
Fuzzy Descriptions Logics with Fuzzy Truth Values

Fernando Bobillo1 Umberto Straccia2

1. Dpt. of Computer Science & Systems Engineering University of Zaragoza, Spain
2. ISTI - CNR, Pisa, Italy

Email: fbobillo@unizar.es, straccia@isti.cnr.it

Abstract— Fuzzy Description Logics are a family of logics which
allow to deal with structured knowledge affected by vagueness. Al-
though a relatively important amount of work has been carried out
in the last years, current fuzzy DLs are open to be extend with sev-
eral features worked out in the fuzzy logic literature. In this work, we
extend fuzzy DLs with fuzzy truth values, allowing to state sentences
such as “Tina is young is almost true”.

Keywords— Fuzzy Description Logics, Fuzzy Truth Values

1 Introduction
Description Logics (DLs) [1], have gained popularity due to
their application in the context of the Semantic Web [2]. On-
tologies play a key role in the Semantic Web. An ontology
consists of a hierarchical description of important concepts in
a particular domain, along with the description of the proper-
ties (of the instances) of each concept. DLs play a particular
role in this context as they are essentially the theoretical coun-
terpart of the Web Ontology Language OWL DL, a state of the
art language to specify ontologies.

It is well-known that “classical” ontology languages are
not appropriate to deal with fuzzy/vague/imprecise knowledge,
which is inherent to several real world domains [3, 4]. Since
fuzzy set theory and fuzzy logic are suitable formalisms to
handle these types of knowledge, fuzzy ontologies emerge as
useful in several applications, such as (multimedia) informa-
tion retrieval, image interpretation, ontology mapping, match-
making and the Semantic Web [5]. So far, several fuzzy
extensions of DLs can be found in the literature (see the
survey in [5]) and some fuzzy DL reasoners exist, such as
FUZZYDL [6], DELOREAN [7], FIRE [8] or DLMEDIA [9].

In this paper we allow fuzzy DL sentences to be qualified
with fuzzy truth values [10], and, thus, allow expressions such
as “Tina is young is very true” and “Tina is young is almost
true”. We show the syntax, semantics and reasoning algo-
rithms for the extension provided in this paper.

We proceed as follows. To make the paper self-contained,
the next section recalls salient notions of mathematical fuzzy
logics [11]. Section 3 introduces fuzzy ALC [3], which is the
fuzzy variant of the Description Logic ALC. ALC is usually
considered as a reference language, whenever new features are
introduced into DLs. Section 4 extends fuzzy DLs with fuzzy
truth values and Section 5 provides reasoning algorithms. Sec-
tion 6 concludes and describes future work.

2 Preliminaries: Mathematical Fuzzy Logic
In the setting of fuzzy logics, the convention prescribing that

a statement is either true or false is changed and is a matter
of degree measured on an ordered scale S that is no longer
{0, 1}, but, e.g., the unit interval [0, 1]. This degree of fit is

called degree of truth of the statement φ in the interpretation
I. Fuzzy logics logics provide compositional calculi of de-
grees of truth, including degrees between “true” and “false”.
A statement is now not true or false only, but may have a truth
degree taken from a truth space S, usually [0, 1] (in that case
we speak about Mathematical Fuzzy Logic [11]).

In the illustrative fuzzy logic that we consider in this sec-
tion, fuzzy statements have the form φ� l or φ�u, where
l, u∈ [0, 1] [13, 11] and φ is a statement, which encode that
the degree of truth of φ is at least l resp. at most u. For exam-
ple, ripe tomato � 0.9 says that we have a rather ripe tomato
(the degree of truth of ripe tomato is at least 0.9).

A fuzzy interpretation I maps each basic statement pi into
[0, 1] and is then extended inductively to all statements:

I(φ ∧ ψ) = I(φ) ⊗ I(ψ) ;
I(φ ∨ ψ) = I(φ) ⊕ I(ψ) ;
I(φ → ψ) = I(φ) ⇒ I(ψ) ;
I(¬φ) = �I(φ) ,

where ⊗, ⊕, ⇒, and � are so-called truth combination
functions, namely, triangular norms (or t-norms), triangu-
lar conorms (t-conorms), implication functions, and negation
functions, respectively, which extend the classical Boolean
conjunction, disjunction, implication, and negation, respec-
tively, to the fuzzy case (see [11] for a formal definition
of these functions and their properties). Several t-norms, t-
conorms, implication functions, and negation functions have
been given in the literature, giving raise to different fuzzy log-
ics with different logical properties. In fuzzy logic, one usu-
ally distinguishes three different logics (see Fig. 1), namely
Łukasiewicz, Gödel, and Product logic [11]. Zadeh “logic”
(fuzzy operators originally considered by Zadeh [12]) is en-
tailed by Łukasiewicz logic.

A fuzzy set R over a countable crisp set X is a function
R : X → [0, 1]. A (binary) fuzzy relation R over two count-
able crisp sets X and Y is a function R : X × Y → [0, 1].
The degree of subsumption between two fuzzy sets A and B
is defined as infx∈X A(x) ⇒ B(x).

The notions of satisfiability and logical consequence are
defined in the standard way. A fuzzy interpretation I satis-
fies a fuzzy statement φ� l (resp., φ �u) or I is a model of
φ � l (resp., φ�u), denoted I |= φ � l (resp., I |= φ�u), iff
I(φ) � l (resp., I(φ) �u). φ � l is a tight logical consequence
of a set of fuzzy statements K iff l is the infimum of I(φ) sub-
ject to all models I of K. The latter value is equivalent to
l = sup {r | K |= φ � r}, it is called Best Entailment Degree
(BED), and is denoted bed(K, φ), while the Best Satisfiability
Degree, denoted as bsd(K, φ) is defined as supI|=K I(φ). We
refer the reader to [11, 13, 14] for reasoning algorithms for
fuzzy propositional and First-Order Logics (FOLs).

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

189

Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic
a ⊗ b max(a + b − 1, 0) min(a, b) a · b min(a, b)
a ⊕ b min(a + b, 1) max(a, b) a + b − a · b max(a, b)

a ⇒ b min(1 − a + b, 1)

{
1 if a ≤ b

b otherwise
min(1, b/a) max(1 − a, b)

� a 1 − a

{
1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise
1 − a

Figure 1: Combination functions of various fuzzy logics.

For illustrative purposes, we provide a simple and effec-
tive way to solve the entailment problem, in the case of Zadeh
logic and Lukasiewicz logic, in terms of Mixed Integer Linear
Programming (MILP) –see also [14]. The calculus depends
on the t-norm, t-conorm and negation functions considered.
Suppose we are looking for bed(K, φ), then,

bed(K, φ) = min{x | K ∪ {φ ≤ x} is satisfiable.} (1)

Indeed, suppose the minimal value is n̄. We will know then
that for any interpretation I satisfying K, it cannot be I(φ) <
n̄, and, thus, I(φ) ≥ n̄ has to hold.

The above problem can be solved by means of MILP (we
consider Zadeh logic only, for Lukasiewicz logic the proce-
dure is similar) 1. For a formula φ consider a variable xφ. The
intuition is that the degree of truth of φ is greater or equal to
xφ. The MILP problem determining bed(K, φ) is as follows:

min x. such that x ∈ [0, 1]
x¬φ ≥ 1 − x, σ(¬φ),
for all (φ′ ≥ n) ∈ K, xφ′ ≥ n, σ(φ′),
for all (φ′ ≤ n) ∈ K, x¬φ′ ≥ 1 − n, σ(¬φ′)

(2)

where the function σ, transforming a many-valued proposition
into a set of inequations, is inductively defined as follows:

σ(φ) =

xp ∈ [0, 1] if φ = p

xφ′ = 1 − xφ, xφ ∈ [0, 1] if φ = ¬φ′

xφ1 ≥ xφ, xφ2 ≥ xφ,
σ(φ1), σ(φ2), xφ ∈ [0, 1]

if φ = φ1 ∧ φ2

xφ1 + xφ2 = xφ, xφ1 ≤ y,
xφ2 ≤ 1 − y, σ(φ1), σ(φ2),
y ∈ {0, 1}, xφ ∈ [0, 1],
where y is a new binary variable .

if φ = φ1 ∨ φ2

In a similar way, we may determine bsd(K, φ) as

min−x. such that x ∈ [0, 1]
xφ ≥ x, σ(φ),
for all (φ′ ≥ n) ∈ K, xφ′ ≥ n, σ(φ′),
for all (φ′ ≤ n) ∈ K, x¬φ′ ≥ 1 − n, σ(¬φ′)

(3)

Note that we may verify whether K is satisfiable by checking
if bed(K, p) = 1, where p is a new propositional letter not
occurring in K, and that under Łukasiewicz logic and Zadeh
semantics we end up with a bounded Mixed Integer Linear
Program (bMILP) optimization problem [15].

3 Fuzzy ALC
Syntax. Consider an alphabet of concepts names (denoted A),
abstract roles names (denoted R), abstract individual names
(denoted a). From a First-Order Logic point of view, con-
cepts may be seen as a formulae with one free variable (and,

1Note that this is an optimized version w.r.t. [13, 14].

thus, may be seen as class descriptors), while roles as binary
predicates (and, thus, may be used to describe properties of a
class). Concepts (denoted C or D) of the language can be built
inductively from atomic concepts (A), top concept
, bottom
concept ⊥, abstract roles (R) as:

C, D → A | (atomic concept)
	 | (top concept)
⊥ | (bottom concept)

C � D | (concept conjunction)
C � D | (concept disjunction)

¬C | (concept negation)
∀R.C | (universal quantification)
∃R.C (existential quantification)

As illustrative purpose, Fig. 2 provides a First-Order Logic
translation of ALC concepts and examples.

Syntax FOL Example
C, D → � | �(x)

⊥ | ⊥(x)
A | A(x) Human

C � D | C(x) ∧ D(x) Human � Male
C � D | C(x) ∨ D(x) Nice � Rich
¬C | ¬C(x) ¬Meat

∃R.C | ∃y.R(x, y) ∧ C(y) ∃has child.Blond
∀R.C ∀y.R(x, y) → C(y) ∀has child.Human

Figure 2: ALC concepts and First-Order Logic reading.

A Fuzzy Knowledge Base K comprises a fuzzy ABox A
and a fuzzy TBox T . A fuzzy ABox consists of a finite set of
fuzzy assertions of one of the following types: a fuzzy concept
assertion of the form 〈a:C, n〉 (with informal meaning, indi-
vidual a is an instance of concept C with degree at least n)
or a fuzzy role assertion of the form 〈(a, b):R,n〉 (the pair of
individuals (a, b) is an instance of role R with degree at least
n). In FOL, 〈a:C, n〉 may be seen as a fuzzy statement of the
form C(a) �n, while 〈(a, b):R,n〉 may be seen as a fuzzy
statement of the form R(a, b) �n.

In general, a fuzzy TBox T is a finite set of fuzzy concept
inclusion axioms 〈C � D,n〉, where C, D are concepts and
n ∈ (0, 1]. Informally, 〈C � D,n〉 states that all instances of
concept C are instances of concept D to degree n.C = D is a
shorthand for the two axioms 〈C � D, 1〉 and 〈D � C, 1〉.

However, for computational reasons, we will restrict
TBoxes to be acyclic. That is, T is a finite set of fuzzy concept
inclusion axioms 〈A � C, n〉, and concept definitions A = C,
where A is an atomic concept. Furthermore, we assume that
T verifies two additional constraints: (i) there is no concept
A such that it appears more than once on the left hand side of
some axiom in T . (ii) no cyclic definitions are present in T .
We will say that A directly uses primitive concept B in T , if
there is some axiom τ ∈ T such that A is on the left hand side
of τ and B occurs in the right hand side of τ . Let uses be the
transitive closure of the relation directly uses in T . T is cyclic
iff there is A such that A uses A in T .

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

190

It is well known that such TBoxes can be eliminated
through a finite (although it can create an exponential growth
of the KB), expansion process, both in the crisp and in the
fuzzy case [3]. Instead, we will use a extension to the fuzzy
case of the lazy expansion technique [16], which has proved
to be more useful in practice.
Semantics. From a semantics point of view, a fuzzy interpre-
tation I is a pair (∆I , ·I) consisting of a non empty set ∆I

(the interpretation domain) and a fuzzy interpretation function
·I mapping: (i) an abstract individual a onto an element aI of
∆I such that if a �= b then aI �= bI (Unique Name Assump-
tion); (ii) a concept C onto a function CI : ∆I → [0, 1]; (iii)
an abstract role R onto a function RI : ∆I × ∆I → [0, 1].

Given arbitraries t-norm ⊗, t-conorm ⊕, negation function
� and implication function ⇒, the fuzzy interpretation func-
tion is extended to complex concepts and roles as shown in
Fig. 3, where CI denotes the membership function of the
fuzzy concept C with respect to the fuzzy interpretation I.
CI(x) gives us the degree of being the individual x an ele-
ment of the fuzzy concept C under I. Similarly, RI denotes
the membership function of the fuzzy role R with respect to
I. RI(x, y) gives us the degree of being (x, y) an element of
the fuzzy role R under I. The fuzzy interpretation function is
extended to fuzzy axioms in Fig. 3.

Concept Semantics
(�)I(x) = 1

(⊥)I(x) = 0

(A)I(x) = AI(x)

(C 	 D)I(x) = CI(x) ⊗ DI(x)

(C � D)I(x) = CI(x) ⊕ DI(x)

(¬C)I(x) = CI(x)

(∀R.C)I(x) = infy∈∆I {RI(x, y) ⇒ CI(y)}
(∃R.C)I(x) = supy∈∆I {RI(x, y) ⊗ CI(y)}

Axiom Semantics
(a :C)I = CI(aI)

((a, b) :R)I = RI(aI , bI)

(C � D)I = infx∈∆I {CI(x) ⇒ DI(x)}

Figure 3: Semantics of fuzzy concepts and axioms.

A fuzzy interpretation I satisfies (is a model of) a fuzzy
statement 〈α, n〉 iff αI ≥ n. The notions of logical conse-
quence, best entailment degree and best satisfiability degree
of α are as for Section 2. We additionally define the Best Sat-
isfiability Degree [6] of a concept C w.r.t. a fuzzy KB K as
bsd(K, C) = supI|=K supx∈∆I CI(x).

4 Fuzzy DLs with fuzzy truth values
So far, we have seen that fuzzy statements are of the form
〈α, n〉, where n ∈ [0, 1]. As next, we extend such statements
to allow fuzzy truth values, such as “very true, almost true, al-
most false”, in place of a “crisp” value n ∈ [0, 1]. Essentially,
we have fuzzy truth-qualified statements in which the truth is
now a fuzzy set and, thus, we allow statements such as “Tina
is young is very true”.

As pointed out in [17] (see also [4, 6, 18]), there are many
functions to specify fuzzy set membership degrees in fuzzy set
theory and practice. The most frequently used are the trape-
zoidal (Fig. 4 (a)), the triangular (Fig. 4 (b)), the L-function
(left-shoulder function, Fig. 4 (c)), the R-function (right-
shoulder function, Fig. 4 (d)) and linear hedges (Fig. 4 (e),
where a = c/(c + 1), b = 1/(c + 1)). We will call these func-
tions (defined over [0, 1]) truth qualifiers and allow them to be
used to modify the degree of truth of a sentence. We will use

(a) (b) (c)

(d) (e)
Figure 4: (a) Trapezoidal function; (b) Triangular function; (c)
L-function; (d) R-function; (e) Linear function.

the abbreviations trpz(a, b, c, d), tri(a, b, c), ls(a, b), rs(a, b)
and ln(c) to denote them, respectively.

Syntax. Let α be a concept assertion a:C, a role assertion
(a, b):R or a GCI C � D, and n ∈ [0, 1]. Let q be a truth
qualifier, as in Fig. 4. Then we extend ALC axioms 〈α, n〉 also
to be of the form 〈α, q〉, where a truth qualifier q may occur in
place of a value n ∈ [0, 1]. For instance, “Tina is young is very
true” may be represented with 〈tina:Young, ln(4)〉. Similarly,
we may represent an imprecision about the actual degree of
truth, such as, “Tina is young is true to degree around 0.7”, as
an axioms of the form 〈tina:Young, tri(0.6, 0.7, 0.8)〉.

In the following, a knowledge base will be split into two
parts, K = KU ∪ KQ in which KU contains only unqualified
fuzzy axioms of type 〈α, n〉, where n ∈ [0, 1], while KQ con-
tains only qualified fuzzy axioms of type 〈α, q〉, where q is a
truth qualifier. In FOL, we may see K as the formula

ΓK =
∧

τi∈KU

τi ∧
∧

τj∈KQ

τj . (4)

We will also use ΓU for the left conjunct, while use ΓQ for
the right conjunct and, thus, ΓK = ΓU ∧ ΓQ.

Semantics. So far, given an interpretation I, an axiom of the
form 〈α, n〉 is crisp under I, in the sense that either I satisfies
〈α, n〉 (i.e., αI ≥ n) or I does not satisfy 〈α, n〉 (i.e., αI <
n). Once we move to truth qualified axioms, axioms are no
longer true or false, but have a degree of truth depending on
the qualifier. More precisely, the degree of truth of a fuzzy
axiom τ of the form 〈α, q〉 under I, denoted I(τ) is defined as
the value q(αI) (the application of the qualifier q to the truth
value αI). So, if “Tina is Young” is true to degree 0.9 under
I, then “Tina is young is very true” to degree 0.6 under I. We
may also extend this notion the axioms of the form 〈α, n〉 by
defining the degree of truth of a fuzzy axiom τ of the form
〈α, n〉 to be I(τ) = 1 if αI ≥ n, otherwise I(τ) = 0, which
is compatible with what we have defined so far.

Now, consider a knowledge base K = KU ∪ KQ, a fuzzy
axiom τ and an interpretation I. The degree of truth of Kx

(x ∈ {U, Q}) under I, denoted I(Kx) is defined as

I(Kx) =
⊗

τi∈Kx

I(τi) .

In FOL, this is the same as I(Γx). Note that if I is a model
of KU then I(KU) = 1, else I(KU) = 0. Furthermore, the
degree of entailment of a τ w.r.t. K under I, denoted I(K, τ),
is defined as

I(K, τ) = (I(KU) ⊗ I(KQ)) ⇒ I(τ) . (5)

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

191

Essentially, the degree of entailment under I is the evaluation
under I of the FOL implication (ΓU ∧ ΓQ) → τ , which is
quite natural. Please note that if I �|= KU then I(KU) = 0
and, thus, I(ΓK → τ) = 1, while if I |= KU then I(ΓK →
τ) = I(ΓQ → τ). The Best Entailment Degree of a τ w.r.t. K,
denoted bed(K, τ) is defined as bed(K, τ) = infI I(K, τ). By
the previous observations, it easily follows that

bed(K, τ) = inf
I|=KU

I(ΓQ → τ) , (6)

where inf ∅ = 1. Finally, for an axiom α of the form a:C,
(a, b):R or a C � D, the Best Entailment Degree of α w.r.t. K,
denoted bed(K, α) is defined as

bed(K, α) = sup{n | 1 = bed(K, 〈α, n〉)} , (7)

and the Best Satisfiability Degree of a C w.r.t. K, is

bsd(K, C) = sup
I|=KU

sup
x∈∆I

I(ΓQ) ⇒ CI(x) .

5 Reasoning
We next provide a reasoning algorithm for fuzzy ALC with
truth qualifiers. To start with, we require a calculus for fuzzy
ALC without truth qualifiers. Our algorithm is inspired by
the one implemented within the FUZZYDL system [6] (which
follows from the one presented in [17]). However, the pres-
ence of truth qualifiers requires some modifications. Further-
more, the version we present here for ALC, introduces some
optimizations that will require less “variables” and, thus, is
expected to be more efficient. For the sake of this paper, we
provide a calculus under Łukasiewicz logic, as in [17, 19]. A
similar algorithm under product logic is expected to be more
involved (see, e.g., [20, 21]).

W.l.o.g., we may assume that concepts are in Negation Nor-
mal Form (NNF), which is obtained by pushing in the usual
manner negation on front of concept names only, by applying
recursively the equivalences below.

¬� ≡ ⊥ ¬(C1 � C2) ≡ ¬C1 � ¬C2 ¬∃R.C ≡ ∀R.¬C

C � ⊥ ≡ ⊥ C � ⊥ ≡ C ¬¬C ≡ C

¬⊥ ≡ � ¬(C1 � C2) ≡ ¬C1 � ¬C2 ¬∀R.C ≡ ∃R.¬C

C � � ≡ C C � � ≡ �

Now, our goal is to provide a terminating procedure deter-
mining bed(K, α), where α is of the form a:C, (a, b):R or a
C � D, and bed(K, τ,), for truth qualified fuzzy axioms τ of
the form 〈α, q〉 (q is a truth qualifier).

5.1 Reasoning in ALC without truth qualifiers
Let’s focus first on bed(K, α), where K does not contain any
truth qualifier, i.e. KQ = ∅. If α is a fuzzy role assertion of
the form (a, b):R then, in order to determine bed(K, (a, b):R),
we may reduce it to the BED for concept assertions, as

bed(K, (a, b):R) = bed(K ∪ {〈b:B, 1〉}, a:∃R.B) ,

where B is a new concept (i.e., it does not occur in K).
Consider K = 〈A, T 〉, where T is acyclic. The basic idea

behind our reasoning algorithm is based on the observations
and algorithm of Section 2. So, not surprisingly, in order to
determine bed(K, α), we will compute it as

bed(K, α) = min x. such that K ∪ {(α ≤ x)} satisfiable. (8)

Then by applying satisfiability preserving rules, we generate
new inequations over [0, 1]-valued variables. These inequa-
tions have to hold in order to respect the semantics of the DL
constructors. Finally, in order to determine the BED, we min-
imize the original variable x such that all constraints are satis-
fied. More specifically,

bed(K, a:C) = min x such that K ∪ {〈a:¬C, 1 − x〉} satisfiable
bed(K, C � D) = min x such that K ∪ {〈b:C 	 ¬D, 1 − x〉} satisfiable
bsd(K, C) = min−x such that K ∪ {〈b:C, x〉} satisfiable ,

where b is a new individual. This means that determining the
minimum degree of satisfiability 2 of a KB is the main reason-
ing issue to be addressed. Note also that we may determine
if K has a model by e.g. checking whether bed(K, b:A) = 1,
where b and A do not occur in K.

Like most of the tableaux algorithms, our algorithm works
on completion-forests since an ABox might contain several in-
dividuals with arbitrary roles connecting them. A completion-
forest F is a collection of trees whose distinguished roots
are arbitrarily connected by edges. The forest has associ-
ated a set CF of constraints of the form l ≤ l′, l = l′,
xi ∈ [0, 1], yi ∈ {0, 1}, where l, l′ are arithmetic expressions,
on the variables occurring the node labels and edge labels.

Each node v is labelled with a set L(v) of concepts C. If
C ∈ L(v) then we consider a variable xv:C . The intuition
here is that v is an instance of C to degree equal or greater
than of the value of the variable xv:C in a minimal solution.
Essentially, xv:C will hold the degree of truth of v:C. Each
edge 〈v, w〉 is labelled with a set L(〈v, w〉) of roles R. If R ∈
L(〈v, w〉) then we consider a variable x(v, w):R (the intuition
here is that 〈v, w〉 is an instance of R to degree equal or greater
than the value of the variable x(v, w):R in a minimal solution
(as for concept assertions, x(v, w):R will hold the degree of
truth of (v, w):R). We will assume that there is a bijection
between assertions α and variables xα.

We are ready now to present our calculus. We first start with
an initialization step, which builds the starting completion-
forest. Then we apply to it a set of completion-forest trans-
forming rules until no more rule can be applied. Finally, we
solve the MILP problem associated to the set of constraints.

The algorithm initializes a forest F as follows. Consider K:
(i) F contains a root node ai for each individual ai occurring
in A; (ii) F contains an edge 〈a, b〉 for each fuzzy assertion
〈(a, b):R,n〉 ∈ A; (iii) for each fuzzy assertion 〈a:C, n〉 ∈
A, add both C to L(a) and xa:C ≥ n to the set of constraints
CF ; (iv) for each fuzzy assertion 〈(a, b):R,n〉 ∈ A, add both
R to L(〈a, b〉) and x(a, b):R ≥ n to the set of constraints CF ;
(v) for all introduced variables xα, add xα ∈ [0, 1] to CF .

F is then expanded by repeatedly applying the comple-
tion rules described below. The completion-forest is complete
when none of the completion rules are applicable. Then, the
bMILP problem on the set of constraints CF is solved.

As anticipated, we will use a extension to the fuzzy case of
the lazy expansion technique in order to remove the axioms in
T . The basic idea is as follows (recall that there are only two
types of fuzzy concept inclusions): given 〈A � C, n〉, add C
only to nodes with a label containing A, and given 〈C � A, 1〉,
add ¬C only to nodes with a label containing ¬A.

2In the last equation, we use the fact that in our setting
max x s.t. x ∈ S = min−x s.t. x ∈ S.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

192

a L(a) = {A, ∃R.B}

�
L(〈a, w1〉) = {R}

w1 L(w1) = {B}

CF = {xa:A ≥ 0.8, xa:∃R.B ≥ xa:A ⊗ 0.9

xw1:B ⊗ x(a, w1):R ≥ xa:∃R.B,

xa:A ∈ [0, 1], xa:∃R.B ∈ [0, 1] . . . }

Figure 5: Complete forest for Example 1.

We assume a fixed rule application strategy as e.g., the order
of rules below, such that the rule for (∃) is applied as last.
Also, all expressions in node labels are processed according
to the order they are introduced into F . Note that we do not
need a notion of blocking as T is acyclic.

Now we are ready to present the inference rules:
(Ā). If ¬A ∈ L(v) then CF = CF ∪ {xv:A = 1 − xv:¬A} ∪

{xv:A ∈ [0, 1]}.

(⊥). If ⊥ ∈ L(v) then CF = CF ∪ {xv:⊥ = 0}.

(). If 	 ∈ L(v) then CF = CF ∪ {xv:	 = 1}.

(�). If (i) C�D ∈ L(v), and (ii) not both C ∈ L(v) and D ∈ L(v)
then add C and D to L(v), and CF = CF ∪ {xv:C ⊗ xv:D =
xa:C � D} ∪ {xv:C, xv:D ∈ [0, 1]}.

(�). If (i) C�D ∈ L(v), and (ii) not both C ∈ L(v) and D ∈ L(v)
then add C and D to L(v), and CF = CF ∪ {xv:C ⊕ xv:D =
xa:C � D} ∪ {xv:C, xv:D ∈ [0, 1]}.

(∀). If (i) ∀R.C ∈ L(v), R ∈ L(〈v, w〉), and (ii) the rule has not
been already applied to this pair then add C to L(w), and CF =
CF ∪ {xw:C ≥ xa:∀R.C ⊗ x(v, w):R} ∪ {xw:C ∈ [0, 1]}.

(�). If (i) 〈A � C, n〉 ∈ T , (ii) A ∈ L(v), and (iii) v is a node
to which this rule has not yet been applied then (i) append C to
L(v), and (ii) CF = CF ∪ {xv:C ≥ xv:A ⊗ n} ∪ {xv:C ∈
[0, 1]}.

(�̄). If (i) 〈C � A, 1〉 ∈ T , (ii) ¬A, and (iii) v is a node to which
this rule has not yet been applied then (i) append ¬C to L(v),
and (ii) CF = CF ∪ {xv:¬A ≥ xv:¬C} ∪ {xv:¬C ∈ [0, 1]}.

(∃). If ∃R.C ∈ L(v) then create a new node w, add R to L(〈v, w〉),
add C to L(w), and CF = CF ∪ {xw:C ⊗ x(v, w):R =

xv:∃R.C} ∪ {x(v, w):R, xw:C ∈ [0, 1]}.

Note that in order to write the fuzzy operators, we may need
to create some new control variables. For example, under
Łukasiewicz t-norm, x1 ⊗ x2 ≥ l can be written as {l ≤
y, x1 + x2 ≤ 1 + l, x1 + x2 − l ≥ y, yi ∈ {0, 1}}. If y = 0,
then l = 0 (it simulates the case where x1+x2 ≤ 1, and hence
x1 ⊗ x2 = 0), and if y = 1, then l = x1 + x2 − 1 [17, 19].

Example 1 illustrates the behaviour of the algorithm.

Example 1 Consider K = {〈A � ∃R.B, 0.9〉, 〈a:A, 0.8〉}.
Let’s show that K is satisfiable. The forest F is initialized
with a root node a, labelled with L(a) = {A}, and set of con-
straints CF = {xa:A ≥ 0.8}. The we apply the (�) rule
and add A and ∃R.B to L(a), and add to the constraint set
{xa:∃R.B ≥ xa:A ⊗ 0.9} ∪ {xa:A, xa:∃R.B ∈ [0, 1]}. As
next, we apply the (∃) rule to node a and, thus, we create
a new node w1, labelled with L(w1) = {B}, and an edge
〈a, w1〉 labelled with L(〈a, w1〉) = {R}, and we update the
constraint set with CF = CF ∪ {xw1:B ⊗ x(a, w1):R =
xa:∃R.B} ∪ {x(a, w1):R, xw1:B ∈ [0, 1]}. Rule (�) is not

applicable to node w1 because A �∈ L(b).
The complete forest F in Figure 5 shows the computation

so far. It only remains to find a solution to the inequalities. �

Note that there is a significative difference with other similar
algorithms for fuzzy DLs combining tableau algorithms with

optimization problems [17, 20, 9]. In those algorithms, every
time a concept C appears in the list of expressions of a node
v, a new variable x is created. Instead, we introduce a variable
xv:C once, and reuse it the following times. This reduction
in the number of generated variables is important because it
makes the bMILP problem easier to solve. We have:

Proposition 1 For each KB K, the tableau algorithm termi-
nates and computes bed(K, α) and bsd(K, C).

5.2 Reasoning in ALC with truth qualifiers

Let us now consider the case KQ �= ∅. We next address
the problem of determining bed(K, τ) and bed(K, α). From
Eq. (6), we now that if KU has no model then immediately
bed(K, τ) = 1 and, thus, this case is not of particular interest.
So, let us assume that KU has a model. The case τ = 〈α, n〉,
with n ∈ [0, 1], is also not of particular interest as it suffices
to compute m = bed(K, α) and check whether m ≥ n. So, it
remains to determine both bed(K, τ), for a fuzzy truth quali-
fied statement τ , and bed(K, α), where α is of the form a:C,
(a, b):R or a C � D. From what we have seen so far, it is
immediate that (where a is new individual 3)

bed(K, τ) = min x. such that KU ∪ {(ΓQ → τ) ≤ x} satisfiable. (9)

bsd(K, C) = min−x. such that KU ∪ {(ΓQ → a:C) ≥ x} satisfiable. (10)

bed(K, α) = min x. such that KU ∪ {(ΓQ → (α ≤ x)) = 1} satisfiable. (11)

Now, let us address first the problem (9). The calculus is of
the same style as in the previous section. We have that

bed(K, τ) = min x. such that KU∪{(ΓQ∧¬τ) ≥ 1−x} satisfiable .

Therefore, it suffices to provide rules for encoding (ΓQ ∧
¬τ) ≥ 1 − x as a set of MILP constraints. This is obtained as
follows. Consider ΓQ =

∧
τj∈KQ

τj and assume τ = 〈α, q〉.
Consider variables xQC , xΓQ

, x¬τ , and xτj
, where xΓQ

will
hold the degree of truth of ΓQ, xτj (x¬τ) will hold the degree
of truth of τj (¬τ) and xQC will hold the degree of truth of
(ΓQ ∧ ¬τ). Then, to encode (ΓQ ∧ ¬τ)) ≥ 1 − x we need

xQC ≥ 1 − x
xΓQ ⊗ x¬τ = xQC

xΓQ =
⊗

τj∈KQ
xτj

xQC , xΓQ , xτj , x¬τ ∈ [0, 1] .

(12)

and we add 〈α, xα〉 to KU . We now have to connect correctly
the value of xτj

(x¬τ) to the degree of truth of τj = 〈αj , qj〉
(¬τ). To this end, we need the constraints

xτj = qj(xαj) (13)

x¬τ = 1 − q(xα) (14)

and we add 〈α, xα〉 to KU . Note that, e.g. in Eq. 13, the equa-
tion xτj

= q(xα) is MILP expressible as q is MILP express-
ible function (see, e.g. [17]). For instance, if q is ls(a, b) then
xτj

= q(xα) may be expressed as

xα + (1 − a)y1 ≤ 1, xα − ay2 ≥ 0, xα + (1 − b)y2 ≤ 1,
(b − a)xτj ≥ xα − a − (1 − a)y2,
(b − a)xτj ≤ xα − a − (1 + a)y1 + (b − a)y2,
xα − by3 ≥ 0, xτj + y3 ≤ 1, y1 + y2 + y3 = 1,
xα ∈ [0, 1], yi ∈ {0, 1}},

3Concerning Equation (10), suppose the minimal value is n̄. We
will know then that for any interpretation I satisfying KU , it cannot
be I(ΓQ → (α < n̄)) = 1, and, thus, I(ΓQ → (α ≥ n̄)) = 1) has
to hold and, thus, bed(K, 〈α, n̄〉) = 1 and n̄ is tight.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

193

where yi are new variables (Eq. 14 is managed similarly).
Now, we may proceed as for Section 5.1, where we consider
these additional constraints and in which expressions of the
form 〈α, xα〉 are handled as for the 〈α, n〉 case, except that
the value n is replaced with the variable xα instead 4. The
following can be shown:

Proposition 2 For each KB K, the tableau algorithm termi-
nates and computes bed(K, τ).

As next, let us address the problem of determining bsd(K, C).
The way we proceed is pretty similar as for bed(K, τ). Now,
xQC will hold the degree of truth of (ΓQ → a:C). To encode
(ΓQ → a:C) ≥ x, we replace the constraints (12) with

xQC ≥ x
xΓQ ⇒ xa:C = xQC

xΓQ =
⊗

τj∈KQ
xτj

xQC , xΓQ , xτj ∈ [0, 1] ,

(15)

we add 〈a:C, xa:C 〉 to KU , and then we proceed as for deter-
mining bed(K, τ). The following can be shown.

Proposition 3 For each KB K, the tableau algorithm termi-
nates and computes bsd(K, C).

Finally, let us address the problem of determining bed(K, α).
Since bed(K, a:C) = min x. such that KU ∪ {(ΓQ →
(a:¬C ≥ 1 − x)) = 1} satisfiable, bed(K, (a, b):R) =
bed(K ∪ {〈b:B, 1〉}, a:∃R.B), and bed(K, C � D) = min x.
such that KU ∪ {(ΓQ → (a:C � ¬D ≥ 1 − x)) = 1} satis-
fiable, we may restrict our attention to show how to encode
(ΓQ → (a:E ≥ 1 − x)) = 1 in MILP. To this end, let
τ = 〈a:E, 1 − x〉. Then we replace the constraints (12) with
(recall that τ is either true or false)

xΓQ ≤ 1 − y
xa:E ≥ 1 − x − y
xΓQ =

⊗
τj∈KQ

xτj

xΓQ , xτj , xa:E ∈ [0, 1]
y ∈ {0, 1} ,

(16)

we add 〈a:E, xa:E〉 to KU , and then we proceed as for deter-
mining bed(K, τ). The following can be shown.

Proposition 4 For each KB K, the tableau algorithm termi-
nates and computes bed(K, α).

Note that we may safe some obvious variables and equations
in the constraints derived so far, such as in Eq 12–16.

6 Conclusions & Outlook
We have addressed the problem of allowing to deal with fuzzy
truth qualified statements with fuzzy DLs and, thus, allowing
statements such as “Tina is young is almost true”. We have
provided syntax, semantics of a fuzzy DL with truth qualified
axioms, and a calculus addressing the various reasoning prob-
lems presented under Łukasiewicz logic.

We have also provided a novel simplified calculus for fuzzy
DLs without truth qualified axioms, which is closer to the

4Note that in Step 3 and 4 of the forest initialization, in case we
consider a fuzzy assertion of the form 〈α, xα〉, we may omit to add
xα ≥ xα to the constraint set CF .

usual tableau algorithms for DLs, and which reduces the num-
ber of generated variables, and hence the size of the optimiza-
tion problem to be solved.

It would be possibly to unify both approaches by using truth
qualifiers of the form trpz(n, n, 1, 1) for fuzzy DLs without
truth qualified axioms. However, it is more efficient to deal
with these two cases using different strategies.

Along the line of qualified statements, we think it is useful
to further extend the language by allowing so-called probabil-
ity qualified statements (cf. [10], page 222) and, thus, allow-
ing statements such as “The probability of the temperature t
at given place and time is around 35◦C is likely”, where both
“around” and “likely” are fuzzy sets (with, e.g. a triangular
membership function to model “around”, and a right shoulder
function to model “likely”).

References
[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-

tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[2] I. Horrocks, P. F. Patel-Schneider and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

[3] U. Straccia. Reasoning within fuzzy Description Logics. Journal of Artificial
Intelligence Research, 14:137–166, 2001.

[4] U. Straccia. A fuzzy Description Logic for the Semantic Web. In Elie Sanchez,
editor, Fuzzy Logic and the Semantic Web, Capturing Intelligence, chapter 4, pages
73–90. Elsevier, 2006.

[5] U. Straccia. Managing uncertainty and vagueness in Description Logics, logic pro-
grams and Description Logic programs. In Reasoning Web, 4th International Sum-
mer School, Tutorial Lectures, Lecture Notes in Computer Science 5224, pages
54–103. Springer Verlag, 2008.

[6] F. Bobillo and U. Straccia. fuzzyDL: An expressive fuzzy Description Logic rea-
soner. In Proceedings of the 2008 International Conference on Fuzzy Systems
(FUZZ-IEEE 2008), pages 923–930. IEEE Computer Society, 2008.

[7] F. Bobillo, M. Delgado and J. Gómez-Romero. DeLorean: A reasoner for fuzzy
OWL 1.1. In Proc. of the 4th International Workshop on Uncertainty Reasoning
for the Semantic Web (URSW 2008), CEUR Workshop Proceedings 423, 2008.

[8] G. Stoilos, N. Simou, G. Stamou and S. Kollias. Uncertainty and the Semantic
Web. IEEE Intelligent Systems, 21(5):84–87, 2006.

[9] U. Straccia and G. Visco. DL-Media: an ontology mediated multimedia informa-
tion retrieval system. In Proc. of the 4th Int. Workshop on Uncertainty Reasoning
for the Semantic Web (URSW 2008), CEUR Workshop Proceedings 423, 2008.

[10] G. J. Klir and B. Yuan. Fuzzy sets and fuzzy logic: theory and applications.
Prentice-Hall, Inc., 1995.

[11] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.

[12] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

[13] R. Hähnle. Advanced many-valued logics. In Dov M. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, 2nd Edition, volume 2. Kluwer, 2001.

[14] R. Hähnle. Many-valued logics and mixed integer programming. Annals of Math-
ematics and Artificial Intelligence, 3,4(12):231–264, 1994.

[15] H. Salkin and M. Kamlesh. Foundations of Integer Programming. North-Holland,
1988.

[16] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H. J. Profitlich. An empirical
analysis of optimization techniques for terminological representation systems, or:
Making KRIS get a move on. Applied Artificial Intelligence 4:109–132, 1994.

[17] U. Straccia. Description logics with fuzzy concrete domains. In Fahiem Bachus
and Tommi Jaakkola, editors, 21st Conference on Uncertainty in Artificial Intelli-
gence (UAI-05), pages 559–567, 2005. AUAI Press.

[18] T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in Descrip-
tion Logics for the Semantic Web. Journal of Web Semantics, 6:291–308, 2008.

[19] U. Straccia and F. Bobillo. Mixed integer programming, general concept inclusions
and fuzzy Description Logics. Mathware & Soft Computing, 14(3):247–259, 2007.

[20] F. Bobillo and U. Straccia. A fuzzy Description Logic with product t-norm. In
Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE-
07), pages 652–657. IEEE Computer Society, 2007.

[21] F. Bobillo and U. Straccia. Fuzzy Description Logics with general t-norms and
datatypes. In Fuzzy Sets and Systems. To appear.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

194

