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Abstract— Importance weighted averaging aggregation opera-
tors play a key role in utilizations of electronic data and informa-
tion resources for retrieving, fusing, and extracting information and
knowledge, as needed for decision making. Two central issues in
the choice of such operators are the kind of importance weighting
and the andness (or conjunction degree) of the operator. We present
and discuss two main kinds of importance weighting, namely multi-
plicative and implicative, each yielding a particular kind of operator
for a particular kind of aggregation problems. Importance weight-
ing generalizations of each kind are proposed for each of two classes
of averaging operators, namely the Power Means and the Ordered
Weighted Averaging operators, each in a De Morgan dual form for
increased efficacy. For each class is proposed a function for a rather
accurate direct control of the andness. Operators of the same kind
appear to behave rather similarly at the same andness, independent
of the class of averaging operators generalized.

Keywords— Aggregation operators, averaging operators, and-
ness, orness, importance weighting, implicative importance.

1 Introduction
With the increasing amount of electronically accessible data in
databases, document bases, and data streams, and the need of
efficient utilization of such data, aggregation operators have
attained new interest. This is due to the central role of such
operators in the key reasoning tasks, such as information fu-
sion and pattern recognition, applied in utilizations of many
kinds, e.g., information retrieval, information extraction, ob-
ject recognition, and knowledge discovery. Of particular inter-
est are the aggregations operators between AND (conjunction)
and OR (disjunction), i.e., the averaging operators, or general-
ized conjunction/disjunction functions (GCD) [1], especially
the importance weighted generalizations of such operators.

An importance weighted averaging aggregation operator
aggregates a number of arguments, each qualified by an im-
portance weight, into a single score. We distinguish between
two kinds of importance weighting, namely multiplicative and
implicative. Each kind provides an importance weighting gen-
eralization of the unweighted averaging operator, in the sense
that the latter is retained by the case where all arguments have
the same importance weight. We propose such generaliza-
tions of two classes of averaging operators, namely the Power
Means (PM) and the Ordered Weighted Averaging (OWA) op-
erators [2], each in a De Morgan dual form for increased effi-
cacy, and each with an accurate direct control of the andness,
i.e., the degree the operator aggregates like an AND rather than
an OR. The generalizations of the PM include the AIWA op-
erators [3].

A few words on the notation applied in the following.⊙
i ai, where

⊙
is an operator, is an abbreviation for⊙n

i=1(ai); a bold letter like x denotes the vector (x1, . . . , xn);
x denotes the standard negation x = 1 − x; x denotes
(x1, . . . , xn). Some specific letters are used all over with the
same meaning: I denotes the real unit interval [0, 1]; n is
the dimension, i.e., number of arguments aggregated by the
averaging operator considered; ρ denotes the targeted and-
ness of an averaging operator; a denotes a vector of argu-
ments (a1, . . . , an) ∈ In; v denotes an importance weight-
ing vector (v1, . . . , vn) ∈ In that is max-normalized, i.e.,
maxi vi = 1; w denotes an importance weighting vector
(w1, . . . , wn) ∈ In that is sum-normalized, i.e.,

∑
i wi = 1;

h : In×In → I : (v,a) �→ h(v,a) is an importance weighted
averaging operator, such that vi is the importance of ai; for a
particular operator h, its name acronym and parameters are
attached on the form hacronym

parameters.

Section 2 introduces some basic concepts applied in the fol-
lowing. Sections 3 and 4 introduce, for each class of averaging
operators, the PM based and the OWA based, the basis of the
class, its multiplicative and implicative importance weighting
generalizations, and a function for accurate direct control of
the andness of its operators. Sections 5 and 6 discuss, for
each kind of importance weighting, the multiplicative and the
implicative, the kind of applications they apply to and some
key issues of relevance for their application. Section 7 com-
pares and discusses the effect of the two kinds of importance
weighting on the common problem of ordering a set of options
by their score. Section 8 concludes.

2 Basic concepts
2.1 The andness of an averaging operator

The andness may be viewed as the degree of universal quan-
tification over the arguments, with AND (andness = 1) repre-
senting all and OR (andness = 0) representing at least one.
In this view, the andness is the degree to which all arguments,
rather than at least one argument, must support the result of
the aggregation. In importance weighted averaging opera-
tors, each argument is considered to the degree it is impor-
tant. The dual interpretation applies to the orness, defined by:
orness = 1− andness.

Since, AND and OR are evaluated by the operators min and
max, respectively, the andness of an averaging operator h may
be defined as distance between h and the max, relative to the
distance between the min and the max, with operators h, max,
and min evaluated as the mean of these operators over the ar-
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gument space, as proposed by Dujmović [4]:

andness(h) =
E(maxi(x))− E(h(x))

E(maxi(x))− E(mini(x))
(1)

where E(f(x)) is the mean of f(x) over the argument space
In, as defined by E(f(x)) =

∫
In f(x)dx. The terms andness

and orness were coined by Yager for a measure of the OWA
operators [2] that is fully consistent with the measure defined
by (1).

The andness is, by OWA operators, obtained by positional
weights (OWA weights), such that the OWA aggregate is the
sum of the products of the i‘th OWA weight and the i‘th
largest argument, whereas it by PM operators is obtained by a
power function, yielding emphasis on the smaller or larger val-
ued arguments to the degree the PM represents, respectively,
AND and OR (see, e.g., [1]).

2.2 The two kinds of importance weighting

A well-known example of an importance weighted averaging
operator is the Weighted Arithmetic Mean (WAM) defined by
hWAM(v,a) =

∑
i(wi, ai) where, for all i, wi = vi∑

i vi
, for

which andness(hWAM) = orness(hWAM) = 1
2 . The unweighted

case, as obtained by vi = 1 for all i, is the Arithmetic Mean
(AM): hWAM((1, 1, . . . , 1),a) = 1

n

∑
i ai = hAM(a). The

WAM appears to be the only importance weighted averaging
operator that represents both kinds of importance weighting,
namely the multiplicative and the implicative. For other de-
grees and andness than 1

2 , the two kinds of importance weight-
ing provide, as we shall see, different behaviors that apply to
different kinds of aggregation problems.

While Multiplicative importance Weighted Averaging (for
short, MWA) operators are weighted means, Implicative im-
portance Weighted Averaging (for short, IWA) operators are
logic operators for pattern matching inference. In general, the
andness of an IWA operator “penalizes” (decreases) the score
(the aggregate) to the degree that there are criteria that are
important, but not satisfied, while the orness “rewards” (in-
creases) the score to the degree that there are criteria that are
important and satisfied.

By the importance weighting, the arguments are, essen-
tially, transformed by the importance weights in a way giv-
ing the desired effect, depending on the kind of importance
weighting and the andness, in the aggregation. In principle, an
argument a with the importance weight w is, by the two kinds
of weighting, transformed as follows: by MWA, to the product
wa, and by IWA at andness ρ to ρ(w ⇒ a)+ρ(w ⇒ a) where
⇒ is a fuzzy implication operator. It is the multiplication in
the MWA case and the implication in the IWA case that give
name to the two kinds of importance weighting.

As the fuzzy implication⇒ for IWA operators, we choose
the Reichenbach implication,⇒R, as defined by (v ⇒R a) =
va = 1−v(1−a). The reasons for this choice are, first, that it
allows us easily to obtain the WAM at ρ = 1

2 , and, second, that
the choice of the fuzzy implication appears not to be critical
for the behavior of such operators. The latter was tested em-
pirically; the paper doesn’t leave space for presenting details
from the test.

A key difference between between MWA and IWA opera-
tors is that in MWA operators, as opposed to IWA operators,
the effect of the importance weights decreases from full effect

to no effect as the andness goes from 1
2 to one of its extremes,

0 or 1. For an appropriate choice of the fuzzy implication
operator, the IWA operators represent, like the MWA opera-
tors, the WAM at andness 1

2 . These behaviors of the two kind
of importance weighted averaging operators are illustrated by
Figure 1. We notice, as the figure indicates, that in cases where

(MWA)

(IWA)

0

0

1

1

1 1

2 2
,

WAM

max
i i i

v a

min
i i i

v a

min
i i
amax

i i
a

Figure 1: Illustration of MWA and IWA operators

we are completely uncertain about the proper kind of impor-
tance weighting and andness for an application, WAM may be
a good choice as a starting point.

2.3 The two classes of operators generalized

In the following, we shall in particular consider importance
weighted generalizations of two classes of operators, namely
the Power Means (PM) and the Ordered Weighted Averag-
ing (OWA) operators, each in a De Morgan dual form for
increased efficacy. For each class, we propose two andness-
directing functions, ψ(ρ) and ψ(ρ, n), each yielding a value
(∈ [1,∞[) of the andness controlling parameter of the class.
While ψ(ρ) directly yields an andness of the operator that, in
general, is somewhat close to the target ρ, ψ(ρ, n) yields the
target rather accurately, due to it also being dependent of n, as
applied in the definition by (1).

For each class, we provide a common expression of the two
kinds of importance weighting generalization, such that the
choice of a kind is controlled by a parameter γ ∈ {0, 1},
yielding the multiplicative generalization by γ = 0 and the
implicative generalization by γ = 1. The operators are in
their common generalized form referred to as, respectively,
Andness-directed importance Weighted averaging (AWA) op-
erators and andness-directed importance Weighted OWA oper-
ators (W-OWA). Figure 2 gives an overview over the operator
name acronyms applied.

Basis Without

importance 

weighting

With importance weighting 

Common  

class

Multipl.

0

MWA

Impl. 

1

IWA

Power Means AA AWA AMWA AIWA

OWA OWA W-OWA MW-OWA IW-OWA

Figure 2: Operator and operator class name acronyms applied
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3 AWA operators
3.1 Basis in the Power Means

The AWA (Andness-directed importance Weighted Averag-
ing) operators are based on the Power Means (PM) that (in
their unweighted form) are defined by hPM

α (a) = ( 1
n

∑
i aα

i )
1
α ,

α ∈ R. When α goes from −∞ to +∞, the andness of hPM
α

goes from 1 down to 0. It has an asymmetric behavior around
andness = 1

2 , as obtained at α = 1; in particular, it is “manda-
tory” for α ≤ 0, corresponding to andness >̃2

3 , in the sense
that hPM

α (a) = 0, if mini(ai) = 0, which normally is an un-
desired property. 1 However, by the De Morgan dual variant
PM′, defined by (i) hPM

α (a), α ≥ 1, for andness ≤ 1
2 , and (ii)

1 − hPM
α (a), α ≥ 1, for andness ≥ 1

2 , we obtain a symmet-
ric behavior around andness = 1

2 and avoid the “mandatory”
property. For both (i) and (ii), the arithmetic mean is obtained
at α = 1; when α goes to +∞, the andness of hPM′

α goes in
case (i) to 0 and in case (ii) to 1.

The AWA operators comprise the multiplicative and im-
plicative importance weighted generalizations of PM′, namely
the AMWA (Andness-directed Multiplicative importance
Weighted Averaging) operators and the AIWA (Andness-
directed Implicative importance Weighted Averaging) opera-
tors. The AIWA operators were introduced in [3] where we
analyzed their properties and showed that they implement im-
plicative importance weighting by the Riechenbach implica-
tion. The AMWA operators is the multiplicative weighting
variant of the AIWA operators.

3.2 Definition of AWA operators

The AWA operators are defined by the following semi-
recursive expression, where the case of ρ > 1

2 is defined by its
duality to the case of ρ ≤ 1

2 :

hAWA
ρ (v,a) =

{
(
∑

i(yia
α
i ))

1
α ρ ≤ 1

2
1− hAWA

ρ (v,a) ρ > 1
2

(2)

where α = ψAA(ρ) = ρ/ρ, and for all i:

yi =
vαγ

i∑
i vαγ

i

(3)

with γ ∈ {0, 1}, γ = 0 (by which yi = vi∑
i vi

= wi) yielding

the AMWA operators, and γ = 1 (by which yi = vα
i∑

i vα
i

)
yielding the AIWA operators.

By v = (1, 1, . . . , 1) we obtain the common unweighted
case of AMWA and AIWA that we shall refer to as Andness-
directed Averaging (AA) operators; thus, these operators
are, in the case of ρ ≤ 1

2 , defined by: hAA
ρ (a) =

hAWA
ρ ((1, 1, . . . , 1),a) = ( 1

n

∑
i aα

i )
1
α .

3.3 Accurate control of AWA andness

Above, the parameter α is, for a targeted andness ρ, defined
by α = ψAA(ρ) = ρ/ρ in the case ρ ≤ 1

2 (and, by duality, as
implemented by the semi-recursive call, α = ψAA(ρ) = ρ/ρ
in the case ρ > 1

2 ). While by ψAA(ρ), andness(hAWA) is equal
to ρ, if ψAA(ρ) ∈ {0, 1

2 , 1} and, otherwise, somewhat close
to ρ, a much more precise approximation can be obtained by

1The mandatory threshold of andness >̃ 2
3

enforced by the PM is,
from a practical point of view, rather arbitrary.

also considering the dimension n, namely through replacing
ψAA(ρ) by ψAA(ρ, n) as defined by:

ψAA(ρ, n) = (− log2 ρ)1+(log2 n)1/3 (4)

An empirical test of the error ‖ρ − andness(hAWA)‖, showed
that by ψAA(ρ) the average error over ρ ∈ I increases from
about 0.03 to about 0.09 as n increases from 2 to 100, while it
by ψAA(ρ, n) remains around 0.005.

3.4 Decomposability of AWA operators

A property of particular interest for applications of AWA op-
erators is their decomposability, allowing us to update the ag-
gregate if the value of an argument has changed or a new ar-
gument has to be considered, without re-computing the whole
aggregate. [3] Thus, considering the common case by AWA
(2) for ρ ≤ 1

2 , let hAWA
ρ (v,a) = c to be updated with a new

argument an+1 with the importance weight vn+1. Let ∪ de-
note the concatenation of vectors, such that x ∪ (xn+1) =
(x1, . . . , xn) ∪ (xn+1) = (x1, . . . , xn+1). Then, the updated
aggregate is computed as the AWA aggregate of c and the new
argument, as defined by: hAWA

ρ (v ∪ (vn+1), (a ∪ (an+1)) =

hAWA
ρ ((s, vn+1), (c, an+1)) =

(
sαγ

cα+vαγ

n+1aα
n+1

sαγ
+vαγ

n+1

)1/α

, with

s =
(∑n

i=1 vαγ

i

)1/αγ

.

4 W-OWA operators
4.1 Basis in the OWA operators

The properties of OWA operators [2] are controlled by a vector
of sum-normalized position weights u (called OWA weights)
such that the OWA aggregate of an argument vector a is de-
fined by hOWA(a) =

∑
i(ui, a(i)) where (·) is an index per-

mutation such that a(1) ≥ · · · ≥ a(n). Two key properties of
OWA operators are their andness, defined by andness(u) =

1
n−1

∑
i((i − 1)ui), and their normalized dispersion (or en-

tropy), defined by ndisp(u) = − 1
ln n

∑
i(ui lnui). This and-

ness measure is consistent with (1).
In [5, 6], Yager proposed an importance weighted gen-

eralization of quantifier guided OWA operators that essen-
tially is a multiplicative importance weighting generalization,
which we here shall refer to as MW-OWA operators. They
are defined by hMW-OWA

f (v,a) =
∑

i(ui, a(i)), where ui =

f(si)−f(si−1), i = 1, . . . , n, with s0 = 0 and si =
∑ i

k=1 v(k)∑ n
k=1 vk

for i > 0, f : I → I is a regular increasing monotone quan-
tifier (i.e., f(0) = 0, f(1) = 1, and f(x) ≥ f(y) if x > y),
such as f(x) = xβ , β ≥ 0, and (·) as before is a permutation
of the index such that a(1) ≥ · · · ≥ a(n). It is easily seen that
when β goes from 0 to +∞, andness(hMW-OWA) goes from 0 to
1, with hMW-OWA

f representing the max (with andness = 0) at
β = 0, the WAM (with andness = 1

2 ) at β = 1, and the min
(with andness = 1) at β → +∞.

In the case vi = 1, i = 1, . . . , n, we get si = i
n , and, hence,

u representing the underlying OWA weights (for the OWA op-
erator without importance weighting) that by f(x) = xβ are
somewhat close to the MEOWA weights [7, 8], i.e., the unique
OWA weighting vector with the maximum dispersion at the
given andness and dimension n. However, the behavior is not
symmetric around andness = 1

2 ; in fact, while the dispersion

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

404



of the OWA weights for andness > 1
2 (i.e., β > 1) is rather

close to the maximum, it is much less for andness < 1
2 (i.e.,

β < 1). For instance, for n = 5 the maximum normalized dis-
persion at andness = 0.8 and andness = 0.2 is 0.755 in both
cases, while the OWA weights with f(x) = xβ have the nor-
malized dispersion 0.744 in the first case, but only 0.717 in the
second case. Therefore, an improvement with a near optimal
dispersion for all degrees of andness, is obtained by defining
hMW-OWA

f as above for andness ≥ 1
2 , and by its De Morgan du-

ality for andness < 1
2 , namely (with a change of notation to

express the andness ρ) hMW-OWA
ρ (v,a) = 1 − hMW-OWA

ρ (v,a).
By this improvement, the normalized dispersion in the second
case (andness = 0.2) above is increased to 0.744, as in the first
case, i.e., in both cases only 0.011 lower than the maximum.

4.2 Definition of the W-OWA operators

In the following, we present an extension of the duality based
MW-OWA operators to a common class, W-OWA, comprising
both the multiplicative importance weighting generalization,
MW-OWA, and an implicative importance weighting general-
ization, IW-OWA, with parametric control of the kind of gen-
eralization. The W-OWA operators are defined by:

hW-OWA
ρ (v,a) =

{ (∑
i(uib(i))

)
ρ ≥ 1

2
1− hW-OWA

ρ (v,a) ρ < 1
2

(5)

where, for all i, bi is defined by:

bi = (vγ(2ρ−1)
i ⇒R ai) = 1− v

γ(2ρ−1)
i (1− ai) (6)

with γ ∈ {0, 1}, γ = 0 (by which bi = ai) yielding the
class of MW-OWA operators, and γ = 1 (by which bi =
(v(2ρ−1)

i ⇒R ai)) yielding the class of IW-OWA operators;
ui = f(si)− f(si−1), i = 1, . . . , n, with s0 = 0 and

si =
∑i

k=1 v(k)∑n
k=1 vk

(7)

for i > 0, and f(x) = xβ , with β = ψW-OWA(ρ) = ρ/ρ; finally,
(·) is an index permutation such that b(1) ≥ · · · ≥ b(n). We
notice that the Reichenbach implication applied above may be
replaced by any fuzzy implication.

By v = (1, 1, . . . , 1) we obtain the common case of
MW-OWA and IW-OWA, without importance weighting,
namely the duality based, quantifier guided OWA operators
that, in the case of ρ ≥ 1

2 , are defined by: hOWA
ρ (a) =

hW-OWA
ρ ((1, 1, . . . , 1),a) =

∑
i(uia(i)) where ui = f( i

n ) −
f( i−1

n ), with f(x) = xβ .

4.3 Accurate control of W-OWA andness

Above, the parameter β is, for a targeted andness ρ, defined
by β = ψW-OWA(ρ) = ρ/ρ in the case ρ ≥ 1

2 (and, by duality,
as implemented by the semi-recursive call, β = ψW-OWA(ρ) =
ρ/ρ in the case ρ < 1

2 ). While by ψW-OWA(ρ), andness(hW-OWA)
is equal to ρ, if ρ ∈ {0, 1

2 , 1} or n → +∞, and, otherwise,
close to ρ, a more precise approximation can be obtained by
also considering the dimension n, namely through replacing
ψW-OWA(ρ) by ψW-OWA(ρ, n) as defined by:

ψW-OWA(ρ, n) =
0.5 + nρ

0.5 + nρ
(8)

For instance, by ρ = 0.8 (and, through the duality, by
ρ = 0.2), we get β = ψW-OWA(0.8) = 0.8

1−0.8 = 4. For
n = 5, this value of β gives an andness of about of about
0.86, i.e., 0.06 more than the targeted andness, while we by
β = ψW-OWA(0.8, 5) = 0.5+5·0.8

0.5+5(1−0.8) = 3.0 obtain the desired
andness of 0.8. As n increases from 2 to 100, the average over
ρ ∈ I of the error ‖ρ−andness(hW-OWA

ρ )‖ decreases from about
0.07 to about 0.002 by ψW-OWA(ρ), and from about 0.0003 to
about 0.00001 by ψW-OWA(ρ, n).

5 On the multiplicative importance weighting
MWA operators are essentially weighted means that, qua
means, are symmetric, monotonic increasing, continuous,
and idempotent. They produce means in the interval
[miniai, maxiai], and are monotonically increasing with the
orness. If an MWA operator has the andness = 1

2 , it repre-
sents the WAM.

5.1 Applications of MWA operators

A common application is for estimation of a utility variable.
In this case, each argument represents the estimation by an
expert (or the measure by some source), while its importance
weight represents the decision maker’s confidence in the ex-
perts’s ability to estimate the correct value. The andness and
the orness represent decision maker’s risk attitude, namely, the
degree of, respectively, pessimism and optimism. The aggre-
gate is in this case an estimate of the utility variable, consider-
ing the decision maker’s risk attitude and, for each expert, the
estimate by the expert and the decision masker’s confidence in
the expert.

Another application is for selection between (alternative)
options, where the option with the highest score (weighted
mean) is winning. In this case, each argument represents the
degree to which the option considered has a particular prop-
erty of interest, while its importance weight represents the im-
portance of having the property to a high degree. The andness
represents the degree to which all properties of interest must
be present to a high degree. The outcome of the averaging is
a ranking of options, possible with a threshold distinguishing
acceptable options from unacceptable options.

5.2 Discontinuity property of MWA operators

While MWA and IWA operators both represent the WAM at
andness = 1

2 , a key difference is that for MWA, as opposed
to IWA, the effect of the importance weights decreases as the
andness converges to one of its extremes, 1 or 0. In these
cases, MWA evaluates to the smallest argument with a positive
weight, yielding a discontinuity, since a small change in an
importance weight, from, say, 0.01 to 0, may give a drastic
change in the aggregate.

For instance, let hMWA
ρ be an MWA operator (like AMWA

or MW-OWA) at andness ρ, and assume a = (0.9, 0.1). Then
hMWA

1 ((1, 0.01),a) = 0.1, while hMWA
1 ((1, 0),a) = 0.9. Sim-

ilarly, hMWA
0 ((0.01, 1),a) = 0.9, while hMWA

0 ((0, 1),a) = 0.1.
In both cases, the small decrease from 0.01 to 0 of an im-
portance weight, caused a drastic change (of size 0.8) in the
aggregate.

This behavior is an effect of MWA operators as weighted
means. It models the attitude of the decision maker, in the
cases of extreme pessimism and extreme optimism, to select
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the most pessimistic, respectively, most optimistic, estimate
(argument) by any source with a positive confidence (impor-
tance weight). Such behavior is not acceptable in multicrite-
ria aggregation for object recognition; for instance, it is not
acceptable that the unimportant second criterion determines
the overall satisfaction as by aggregate hMWA

1 ((1, 0.01),a) =
0.1. IWA operators avoid this by only considering criteria
to the degree they are important; thus hIWA

1 ((1, 0.01),a) =
hIWA

1 ((1, 0),a) = 0.9.

5.3 Other MWA operators

The PM, on which the AMWA and AIWA operators are based,
are in the family of the quasi-arithmetic means (QM) [9, 10].
The weighted QM (WQM) forms the family of MWA op-
erators defined by hWQM(v,a) = φ−1(

∑
i(wiφ(ai))) where

φ is a continuous strictly monotonic function, and φ−1 is
the inverse of φ. The Weighted PM (WPM), hWPM(v,a) =
(
∑

i(wia
α
i ))1/α, α ∈ R, belong to this family from which

they are derived by φα(x) = xα (with φ−1
α (x) = x1/α).

By φα(x) = eαx (with φ−1
α (x) = ln x

α ), we obtain
the Weighted Exponential Means (WEM), hWEM

α (v,a) =
1
α ln(

∑
i(wie

αai)), that converges to the WAM for α → 0,
and to miniai and maxiai for α going to, respectively, −∞
and +∞. A nice property of the WEM is its symmetric be-
havior around andness = 1

2 as obtained for α→ 0. Unlike the
WPM, the WEM do not impose the mandatory property.

6 On the implicative importance weighting

6.1 Applications of IWA operators

Implicative importance weighting is applied by IWA operators
for pattern matching inference in multicriteria recognition or
classification problems, where an observed object (e.g.a doc-
ument or some physical object) is compared to a goal concept
(e.g., a query or a class). The goal concept is intensionally
characterized by a set of criteria that, in general, are impor-
tance weighted. Each criterion expresses a constraint on the
values of an object attribute and may, in general, be repre-
sented by a fuzzy subset. The importance weight of a cri-
terion expresses the importance of satisfying the criterion in
recognizing or classifying an object as an instance of the goal
concept.

This scheme applies for querying of the two main kinds,
namely object querying and concept querying. [11, 12] In ob-
ject querying, e.g., document retrieval and database querying,
the goal concept forms a query. When posed to an object base,
the query determines a fuzzy subset of the set of objects, rep-
resenting the query’s fuzzy extension in that set. An object’s
degree of membership in the extension can be seen as the de-
gree to which the object is an instance of the goal concept
and is also referred to as the object’s score in the goal con-
cept. In concept querying, e.g., object recognition and clas-
sification, the characterization of the observed object forms a
query. When posed to a concept base, i.e., a base of possible
goal concepts or classes, the query determines in this case a
fuzzy subset of the set of concepts. The answer may in both
cases be presented by a ranked list of the objects or concepts
(depending on the query type) for which the score is above a
given threshold.

6.2 IWA weighting and reasoning scheme

Let C be a goal concept, characterized by the criteria
C1, . . . , Cn with the importance weights v1, . . . , vn, with vi

being the importance of satisfying Ci, and let ai = Ci(x) =
µCi

(x) be the degree to which the object x (or, actually, the
constrained attribute of x) satisfies Ci. Then, the inference im-
plemented by IWA operators has a Modus Ponens form that in
the case of andness = 1 is expressed by:

a1 = C1(x), . . . , an = Cn(x)
(v1 ⇒ C1) ∧ · · · ∧ (vn ⇒ Cn)→ C

C(x) = ∧i(vi ⇒ Ci) (= hIWA
ρ=1(v,a))

(9)

Equation 9 expresses that, for an AND aggregation, the goal
concept is satisfied by an object to the degree that the require-
ment ‘for all criteria, the criterion is satisfied if it is impor-
tant’ is met. This may be expressed by ∀i(important(Ci) ⇒
satisfied(Ci)) that, by vi = important(Ci) and ai =
satisfied(Ci), may be written ∀i(vi ⇒ ai), or, by the standard
evaluation of ∀ by the min operator, mini(vi ⇒ ai). By other
equivalent expressions of ∀i(vi ⇒ ai), the requirement can
be expressed by other words, for instance, by ¬∃i(vi ∧ ¬ai),
‘there does not exist a criterion that is important but not sat-
isfied’.

The transformation of an argument a by an implicative im-
portance weight v for an averaging aggregation at andness ρ is
modeled by a function gρ : I2 → I : (v, a) �→ gρ(v, a). Thus,
for a fuzzy implication⇒, g1(v, a) = (v ⇒ a) is a transfor-
mation for an AND aggregation, and g0(v, a) = g0(v, a) =
v ⇒ a is its De Morgan dual transformation for an OR aggre-
gation. An important property of g1 and g0 is that they for
v = 0 evaluate to the neutral element for the aggregation,
namely, respectively, 1 and 0. In general, for ρ ∈ I , we define
gρ as the andness-orness weighted sum of g1 and g0:

gρ(v, a) = ρg1(v, a) + ρg0(v, a) (10)

which in the case of the Reichenbach implication ⇒R, with
gR
1(v, a) = (v ⇒R a) = va (= 1 − v(1 − a)) and gR

0(v, a) =
v ⇒R a = va, evaluates to gR

ρ(v, a) = ρ − v(ρ − a). In [13],
we presented an (implicative) importance weighting general-
ization of OWA operators and showed that transformation by
gR

ρ satisfies the requirements for such an importance weight-
ing.

6.3 Other IWA operators

In [3], we introduced another approach to implicative impor-
tance weighting generalization of OWA operators, in that case
the MEOWA operators [7, 8], namely the IW-MEOWA oper-
ators that, by the current notation, are defined by:

hIW-MEOWA
ρ (v,a) =

hIW-MEOWA
ρ (u,v,a)− l

u− l
(11)

where hIW-MEOWA
ρ (u,v,a) =

∑
i(uib(i)), u is the MEOWA

weighting vector for the given ρ and n, bi = gR
ρ(v, a) =

ρ − v(ρ − a), and (·) is an index permutation, such that
b(1) ≥ · · · ≥ b(n). Finally, l and u are the lower
and upper bounds for hIW-MEOWA

ρ (v,a), namely, repectively,
hIW-MEOWA

ρ (u,v, (0, . . . , 0)) and hIW-MEOWA
ρ (u,v, (1, . . . , 1)). It

was shown that (11) provides a linear transformation of
hIW-MEOWA

ρ (u,v,a), such that hIW-MEOWA
ρ (v,a) represents the

WAM at andness = ρ = 1
2 .
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7 Comparison of MWA and IWA aggregates

While operators of the same kind, MWA or IWA, tend to be-
have similarly—in the sense that they provide the same or-
dering of a given set of options at the same andness and the
same importance weights—this is, as we may expect, not the
case for operators of difference kinds. This is illustrated by
the following examples, where the andness of the MWA and
W-OWA classes are targeted by, respectively, ψAA(ρ, n) and
ψW-OWA(ρ, n), as denoted by the aggregation operator symbol;
thus, hAMWA

2
3 ,2

denotes that hAMWA is applied with ψAA( 2
3 , 2).

Assume that the decision problem is characterized by
andness = 2

3 , n = 2, v = (0.4, 1) that is sum-normalized to
w = (0.286, 0.714), and consider the two options represented
by the argument vectors a1 = (0.1, 0.7) and a2 = (0.9, 0.4).

By MWA aggregation, the second option, as represented by
a2, get the highest score and is therefore ranked higher than
the first option, as the following evaluations, all at andness =
2
3 , show: hAMWA

2
3 ,2

(v,a1) = 0.420 < hAMWA
2
3 ,2

(v,a2) = 0.474 and

hMW-OWA
2
3 ,2

(v,a1) = 0.454 < hMW-OWA
2
3 ,2

(v,a2) = 0.470. This is
also the case for MWA operators of other classes; thus, for the
Weighted Geometric Mean (WGM), hWGM(v,a) =

∏
i awi

i ,
that at n = 2 has andness = 2

3 , we get hWGM(v,a1) = 0.401
< hWGM(v,a2) = 0.504; similarly for the Weighted Exponen-
tial Means (WEM), hWEM

α (v,a) = 1
α ln (

∑
i (wie

αai)), that
at (α, n) = (−3, 2) has andness = 2

3 , we get hWEM
−3 (v,a1)

= 0.402 < hWEM
−3 (v,a2) = 0.484.

By IWA aggregation, the first option, as represented by
a1, get the highest score and is therefore ranked higher than
the second option: hAIWA

2
3 ,2

(v,a1) = 0.579 > hAIWA
2
3 ,2

(v,a2)
= 0.422 and hIW-OWA

2
3 ,2

(v,a1) = 0.551 > hIW-OWA
2
3 ,2

(v,a2) =
0.473; similarly, for the IW-MEOWA operator (11), we get
hIW-MEOWA

2
3

(v,a1) = 0.530 > hIW-MEOWA
2
3

(v,a2) = 0.515.
This behavior may be explained as follows. By IWA aggre-

gation, the first criterion (argument) is ignored to some degree,
due to its rather low importance (0.4); the higher satisfaction
of the second, highly important criterion by the first option is
the sufficient to give this option the highest rank. By MWA ag-
gregation, the very low value of the first argument in the first
option contributes to give this option the lowest rank, despite
the rather low importance of the argument.

These observations are supported by the experiment in [3],
where the comparison of the IWA operators AIWA and IW-
MEOWA for a small data set and a set of implicatively impor-
tance weighted queries, indicated a quite similar behavior of
the two operators.

8 Conclusion

Importance weighting of two kinds, namely multiplicative and
implicative, were proposed as generalizations of two classes
of averaging aggregation operators, namely the Power Means
(PM) and the Ordered Weighted Averaging (OWA) operators.
Each class is applied in a De Morgan dual version, yielding
symmetric behavior on both side of andness = 1

2 , and, at the
same time, avoiding the mandatory property of the PM and ob-
taining a near maximum dispersion of OWA at all degrees of
andness. The two generalizations of a class are represented by
a common expression, where the kind of importance weight-
ing is controlled through a binary parameter.

For each class, were proposed an andness-directing func-
tion that allows us to obtain a targeted andness for an operator
rather accurately through also considering the number of ar-
guments.

For each kind of importance weighting, we presented and
discussed how it works in the operator under different degrees
of andness, and the kind of application problems they apply
to. Operators of different classes, but with the same kind of
importance weighting, appear to have rather similar behavior
at the same andness.

For a given choice of the kind of importance weighting,
computational issues may affect the choice of operator class.
While the PM based operators (AWA) in particular require
much computationally rather heavy power functions, OWA
based operators (W-OWA) in particular require an ordering
(sorting) of the arguments. If reevaluation of a set of options
by a modified query occurs frequently, AWA operators have
an advantage through their decomposability property.
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