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Abstract— The aim of this contribution is to show how the F-
transform technique can be generalized from the case of constant
components to the case of polynomial components. For this purpose,
we choose complete functional spaces with inner products. After
a general presentation of F m-transform where m ≥ 0, a detailed
characterization of the F 1-transform is given. We applied a tech-
nique of numeric integration in order to simplify computation of F 1-
transform components. The inverse F m-transform, m ≥ 0, is de-
fined in the same way as the ordinary F-transform.
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1 Introduction
The goal of this paper is to provide a deeper analysis of fuzzy
modeling and its contribution to general mathematics. In [1],
we introduced the notion of a fuzzy transform (F-transform,
for short) which explains modeling with fuzzy IF-THEN rules
as a specific transformation. This enabled us to compare the
success of fuzzy modeling with the success of classical trans-
forms (Fourier, Laplace, integral, wavelet etc.). From this
point of view, fuzzy transforms contribute to the theory of
linear and, in particular, integral transforms. Moreover, they
initiated a theory of semi-linear spaces (see [2]).

In [1], the approximation property of fuzzy transform has
been described and then, in [3], it has been shown how shapes
of basic functions influence the approximation quality. The
F-transform has many other useful properties and great poten-
tial for various applications, such as special numerical meth-
ods, solution of ordinary and partial differential equations with
fuzzy initial condition [4, 5], mining dependencies from nu-
merical data [6], applications to signal processing, compres-
sion and decompression of images [7, 8], and fusion of images
[9].

We aim at showing how the F-transform technique can be
generalized in the sense that constant components considered
as polynomials of 0 degree are replaced by polynomials of de-
gree m ≥ 1. For this purpose, we choose complete functional
spaces with inner products. After presentation of the general-
ized approach, a detailed characterization of the F 1-transform
is given. We applied a technique of numeric integration in
order to simplify computation of F 1-transform components.
The inverse Fm-transform, m ≥ 1, is defined in the same
way as the inverse F-transform.

The paper is organized as follows: in Section 2, we intro-
duce the concept of Fm-transform of finite degree m ≥ 0, and
show some of its properties and its relation to the ordinary F-
transform. In Section 3, F 1-transform is introduced in details.
Moreover, a simplification of F 1-transform components com-
putation is discussed. The inverse Fm-transform is discussed

in Section 4.

2 F-transform of an Arbitrary Finite Degree

Let us recall that the (direct) F -transform of an integrable
function is a certain vector with real components. In [1], we
proposed various formulas which represent components of the
F -transform and showed a relationship between a given func-
tion and its F -transform. In this contribution, we propose to
generalize our view on the F -transform and consider it as a
vector of components that are orthogonal projections of an
original function onto a linear subspace of certain functions
that have polynomial representation. In the particular, if the
degree of polynomials is zero, we obtain the originally pro-
posed F -transform which will be referred to as F 0-transform
in the sequel.

2.1 Fuzzy partition

Let [a, b] be an interval on the real line R. Fuzzy sets on [a, b]
will be identified with their membership functions, i.e. map-
pings from [a, b] into [0, 1]. The notion of fuzzy partition is
a principle one for our construction so that we will repeat it
from [1] and slightly change below.

Definition 1
Let [a, b] be an interval on R, n ≥ 2 and x1, . . . , xn nodes
such that a = x1 < . . . < xn = b. We say that fuzzy sets
A1, . . . , An, identified with their membership functions, con-
stitute a fuzzy partition of [a, b] if for k = 1, . . . , n, they fulfill
the following conditions :

1. Ak : [a, b] −→ [0, 1], Ak(xk) = 1;

2. for k = 2, . . . , n, Ak(x) = 0 if x ∈ [a, xk−1] and for
k = 1, . . . , n− 1, Ak(x) = 0 if x ∈ [xk+1, b],

3. Ak(x) is continuous;

4. for k = 2, . . . , n, Ak(x) strictly increases on [xk−1, xk]
and for k = 1, . . . , n − 1, Ak(x) strictly decreases on
[xk, xk+1];

5. for all x ∈ [a, b]

n∑
k=1

Ak(x) = 1. (1)

The membership functions A1, . . . , An are called basic func-
tions.
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Let us extend [a, b] by two extra nodes x0 = 2a − x2 and
xn+1 = 2b − xn−1 and for x ∈ [x0, a) define A1(x) =
A1(2a − x), and for (b, xn+1] define An(x) = An(2b − x).
Further on we will always assume that [a, b] and membership
functions A1, An are extended.

We say that the fuzzy partition A1, . . . , An, n ≥ 3, is h-
uniform if nodes x0, . . . , xn+1 are h-equidistant, i.e. for all
k = 1, . . . , n, xk = a + h(k− 1) where h = (b− a)/(n− 1),
and two additional properties are met:

6. Ak(xk − x) = Ak(xk + x), for all x ∈ [0, h], k =
1, . . . , n,

7. Ak(x) = Ak−1(x − h), for all k = 2, . . . , n and x ∈
[xk−1, xk+1].

2.2 F-transform in a space of functions with scalar product

Let us fix [a, b], n ≥ 3, nodes x0 < . . . < xn+1 and fuzzy
partition A1, . . . , An of [a, b]. For every k = 1, . . . , n, let us
denote L2(Ak) a set of functions f : [xk−1, xk+1] −→ R for
which the following integral

∫ xk+1

xk−1

f(x)2Ak(x)dx

exists. Let

(f, g)k =
∫ xk+1

xk−1

f(x)g(x)Ak(x)dx, (2)

be a weighted scalar product of functions f and g. Then
L2(Ak) is a linear space of functions with scalar product.

For every integer m ≥ 0, let ϕk
0 , ϕk

1 , . . . , ϕk
m ∈ L2(Ak), be

an orthogonal system of polynomials where ϕk
0 = 1 and or-

thogonality is considered with respect to (2). Denote Lm
2 (Ak)

a linear subspace of L2(Ak) with the basis ϕk
0 , ϕk

1 , . . . , ϕk
m.

The following trick allows us to extend arbitrary function
f : [a, b] −→ R to function fex : [x0, xn+1] −→ R:

fex(x) =




f(a− x) = 2f(a)− f(a + x), if x ∈ [0, x2 − a],
f(x), if x ∈ [a, b],
f(b + x) = 2f(b)− f(b− x), if x ∈ [0, b− xn−1].

Definition 2
Let f : [a, b] −→ R be a given function and fex its ex-
tension to [x0, xn+1]. Assume that for all k = 1, . . . , n,
fex|[xk−1,xk+1] ∈ L2(Ak). Let Fm

k be the k-th orthogonal
projection of fex on Lm

2 (Ak), k = 1, . . . , n. Then the n-tuple
[Fm

1 , . . . , Fm
n ] of functions is the Fm-transform of f with re-

spect to A1, . . . , An. Every function Fm
k , k = 1, . . . , n, is

called the Fm-transform component.

Remark 1
Definition 2 does not provide us with a formal representation
of components Fm

1 , . . . , Fm
n . Let us show how they can be

obtained. According to the definition above, every component
Fm

k minimizes the scalar product (fex − g, fex − g)k where
g is an arbitrary function from Lm

2 (Ak). Taking into account
that ϕk

0 , ϕk
1 , . . . , ϕk

m is the basis of Lm
2 (Ak), we can represent

g by a linear combination x0ϕ
0
k + x1ϕ

1
k + . . . + xmϕm

k of ba-
sis functions. Assume that c0, c1 . . . , cm are coefficients that

minimize the following integral
∫ xk+1

xk−1

(fex(x)−(x0ϕ
0
k(x)+x1ϕ

1
k(x)+. . .+xmϕm

k (x)))2Ak(x)dx.

(3)

Hence, Fm
k = c0ϕ

0
k + c1ϕ

1
k + . . . + cmϕm

k .
Below, we will prove the following fact: the original F -

transform (see, e.g. [1]) is actually (up to the first and the
last components) the F 0-transform. This requires to show that
every F -transform component Fk, k = 2, . . . , n− 1, that has
been originally introduced by

Fk =

∫ xk+1

xk−1
f(x)Ak(x)dx∫ xk+1

xk−1
Ak(x)dx

, (4)

is the k-th orthogonal projection of f on L0
2(Ak). In order to

prove this fact, we recall that the basis of L0
2(Ak) consists of

the constant function ϕ0
k that has the value 1. Then the as-

sertion above immediately follows from the proposition given
below which has been proved in [1]:

Theorem 1
Let f be a continuous function on [a, b] and A1, . . . , An be ba-
sic functions which constitute a fuzzy partition of [a, b]. Then
the k-th component Fk (4) of the F -transform gives minimum
to the function

Φ(y) =
∫ b

a

(f(x)− y)2Ak(x)dx

defined on [f(a), f(b)].

3 F 1-transform
On the example of F 1-transform, we will show how an ar-
bitrary component of Fm, m ≥ 1, can be computed. Actu-
ally, one possibility of computation directly follows from min-
imization of integral (3) (see Remark 1). We will use another
approach which corresponds to the definition of F 1-transform.

Throughout this section, we fix an h-uniform partition
A1, . . . , An of [a, b] where n ≥ 3, and assume that f :
[a, b] −→ R is a function such that for all k = 1, . . . , n,
fex|[xk−1,xk+1] ∈ L2(Ak). The explanation below will be
given for an arbitrary k, k = 1, . . . , n.

3.1 F 1-transform components

Since component F 1
k of the F 1-transform is the k-th orthogo-

nal projection of fex on Lm
2 (Ak), and Lm

2 (Ak) is a linear sub-
space of L2(Ak) with orthogonal basis ϕ0

k, ϕ1
k, we will begin

this subsection with a characterization of orthogonal polyno-
mials ϕ0

k, ϕ1
k of degrees 0 and 1.

Lemma 1
Polynomials ϕ0

k, ϕ1
k : [xk−1, xk+1] −→ R such that for all

x ∈ [xk−1, xk+1], ϕ0
k(x) = 1, ϕ1

k(x) = x−xk are orthogonal
with weight Ak, k = 1, . . . , n.

PROOF: The proof is technical and follows from the follow-
ing assertions:

(i)
∫ xk+1

xk−1
Ak(x)dx = h,
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(ii)
∫ xk+1

xk−1
xAk(x)dx = hxk,

and properties of the uniform partition. �

Remark 2
Orthogonal polynomials of degrees 0 and 1, described in
Lemma 1, are invariant to shapes of Ak.

Theorem 2
Under the assumptions above, the F 1-transform of f with re-
spect to A1, . . . , An is the vector [F 1

1 , . . . , F 1
n ] of linear func-

tions such that an arbitrary component F 1
k , k = 1, . . . , n, is

represented as follows:

F 1
k (x) = c0

k + c1
k(x− xk), x ∈ [xk−1, xk+1]

where

c0
k =

∫ xk+1

xk−1
f(x)Ak(x)dx

h
, (5)

c1
k =

∫ xk+1

xk−1
f(x)(x− xk)Ak(x)dx∫ xk+1

xk−1
(x− xk)2Ak(x)dx

. (6)

PROOF: The proof will be given for one fixed component
F 1

k where k = 1, . . . , n. By Definition 2, F 1
k is the k-th or-

thogonal projection of fex on L1
2(Ak) where the orthogonality

is determined by (2). Therefore,

fex|[xk−1,xk+1] = c0
k + c1

k(x− xk) + Rk(x)

where Rk is orthogonal to each basis functions ϕ0
k and ϕ1

k.
Therefore,

c0
k =

(fex, ϕ0
k)k

(ϕ0
k, ϕ0

k)k
,

c1
k =

(fex, ϕ1
k)k

(ϕ1
k, ϕ1

k)k

which after substitution gives the required expressions for c0
k

and c1
k. �

Corollary 1
Under the assumptions above, c0

k = Fk where Fk is the k-th
component (4) of the ordinary F -transform.

PROOF: The proof follows from expressions (4), (6) and
equality

∫ xk+1

xk−1
Ak(x)dx = h. �

3.2 Simplification of F 1-transform components
computation

In this subsection, we will show how Gaussian quadratures
and the properties of orthogonal polynomials can be used for
replacing integral

∫ xk+1

xk−1
(x−xk)2Ak(x)dx in the denominator

of c1
k by its precise value.

At first, let us recall the notion of Gaussian quadratures (see
e.g.[10]). The approximate equality

∫ xk+1

xk−1

f(x)Ak(x)dx ≈ h

2

N∑
i=1

dif(ti) (7)

which is precise for all polynomials of the highest possible
degree is a Gaussian quadrature. We will put N = 2 and
characterize arguments t1, t2 and the highest possible degree
of polynomials which turn (7) into a precise equality. The
following statement (see e.g.[10]) gives the required charac-
terization: if

(i) t1, t2 are roots of polynomial ϕ2
k which is orthogonal to

ϕ0
k and ϕ1

k, and

(ii) equality

∫ xk+1

xk−1

Pl(x)Ak(x)dx = h(d1Pl(t1) + d2Pl(t2)), (8)

holds true for some coefficients d1, d2 and all polynomi-
als Pl of degrees l = 0, 1,

then (8) holds true for all polynomials Pl of degrees 0 ≤ l ≤
3.

Thus, our next purpose is to find a polynomial of the degree
2, orthogonal to ϕ0

k and ϕ1
k, as well as to find its roots. Due to

positivity and symmetry of Ak, two lemmas below hold true.

Lemma 2
If t1, t2 are symmetrical with respect to xk then equalities

∫ xk+1

xk−1

Ak(x)dx =h(
1
2

+
1
2
) = h,

∫ xk+1

xk−1

(x− xk)Ak(x)dx =
h

2
((t1 − xk) + (t2 − xk)) = 0,

hold true for l = 0, 1.

Lemma 3
If we denote

I2 =
∫ xk+1

xk−1

(x− xk)2Ak(x)dx

then polynomial ϕ2
k, represented by

ϕ2
k(x) = (x− xk)2 − I2

h
(9)

is orthogonal to ϕ0
k and ϕ1

k on [xk−1, xk+1].
The roots t1, t2 of ϕ2

k belong to (xk−1, xk+1) and are sym-
metrical with respect to xk, i.e. for some δ, t1 = xk − δ and
t2 = xk + δ.

The statement above together with Lemmas 2, 3 leads to the
equality ∫ xk+1

xk−1

(x− xk)2Ak(x)dx = hδ2.

Thus, the desired simplified representation of c1
k is as fol-

lows:

c1
k =

∫ xk+1

xk−1
f(x)(x− xk)Ak(x)dx

hδ2
.
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Figure 1: Left. The function x2 and its inverse F 0 (gray line)
and F 1 (black line) transforms. Right. Graphs of the error
functions. Maximal errors of approximation are: 0.017 (the
inverse F 0-transform) and 0.062 (the inverse F 1-transform).

4 Inverse Fm-transform
Similarly to the ordinary F-transform, the inverse Fm-
transform is defined as a linear combination of the basic func-
tions with “coefficients” given by the Fm-transform compo-
nents.

Definition 3
Let f : [a, b] −→ R be a given function and fex its extension
to [x0, xn+1] such that for all k = 1, . . . , n, fex|[xk−1,xk+1] ∈
L2(Ak). For a certain m ≥ 0, let [Fm

1 , . . . , Fm
n ] be the Fm-

transform of f with respect to A1, . . . , An. Then the function

fF,m,n(x) =
n∑

k=1

Fm
k Ak(x) (10)

is called the inverse Fm-transform.

The following recurrent formula easily follows from Defi-
nition 3 and the whole structure of the Fm-transform, m ≥ 1:

fF,m,n(x) = fF,m−1,n(x) +
n∑

k=1

cmϕm
k (x)Ak(x). (11)

By Remark 1, the components Fm
k , k = 1, . . . , n, m ≥ 0,

are the best approximation of f among all elements repre-
sented by linear combinations a0ϕ

0
k + a1ϕ

1
k + . . . + amϕm

k .
Therefore, for each k = 1, . . . , n, Fm

k is a better approxi-
mation of f than Fm−1

k . This observation together with (11)
implicitly demonstrates that the quality of approximation of f
by fF,m,n is better than that of approximation by fF,m−1,n.
The same conclusion follows also from our experiments (see
Figure 1). The proof of this assertion is a matter of future
investigation.

5 Conclusion
We have generalized the F-transform technique to the case
where its components are polynomials. A detailed characteri-
zation of the F 1-transform with linear components was given.

We have shown how a computation of F 1-transform compo-
nents can be simplified if the technique of Gaussian quadra-
tures is used. The inverse Fm-transform, m ≥ 1, is defined in
the same way as the inverse F-transform.
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