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Abstract— This paper examines type-2 fuzzy arithmetic using in-
terval analysis. It relies heavily on alpha-cuts and alpha-planes. Fur-
thermore, we discuss the use of quasi type-2 fuzzy sets proposed by
Mendel and Liu and define quasi type-2 fuzzy numbers. Arithmetic
operations of such numbers are defined and a worked example is pre-
sented.
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1 Introduction
Zadeh introduced the concept of type-2 fuzzy sets in the first
of a trio of papers in 1975 [1]. In these papers he also de-
fined linguistic variables, interval-valued fuzzy sets and their
representations using the resolution identity (later known as α-
cuts). Type-2 fuzzy logic has gained much attention recently
due to its ability to handle uncertainty [2], and many advances
appeared in both theory and applications [3, 4, 5]. Type-2
fuzzy numbers and the associated arithmetic operations have
not received the same attention, only two main contributions
appear in the literature that specificly target arithmetic opera-
tions using the representation theorem and the extension prin-
ciple [6, 7]. Recent work on fuzzy systems has proposed an
extension to α-cuts for type-2 fuzzy sets through the notion of
α-planes [8]. Further work by Mendel and Liu [9] defined a
quasi type-2 fuzzy logic system as a restricted special case of
a type-2 fuzzy logic system represented by its α-planes.
In this paper we examine type-2 fuzzy arithmetic through α-
planes. We use arithmetic operations on type-1 and interval
type-2 fuzzy sets through their α-cut representation, more-
over, we define quasi type-2 fuzzy numbers and derive their
arithmetic operations.
This paper is organised as follows: Section 2 reviews some
basic type-2 fuzzy set definitions used in this paper; Section 3
defines type-2 fuzzy numbers and quasi type-2 fuzzy numbers;
Section 4 derives the arithmetic operations for these numbers;
Section 5 provides a worked example; finally Section 6 pro-
vides a conclusion.

2 Type-2 Fuzzy Sets
We present a review of the basic terminology used in this pa-
per. A type-2 fuzzy set (T2FS) [2, 10] is defined by equation
(1)

Ã =

∫
∀x∈X

∫
∀u∈Jx⊆[0,1]

µ
Ã
(x, u)/(x, u) (1)

where
∫ ∫

denotes the union over all admissible domain val-

ues x and secondary domain values u, and µ
Ã
(x, u) is a type-2

membership function, a T2FS is three dimensional (3D). The
Vertical Slice (VS) is the two dimensional (2D) plane in the u

and µ
Ã
(x, u) axes for a single value of x = x

′

, then the VS is
defined by equation (2).

V S(x
′

) = µ
Ã
(x

′

, u) ≡ µ
Ã
(x

′

) =

∫
u∈J

x
′

fx
′ (u)/u (2)

where fx
′ (u) ∈ [0, 1] is called the secondary grade and Jx

represents the domain of the secondary membership function

called the secondary domain, of course the VS is a type-1 fuzzy

set (T1FS) in [0, 1]. The Vertical Slice Representation (VSR)
of T2FS is represented by the union of all the vertical slices

Ã = {(x, µ
Ã
(x))|∀x ∈ X} (3)

The Footprint Of Uncertainty (FOU) is derived from the union
of all primary memberships

FOU(Ã) =

∫
x∈X

Jx (4)

Another important notion is the principal membership func-

tion (PrMF) defined as the union of all the primary member-
ships having secondary grades equal to 1

Pr(Ã) =

∫
x∈X

u/x|fx(u) = 1 (5)

This notion allows us to view a T1FS as special case of T2FS
in which its PrMF is obtained for only one primary member-
ship having a secondary grade at unity [11, 12]. Based on
[2] the FOU is described to be bounded by two membership
functions a lower µ

Ã
(x) and an upper µ

Ã
(x). The FOU can

be described in terms of its upper and lower membership func-
tions (MFs)

FOU(Ã) =

∫
x∈X

[
µ

Ã
(x), µ

Ã
(x)

]
(6)

Interval type-2 fuzzy set (IT2FS) is defined to be a T2FS
where all its secondary grades are of unity ∀fx(u) = 1. A
IT2FS can be completely determined using its FOU given in
equation (6). Recalling from Zadeh [1] an α-level set, Aα,
that comprises of elements x ∈ X of a type-1 fuzzy subset A
of universe X

Aα = {x|µA(x) ≥ α} (7)

where α ∈ [0, 1], the fuzzy set A can be represented (decom-
posed) as

A =
⋃

α∈[0,1]

α.Aα (8)
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where µA(x) = supx∈Aα
α and (sup) denotes the supremum,

this decomposition theorem [13] is called the α-cut Represen-

tation. The same analogy is used by Tahayori et al. [14]:

Ãα̃ = {(x, u)|fx(u) ≥ α̃} (9)

and the T2FS Ã can be represented (decomposed) as

Ã =
⋃

α̃∈[0,1]

α̃.Ãα̃ (10)

where1 fx(u) = sup(x,u)∈Ãα̃

α̃. Liu [8] calls equation (9) an
α-plane due to its 2D nature and consequently equation (10)
is called the α-plane Representation. Liu [8] and Wagner and
Hagras [15] noted that when α̃ = 0, Ãα̃ is actually the FOU
and Liu and Mendel [9] generalise it to a footprint of uncer-
tainty at plane α̃ denoted by FOU(Ãα̃). We are interested in
the use of this representation as these α-planes can compute
some of T2FS operations using IT2FS operations by applying
Zadeh’s extension principle [1] as follows

f(Ã) = f(
⋃

α̃∈[0,1]

α̃.Ãα̃) =
⋃

α̃∈[0,1]

α̃.f(Ãα̃) (11)

As Zadeh himself noted that this principle can be used with
functions between sets, relations, etc. and it can extend any
function from crisp sets to its fuzzy and obviously type-2
fuzzy counterparts. In [9] based on observations about the
shape of the centroid Liu and Mendel defined the notion of
quasi type-2 fuzzy logic system (QT2FLS). They propose ap-
proximating the T2FS using two α-planes (Ãα̃=0 and Ãα̃=1).
Great use of these methods is made later in this paper.

3 Type-2 Fuzzy Numbers
A type-1 fuzzy number (T1FN) is defined as a fuzzy set that
is both normal and convex [16, 17]. Normality is required
in order to capture the concept of a fuzzy number being a
set of real numbers close to a specific crisp number [13], in
other words when all the uncertainty about a number disap-
pears it reduces to a crisp number. Convexity is required as
it allows meaningful arithmetic operations to be performed on
fuzzy sets using the well established methods from interval
analysis since α-level sets are closed intervals [13]. Coup-
land et al. [6, 7] define a type-2 fuzzy number (T2FN) as
a type-2 fuzzy set having a numerical domain. Although no
assumption for normality has been defined for these T2FN
the examples used assumed normality. From another perspec-
tive within the framework of interval-valued fuzzy sets (IVFS)
[18], which are equal to IT2FS [5, 19], interval-valued fuzzy
numbers (IVFN) are defined to be convex and normal [20, 21].
Here it is desired to define a host of cases that may be con-
ceived to qualify as T2FN. First normality is defined, recalling
its definition within the context of T1FN.

Definition 3.1 (Normal T1FS) A T1FS, A, is said to be nor-

mal if its height h(A) is equal to 1 i.e. supµA(x) = 1.

Whenever a T1FS is not normal it is called subnormal. In
IT2FS we differentiate between two cases of normality, one
when both the upper and lower MFs are normal, and the other
when only the upper T1FS is normal.

1Here α̃ is used instead of α to distinguish that these are α-cuts
in the third dimension.

Definition 3.2 (Normal IT2FS) A IT2FS, Ã, is said to be

normal if its upper MF is normal i.e. supµA(x) = 1.

Note that there is a point in which a crisp number can be
reached which is only depending on the upper MF, this can
be seen as a less restrictive condition and is widely used in
applications (e.g. Computing with words [22]).

Definition 3.3 (Perfectly Normal IT2FS) A IT2FS, Ã, is

said to be perfectly
2

normal if both its upper and lower MFs

are normal i.e. supµA(x) = supµA(x) = 1.

Here the crisp number is reached when uncertainties about
both the upper and lower MFs disappear, it is more restric-
tive, but conceptually more appealing since it generalises the
concept of normal T1FS with only a single peak point where
it is completely crisp. It can be seen as a special case of a
normal IT2FS, this is clear in figure (1).

Definition 3.4 (Partially Normal T2FS) A T2FS, Ã, is said

to be partially normal if its FOU is a normal IT2FS.

This is the weakest case in which a T2FS can qualify to be
a number. There is an argument, this can not qualify to be a
fuzzy number at all as the secondary membership function is
clearly not about 1 at any point (i.e fx(u) �= 1,∀fx(u)).

Definition 3.5 (Normal T2FS) A T2FS, Ã, is said to be nor-

mal if its FOU is a normal IT2FS and it has a PrMF.

Definition 3.6 (Perfectly Normal T2FS) A T2FS, Ã, is said

to be perfectly normal if its FOU is a perfectly normal IT2FS

and it has a PrMF which is normal (i.e. either a normal T1FS

or a normal IT2FS).

Second, recalling the general definition of a T1FN using
piecewise-defined functions.

Definition 3.7 (T1FN[13]) Let A be a fuzzy subset on real

numbers. Then, A is a fuzzy number if and only if there ex-

ists a closed interval [m1,m2] �= φ such that

µA(x) =


1 x ∈ [m1,m2]
l(x) x ∈ [s,m1)
r(x) x ∈ (m2, e]
0 x ∈ (−∞, s);x ∈ (e,∞)

(12)

where l(x) ∈ [0, 1] is monotonically increasing and continu-

ous from the right; r(x) ∈ [0, 1] is monotonically decreasing

and continuous from the left; 〈s,m1,m2, e〉 are the parame-

ters that define the T1FN.

Observe that if A is subnormal it is not considered a number,
but it is useful to define a type-1 fuzzy sub-number (T1FsN)
which satisfies all the properties of a T1FN except it is sub-
normal, this can be defined for a fuzzy set A with height
h(A) = sup∀x µA(x) = hA as follows

µA(x) =


hA x ∈ [m1,m2]
l(x) x ∈ [s,m1)
r(x) x ∈ (m2, e]
0 x ∈ (−∞, s);x ∈ (e,∞)

(13)

2this term has been used by Kaufmann and Gupta [17] describing
a perfectly triangular T2FN.
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Using equations (7) and (8) a T1FN can be represented as in-
tervals using their α-cuts Aα = [aα

1 , aα
2 ] as follows

A =
⋃
∀α

α.[aα
1 , aα

2 ] =
⋃
∀α

α.[l−1(α), r−1(α)] (14)

IT2FN can be represented by its lower and upper mem-
bership functions which themselves are T1FS. Here we
use the terms above to define IT2FN. Let FOU(Ã) =

[FOU(Ã), FOU(Ã)] 3 to represent a perfectly normal IT2FS
defined by its lower and upper membership functions, respec-
tively. Then, using equation (14) individually for each of the
memberships, it follows that

FOU(Ã) =
⋃
∀α

α.[aα
1 , aα

2 ] =
⋃
∀α

α.[l−1(α), r−1(α)]

FOU(Ã) =
⋃
∀α

α.[aα
1 , aα

2 ] =
⋃
∀α

α.[l−1(α), r−1(α)]

then
FOU(Ã) =

⋃
∀α

α.
[
[aα

1 , aα
1 ], [aα

2 , aα
2 ]

]
(15)

for a normal IT2FS with lower membership function height,
h(FOU(Ã)) = hl, a IT2FN can be represented as

FOU(Ã) =

{ ⋃
∀α α.

[
[aα

1 , aα
1 ], [aα

2 , aα
2 ]

]
α ≤ hl⋃

∀α α.[aα
1 , aα

2 ] α > hl

(16)

Then a IT2FN can be defined by definition (3.8)

Definition 3.8 (IT2FN)
Let FOU(Ã) = [FOU(Ã), FOU(Ã)] be an interval type-

2 fuzzy subset on real numbers. Then, FOU(Ã) is an interval

type-2 fuzzy number if:

• FOU(Ã) and FOU(Ã) are T1FNs, in this case it is

called a perfectly normal IT2FN.

• FOU(Ã) is a T1FsN
4

and FOU(Ã) is a T1FN, in this

case it is called a normal IT2FN.

This definition can be seen in figure (1), observe that both
IT2FSs are IT2FNs. We can also consider an interval type-2
fuzzy sub-number (IT2FsN) when bothe the upper and lower
MFs are T1FsNs. Now, it is desired to define T2FN using the
same terminology. From equation (10) a T2FS

Ã =
⋃
∀α̃

α̃.FOU(Ãα̃)

and using equation (15) a perfectly normal T2FS

Ã =
⋃
∀α̃

α̃.(
⋃
∀α

α.
[
[aα

1 , aα
1 ], [aα

2 , aα
2 ]

]
) (17)

and using equation (16) a normal T2FS

Ã =

{ ⋃
∀α̃ α̃.(

⋃
∀α α.

[
[aα

1 , aα
1 ], [aα

2 , aα
2 ]

]
) α ≤ hl⋃

∀α̃ α̃.(
⋃

∀α α.[aα
1 , aα

2 ]) α > hl

(18)
A partially normal T2FS will only require ∀α̃; α̃ ∈
[0, sup∀(x,u) fx(u)].

3FOU is used here since the FOU fully describes the IT2FS.
4see equation (13).

Definition 3.9 (T2FN) Let Ã =
⋃

∀α̃ α̃.FOU(Ãα̃) be a type-

2 fuzzy subset on real numbers. Then, Ã is a type-2 fuzzy

number if:

• FOU(Ãα̃=0) is a perfectly normal IT2FN, and

FOU(Ãα̃=1) = Pr(Ã) is normal (i.e. either a T1FN

or a normal IT2FN), in this case it is called a perfectly

normal T2FN.

• FOU(Ãα̃=0) is a normal IT2FN, and FOU(Ãα̃=1)

(Pr(Ã)) exist, in this case it is called a normal T2FN.

• FOU(Ãα̃=0) is a normal IT2FN, in this case it is called

a partially normal T2FN.

Note that a special case of FOU(Ãα̃=1) = Pr(Ã) is when
all the vertical slices constructing Pr(Ã) are triangular T1FN
then Pr(Ã) is T1FS, this is depicted in figures (2) and (3).
We can also define a type-2 fuzzy sub-number (T2FsN) when
its FOU is an IT2FsN. In some applications one may need to
restrict a fuzzy set to a specific form, e.g. in computing with
words Klir et al. [23, 24] defined a procedure to convert any
given convex fuzzy set to a fuzzy interval that is expressed
in some standard form using some specific criteria. We now
examine a special form of T2FN based on some ideas from
[9]. Some observations about the shape of a centroid led to
the proposition of a quasi type-2 fuzzy logic system, similirly,
a definition of a quasi T2FN (QT2FN) can be proposed.

Assumption 3.10 (QT2FS) Consider the following proposi-

tions about a T2FN

A1 The T2FN is Normal (i.e FOU is normal IT2FN and

PrMF is normal).

A2 The FOU upper and lower membership functions, the

PrMF, and the vertical slices are characterised by piece-

wise functions.

A3 All the vertical slices that construct PrMF are T1FN.

A4 As for the rest of the vertical slices, they are T1FsN in

which their supremum lay on piece-wise functions be-

tween the sides of the upper membership function of the

FOU and the PrMF denoted l̃(x) on the left side, and

r̃(x) on the right side.

A5 All the mid points of the FOU upper and lower member-

ship functions, and the PrMF are at the same domain

value.

these assumptions allow a T2FN to be completely determined
by its FOU and PrMF, just like a T1FS based on certain as-
sumptions can be completely determined by its core and sup-
port.

Definition 3.11 (QT2FN) Let Ã =
⋃

∀α̃ α̃.FOU(Ãα̃) be a

type-2 fuzzy subset on real numbers. Then, Ã is a quasi type-2

fuzzy number if it is completely determined by its FOU and

PrMF.

Figures (3) and (4) are both QT2FNs.
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4 Arithmetic using Alpha-planes
In Kaufmann and Gupta [17] a comprehensive discussion on
fuzzy numbers and arithmetic operations which is formulated
and mostly dependent upon the interval of confidence (α-level
sets). Recalling operations on intervals, let [a1, a2] and [b1, b2]
be two interval numbers, then

[a1, a2] ⊕ [b1, b2] = [a1 ⊕ b1, a2 ⊕ b2]

[a1, a2] ⊗ [b1, b2] = [min(a1 ⊗ b1, a1 ⊗ b2, a2 ⊗ b1, a2 ⊗ b2)

,max(a1 ⊗ b1, a1 ⊗ b2, a2 ⊗ b1, a2 ⊗ b2)] (19)

where ⊕ ∈ {+,−}, ⊗ ∈ {×,÷} and 0 /∈ B if ⊗ = ÷. Inter-
val operations are extended to T1FN. Let A =

⋃
∀α α.[aα

1 , aα
2 ]

and B =
⋃

∀α α.[bα
1 , bα

2 ] be two T1FN, then

A ◦ B =
⋃
∀α

α.([aα
1 , aα

2 ] ◦ [bα
1 , bα

2 ]) (20)

where ◦ = {+,−,×,÷}. Also these operations are extended
to IT2FN. Let FOU(Ã) =

⋃
∀α α.

[
[aα

1 , aα
1 ], [aα

2 , aα
2 ]

]
and

FOU(B̃) =
⋃

∀α α.
[
[bα

1 , bα
1 ], [bα

2 , bα
2 ]

]
be two perfectly nor-

mal IT2FN, then [17]

FOU(Ã) ◦ FOU(B̃) =⋃
∀α α.(

[
[aα

1 , aα
1 ] ◦ [bα

1 , bα
1 ], [aα

2 , aα
2 ] ◦ [bα

2 , bα
2 ]

]
)

(21)

If FOU(Ã) and FOU(B̃) are normal IT2FN with lower
membership function heights h

Ã
and h

B̃
respectively, then the

following changes are made to equation (21)

• if 0 ≤ α ≤ min(h
Ã
, h

B̃
) no changes are made.

• if h
Ã

< α ≤ h
B̃

then aα
1 = a

h
Ã

1 ; aα
2 = a

h
Ã

2 , and if

h
B̃

< α ≤ h
Ã

then bα
1 = b

h
B̃

1 ; bα
2 = b

h
B̃

2 .

• if max(h
Ã
, h

B̃
) < α ≤ 1 then equation (21) becomes

FOU(Ã) ◦ FOU(B̃) =
⋃

∀α α.([aα
1 , aα

2 ] ◦ [bα
1 , bα

2 ]).

Wu and Mendel [25] noticed that such methods that result
in discontinuous or nonconvex sets are neither desirable nor
technically correct. Similarly such results appear for normal
IT2FN arithmetic operations. According to Wu and Mendel
[25] the following changes are made to equation (21)

FOU(Ã) ◦ FOU(B̃) =
⋃

∀α α.(
[
[aα

1 , aα
1 ] ◦ [bα

1 , bα
1 ], [aα

2 , aα
2 ] ◦ [bα

2 , bα
2 ]

]
)

, if 0 ≤ α ≤ min(h
Ã
, h

B̃
)⋃

∀α α.([aα
1 , aα

2 ] ◦ [bα
1 , bα

2 ])
, if min(h

Ã
, h

B̃
) < α ≤ 1

(22)
Clearly T2FN arithmetic can be extended, let Ã =⋃

∀α̃ α̃.FOU(Ãα̃) and B̃ =
⋃

∀α̃ α̃.FOU(B̃α̃) be two
T2FNs, then

Ã ◦ B̃ =
⋃
∀α̃

α̃.FOU(Ãα̃) ◦
⋃
∀α̃

α̃.FOU(B̃α̃)

using the extension principle in equation (11) it follows that

Ã ◦ B̃ =
⋃
∀α̃

α̃.(FOU(Ãα̃) ◦ FOU(B̃α̃)) (23)

then we can use equation (21) for perfectly normal T2FNs
or equation (22) for normal T2FNs. Next we exam-
ine QT2FN, let ÃQ and B̃Q be QT2FN completely deter-
mined by the FOU and PrMF, 〈FOU(ÃQ

α̃=0), P r(ÃQ)〉 and
〈FOU(B̃Q

α̃=0), P r(B̃Q)〉, respectively. Then the result of ba-
sic arithmetic operations between them is a QT2FN

C̃Q = ÃQ ◦ B̃Q (24)

completely determined by 〈FOU(C̃Q

α̃=0), P r(C̃Q)〉 where
FOU(C̃Q

α̃=0) = FOU(ÃQ

α̃=0)◦FOU(B̃Q

α̃=0) and Pr(C̃Q) =

Pr(ÃQ)◦Pr(B̃Q). This operation can only be performed for
addition and subtraction as the functions l̃(x) and r̃(x) are
preserved. In the case of multiplication and devision an ap-
proximation for these functions should be used. It has to be
mentioned that methods to approximate a T1FN to some stan-
dard form is used in the literature (see Grzegorzewski [26]).
Providing approximation to QT2FN is still an open question.

5 Worked Example
In this example we only consider QT2FN as it gives suffi-
cient insight on T2FN. Let us consider the following triangular
QT2FN 3̃Q = 〈FOU(3̃Q

α̃=0), P r(3̃Q)〉 depicted in figure (5)
with parameters5 FOU(3̃Q

α̃=0) = 〈1.5, 2.25, 3, 3.45, 4.75〉,
h3̃ = 0.6, and Pr(3̃Q) = 〈1.75, 3, 4.25〉. And the QT2FN

1̃2
Q

= 〈FOU(1̃2
Q

α̃=0), P r(1̃2
Q

)〉 depicted in figure (6)
with parameters FOU(1̃2

Q

α̃=0) = 〈10.25, 11.5, 12, 12.5, 14〉,
h1̃2 = 0.7, and Pr(1̃2

Q
) = 〈10.75, 12, 13.5〉. When com-

puting the addition 3̃Q + 1̃2
Q

, first, we determine a suitable
number of α-cuts along u for both FOU and PrMF6. In our
case and for the sake of clarity we discretised u into 25 α-
cuts. Then, we apply equation (24) to the decomposed IT2FS.
This gives the result depicted in figure (7) with parameters
FOU(1̃5

Q

α̃=0) = 〈11.75, 13.75, 15, 15.95, 18.75〉, h1̃5 = 0.6,

and Pr(1̃5
Q

) = 〈12.5, 15, 17.75〉. This result we would ex-
pect, 3̃Q + 1̃2

Q
= 1̃5

Q
.

6 Conclusions
In this paper we presented methods to perform type-2 fuzzy
arithmetic operations using well known arithmetic operations
on intervals. In order to better analyse our methods we de-
fined a set of terms that describe different normality forma-
tions of IT2FS and T2FS, some of which, have already been
used in the literature without a clear definition. Our methods
relied heavily on interval analysis through α-cuts and α-planes
that allow T2FSs be represented as a collection of intervals.
Furthermore, we examined the use of quasi type-2 fuzzy sets
proposed by Mendel and Liu and defined quasi type-2 fuzzy
numbers as a special case of type-2 fuzzy numbers. Finally,
we derived arithmetic operations for quasi type-2 fuzzy num-
bers and provided an illustration by a worked example.

5The parameters used here are FOU(ÃQ

α̃=0
) =

〈s1, s2, m1, e2, e1〉 derived from equation (12) where
FOU(ÃQ

α̃=0
) = 〈s1, m1, e1〉 and FOU(ÃQ

α̃=0
) = 〈s2, m1, e2〉.

6In the case of T2FN we first discretise along fx(u) in order to
determine a suitable number of α-planes, then, we discretise along u
for each of the α-planes.
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Perfectly Normal IT2FS Normal IT2FS

1

u

x

Normal T1FS

subnormal T1FS

FOU(Ã)

FOU(Ã)

Figure 1: Different types of normal fuzzy sets

1

u

x

fx(u)

FOU(Ãα̃=0)

Pr(Ã)

V S(x
′

)

1

FOU(Ãα̃=0)

x
′

Figure 2: 3D representation of a perfectly normal T2FN, it is
also a QT2FN.

We believe that this paper will form the basis for further work
on type-2 fuzzy numbers and thier applications. Quasi type-2
fuzzy numbers may be viewed as a next step in the progress
between IT2FN and T2FN. Arithmetic operations are already
used in aggregation and averaging operations, measures that
apply certain mathematical functions, and fusion functions be-
tween one system and another.
Further work with regards to the operations defined here
will include approximation of standard forms of Quasi type-
2 fuzzy numbers, and a thorough comparison between these
methods and previous methods in terms of computational
complexity, although, it is almost trivial that our methods are
computationally sound as they are based on interval analysis.
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