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Abstract— The aim of this contribution is to show how the F-
transform technique can be generalized from the case of constant
components to the case of polynomial components. For this purpose,
we choose complete functional spaces with inner products. After
a general presentation of F"™-transform where m > 0, a detailed
characterization of the F''-transform is given. We applied a tech-
nique of numeric integration in order to simplify computation of F'-
transform components. The inverse F"'-transform, m > 0, is de-
fined in the same way as the ordinary F-transform.
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1 Introduction

The goal of this paper is to provide a deeper analysis of fuzzy
modeling and its contribution to general mathematics. In [1],
we introduced the notion of a fuzzy transform (F-transform,
for short) which explains modeling with fuzzy IF-THEN rules
as a specific transformation. This enabled us to compare the
success of fuzzy modeling with the success of classical trans-
forms (Fourier, Laplace, integral, wavelet etc.). From this
point of view, fuzzy transforms contribute to the theory of
linear and, in particular, integral transforms. Moreover, they
initiated a theory of semi-linear spaces (see [2]).

In [1], the approximation property of fuzzy transform has
been described and then, in [3], it has been shown how shapes
of basic functions influence the approximation quality. The
F-transform has many other useful properties and great poten-
tial for various applications, such as special numerical meth-
ods, solution of ordinary and partial differential equations with
fuzzy initial condition [4, 5], mining dependencies from nu-
merical data [6], applications to signal processing, compres-
sion and decompression of images [7, 8], and fusion of images
[9].

We aim at showing how the F-transform technique can be
generalized in the sense that constant components considered
as polynomials of 0 degree are replaced by polynomials of de-
gree m > 1. For this purpose, we choose complete functional
spaces with inner products. After presentation of the general-
ized approach, a detailed characterization of the F'!-transform
is given. We applied a technique of numeric integration in
order to simplify computation of F'-transform components.
The inverse F"™-transform, m > 1, is defined in the same
way as the inverse F-transform.

The paper is organized as follows: in Section 2, we intro-
duce the concept of F""-transform of finite degree m > 0, and
show some of its properties and its relation to the ordinary F-
transform. In Section 3, F''-transform is introduced in details.
Moreover, a simplification of F'!-transform components com-
putation is discussed. The inverse ['""*-transform is discussed
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in Section 4.

2 F-transform of an Arbitrary Finite Degree

Let us recall that the (direct) F'-transform of an integrable
function is a certain vector with real components. In [1], we
proposed various formulas which represent components of the
F'-transform and showed a relationship between a given func-
tion and its F'-transform. In this contribution, we propose to
generalize our view on the F'-transform and consider it as a
vector of components that are orthogonal projections of an
original function onto a linear subspace of certain functions
that have polynomial representation. In the particular, if the
degree of polynomials is zero, we obtain the originally pro-
posed F-transform which will be referred to as F°-transform
in the sequel.

2.1 Fuzzy partition

Let [a, b] be an interval on the real line R. Fuzzy sets on [a, b]
will be identified with their membership functions, i.e. map-
pings from [a, ] into [0, 1]. The notion of fuzzy partition is
a principle one for our construction so that we will repeat it
from [1] and slightly change below.

Definition 1
Let [a,b] be an interval on R, n > 2 and 1, ..., x, nodes
such thata = 1 < ... < x, = b. We say that fuzzy sets
Ay, ..., A,, identified with their membership functions, con-
stitute a fuzzy partition of [a, b] if fork = 1, ..., n, they fulfill
the following conditions :

1. Ay [avb] - [071]’ Ak(xk) =1

2. fork = 2,...,n, Ag(z) = 0 ifz € [a,z,_1] and for
k=1,....n—1,Ag(x) =0ifx € [v)41,0],

3. Ay(z) is continuous;

4. fork = 2,...,n, Ag(x) strictly increases on [xj_1, x}]
and fork = 1,...,n — 1, Ai(z) strictly decreases on
[$k7$k+1];

5. forallz € [a, b

ey

The membership functions Ay, ..., A,, are called basic func-

tions.
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Let us extend [a, b] by two extra nodes g = 2a — x5 and
ZTpy1 = 20 — 2,1 and for & € [zg,a) define Ay (z) =
A1(2a — ), and for (b, 1] define A, (z) = A, (2b — z).
Further on we will always assume that [a, b] and membership
functions A1, A,, are extended.

We say that the fuzzy partition Ay,..., A,, n > 3, is h-
uniform if nodes xg, ..., z,41 are h-equidistant, i.e. for all
k=1,....,n,zy =a+h(k—1)where h = (b—a)/(n—1),
and two additional properties are met:

6. Ap(zp — x) = Ap(xy + ), for all z € [0,h], k =

1,...,n,

7. Ap(x) = Ag—1(x — h), forall k = 2,... ,nand x €
[Tr—1, Thy1]-

2.2 F-transform in a space of functions with scalar product

Let us fix [a,b], n > 3, nodes zy < ... < x4 and fuzzy
partition Ay, ..., A, of [a,b]. Forevery k = 1,...,n, let us
denote Ly(Ay) a set of functions f : [xj_1,xk4+1] — R for
which the following integral

/Ik+1
Th—1

(f, 9k = /g:k:l

be a weighted scalar product of functions f and g. Then
Lo(Ayg) is a linear space of functions with scalar product.

For every integer m > 0, let &, %, ... oF € La(Ay), be
an orthogonal system of polynomials where ¢f = 1 and or-
thogonality is considered with respect to (2). Denote L5*(Ag)
a linear subspace of Lo (Ay) with the basis ¢, o, ... ok .

The following trick allows us to extend arbitrary function
f :la,b] — R to function f* : [xg, xpt1] — R:

f(@)? Ay (z)da
exists. Let

f(@)g(x) Ay (2)d, 2)

fla—x)=2f(a) — fla+x), ifx € [0,22 — a],

fx) =< f(x), if z € [a,b],

F(b+2) = 2£(b) — f(b—2), it € [0,b— 2y 1]
Definition 2
Let f : [a,b] — R be a given function and f°* its ex-
tension to [z, Zn41]. Assume that for all k = 1,...,n,

T r,ansa] € L2(Ayg). Let " be the k-th orthogonal
projection of f¢* on LE*(Ay), k = 1,...,n. Then the n-tuple
[EF]™, ..., F'™] of functions is the F"™-transform of f with re-
spect to Ay, ..., A,. Every function F"*, k = 1,...,n, is
called the F'™ -transform component.

Remark 1

Definition 2 does not provide us with a formal representation
of components F{", ..., F". Let us show how they can be
obtained. According to the definition above, every component
F/™ minimizes the scalar product (f°* — g, f°* — g) where
g is an arbitrary function from L3*(Ay). Taking into account
that of, % ... ok is the basis of LT (Ay,), we can represent
g by a linear combination xo© + 104 + . . . + Tme}" of ba-
sis functions. Assume that cy,cq ..., c,, are coefficients that

ISBN: 978-989-95079-6-8

minimize the following integral
/rk+1
Tr—1
Hence, FJ™ = co@l + c1pp + - .. + o
Below, we will prove the following fact: the original F-
transform (see, e.g. [1]) is actually (up to the first and the
last components) the F°-transform. This requires to show that
every F-transform component Fj,, k = 2,...,n — 1, that has
been originally introduced by
Lot f (@) Ag(2)do

Tk—1

fz’““ Ap(x)dz

Tk—1

3

“

k=

is the k-th orthogonal projection of f on LY(Ay). In order to
prove this fact, we recall that the basis of L3(Ay) consists of
the constant function ¢{ that has the value 1. Then the as-
sertion above immediately follows from the proposition given
below which has been proved in [1]:

Theorem 1

Let f be a continuous function on [a,b] and Ay, ..., A,, be ba-
sic functions which constitute a fuzzy partition of [a, b]. Then
the k-th component Fy, (4) of the F'-transform gives minimum
to the function

b
o) = [ (@) =) Au(e)d
defined on [f(a), f(b)].

3 F'l-transform

On the example of F'!-transform, we will show how an ar-
bitrary component of ', m > 1, can be computed. Actu-
ally, one possibility of computation directly follows from min-
imization of integral (3) (see Remark 1). We will use another
approach which corresponds to the definition of F'*-transform.

Throughout this section, we fix an h-uniform partition
A1,..., A, of [a,b] where n > 3, and assume that [ :
[a,b] — R is a function such that for all k = 1,...,n,
TN en_r.2rs1) € L2(Ax). The explanation below will be
given for an arbitrary k, k =1, ..., n.

3.1 F'-transform components

Since component F} of the F'!-transform is the k-th orthogo-
nal projection of f¢* on L§*(Ay), and L5*(Ay,) is a linear sub-
space of Ly(Ay) with orthogonal basis ¢, o1, we will begin
this subsection with a characterization of orthogonal polyno-
mials ¢Y, ¢}, of degrees 0 and 1.

Lemma 1

Polynomials ¢\, pi. : [xk—1,7k+1] — R such that for all
T € [Tp—1,Tri1], PL(x) = 1, @} (z) = 2 —xy, are orthogonal
with weight A, k=1,...,n.

PROOF: The proof is technical and follows from the follow-
ing assertions:

(i) [T Ap(x)dx = h,

Tk—1
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(i) [0 wAy(z)de = hay,

and properties of the uniform partition. O

Remark 2
Orthogonal polynomials of degrees 0 and 1, described in
Lemma 1, are invariant to shapes of Ay,.

Theorem 2

Under the assumptions above, the F'-transform of f with re-
spectto Ay, ..., A, is the vector [F}, ..., F}] of linear func-
tions such that an arbitrary component F}}, k = 1,...,n, is
represented as follows:

Fkl(x) = cg + c,lc(x — ), TE [Th_1,Tht1]

where

[ol) F@)Ap(x)da

A : )

1 f;:fll fx)(z — xp) Ag(z)dx

=T : (©)
ka_l (x — x)?2 A (x)dx

PROOF: The proof will be given for one fixed component
F! where k = 1,...,n. By Definition 2, F}! is the k-th or-
thogonal projection of f¢* on L3 (Ay) where the orthogonality
is determined by (2). Therefore,

fegc|[$k—1,$k+1] = Cg + Cllc(x —xy) + Ri(x)

where Ry, is orthogonal to each basis functions ¢9 and ¢}.
Therefore,

C% _ (fexﬂ 902)16’
(02, )k

Cllc :(fef780111c)k
(Phs Pr )k

which after substitution gives the required expressions for ¢,
and c,lc. O

Corollary 1
Under the assumptions above, cg = F}, where F}, is the k-th
component (4) of the ordinary F'-transform.

PROOF: The proof follows from expressions (4), (6) and
equality f;;:l Ap(x)dx = h. O

3.2 Simplification of F*-transform components
computation

In this subsection, we will show how Gaussian quadratures
and the properties of orthogonal polynomials can be used for
replacing integral f;::l (r—2y)? Ay, (z)dz in the denominator
of ¢} by its precise value.

At first, let us recall the notion of Gaussian quadratures (see
e.g.[10]). The approximate equality

Th4+1 N
[ i@~ 3y anw @
‘ i=1

Tk—1
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which is precise for all polynomials of the highest possible
degree is a Gaussian quadrature. We will put N = 2 and
characterize arguments ¢, to and the highest possible degree
of polynomials which turn (7) into a precise equality. The
following statement (see e.g.[10]) gives the required charac-
terization: if

(i) t1, t2 are roots of polynomial ¢ which is orthogonal to
©9 and ¢}, and

(i1) equality

[ P@ A = bR + ), ®)

Th—1

holds true for some coefficients d;, d and all polynomi-
als P, of degrees [ = 0,1,

then (8) holds true for all polynomials P, of degrees 0 < [ <
3.

Thus, our next purpose is to find a polynomial of the degree
2, orthogonal to ¥ and ¢}, as well as to find its roots. Due to
positivity and symmetry of Ay, two lemmas below hold true.

Lemma 2
If'ty, to are symmetrical with respect to x, then equalities

M Ap(wyde =h(E + Ly =
/ k(z)dr = (54‘5)— )

Tk—1

/mk+1 (x — x) Ag(z)dx :g((h —xp) + (t2 —2p)) = 0,

k—1

hold true forl = 0, 1.

Lemma 3
If we denote

Tk+41
I, = / (x — x1)? Ag(x)dx
xT

k—1
then polynomial %, represented by

I

Pr(@) = (x —ap)? —

Y ©))

is orthogonal to ¢} and 3. on [Tj—1, Tp41].

The roots tq, to ofcpi belong to (xj_1,xk+1) and are sym-
metrical with respect to xy, i.e. for some 6§, t; = x} — 0 and
tg =T, + d.

The statement above together with Lemmas 2, 3 leads to the
equality

Tk+41
/ (x — x1)? A (x)dx = ho>.

Lk—1

Thus, the desired simplified representation of ¢}, is as fol-
lows:

Lot F@) (@ — @) Ap(@)dw

Cl _ YTk—1
ko ho?
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Figure 1: Left. The function 22 and its inverse F (gray line)
and F'' (black line) transforms. Right. Graphs of the error
functions. Maximal errors of approximation are: 0.017 (the
inverse F0-transform) and 0.062 (the inverse F'!-transform).

4 Inverse I'"-transform

Similarly to the ordinary F-transform, the inverse F'"-
transform is defined as a linear combination of the basic func-
tions with “coefficients” given by the F'"*-transform compo-
nents.

Definition 3
Let f : [a,b] — R be a given function and f* its extension
to [0, Tny1] such that forallk = 1,...,n, f|3, | 2.1 €

Lo(Ay). For a certainm > 0, let [F]", ..., F™] be the F™-
transtorm of f with respect to A1, ..., A,. Then the function

frmn(x) = F"Ag(x) (10)
k=1

is called the inverse F"*-transform.

The following recurrent formula easily follows from Defi-
nition 3 and the whole structure of the F'"-transform, m > 1:

fF,m;rL(:E) = fF7m71,n(x) +Zcm@;€n($)Ak(x) (11)
k=1

By Remark 1, the components F}"*, k = 1,...,n, m > 0,
are the best approximation of f among all elements repre-
sented by linear combinations agp) + ai1¢y + ... + ame.
Therefore, for each £ = 1,...,n, FJ" is a better approxi-
mation of f than F 11”71. This observation together with (11)
implicitly demonstrates that the quality of approximation of f
by frm,n is better than that of approximation by fr .,—15.
The same conclusion follows also from our experiments (see
Figure 1). The proof of this assertion is a matter of future
investigation.

5 Conclusion

We have generalized the F-transform technique to the case
where its components are polynomials. A detailed characteri-
zation of the F'!-transform with linear components was given.
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We have shown how a computation of F'!-transform compo-
nents can be simplified if the technique of Gaussian quadra-
tures is used. The inverse F'"*-transform, m > 1, is defined in
the same way as the inverse F-transform.
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