Ã) ∈ ∆s ∩ F̃ = ∆̃s.

This implies P
T̃s

(Ã) is equal to the symmetric triangular ap-
proximation P∆̃s

(Ã). Consequently, by applying Theorem 5
we obtain the following theorem.

Theorem 9. Let Ã be a fuzzy number, and let

PTs
(Ã) = t1[1, 0] + d[α,−α] + t4[0, 1],

where t1, d, and t4 are computed by Eq.(15). If d ≤ 1
2 (t4−t1),

then the symmetric trapezoidal approximation of Ã is

P
T̃s

(Ã) = [t1 + dα, t4 − dα].

Otherwise, it is

P
T̃s

(Ã) = [r1 +
r4 − r1

2
α, r4 − r4 − r1

2
α],

where r1 and r4 are computed by Eq.(12).

7 Conclusions
Recently, many scholars studied on computation of interval,
triangular, and trapezoidal approximations approximations of
fuzzy numbers by applying Langrange multiplier method or
Karush-Kuhn-Tucker theorem. In the present paper, we pro-
pose a new method for computing these approximations un-
der a weighted distance by applying function approximation
theory on Hilbert space.We embed fuzzy numbers into the
Hilbert space L2

λ[0, 1] × L2
λ[0, 1]. Then, by introducing ex-

tended trapezoidal fuzzy numbers and applying the reduction
principle (Theorem 1), it suffices to compute the best approx-
imations of an extended trapezoidal fuzzy number. Hence, we
can easily determine these approximations by choosing a suit-
able basis. In fact, the weighted distance can be generalized
to more general form, as follows

dλ(Ã, B̃) =
∫ 1

0

|AL − BL|2dµ1 +
∫ 1

0

|AU − BU |2dµ2,

where µ1 and µ2 are arbitrary positive measures on [0,1].
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