IFSA-EUSFLAT 2009

Cloud based design optimization

Martin Fuchs!?

1. University of Vienna, Faculty of Mathematics, Vienna, Austria
2. CERFACS, Toulouse, France
Email: martin.fuchs81@gmail.com
www.martin-fuchs.net

Abstract— Cloud based design optimization (CBDO) is an ap-
proach to significantly improve robustness and optimality of solu-
tions sought in engineering design. One of the main features is the
possibility to capture and model high-dimensional uncertainty infor-
mation, even in the case that the information available is incomplete
or unformalized.

Continuing our past studies we present the graphical user inter-
face for CBDO in this paper. Also we mention the latest improve-
ments of our methods, we give an illustrative example demonstrating
how unformalized knowledge can be captured, and we highlight re-
lations to different uncertainty models, such as p-boxes, Dempster-
Shafer structures, and a-level optimization for fuzzy sets.

Keywords— confidence regions, design optimization, higher di-
mensions, incomplete information, potential clouds

1 Introduction

Design optimization is frequently affected by uncertainties
originating from several different sources. Being already a
complicated task in absence of uncertainties, design optimiza-
tion under uncertainty imposes an additional class of difficul-
ties. We have developed a framework dividing design opti-
mization under uncertainty in its two inherent components,
i.e., uncertainty modeling and optimization.

The most critical problems in real-life uncertainty model-
ing are caused by the well-known curse of dimensionality (cf.,
e.g., [1]), and by lack of information. While in lower dimen-
sions, lack of information can be handled with several tools
(e.g., p-boxes [2], Dempster-Shafer structures [3]), in higher
dimensions (say, greater than 10) there exist only very few.
Often simulation techniques are used which, however, fail to
be reliable in many cases, see, e.g., [4]. The clouds formal-
ism [5] is one possibility to deal with both incomplete and
higher dimensional information in a reliable and computation-
ally tractable fashion.

The design optimization phase (cf., e.g., [6]) is the second
major subject in our framework, loosely linked with the uncer-
tainty modeling. One typically faces problems like strongly
nonlinear, discontinuous, or black box objective functions, or
mixed integer design variables. We have developed heuristics
to solve these problems, e.g., using separable underestimation
[7], or convex relaxation based splitting [8].

Since our approach can be considered as design optimiza-
tion based on uncertainty modeling with clouds, we call the
software cloud based design optimization (CBDO). We have
implemented an interface for our methods that will be pre-
sented later in this paper. The implementation was motivated
by the need of expert engineers of an easy-to-use tool, a frame-
work respecting their working habits, and demonstrating use-

ISBN: 978-989-95079-6-8

fulness in capturing and modeling incomplete, unformalized
knowledge. Current research is focussed on improving both
optimization and uncertainty modeling phase, and on captur-
ing more types of information virtually, e.g., linguistic expres-
sions. Of course, we are constantly looking for possible real-
life applications of the methods. CBDO has already been suc-
cessfully used in space system design applications, cf. [9, 10].

This paper is organized as follows. We introduce the formal
background of CBDO in Section 2 also giving an illustrative
example how we capture unformalized knowledge. In Section
3 we summarize relations of the potential clouds formalism to
different uncertainty models. Finally, we present our software
implementation, a MATLAB package for CBDO, in Section 4.

2 Clouds and robust optimization

Let € be an n-dimensional random vector. A potential cloud is
an interval-valued mapping  — [a(V(x)),@(V (x))], where
the potential function V' : R® — R is bounded below, and
a,@: V(R™) — [0,1] are functions constructed to be a lower
and upper bound, respectively, for the cumulative distribution
function (CDF) F' of V (¢), a continuous from the left and
monotone, & continuous from the right and monotone. We
defineC, :={x e R" | V(z) <V _}ifV, := min{V, €
R | @(V,) = a} exists, and C, := () otherwise; analogously
Coi={z €R" | V(z) < V,o}ifV, :=max{V, € R |
a(V,) = a} exists, and C\, := R™ otherwise. Thus we find a
nested collection of lower and upper confidence regions in the
sense that Pr(e € C,)) < o, Pr(e € C,) > o, C, C Cl.

Note that lower and upper confidence regions C',, C, —also
called a-cuts of the cloud — are level sets of V. By choosing
the potential function V' reasonably one gets an uncertainty
representation of high-dimensional, incomplete, and/or unfor-
malized knowledge, cf. [11].

Our framework of cloud based design optimization consists
of three essential parts, described in the following sections:
uncertainty elicitation, uncertainty modeling, and robust opti-
mization.

2.1 Uncertainty elicitation and modeling

We assume that the initially available uncertainty information
consists of both formalized and unformalized knowledge. The
formalized knowledge can be given as marginal CDFs, inter-
val bounds on single variables, or real sample data. In real-life
situations there is often only interval information, sometimes
marginal CDFs without any correlation information, available
for the uncertain variables. Moreover, there is typically a sig-
nificant amount of unformalized knowledge available based
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on expert experience, e.g., knowledge about the dependence
of variables.

Potential clouds enable to capture and formally represent
this kind of information. We illustrate this by a simple exam-
ple: First, we generate a data set from an N (0, X) distribution

1 06
06 1

Assume that this data belongs to 2 random variables with
a physical meaning, and that the data was given to an expert,
without any information about the actual probability distribu-
tion of the random variables. Still, the expert may be able
to provide vague, unformalized information about the depen-
dence of the variables (opposed to formal knowledge, e.g.,
correlation information) from his knowledge about the physi-
cal relationship between the variables. We model this knowl-
edge by polyhedral constraints on the variables, see, ¢.g., Fig.
3. We choose the potential function V' according to these con-
straints, i.e., the lower and upper confidence regions C,,, C,
constructed with clouds become polyhedra. The polyhedra
reasonably approximate confidence regions of the true, but un-
known distribution linearly, as shown in Fig. 1, although the
information was vague and unformalized.

In more than 2 dimensions the polyhedral constraints are
provided for projections to 1-dimensional or 2-dimensional
subspaces.

It should also be highlighted that this approach for provid-
ing unformalized knowledge also allows for information up-
dating, simply by adding further polyhedral constraints.

On the basis of the given information we use the confidence
regions constructed by clouds in order to search for worst-case
scenarios of certain design points via optimization techniques.
The construction of the confidence regions is possible even
in case of scarce, high-dimensional data, incomplete informa-
tion, unformalized knowledge.

For further details on the construction of potential clouds
the interested reader is referred to [11]. A comparison of dif-
ferent existing uncertainty models can be found in [12], and
Section 3 gives a short summary.

with covariance matrix > =

2.2 Robust optimization

Assume that we wish to find the design point 6
(6*,6%,...,6m°) with the minimal design objective function
value g under uncertainty of the n-dimensional random vector
e. Let T be the set of possible selections for the design point 6.
Assume that the function G models the functional relationship
between different design components and the objective func-
tion. Also assume that the uncertainty of ¢ is described by a
convex set C, in our case a polyhedral a-cut from the cloud.

We embed the confidence regions constructed above in a
problem formulation for robust design optimization as fol-
lows:

min max g(x)
0 €

s.t. x=G(0,¢),
e e,
0eT,
where g : R — R, G : R™ x R" — R™.
The optimization phase minimizes a certain objective func-
tion g (e.g., cost, mass of the design) subject to safety con-
straints ¢ € C to account for the robustness of the design, and

(M
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Figure 1: Approximation of confidence regions by 90% and
95% a-cuts, respectively: The polyhedral cloud results in con-
fidence regions that reasonably approximate confidence re-
gions of the true N (0, X) distribution although the informa-
tion was given unformalized.

subject to the functional constraints which are represented by
the underlying system model G.

The main difficulties arising from (1) are imposed by the
bilevel structure in the objective function, by the mixed inte-
ger formulation (since # can be either a discrete or continuous
variable), and by the fact that G may comprise strong nonlin-
earities, or discontinuities, or may be given as a black box.

We have developed multiple techniques to tackle these diffi-
culties and find a solution of (1). For details on approaches to
solve such problems of design optimization under uncertainty
the interested reader is referred to [7]. The latest improve-
ments of the methods can be found in [§].

3 Relations to different uncertainty models

This section illustrates relations and differences of the poten-
tial clouds formalism to three other existing uncertainty mod-
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els: p-boxes, Dempster-Shafer structures, and a-level opti-
mization for fuzzy sets.

3.1 Relation to p-boxes

A p-box — or p-bound, or probability bound — is a rigorous
enclosure of the CDF F' of a univariate random variable X,
F, < F < F,, incase of partial ignorance about specifications
of F. Such an enclosure enables, e.g., to compute lower and
upper bounds on expectation values or failure probabilities.

There are different ways to construct a p-box depending on
the available information about X, cf. [13]. Moreover, it is
possible to construct p-boxes from different uncertainty mod-
els like Dempster-Shafer structures (cf. Section 3.2). The
studies on p-boxes have already lead to successful software
implementations, cf. [14, 2].

Higher order moment information on X (e.g., correlation
bounds) cannot be handled or processed yet. This is a current
research field, cf., e.g., [15]. In higher dimensions, the defini-
tion of p-boxes can be generalized similar to the definition of
higher dimensional CDFs, cf. [16].

The problem of rigorously quantifying probabilities given
incomplete information — as done with p-boxes — is highly
complex, even for simple problems, e.g., [17]. Applications
of the methods are rather restricted to lower dimensions and
non-complex system models GG. Black box functions GG can-
not be handled as one requires knowledge about the involved
arithmetic operations. All in all, the methods often appear not
to be reasonably applicable in many real-life situations.

The relation to potential clouds becomes obvious, regarding
V (g) as a 1-dimensional random variable and the functions ¢,
@ as a p-box for V(). Thus the potential clouds approach
extends the p-box concept to the case of multidimensional ¢,
without the exponential growth of work in the conventional
p-box approach.

3.2 Relation to Dempster-Shafer structures

Dempster-Shafer theory [3] enables to process incomplete and
even conflicting uncertainty information. Let € : 2 — R" be
an n-dimensional random vector. One formalizes the available
information by a so-called basic probability assignment m :
2 — [0, 1] on a finite set A C 2% of non-empty subsets A of

), such that
m(4) {> 0

and the normalization condition ), , m(A) = 1 holds.

The basic probability assignment 1 is interpreted as the ex-
act belief focussed on A, and not in any strict subset of A. The
sets A € A are called focal sets. The structure (m, A), i.e.,
a basic probability assignment together with the related set of
focal sets, is called a Dempster-Shafer structure (DS struc-
ture).

Given a DS structure (m, .A) one constructs two fuzzy mea-
sures Bel and P1 by

ifAeA,
otherwise,

2)

Bel(B)= Y

{A€A|ACB}

PI(B) =
{A€A|ANB#0}

€)
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for B € 2. The fuzzy measures Bel and P1 have the property
Bel < Pr < PI by construction, where Pr is the probability
measure that is unknown due to lack of information.

DS structures can be obtained from expert knowledge or
in lower dimensions from histograms, or from the Chebyshev
inequality given expectation value x and variance o2 of a uni-
variate random variable X, see, e.g., [18].

To combine different, possibly conflicting DS structures
(m1, A1), (ma, As) (in case of multiple bodies of evidence,
e.g., several different expert opinions) to a new basic probabil-
ity assignment my,e,, one uses Dempster’s rule of combination
[19].

The complexity of the rule is strongly increasing in higher
dimensions, and in many cases requires independence as-
sumptions for simplicity reasons avoiding problems with in-
teracting variables. It is not yet understood how the dimen-
sionality issue can be solved. Working towards more efficient
computational implementations of evidence theory it can be
attempted to decompose the high-dimensional case in lower
dimensional components which leads to so-called composi-
tional models, cf., e.g., [20].

The extension of a function G(¢) is based on the joint DS
structure (m, A) for . The new focal sets of the extension are
B; = G(A;), A; € A, the new basic probability assignment
iS Mnew (Bi) = ¢4, e1G(A)=5:} T(Ad).

To embed DS theory in design optimization one formulates
a constraint on the upper bound of the failure probability p
which should be smaller than an admissible failure probability
Pa, 1.€., PI(F) < p,, for a failure set F. This is similar to the
safety constraint in (1). It can be studied in more detail in [21]
as evidence based design optimization (EBDO).

It is possible to generate a DS structure that approximates
a given potential cloud discretely. Fix some confidence levels
a; < ag < --- < ay = 1 of the potential cloud, then gener-
ate focal sets and the associated basic probability assignment
by

)
(6)

Thus the focal sets are determined by the level sets of V.
An analogous recipe works for approximating p-boxes by DS
structures, cf. [13]. Note that focal sets A; in this construction
are not nested, so the fuzzy measures Bel and Pl belonging
to (m,.A) are not equivalent to possibility and necessity mea-
sures.

Conversely, assume that one has a DS structure and the as-
sociated fuzzy measures Bel and Pl for the random variable
X :=V(e). Then

Qg

oq,m(Ai) = 4 —047;_1,7; = 2,...,N.

m(Ar) =

(t) = Bel({X < 1}),
(t) = PI({X < t})

(7
®)

give bounds on the CDF of V' (£) and thus construct a potential
cloud.

[0
[

3.3 Relation to fuzzy sets and a-level optimization

To see an interpretation of potential clouds in terms of fuzzy
sets one may consider C, C,, as a-cuts of a multidimen-
sional interval valued membership function defined by a and
@. The major difference is given by the fact that clouds allow
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for probabilistic statements, i.e., one cannot go back in the
other direction and construct a cloud from a multidimensional
interval valued membership function because of the lack of the
probabilistic properties mentioned in Section 2. If the inter-
val valued membership function does have these probabilistic
properties, it corresponds to consistent possibility and neces-
sity measures [22] which are related to interval probabilities
[23].

However, the interpretation of a potential cloud as a fuzzy
set with such a membership function shows strong links to a-
level optimization for fuzzy sets [24].

The a-level optimization method combines the extension
principle and the a-cut representation of a membership func-
tion i of an uncertain variable ¢, i.e.,

wu(x) = supmin(a, 1, (2)), )

«
where 14 denotes the characteristic function of the set A,
Co = {x | u(x) > a} denotes the a-cut of the fuzzy set,
in order to determine the membership function p ¢ of a func-
tion f(e), f : R” — R. This is achieved by constructing the
a-cuts Cfm belonging to 1y from the a-cuts C,, belonging
to . To this end one solves the optimization problems

elenéfi f(e), (10)
Jnax f(e), (a1

for different discrete values a;. Finally from the solution f;,
of (10) and f; of (11) one constructs the a-cuts belonging to
pg by Cr = [fi., fi].

To simplify the optimization step one assumes sufficiently
nice behaving functions f and computationally nice fuzzy
sets, i.e., convex fuzzy sets, typically triangular shaped fuzzy
numbers.

In n dimensions one optimizes over a hypercube, obtained
by the Cartesian product of the a-cuts, i.e., Co, = CL X
C2 x---xCn  where CY, = {e7 | 7 (e7) > a;}, P! (e7) =
sup_r j4; (€), € = (e',€%,...,e"). Here one has to assume
non-interactivity of the uncertain variables ', ..., ",

Using a discretization of the a-levels by a finite choice of «;
the computational effort for this methods becomes tractable.
From (9) one gets a step function for z1y which is usually lin-
early approximated through the points f;, and f* to generate
a triangular fuzzy number.

Now interpret o and @ from a potential cloud as a multidi-
mensional interval valued membership function and consider
a system model f(¢) := g(G(0,€)) with fixed 6 (cf. Section
2.2). Similar to (10,11), optimization of f over C, for dis-
crete values ; would give a discretized version of ay, i.e.,
the function belonging to the cloud for f(e) given the cloud
for . Analogously, optimization of f over C,, would give a
discretized version of ay.

This idea leads to the calculation of functions of clouds
which is a current research topic. Also note that in a-level op-
timization one optimizes over boxes C,,, that means one as-
sumes that the uncertain variables do not interact. Here a sim-
ilar idea like interactive polyhedral constraints as described in
Section 2.1 could also apply to model unformalized knowl-
edge about interaction of the variables.
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4 Cloud based design optimization GUI

We have realized the methods for CBDO in a graphical user
interface (GUI). To install the software go to the CBDO web-
site [25] and download the CBDO package. A quickstart guide
helps through the first steps of the simple installation. A more
detailed user manual is also included. How to set up a MAT-
LAB file containing a user defined model is illustrated by an
example included in the package.

We have developed the GUI using a sequential, iterative
structure. The first and second step represent the uncertainty
elicitation. In the first step, the user provides an underlying
system model and all formal uncertainty information on the
input variables of the model available at the current design
stage. In the second step, polyhedral dependence constraints
between the variables can be added, cf. Section 2.1. In the
third step, the initially available information is processed to
generate a cloud that provides a nested collection of confi-
dence regions parameterized by the confidence level a. Thus
we produce safety constraints for the optimization (cf. Sec-
tion 2.2) which is the next step in the GUI. The results of the
optimization, i.e., the optimal design point found and the as-
sociated worst-case analysis, are returned to the user. In an
iterative step the user is eventually given an interactive pos-
sibility of adaptively refining the uncertainty information and
rerunning the procedure until satisfaction.

4.1 Uncertainty elicitation

After starting the GUI with cbdogui from the CBDO folder
in MATLAB it asks whether to load the last state to the
workspace unless it is run for the first time. In the latter case
one should first configure the options to set up the model file
and inputs declaration file names, and other user-defined pa-
rameters after clicking Options/Edit Options. The notation
— if not self-explanatory — is described in the user manual.
Tooltips are given for each option in the GUI to guide the user
through the configuration.

Having set up the options one returns to the uncertainty elic-
itation clicking Back. The initially available information can
be specified in an inputs declaration file and is modified choos-
ing a variable’s name and specifying its associated marginal
CDF, or interval bound, respectively, in the first step of the
GUI, cf. Fig. 2.

The Next button leads to the next step which is scenario
exclusion.

4.2  Scenario exclusion

From the information given in the first step the program gener-
ates a sample as described in [11]. The second step enables the
user to exclude scenarios by polyhedral constraints as shown
in Section 2.1, illustrating the great advantage of this approach
in modeling unformalized knowledge.

To this end the user selects a I-dimensional or 2-
dimensional projection of the generated sample using the field
Projection on the right. To add a constraint one hits the Add
constraint button and defines a linear exclusion by two clicks
into the sample projection on the left. All linear constraints
can be selected from the Constraint Selection box to revise
and possibly remove them via the Remove constraint button.
Fig. 3 shows a possible exclusion in two dimensions.
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Options  Sawe/Losd

Uncertainty Elicitation

Wrwiabin iformalion

Curmant variable e T uni:

Full vanable nacne [mauimal cross-sectional arna -]
A priel uncentanty information

W Hominal value : [ ==
Parameters me [ &al sigma [ 0053

Figure 2: Example for the uncertainty elicitation GUI.
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Figure 4: Example for the optimization phase.
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Figure 3: Example for scenario exclusion.

Next

After the exclusion the Next button leads to the optimization
phase.

4.3 Optimization

The Start button initiates two computations: potential cloud
generation for (1), and optimization, cf. [7, 8]. As a result one
gets the optimal design point found by the program, and the
associated objective function value, cf. Fig. 4. It should be
remarked that the workspace of the optimization including all
results is stored as .mat files in the cbdo directory.

The user now has the possibility for the adaptive analysis of
the results. Thus the Next button leads back to the uncertainty
elicitation to be refined.

4.4  Adaptive step

The GUI determining the a priori information is not modifi-
able anymore at this stage of the program. Meanwhile, ob-
serve that in the lower part of the GUI a histogram illustrates
weighted marginal distributions of the sample.

Hitting the Nex? button makes the scenario exclusion appear
again and enables the a posteriori adaption of the uncertainty
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Options  Sawe/Losd

Uncertainty Elicitation
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[Mormial distnbaation - Mominal value K]
Parameters m 53 sigma 1] x]

i L,

Back o LTI,
L 1 1 1 1 i

512 518 525 M 5ar 543

A_max {weighted)

Figure 5: Example for uncertainty elicitation in the adaptive
step.

information. For example, the user can consider the worst-
case analysis (the worst-case scenario is highlighted with a red
dot) to be too pessimistic and exclude it, cf. Fig. 6. Note that
this approach is very much imitating real-life working habits
of engineers! In early design phases little information is avail-
able and safety margins are refined or coarsened iteratively.

The Next button leads to the optimization phase again and
the user can rerun the procedure until satisfaction.
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