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Abstract— In a rather general, essentially aggregation operator
based discussion of the traditional fuzzy control strategies known as
FATI and FITA strategies, a way to reduce these strategies to one an-
other has been to define pairs of aggregation distributive aggregation
operators. In this paper it is shown that for some often used special
cases this reduction condition allows only the set theoretic union as
aggregation operator.
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1 Introduction

The standard paradigm behind standard approaches to-
ward fuzzy control is that one supposes to have given,
as an incomplete and fuzzy description of a control func-
tion Φ from an input space X to an output space Y, a
family

D = (〈Ai, Bi〉)1≤i≤n (1)

of (fuzzy) input-output data pairs to characterize this
function Φ.

In the usual approaches such a family of input-output
data pairs is provided by a finite list

IF x is Ai THEN y is Bi, (2)

(with i = 1, . . . , n) of linguistic control rules, also called
fuzzy IF-THEN rules.

The basic examples of fuzzy control approaches are
Zadeh’s original approach via fuzzy relations and the
compositional rule of inference (CRI), as prototypically
realized by the Mamdani–Assilian approach in [7], and
the Holmblad–Ostergaard approach toward fuzzy con-
trol of a cement kiln as explained in [5].

Derived from these two approaches there is the well
known distinction between FATI and FITA strategies to
evaluate systems of linguistic control rules w.r.t. arbi-
trary fuzzy inputs from F(X).

2 Preliminaries

The core idea of a FITA strategy is that it is a strategy
which First Infers (by reference to the single rules) and
Then Aggregates starting from the actual input informa-
tion A. Contrary to that, a FATI strategy is a strategy
which First Aggregates (the information in all the rules
into one fuzzy relation) and Then Infers starting from
the actual input information A.

Both these strategies use the set theoretic union as
their aggregation operator. Furthermore, both of them
refer to the CRI as their core tool of inference.

In general, however, the interpolation operators may
depend more generally upon some inference operator(s)
as well as upon some aggregation operator.

2.1 Aggregation operations and fuzzy control strategies

By an inference operator we mean here simply a mapping
from the class of fuzzy subsets of the input space to the
class of fuzzy subsets of the output space.1

And an aggregation operator A, as explained e.g. in
[1, 2], is a family (fn)n∈N of (“aggregation”) operations,
each fn an n-ary one, over some partially ordered set M,
with ordering �, with a bottom element 0 and a top el-
ement 1, such that each operation fn is non-decreasing,
maps the bottom to the bottom: fn(0, . . . ,0) = 0, and
the top to the top: fn(1, . . . ,1) = 1.

Such an aggregation operator A = (fn)n∈N is a com-
mutative one iff each operation fn is commutative. And
A is an associative aggregation operator iff

fn(a1, . . . , an) =
fr(fk1(a1, . . . , ak1), . . . , f

kr (am+1, . . . , an)) (3)

for n =
∑r

i=1 ki and m =
∑r−1

i=1 ki.
Our aggregation operators further on are supposed to

be commutative as well as associative ones.2

As in [3, 4], we now consider operators Ψ of FATI-type
operators Ξ of FITA-type and which have the abstract
forms

ΨD(A) = A(θ〈A1,B1〉(A), . . . , θ〈An,Bn〉(A)) , (4)

ΞD(A) = Â(θ〈A1,B1〉, . . . , θ〈An,Bn〉)(A) . (5)

Here we assume that each one of the “local” inference
operators θi is determined by the single input-output
pair 〈Ai, Bi〉. This restriction is in general sufficient. For
the present purpose we assume that our inference oper-
ators are CRI-based, i.e. we assume that θ〈A1,B1〉(A) has

1This terminology has its historical roots in the fuzzy con-
trol community. There is no relationship at all with the log-
ical notion of inference intended and supposed here; but–of
course–also not ruled out.

2It seems that this is a rather restrictive choice from a the-
oretical point of view. However, in all the usual cases these
restrictions are satisfied.
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the form
θ〈Ai,Bi〉(A) = R′′

i A (6)

for some fuzzy relation R. In this case we call the infer-
ence operator θ〈A1,B1〉 CRI-based.

Furthermore A has to be an aggregation operator for
fuzzy subsets of the universe of discourse X, and Â has
to be an aggregation operator for inference operators.

2.2 Stability conditions

If ΘD is a fuzzy inference operator of one of the types
(4), (5), then the interpolation property one likes to have
realized is that one has

ΘD(Ai) = Bi (7)

for all the data pairs 〈Ai, Bi〉. In the particular case that
the operator ΘD is detrmined by the CRI-methodology,
this is just the usual problem to solve a system (7) of
fuzzy relation equations.

In the present generalized context the property (7) has
been called the D-stability of the fuzzy inference operator
ΘD.

To find D-stability conditions on this abstract level
seems to be rather difficult in general. However, the
restriction to fuzzy inference operators of FITA-type
makes things easier.

To explain some of the known results it is neces-
sary to have a closer look at the aggregation operator
A = (fn)n∈N involved in (4) which operates on F(Y), of
course with the inclusion relation for fuzzy sets as par-
tial ordering.

Definition 1 Having B, C ∈ F(Y) we say that C is A-
negligible w.r.t. B iff f2(B, C) = f1(B) holds true.

The core idea here is that in any aggregation by A the
presence of the fuzzy set B among the aggregated fuzzy
sets makes any presence of C superfluous.

For examples and further interesting properties of ag-
gregation operators the interested reader may consult
[3, 4].

Now we are in a position to state one of the results
from [3, 4] to give an impression of what becomes of in-
terest in the present context.

Proposition 1 Consider a fuzzy inference operator ΨD of
FITA-type (4). It is sufficient for the D-stability of ΨD, i.e.
to have

ΨD(Ak) = Bk for all k = 1, . . . , n (8)

that one always has

θ〈Ak,Bk〉(Ak) = Bk (9)

and additionally that for each i �= k the fuzzy set

θ〈Ak,Bk〉(Ai) is A-negligible w.r.t. θ〈Ak,Bk〉(Ak) . (10)

This result has two quite interesting specializations
which themselves generalize well known results about
fuzzy relation equations. The interested reader may con-
sult [3, 4].

To extend such considerations from inference opera-
tors (4) of the FITA type to those ones of the FATI type
(5) let us consider the following notion.

Definition 2 Suppose that Â is an aggregation operator for
inference operators, and that A is an aggregation operator for
fuzzy sets. Then (Â,A) is an application distributive pair
of aggregation operators iff

Â(θ1, . . . , θn)(X) = A(θ1(X), . . . , θn(X)) (11)

holds true for arbitrary inference operators θ1, . . . , θn and
fuzzy sets X .

Using this notion it is easy to see that one has on the
left hand side of (11) a FATI type inference operator, and
on the right hand side an associated FITA type inference
operator. So one is able to give a reduction of the FATI
case to the FITA case, assuming that such application
distributive pairs of aggregation operators exist.

Proposition 2 Suppose that (Â,A) is an application dis-
tributive pair of aggregation operators. Then a fuzzy infer-
ence operator ΞD of FATI-type is D-stable iff its associated
fuzzy inference operator ΨD of FITA-type is D-stable.

3 Application distributivity

Based upon the notion of application distributive pair
of aggregation operators the property of D-stability can
be transferred back and forth between two inference op-
erators of FATI-type and of FITA-type if they are based
upon a pair of application distributive aggregation op-
erators.

What has not been discussed previously was the exis-
tence and the uniqueness of such pairs. Here are some
results concerning these problems.

The uniqueness problem has a simple solution.

Proposition 3 If (Â,A) is an application distributive pair
of aggregation operators then Â is uniquely determined by A,
and conversely also A is uniquely determined by Â.

And for the existence problem we have a nice reduc-
tion to the two-argument case.

Theorem 1 Suppose that A is a commutative and associa-
tive aggregation operator. For the case that there exists an
aggregation operator Â such that (Â,A) form an application
distributive pair of aggregation operators it is necessary and
sufficient that there exists some operation G for fuzzy infer-
ence operators satisfying

A(θ1(X), θ2(X)) = G(θ1, θ2)(X) (12)

for all fuzzy inference operators θ1, θ2 and all fuzzy sets X .

However, there is an important restriction concerning
the existence of such pairs of application distributive ag-
gregation operators, at least for the interesting particular
case that the application operation is determined by the
compositional rule of inference (CRI). And this means
simply that the inference operations θi are determined
via suitable fuzzy relations Ri.
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Definition 3 An aggregation operator A = (fn)n∈N for
fuzzy subsets of a universe of discourse X is pointwise de-
fined iff for each n ∈ N there exists a function gn : [0, 1]n →
[0, 1] such that for all A1, . . . , An ∈ F(X) and all x ∈ X there
hold

fn(A1, . . . , An)(x) = gn(A1(x), . . . , An(x)) . (13)

And an aggregation operator Â for inference operators is
pointwise defined iff it can be reduced to a pointwise defined
aggregation operator for fuzzy relations.

From the isotonicity behavior of the aggregation oper-
ator A it follows that also these characterizing functions
gn are isotonic, and similarly in the case of Â.

The restrictive result, first proved in [6], now reads as
follows.

Theorem 2 Suppose that all inference operators are CRI-
based. Then the pair (

⋃
,
⋃

) is the only application distribu-
tive pair among the commutative, associative, and pointwise
defined aggregation operators.

Proof: Obviously the considerations can restricted to
the binary case n = 2. So let us start in this CRI-
based case with an aggregation operator Â, which has
to give a fuzzy relation Â(R1, R2) for any two infer-
ence operators θ1, θ2 determined by the fuzzy relations
R1, R2, respectively. Because Â has to be pointwise de-
fined, according to Definition 3 there has to be a function
ĝ : [0, 1] × [0, 1] → [0, 1] such that one has for the mem-
bership degrees of the corresponding fuzzy relations

Â(R1, R2)(x, y) = ĝ(R1(x, y), R2(x, y)) . (14)

In a similar way, again by Definition 3, a correspond-
ing aggregation operator A has to be determined by a
function g : [0, 1] × [0, 1] → [0, 1]. Assuming that these
aggregation operators (A, Â) form an aggregation dis-
tributive pair, gives for arbitrary fuzzy inputs A the con-
dition

Â(R1, R2)′′(A)(y)

=
∨
x

T
(
A(x), Â(R1, R2)(x, y)

)
=
∨
x

T
(
A(x), ĝ(R1(x, y), R2(x, y))

)
(15)

= g
(∨

x

T (A(x), R1(x, y)),
∨
x

T (A(x), R2(x, y))
)

= A(R′′
1A,R′′

2A)(y) ,

which has to be satisfied for arbitrary fuzzy sets A and
fuzzy relations R1, R2. Of course, T here is the t-norm
involved in the CRI application process.

So let be always A(x) = 1 and furthermore R1(x, y) =
a,R2(x, y) = b for some a, b ∈ [0, 1]. Now routine cal-
culations yield ĝ(a, b) = g(a, b), which means equality
of the functions ĝ = g which determine the aggregation
operators Â,A, respectively.

So application distributivity of the pair (A, Â) be-
comes a condition which has to be satisfied by the char-
acterizing function g, and this condition reads∨

x

T
(
A(x), g(R1(x, y), R2(x, y))

)
= (16)

g
(∨

x

T (A(x), R1(x, y)),
∨
x

T (A(x), R2(x, y))
)

.

To continue our discussion and to finish the proof of
Theorem 2, we insert two lemmata.

Lemma 1 Suppose that g : [0, 1]× [0, 1] → [0, 1] determines
a commutative and associative pointwise defined (binary) ag-
gregation operator. Then the condition

sup
i∈I

g(ai, bi) = g(sup
i∈I

ai, sup
i∈I

bi) (17)

is equivalent to the fact that g is left continuous and satisfies

g(a, b) = g(max{a, b},max{a, b}) . (18)

It is easy to see that (17) implies the left continuity of
g. So assume (17) and that (18) is not generally satisfied.
Then there are a0, b0 ∈ [0, 1] such that

g(a0, b0) �= g(max{a0, b0},max{a0, b0}) (19)

and additionally, w.l.o.g., also b0 ≤ a0. This last condi-
tion forces even its strengthening b0 < a0, and together
with the isotonicity of g yields g(a0, b0) < g(a0, a0). But
this now means

max{g(a0, b0), g(b0, a0)} = g(a0, b0)
< g(a0, a0) = g(max{a0, b0}, max{a0, b0}) , (20)

contradicting (17). So the (⇒)-part of the lemma is
proved.

If otherwise g is left continuous and satisfies (18), one
has

g(sup
i∈I

ai, sup
i∈I

bi) ≥ sup
i∈I

g(ai, bi) (21)

by the isotonicity of g. But g(aj , bj) ≤ supi∈I g(ai, bi) and
(18) yield

g(cj , cj) ≤ sup
i∈I

g(ai, bi) (22)

for cj = max{aj , bj}, and by the left continuity and iso-
tonicity of g this gives

g(sup
i∈I

ci, cj) ≤ sup
i∈I

g(ci, ci) ≤ sup
i∈I

g(ai, bi), , (23)

and thus also

g(sup
i∈I

ai, sup
i∈I

bi) ≤ g(sup
i∈I

ci, sup
i∈I

ci) ≤ sup
i∈I

g(ai, bi) . (24)

All together gives (17) and hence the (⇐)-part of the
lemma.

The condition (17) obviously means that the cor-
responding aggregation operator commutes with the
supremum.
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Lemma 2 Suppose that g : [0, 1]× [0, 1] → [0, 1] determines
a commutative and associative pointwise defined (binary) ag-
gregation operator. Then condition (17) is satisfied iff there
exists a left continuous isotonic function h : [0, 1] → [0, 1]
satisfying h(0) = 0, h(1) = 1 and

g(a, b) = max{h(a), h(b)} . (25)

For the (⇒)-part consider the function h(x) = g(0, x).
It is left continuous as well as isotonic, satisfies h(0) = 0
and h(1) = 1, and one has by Lemma 1

g(a, b) = g(max{a, b}, max{a, b})
= g(max{0,max{a, b}}, max{0,max{a, b}})
= g(0, max{a, b}) = max{h(a), h(b)} . (26)

The (⇐)-part follows from routine calculations.
So we come back to the proof of Theorem 2. What we

did not discuss up to now is that for having an aggrega-
tion distributive pair of pointwise defined operators the
characterizing function g has to be distributive relative
to the t-norm T which determines the CRI-application.
So we need to have always satisfied

T (a, g(b, c)) = g(T (a, b), T (a, c)) , (27)

which means, via Lemmata 1 and 2, to have always sat-
isfied

max{T (a, h(b)), T (a, h(c))}
= max{h(T (a, b)), h(T (a, c))} , (28)

which forces that one always has to have

T (a, h(b)) = h(T (a, b)) . (29)

And this yields h = id: because otherwise there would
exist some c with h(c) �= c and

T (c, h(1)) = T (c, 1) = c �= h(c) = h(T (c, 1)) . (30)

So Theorem 2 is finally proved.

4 Conclusion

The type of approach explained in Section 2.2 works ac-
tually well only in the FITA case. This was the starting
point for the considerations on aggregation distributive
operator pairs. They give a transfer possibility to the
FATI case.

However, as the main result, i.e. Theorem 2 of the
present paper shows, these transfer possibilities are
quite restricted under some conditions which have, up
to now, been considered rather natural ones.

For the authors understanding this result points into
two directions. (i) It may be appropriate to try to find
other ways and to discuss the FATI case differently. And
this way may become essentially different from the re-
duction strategy toward fuzzy relation equations which
stands behind the generalization in [3, 4]. (ii) It may be
suitable to move into the realm of aggregation opera-
tors which are no longer pointwise defined, and it may

also be suitable to leave the world of the CRI-based ap-
proaches.

Particularly point (ii) here seems promising, even hav-
ing in mind that the actual standard cases all fall into the
class of pointwise defined aggregation operators. Fur-
ther investigations into this topic are necessary.
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