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Abstract— This paper presents a new abstract framework to deal
in a uniform way with the increasing variety of fuzzy logics studied
in the literature. By means of notions and techniques from Abstract
Algebraic Logic, we perform a study of non-classical logics based
on the kind of generalized implication connectives they possess. It
yields the new hierarchy of implicational logics. In this framework
the notion of implicational semilinear logic can be naturally intro-
duced as a property of the implication, namely a logic L is an impli-
cational semilinear logic iff it has an implication such that L is com-
plete w.r.t. the matrices where the implication induces a linear order, a
property which is typically satisfied by well-known systems of fuzzy
logic. The hierarchy of implicational logics is then restricted to the
semilinear case obtaining a classification of implicational semilinear
logics that encompasses almost all the known examples of fuzzy log-
ics and suggests new directions for research in the field.
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1 Introduction

Mathematical Fuzzy Logic is the subdiscipline of Mathemat-
ical Logic which studies the logical systems that, since the
inception of the theory of fuzzy sets, have been proposed to
deal with the reasoning with predicates that can be modelled
by fuzzy sets. The first ones, coming from the many-valued
logic tradition, were Łukasiewicz and Gödel-Dummett logics,
both complete w.r.t. the semantics given by a continuous t-
norm. Later, a third system with this feature was introduced:
product logic. Starting from these three main examples, the
area has followed a long process of increasing generalization
that has led to wider and wider classes of fuzzy logics. The
first step was taken by Hájek [14] when he proposed the Ba-
sic fuzzy Logic BL, which turn out to be complete w.r.t. the
semantics of all continuous t-norms. Later on, to put it in
Hájek’s words, scholars kept removing legs from the flea by
considering weaker notions of fuzzy logic: divisibility was
removed in the logic MTL [8] which is complete w.r.t. the se-
mantics of all left-continuous t-norms, negation was removed
when considering fuzzy logics based on hoops [9], commu-
tativity of t-norms was disregarded in [13], and t-norms were
replaced by uninorms in [16]. On the other hand, logics with
a higher expressive power were introduced by considering ex-
panded real-valued algebras (with projection ∆, involution ∼,
truth-constants, etc.), and in recent works fuzzy logics have
started emancipating from the real-valued algebras as the only
intended semantics by considering systems complete w.r.t. ra-
tional, finite or hyperreal linearly ordered algebras [5].

When dealing with this huge variety of fuzzy logics one
may want to have some tools to prove general results that ap-
ply not only to a particular logic, but to a class of logics. To
some extent this has been achieved by means of the notions of
core and ∆-core fuzzy logics [15] and results for these classes
can be already found in a number of papers. However, those
classes contain roughly just expansions of MTL and MTL�
logics, so they do not cover weaker systems such as those from
[16]. This shows that general notions of fuzzy logics are very
useful, but we need to look for a more abstract framework to
cope with all known examples and with other new logics that
may arise in the near future.

In doing so, one certainly needs some intuition about the
class of objects he would like to mathematically determine,
namely some intuition of what are the minimal properties that
should be required for a logic to be fuzzy. The evolution out-
lined above shows that almost no property of these systems
was essential as they were step-by-step disregarded. Never-
theless, there is one that has remained untouched so far: com-
pleteness w.r.t. a semantics based on linearly ordered alge-
bras. It actually corresponds to the main thesis of [1] that
defends that fuzzy logics are the logics of chains. Such a
claim must be read as a methodological statement, pointing at
a roughly defined class of logics, rather than a precise mathe-
matical description of what fuzzy logics are, since there could
be many different ways in which a logic might enjoy a com-
plete semantics based on chains. The aim of the present pa-
per is to use some notions and techniques from Abstract Al-
gebraic Logic (AAL) to provide a new framework where we
can develop in a natural way a particular technical notion cor-
responding to the intuition of fuzzy logics as the logics of
chains. Namely, we will present the hierarchy of implicational
logics as a new classification of non-classical logics extending
the well-known Leibniz hierarchy and encompassing other im-
portant classes such as implicative logics [18] and weakly im-
plicative logics [4]. Inside this new hierarchy we will build
a very general class of fuzzy logics that we will call implica-
tional semilinear logics.

The technical aspects of this paper are based on the submit-
ted work [6] however it concentrates on presenting the justifi-
cation of our new framework from the point of view of Math-
ematical Fuzzy Logic. Section 2 describes our general setting
and Section 3 informally summarizes our arguments. The re-
maining sections present samples of technical arguments sup-
porting our thesis. Finally, Appendix A recalls crucial prelim-
inary notions from the theory of logical calculi.
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2 The hierarchy of implicational logics
Although implication in the vast majority of existing fuzzy
logics is given by a single (primitive or derived) connective,
we follow a long-established tradition of Abstract Algebraic
Logic and consider that implication could be given by a (pos-
sibly parameterized) set of formulae. However the following
convention will allow us to hide this feature of our approach,
providing a high level of abstraction without any apparent in-
crease of complexity. Let ⇒(p, q,−→r ) be a set of L-formulae
in two variables and, possibly, with a sequence of parame-
ters −→r . Given formulae ϕ,ψ and a sequence of formulae
−→α , ⇒(ϕ,ψ,−→α ) denotes the set obtained by substituting the
variables in ⇒(p, q,−→r ) by the corresponding formulae, and
ϕ ⇒ ψ denotes the set

⋃{⇒(ϕ,ψ,−→α ) | −→α ∈ Fm≤ω
L }.

We generalize the following properties, typically satisfied
by an implication, to sets of (parameterized) formulae. How-
ever a reader can always understand these conditions as if ⇒
would be just a single binary connective.

Definition 1. Let L be a logic and ⇒(p, q,−→r ) ⊆ FmL be
a parameterized set of formulae. We say that ⇒ is a weak
p-implication in L if:

(R) �L ϕ ⇒ ϕ
(MP) ϕ,ϕ ⇒ ψ �L ψ
(T) ϕ ⇒ ψ, ψ ⇒ χ �L ϕ ⇒ χ
(sCng) ϕ ⇒ ψ, ψ ⇒ ϕ �L c(χ1, . . . , χi, ϕ, . . . , χn)

⇒ c(χ1, . . . , χi, ψ, . . . , χn)
for each 〈c, n〉 ∈ L and each i < n

We change the prefix ‘weak’ to ‘algebraic’ if there is a set E(p)
of equations in one variable such that

(Alg) p 	�L E[E(p)],

where E(p, q,−→r ) = ⇒(p, q,−→r ) ∪⇒(q, p,−→r )
We change the prefix ‘weak’ to ‘regular’ if:

(Reg) ϕ, ψ �L ψ ⇒ ϕ

We change the prefix ‘weak’ to ‘Rasiowa’ if:

(W) ϕ �L ψ ⇒ ϕ

Finally, if ⇒ is parameter-free we drop the prefix ‘p-’.

We can easily show the relative strength of defined no-
tions: each Rasiowa p-implication is a regular p-implication
and each regular p-implication is an algebraic p-implication.

Definition 2. We say that a logic L is a weakly/algebraically/
regularly/Rasiowa- (p-)implicational logic if there is a (pa-
rameterized) set of formulae ⇒ which is a weak/algebraic/re-
gular/Rasiowa (p-)implication in L. We add the prefix
‘finitely’ if ⇒ is finite and we use the adjective ‘implicative’
instead of ‘implicational’ if ⇒ is a parameter-free singleton.

Each class of the well-known Leibniz hierarchy [7] coin-
cides with some of our newly defined classes. In fact, our
new taxonomy extends it, incorporates other already existing
classes of logics,1 and offers a more systematic way of clas-
sification: in one axis we go from p-implicational, implica-
tional, finitely implicational to implicative (depending on the

1Rasiowa-implicative logics were already defined in 1974 by Ra-
siowa [18] and weakly implicative logics in 2006 by Cintula [4].

form of the implication set); in the second one we use prefixes
‘weakly’, ‘algebraically’, ‘regularly’, or ‘Rasiowa-’ (depend-
ing on extra properties fulfilled by that set). The translation
table is:

Classes of Leibniz hierachy Our systematic names
protoalgebraic weakly p-implicational
(finitely) equivalential (finitely) weakly impl.
weakly algebraizable algebraically p-impl.
regularly weakly algebraizable regularly p-implicational
(finitely) algebraizable (finitely) algebraically impl.
(finitely) regularly algebraizable (finitely) regularly impl.

Our new classification of logics, the hierarchy of impli-
cational logics is depicted below (the arrows correspond to
the class subsumption relation). We can show that almost all
classes of logics in this hierarchy are mutually different; only
the difference between Rasiowa-implicational and Rasiowa-p-
implicational logics remains to be shown.

The syntactical notion of weak p-implication that we have
introduced has a natural semantical counterpart: a preorder in
the models that becomes an order in reduced models.

Definition 3. Let ⇒ be a parameterized set of formulae and
A = 〈A, F 〉 a matrix. We define a binary relation ≤⇒

A on A:

a ≤⇒
A b iff a ⇒A b ⊆ F.

Proposition 1. Let L be a logic and A ∈ MOD(L). Then a
parameterized set ⇒ is a weak p-implication in L iff ≤⇒

A is a
preorder and its symmetrization of ≤⇒

A is the Leibniz congru-
ence of A.

Clearly ≤⇒
A is an order iff A is reduced. Thus (by virtue of

Theorem 10) we can say that a L is complete w.r.t. the class
of ordered matrices. Our main interest are the logics complete
w.r.t. linearly ordered matrices in the following sense:

Definition 4. Let L be a logic and A = MOD(L). We say
that A is a linear model w.r.t. ⇒ if ≤⇒

A is a linear order. The
class of linear models of L is denoted by MOD�

⇒(L).

Observe that the class of linear models is not intrinsically
defined for a given logic as it depends on the chosen impli-
cation. However, we will see later that in a reasonably wide
class of logics all semilinear implications define the same lin-
ear models. But even in a general case we can prove:

Theorem 1. Let L be a protoalgebraic logic. Then, for any
weak p-implication ⇒, MOD�

⇒(L) ⊆ MOD∗(L)RFSI.
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3 Semilinear implications and logics
Given a logic L and a weak p-implication ⇒, we say that ⇒ is
a weak semilinear p-implication if the logic is complete w.r.t.
the class of its corresponding linear models. Formally:

Definition 5. Let L be a logic and ⇒ a weak p-implication.
We say that ⇒ is a weak semilinear p-implication if

�L = |=MOD�⇒(L).

Later we define implicational semilinear logics as those
possessing some weak semilinear p-implication. Obviously,
they will be fuzzy logics in the sense of [1]. However, we
choose the term ‘semilinear’ instead of ‘fuzzy’ in spite of the
fact that a first step towards the general definition we are of-
fering here had been done by the first author in [4], when he
defined the class of weakly implicative fuzzy logics (in our new
framework: logics with a weak semilinear implication given
a single binary connective). We have realized that the attempt
of [4] of using the term ‘fuzzy’ to formally define a class of
logics was rather futile as such word is heavily charged with
many conflicting potential meanings.

Therefore, we have opted now for the new neutral name
‘semilinear’. The term was first used by Olson and Raftery
in [17] in the context of residuated lattices; it refers to the Uni-
versal Algebra tradition of calling a class of algebras ‘semiX’
whenever its subdirectly irreducible members have the prop-
erty X (how this is related to our case will be apparent after
Theorem 3). Despite using a new neutral name our intention
remains the same: to formally delimit the class of fuzzy log-
ics inside some existing abstract class of formal non-classical
logics (originally, among weakly implicative ones now among
the protoalgebraic ones). Of course it should include almost
all the prominent examples of fuzzy logics known so far and
exclude non-classical logics which are usually not recognized
as fuzzy logics in the Logic community.

However let us stress that we do not expect to capture in a
mathematical definition the whole intuitive notion of arbitrary
fuzzy logic. Even if we would agree that linearity of semantics
is crucial for a formal logic to be fuzzy there could be several
other ways in which a logic might have a complete semantics
somehow based on chains (see e.g. [2] or some recent work on
modal fuzzy logics).

We formally define classes of implicational semilinear log-
ics based on the form of semilinear implication they possess.

Definition 6. We say that L is a weakly/algebraically/
Rasiowa- (p-)implicational semilinear logic if there is a
(parameterized) set of formulae ⇒ such that it is a
weak/algebraic/Rasiowa semilinear (p-)implication in L. We
add the ‘finitely’ if the set ⇒ is finite and we use ‘implicative’
instead of ‘implicational’ if ⇒ is a parameter-free singleton.

We have not defined the class of regularly (p-)implicational
(implicative) semilinear logics, because (as we will see
in Corollary 2) we would obtain that each regularly p-
implicational semilinear logic is a Rasiowa-p-implicational
semilinear logic (and analogously for the other three Rasiowa-
classes in the hierarchy of implicational logics). See all the
classes and their inclusions in the next figure.

We can prove the mutual difference of many classes, but
three differences remain to be seen: Rasiowa-implicational

semilinear logics �= Rasiowa-p-implicational semilinear log-
ics, algebraizable semilinear logics �= weakly algebraizable
semilinear logics, and equivalential semilinear logics �= pro-
toalgebraic semilinear logics.

Proposition 2. Let X be any class in the hierarchy of impli-
cational logics. Then, there is an X logic which is not an X
semilinear logic.

The three main logics based on continuous t-norms
(Łukasiewicz, Gödel-Dummett, and Product logics) as well
as the logic of all continuous t-norms BL are clearly Rasiowa-
implicative semilinear logics. The same can be said in gen-
eral as regards to left-continuous t-norm-based logics such as
MTL and its t-norm based axiomatic extensions, and even
for all axiomatic extensions of MTL (even those which are
not complete w.r.t. a semantics of t-norms) as all of them are
complete w.r.t. a subvariety of MTL-algebras generated by its
linearly ordered members. Two incomparable superclasses of
this one have been considered in the literature. On one hand,
we have the so-called core fuzzy logics introduced in [15] as
finitary logics expanding MTL or MTL�, satisfying (sCng)
for →, and one of the following forms of Deduction Theo-
rem: (i) T, ϕ �MTL� ψ iff T �MTL� ∆ϕ → ψ , for ex-
pansions of MTL�, or (ii) T, ϕ �MTL ψ iff there is n ∈ N

such that T �MTL ϕn → ψ, for expansions of MTL. On
the other hand, we can consider the class of all semilinear
finitary extensions of MTL. Their equivalent quasivariety se-
mantics are the subquasivarieties of MTL-algebras generated
by chains. Since there are such quasivarieties that are not va-
rieties, we have that this class is strictly bigger than that of
axiomatic extensions of MTL. Both incomparable classes are
included in the class of semilinear expansions of MTL, and fi-
nally this one is included in the Rasiowa-implicative semilin-
ear logics. In the recent paper [16] the fuzzy logic UL based
on uninorms instead of t-norms has been studied. It is an alge-
braizable logic without weakening, so it belongs to the class
of algebraically implicative semilinear logics. We can con-
sider the same structure of classes as above without weaken-
ing by replacing MTL for UL. See the resulting hierarchy of
classes of semilinear logics in the next figure. We realize that
all of them lie on the top of our classification, above Rasiowa-
implicative or algebraically implicative semilinear logics. But
if, by means of our definition of semilinear implication pre-
sented in this paper, we have succeeded in capturing an inter-
esting way by which a logic can be fuzzy this means that fuzzy
logics are a much wider class than those studied so far. Thus,
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future research in the field will probably bring new significant
examples of fuzzy logics throughout the whole hierarchy of
implicational semilinear logics.

4 Characterizations of semilinearity
This section provides some useful mathematical characteriza-
tion of semilinear implications. First we define:

Definition 7. Let A = 〈A, F 〉 ∈ MOD(L). The filter F is
called ⇒-linear if ≤⇒

A is a total preorder.
We say that L has the Linear Extension Property (LEP)

w.r.t. ⇒ if for every theory T ∈ Th(L) and every formula
ϕ ∈ FmL \ T , there is a ⇒-linear theory T ′ ⊇ T s.t. ϕ /∈ T ′.

Notice that a matrix 〈A, F 〉 ∈ MOD(L) is in MOD�
⇒(L)

iff it is reduced and F is ⇒-linear. Clearly the (LEP) says
that the ⇒-linear theories form a basis of the closure sys-
tem Th(L). Next theorem shows that an analogous statement
holds for other than Lindenbaum matrices, as one of the so-
called ‘transfer principles’ from AAL.

Theorem 2. Let L be a finitary logic with (LEP) w.r.t. ⇒
and A ∈ ALG∗(L). Then ⇒-linear filters form a basis of
FiL(A).

Next we generalize the ‘Prelinearity property’ from [4].
However, here we prefer the new name ‘Semilinearity Prop-
erty’ following our new terminology.

Definition 8. We say that L has the Semilinearity Property
(SLP) w.r.t. ⇒ if the following meta rule is valid:

Γ, ϕ ⇒ ψ �L χ Γ, ψ ⇒ ϕ �L χ

Γ �L χ

Theorem 3 (Characterization of semilinear implications).
The following are equivalent:

1. ⇒ is semilinear in L,

2. L has the (LEP) w.r.t. ⇒.

Furthermore, if L is finitary we can add:

3. L has the (SLP) w.r.t. ⇒,

4. MOD∗(L)RSI ⊆ MOD�
⇒(L).

Moreover, if ⇒ is finite we can add:

5. MOD∗(L)RFSI ⊆ MOD�
⇒(L).

The previous theorem has several important corollaries. Us-
ing Theorem 1 we obtain that, at least in a reasonably wide
class of logics, being the class of linear models w.r.t. any fi-
nite semilinear implication is an intrinsic property of a logic.

Corollary 1. Let L be a finitary protoalgebraic logic and ⇒ a
finite weak semilinear p-implication. Then MOD∗(L)RFSI =
MOD�

⇒(L).

Corollary 2. Each regular semilinear p-implication is a Ra-
siowa p-implication.

Corollary 3. Let ⇒ a weak semilinear p-implication in L.
Then, ⇒ is semilinear in all axiomatic extensions of L.

This last corollary will be particulary useful for showing
that some logic has no semilinear implication. It is quite easy
to show that an implication in some logic is not semilinear,
consider e.g. the normal implication of the intuitionistic logic;
the well-know fact that the linear Heyting algebras do not gen-
erate the variety of Heyting algebras does the job. However us-
ing part 5. of the characterization theorem we can show much
more: there is no weak semilinear p-implication definable in
the intuitionistic logic, i.e. not only the standard nice Rasiowa
implication given by a single formula is not semilinear but
even using an infinite set with parameters we could never ob-
tain an implication whose linearly ordered Heyting algebras
would generate the variety of Heyting algebras.

Proposition 3. Let L be the logic of a quasivariety of pointed
residuated lattices containing the variety of Heyting algebras.
Then, L is not weakly semilinear p-implicational logic.

Many well-known logics fall under the scope of the previ-
ous proposition: Full Lambek logic (possibly extended with
structural rules), multiplicative-additive fragment of (Affine)
Intuitionistic Linear logic, Relevance logic R, etc.

Corollary 4. Let L be a logic and ⇒ a weak p-implication.
Then, there is the weakest logic extending L where ⇒ is semi-
linear. Let us denote this logic as L�

⇒.

In Section 6 we will show how to axiomatize L�
⇒. However,

to determine a complete semantics is simple:

Proposition 4. Let ⇒ be a weak p-implication in L. Then,
L�
⇒ = |=MOD�⇒(L) and MOD�

⇒(L�
⇒) = MOD�

⇒(L).

5 Disjunctions
In order to provide additional characterizations of semilinear-
ity (and to fill the gap between our abstract setting and real-life
logics) we need to study a generalized notion of disjunction.
As in the case of implication, given a parameterized set of for-
mulae ∇(p, q,−→r ) and formulae ϕ and ψ we define ϕ∇ψ.

Definition 9. Given a logic L and a parameterized set of for-
mulae ∇, we define the following properties:

(PD) ϕ �L ϕ∇ψ and ψ �L ϕ∇ψ
(C) ϕ∇ψ �L ψ∇ϕ
(I) ϕ∇ϕ �L ϕ
(A) ϕ∇(ψ∇χ) 	�L (ϕ∇ψ)∇χ
(PCP) If Γ, ϕ �L χ and Γ, ψ �L χ, then Γ, ϕ∇ψ �L χ.

They correspond to well known usual properties of disjunc-
tion connectives. (C), (I) and (A) are respectively commuta-
tivity, idempotency and associativity, which are typically also
satisfied by conjunction connectives. In contrast, the (PCP) is
typically satisfied only by disjunction connectives. In [6] we
also study a weaker variant of (PCP) for Γ = ∅.
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Definition 10. Given a logic L and a parameterized set of for-
mulae ∇(p, q,−→r ) and a set of properties σ ⊆ {(C), (I), (A)},
we say that ∇ is a σ-p-protodisjunction in L if (PD)
and the properties of σ are satisfied. Furthermore a p-
protodisjunction ∇ is a p-disjunction if it satisfies (PCP). Fi-
nally, if ∇ has no parameters we drop the prefix ‘p-’.

All these defined notions are mutually distinct and any
p-disjunction is in fact a {(C), (I), (A)}-p-protodisjunction.
Moreover, the notion of p-disjunction is intrinsic as any two
p-disjunctions are mutually interderivable.

Definition 11. We call a logic (p-)disjunctional if it has a
(p-)disjunction. Furthermore, we call a logic disjunctive if
it has a disjunction given by a single parameter-free formula.

The classes of disjunctive and disjunctional logics are mu-
tually different. E.g. the implication fragment of Gödel logic
is not disjunctive but the set {(p → q) → q, (q → p) → p} is
its disjunction.

Definition 12. Let L be a logic, ∇ a parameterized set of
formulae, A ∈ ALG∗(L), and F ∈ FiL(A). F is called
∇-prime if for every a, b ∈ A, a∇Ab ⊆ F iff a ∈ F or b ∈ F .

The prime extension property (PEP) is defined as the
(LEP) by substituting the notion of ⇒-linear filter for that
of ∇-prime filter. Then we can prove:

Theorem 4. Let L be a finitary logic and ∇ a p-
protodisjunction. Then L has the (PEP) iff ∇ is p-disjunction.

Theorem 5. Let L be a finitary p-disjunctional logic. Then ∇-
prime filters form a basis of FiL(A) for any A ∈ ALG∗(L).

Now we provide a syntactical characterization of (PCP).
Let us by R∇ (for an L-consecution R = Γ � ϕ) denote the
set {Γ∇χ � δ | χ ∈ FmL and δ ∈ ϕ∇χ}.

Theorem 6. Let L be a finitary logic with a presentation AS
and ∇ a {(C), (I)}-p-protodisjunction. Then, the following
are equivalent:

1. ∇ is a p-disjunction,

2. R∇ ⊆ L for each (finitary) R ∈ L,

3. R∇ ⊆ L for each R ∈ AS .

Corollary 5. Let ∇ be a p-disjunction in a finitary logic L1

and L2 an expansion of L1 by a set of consecutions C. Then:

• ∇ is a p-disjunction in L2 if R∇ ⊆ L2 for each R ∈ C.

• If all the consecutions from C are finitary, then R∇ ⊆ L2

for each R ∈ C iff ∇ is a p-disjunction in L2.

• If all the consecutions from C are axioms, then ∇ is a
p-disjunction.

Definition 13. Let L be a logic and ∇ a parameterized set of
formulae. We denote by L∇ the least logic extending L where
∇ is a p-disjunction.

Theorem 7. Let L be a finitary logic with a finitary presen-
tation AS and ∇ a {(C), (I), (A)}-p-protodisjunction. Then,
L∇ is axiomatized by AS ∪ ⋃{R∇ | R ∈ AS}.

6 Disjunctions and semilinearity
In this section we consider the interesting relationships be-
tween the several kinds of disjunctions and implications we
have defined and their corresponding properties. First, we in-
troduce two natural syntactical conditions: a version of Modus
Ponens with disjunction (DMP): ϕ ⇒ ψ,ϕ∇ψ �L ψ and
ϕ ⇒ ψ, ψ∇ϕ �L ψ, and a generalization of the prelinearity
axiom used in fuzzy logics (P): �L (ϕ ⇒ ψ)∇(ψ ⇒ ϕ).

Theorem 8. Let L be a logic, ∇ a p-protodisjunction, and ⇒
a weak p-implication.

• If L fulfills (DMP), we have:

1. each ⇒-linear theory is ∇-prime,
2. if ⇒ has the (LEP), then ∇ has the (PEP),
3. if ⇒ has the (SLP), then ∇ has the (PCP).

• If L fulfills (P), we have:

4. each ∇-prime theory is ⇒-linear,
5. if ∇ has the (PEP), then ⇒ has the (LEP).

• If L fulfills (P) and either it is finitary or ⇒ is finite and
parameter-free, we have:

6. if ∇ has the (PCP), then ⇒ has the (SLP).

This theorem together with known relations of the proper-
ties (SLP), (PCP), (PEP), (LEP) and semilinearity (The-
orems 3 and 4) allows us to formulate numerous corollaries
about their mutual relationships.

Corollary 6. If L is finitary, ∇ is a p-protodisjunction, and ⇒
a weak p-implication, the following are equivalent:

1. L satisfies (DMP) and ⇒ is semilinear.

2. L satisfies (DMP) and ⇒ has the (SLP).

3. L satisfies (DMP) and ⇒ has the (LEP).

4. L satisfies (P) and ∇ has the (PEP).

5. L satisfies (P) and ∇ has the (PCP).

Thus e.g. a weak p-implication in a finitary p-disjunctional
logic L is semilinear iff L satisfies (P). In p-disjunctional
logic we can strengthen two important results from the previ-
ous section. First, we can remove the precondition of finite-
ness of implication in Part 5. of Theorem 3.

Corollary 7. Let L be a finitary p-disjunctional logic and ⇒
a weak p-implication. Then the following are equivalent:

1. ⇒ is semilinear in L,
2. MOD∗(L)RFSI ⊆ MOD�

⇒(L).

Furthermore, in any finitary p-disjunctional protoalgebraic
logic it holds that: MOD∗(L)RFSI = MOD�

⇒(L) for any
semilinear p-implication ⇒.

Theorem 9. If L is finitary, ∇ is a {(C),(I),(A)}-p-
protodisjunction, ⇒ is a weak p-implication and L satisfies
(DMP), then L�

⇒ is the extension of L∇ by (P).

Corollary 8. Let L be a finitary p-disjunctional logic and ⇒
a weak p-implication. Then, L�

⇒ is extension of L by (P).
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A Bits of the theory of logical calculi
We recall some basic definitions and results of Abstract Alge-
braic Logic.2 The notion of propositional language L is de-
fined in the usual way (a set of connectives with finite arity).
By FmL we denote the free term algebra over a denumerable
set of variables in the language L, by FmL we denote its uni-
verse and we call its elements L-formulae.

A L-consecution is a pair Γ � ϕ, where Γ ⊆ FmL and
ϕ ∈ FmL. A consecution Γ � ϕ is finitary if Γ is finite. For a
set of consecutions L we write Γ �L ϕ rather than Γ � ϕ ∈ L.
A propositional logic is a pair L = 〈L,�L〉 where �L is a
structural consequence relation.

A logic L is finitary if for every Γ ∪ {ϕ} ⊆ FmL such that
Γ �L ϕ there is a finite Γ0 ⊆ Γ such that Γ0 �L ϕ. We write
Γ �L ∆ when Γ �L ϕ for every ϕ ∈ ∆. A theory of a logic
L is a set of formulae T such that if T �L ϕ then ϕ ∈ T . By
Th(L) we denote the set of all theories of L.

Given a finitary logic L = 〈L,�L〉, we say that a set AS of
L-consecutions whose left member is finite is a presentation
of L if the relation �L coincides with the provability relation
given by AS as a Hilbert-style axiomatic system.

Given a language L, an L-matrix is a pair A = 〈A, F 〉
where A is an L-algebra and F is a subset of A called the
filter of A. A homomorphism from FmL to A is called an
A-evaluation. The semantical consequence w.r.t. a class of
matrices K is defined as: Γ |=K ϕ iff for each A ∈ K and
each A-evaluation e we obtain e(ϕ) ∈ F whenever e[Γ] ⊆ F .
Clearly, 〈L, |=K〉 is a logic. We say that a matrix A is a model
of L if �L ⊆ |=A and write A ∈ MOD(L).

Given an L-algebra A, a subset F ⊆ A is an L-filter if
〈A, F 〉 ∈ MOD(L). Let FiL(A) be the set of all L-filters
over A. Observe that for every set of formulae T , we have
T ∈ Th(L) iff 〈FmL, T 〉 ∈ MOD(L); these models are
called the Lindenbaum matrices for L.

It is straightforward to check that FiL(A) is closed under
arbitrary intersections and hence it is a closure system. Recall
that a family B ⊆ C is a basis of a closure system C if for
every X ∈ C there is a D ⊆ C such that X =

⋂D (which
can be equivalent formulated as: for every Y ∈ C and every
a ∈ A \ Y there is Z ∈ B such that Y ⊆ Z and a /∈ Z).

Given a matrix A = 〈A, F 〉, a binary relation ΩA(F ) is
defined as 〈a, b〉 ∈ ΩA(F ) if, and only if, for every sequence
of parameters −→z , L-formula ϕ(x,−→z ), and −→c ∈ A<ω we have
ϕA(a,−→c ) ∈ F iff ϕA(b,−→c ) ∈ F . Inspired by the famous
Leibniz’s identity of indiscernibles principle, ΩA(F ) is called
the Leibniz congruence of 〈A, F 〉.

A matrix is said to be reduced if its Leibniz congruence
is the identity relation. Given a logic L, the class of its re-
duced models is denoted by MOD∗(L), and the class of al-
gebraic reducts of MOD∗(L) is denoted by ALG∗(L). They
are enough to provide a complete semantics for the logic:

Theorem 10. Let L be a logic. Then Γ �L ϕ if, and only if,
Γ |=MOD∗(L) ϕ, for every set of formulae Γ ∪ {ϕ}.

A matrix A ∈ MOD∗(L) is called (finitely) subdirectly
irreducible if it is not a non-trivial (finite) subdirect product of
reduced matrices. The corresponding classes of matrices are
denoted as MOD∗(L)RSI and MOD∗(L)RFSI respectively.

2For a comprehensive survey see [7, 10, 11]. Any necessary back-
ground on Universal Algebra can be found e.g. in [3].
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[14] Petr Hájek. Metamathematics of Fuzzy Logic, volume 4 of
Trends in Logic. Kluwer, Dordercht, 1998.
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