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Abstract— Kernel data analysis is now becoming standard in
every application of data analysis and mining. Kernels are used to
represent a mapping into a high-dimensional feature space, where an
explicit form of the mapping is unknown. Contrary to this common
understanding, we introduce an explicit mapping which we consider
standard. The reason why we use this mapping is as follows. (1)
the use of this mapping does not lose any fundamental information in
kernel data analysis and we have the same formulas in every kernel
methods. (2) Usually the derivation becomes simpler by using this
mapping. (3) New applications of the kernel methods become possi-
ble using this mapping. As an application we consider an example of
text mining where we use fuzzy c-means clustering and cluster cen-
ters in the high-dimensional space and visualize the centers using
kernel principal component analysis.

Keywords— Kernel data analysis, fuzzy clustering, explicit map-
ping, text mining

1 Introduction
Kernel functions [9] which are not very new but was noted in
support vector machines[10] and now is a well-known tech-
nique and becoming standard in many applications of data
analysis and data mining. An important point in the use of
kernel functions is that although we consider a mapping from
a data space into a high-dimensional feature space, we need
not to know its explicit form but we should know the inner
product of the feature space. Generally, the feature space is
not uniquely determined. Accordingly every formula in data
analysis using kernel functions should be described in terms
of the inner product.

Although kernel functions are really useful, but the deriva-
tion is sometimes complicated when original formulas should
be rewritten by the inner product forms. A typical example
is kernel fuzzy c-means clustering [3] and kernel SOM [4] in
which the cluster centers in a feature space should be elimi-
nated using inner product forms.

Here is a question: can we have a useful and explicit map-
ping and explicit representation of a high-dimensional feature
space? The answer is YES, and we will show the mapping
that is simple enough and useful in the sense that it leads to
the same formulas when transformed into the inner product
forms. To summarize, this explicit mapping and associated
feature space have all information that is used in kernel func-
tions for data analysis.

Another question arises: what is useful in this explicit map-
ping? We will show a real application of an example of text
analysis. A result of kernel fuzzy c-means clustering and clus-

ter centers will be shown using kernel principal component
analysis.

Proofs of propositions are mostly omitted to save the space
but brief notes are given as appendix.

2 Kernel Functions and an Explicit Mapping

2.1 Preliminary consideration

Although we consider kernel fuzzy c-means (FCM) cluster-
ing [3] and kernel principal component analysis (KPCA)[9]
later, we describe FCM and omit KPCA for simplicity.

Assume that a set of data X = {x1, . . . , xn} ⊂ Rp is
given. Each data unit is also called an object or an individ-
ual and it is a point in the p-dimensional real space xk =
(x1

k, . . . , xp
k)T ∈ Rp. We consider a mapping into a high-

dimensional feature space Φ: Rp → H and associated kernel
function

K(x, y) = 〈Φ(x), Φ(y)〉 (1)

where 〈·, ·〉 is an inner product of H . We also assume ‖ · ‖H is
a norm of H . Thus H is an inner product space. In this section
suppose we do not know function Φ(·) explicitly but we know
K(x, y). Specifically, the Gaussian kernel is used frequently:

K(x, y) = exp(−λ‖x − y‖2) (2)

where λ > 0 and ‖x‖ is the norm of Rp.
An objective function of fuzzy c-means using the feature

space H is the following.

JH(U,W ) =
c∑

i=1

n∑
k=1

(uki)m‖Φ(xk) − Wi‖2
H , (m > 1)

(3)
where U = (uki) is n × c matrix representing membership of
xk to cluster i. U has the next constraint when it is optimized.

M = {U = (uki) :
c∑

i=1

uki = 1, uki ≥ 0,∀k, i}. (4)

Moreover W = (W1, . . . , Wc) shows cluster centers.
The iterative algorithm of fuzzy c-means clustering is basi-

cally an alternative minimization of JH(U,W ) with respect to
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U and W until convergence. We have the next solutions.

uki =


 c∑

j=1

(
D(xk,Wi)
D(xk,Wj)

) 1
m−1



−1

, (5)

Wi =

n∑
k=1

(uki)mΦ(xk)

n∑
k=1

(uki)m

(6)

where we put

D(xk, Wi) = ‖Φ(xk) − Wi‖2
H . (7)

Equations (5) and (6) are repeated until convergence, but since
Φ(xk) is unknown, we should use another formula for kernel
fuzzy c-means clustering.

The formula is derived by eliminating (6) from iteration,
i.e., we substitute (6) into (7) to have an updating formula for
D(xk,Wi)[3]:

D(xk,Wi) = K(xk, xk) − 2∑n
k=1(uki)m

n∑
j=1

(uji)mK(xj , xk)

+
1

{∑n
k=1(uki)m}2

n∑
j=1

n∑
�=1

(ujiu�i)mK(xj , x�).

(8)

We hence repeat (5) and (8) until convergence when kernel
fuzzy c-means clustering should be used.

2.2 An explicit mapping and its properties

We sometimes have applications in which we wish to have ex-
plicit cluster centers. Even if we cannot show them in a low-
dimensional data space, there are ways to have approximate
representations or visualizations, one of which is to show ker-
nel principal components and another is to use SOM mapping.

To this end we use the following explicit mapping that is
simple enough but seems unnoticed.

Φ(xk) = ek (k = 1, 2, . . . , n) (9)

where H = Rn and ek is the k-th unit vector that has unity as
ith component and all other components are zero. Note that
Φ: X → Rn, i.e., Φ(·) is not defined on Rp but is limited to
the finite set X . Moreover we assume that the inner product
of Rn is

〈ek, e�〉 = K(xk, x�) (10)

instead of the usual 〈ek, e�〉 = δk�.
We have the next proposition.

Proposition 1. If kernel K(x, y) is positive definite, 〈ek, e�〉
defined by (10) satisfy the axioms of the inner product of Rn,
that is, Rn with (10) is an inner product space.

We now apply this mapping to fuzzy c-means clustering. It
is sufficient to show the optimal solution of Wi. We then have
the next proposition of which the proof is easy and omitted.

Proposition 2. For all positive definite kernel K(x, y) and
mapping Φ by (9), the cluster centers are the same and are

given by

Wi =
(

(u1i)m∑n
k=1(uki)m

, . . . ,
(uni)m∑n
k=1(uki)m

)T

, i = 1, . . . , c

(11)

The next proposition of which the proof is almost triv-
ial shows an important result of the equivalence between the
usual technique and the explicit mapping method.
Proposition 3. Using the explicit mapping (11) to (7), we
have (8).

That is, (11) derived from the single mapping (9) has all
necessary and sufficient information for kernel fuzzy c-means
clustering.

As noted above, formulas in kernel principal component
analysis are derived likewise. Since the derivation repeats
what is described in textbooks [9], we omit the details. The
mapping (9) is moreover useful for application to LVQ and
SOM [2], where vectors for updating quantization vectors
should be based on learning. The explicit mapping enables
vector representations in Rn, we can use every formulas in
LVQ and SOM, while usual kernel methods should eliminate
quantization vectors [6].

3 Analysis of Terms from a Set of Texts
We hereafter show an application in which mapping (9) has a
natural interpretation. A typical example is analysis of terms
from s set of texts. A well-known model for term analysis uses
a vector-space model [8] which is also called a bag model.
Mizutani and Miyamoto[6] generalize the model into fuzzy
multiset model and use kernel based learning and clustering.
Note that a term may occur many times in a text which we
call here term occurrences, or simply occurrences. Term oc-
currences are handled as term frequencies or count in bags in
the vector space model, or it is treated as fuzzy multisets in
[6] when memberships are attached to each term occurrence.
When c-means clustering is applied, cluster centers have im-
plications as they are representatives of clusters.

In these models, however, a structure inside a text such as
distances or topology between occurrences is not considered.
Miyamoto and Kawasaki[5] propose a kernel-based model
that handles fuzzy neighborhood. As a result, kernel-based
data analysis can be applied but a drawback is that we cannot
have cluster centers. We consider this model of fuzzy neigh-
borhood here and uses the above explicit mapping and over-
come the last drawback.

3.1 Fuzzy neighborhood model

Let us consider a model that consists of a quintuple:

< T, O, d, R, N >

where each element is as follows.

1. T = {t1, . . . , tn}: a finite set of terms or keywords;

2. O and d: a metric space; O is a finite set of term occur-
rences where a metric d is defined;

3. R : a fuzzy relation of T × O;

4. N : a fuzzy relation of O×O called fuzzy neighborhood.
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The relation R(t, o) shows correspondence between a term
and its occurrence. For simplicity we assume, for every t ∈ T ,
R(t, ·) = {o ∈ O : R(t, o) > 0} is not empty. The most sim-
ple relation is

R(t, o) =

{
1 (o is an occurrence of t),
0 (otherwise),

and this relation is assumed hereafter in this paper.
Moreover we impose the following conditions to N :

(i) N(o, o) = 1 for all o ∈ O;

(ii) d(o, o′) > d(o, o′′) ⇒ N(o, o′) ≤ N(o, o′′);

(iii) N(o, o′) → 0 as d(o, o′) → ∞;

(iv) N(o, o′) = N(o′, o).

Our purpose is to define a natural inner product space on T
using the structure of occurrence space. We define a proximity
relation p(t, t′), t, t′ ∈ T :

p(t, t′) =
∑
o∈O

∑
o′∈O

R(t, o)N(o, o′)R(t′, o′). (12)

If the matrix P = (p(t, t′)) is positive-definite, we can define
an inner product space. If P is positive definite, we can use a
normalized relation

s(t, t′) =
p(t, t′)√

p(t, t)p(t′, t′)
. (13)

which is also positive-definite.
Generally, the above equation (12) does not guarantee the

positive definiteness. We hence consider conditions for the
positive-definiteness. To obtain a general condition is not
practically useful. We therefore describe a specific, but broad
enough, application example.

3.2 A model of a text set

A set of texts where each term may occur many times is
represented as a sequence. For example, let a term set is
T = {a, b, c}. Then an example of O can be represented by

O = aabcbbcccabbccabab

or more precisely, we put suffixes:

O = a1a2 b1 c1 b2 b3 c2 c3 c4a3 b4 b5 c5 c6a4 b6a5 b7 (14)

in order to distinguish occurrences. Obviously, R(a, ·) =
{a1, . . . , a5}. What if two or more texts should be handled?
We can connect those texts into a sequence using dummy
terms. Hence a sequence is sufficient to represent a set of
texts. A natural distance d on O is given by

d(o, o′) = {the number of occurrences between o and o′}+1
(15)

Thus, d(a1, c1) = 3, d(c6, c2) = 7, etc in the above example.
Next, two specific examples of fuzzy neighborhood are con-

sidered.

Fuzzy neighborhood using a monotone function
Let us show and example of a fuzzy neighborhood. For
this purpose we introduce a monotone-decreasing function
f : R → [0, 1] such that

(I) f(0) = 1,

(II) f(−x) = f(x),

(III) lim
x→∞

f(x) = 0.

We define
N(o, o′) = f(d(o, o′)). (16)

We have
Proposition 4. Fuzzy relation N(o, o′) defined by (16) satis-
fies the conditions (i)–(iv) for a fuzzy neighborhood.

The next proposition is crucial to this model.
Proposition 5. If function f(x) is convex on [0,∞), then
P = (p(t, t′)) is positive-definite. Namely, we can define an
inner product space using P .

Let us consider a simple example where a convex function

f(x) =

{
1 − x

3 (0 ≤ x ≤ 3)
0 (x > 3)

is used and f(−x) = f(x). For the example of (14),
N(a1, b1) = 1/3, N(a2, b1) = 2/3, etc. we hence have

p(a, b) =
5∑

i=1

7∑
j=1

N(ai, bj) = 4.

3.3 Fuzzy neighborhood using a hierarchical structure

Another class for fuzzy neighborhood uses a hierarchical
structure of a text, that is, a text frequently has chapters, sec-
tions, subsections, and paragraphs. Hence the next distance
can be induced using 0 < α < β < γ.

• If o and o′ occurs in a same paragraph, d(o, o′) = α;

• else if o and o′ occurs in a same subsection, d(o, o′) = β;

• else if o and o′ occurs in a same section, d(o, o′) = γ;

• else d(o, o′) = ∞.

Such a distance induced from a hierarchical classification
satisfies

d(o, o′′) ≤ max{d(o, o′), d(o′, o′′)}. (17)

which is called ultra-metric property. It is also known that this
property is equivalent to fuzzy equivalence that is also called
fuzzy similarity. That is,

N(o, o′) = f(d(o, o′)) (18)

is a fuzzy equivalence.
We have the next proposition.

Proposition 6. If d(o, o′) satisfies (17) and N(o, o′) is defined
by (18), then P = (p(t, t′)) is positive-definite. Namely, we
can define an inner product space using this P .
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Let us moreover consider a particular case of d when O
consists of documents D1, . . . , Dm:

d(o, o′) =

{
0 (o and o′ are in a same document),
∞ (o and o′ are in different documents).

(19)
Suppose also that the frequency of occurrences of t in Di is
Fi(t).

We have the next proposition.

Proposition 7. If d(o, o′) is given by (19) and N(o, o′) is
defined by (18). then

p(t, t′) =
m∑

i=1

Fi(t)Fi(t′), (20)

which is used in the vector space model.
We thus note that the model in this section generalizes the

vector space model.
Finally, we note that the above model can directly be ap-

plied to a document set D = {d1, . . . , dm} using

RD(d, t) =

{
1 ( t occurs in d),
0 ( t doe no not occur in d).

Then we have a positive definite measure between two docu-
ments:

pD(d, d′) =
∑

t,t′∈T

RD(d, t)p(t, t′)RD(d′, t′), (21)

and a normalized measure

sD(d, d′) =
pD(d, d′)√

pD(d, d)pD(d′, d′)
, (22)

which can be used as inner products of the document space.

4 Numerical Examples

We briefly show the results of kernel fuzzy c-means cluster-
ing (KFCM) with the kernel principal components (KPCA)
applied to a set of documents extracted from a Japanese news-
paper articles. Sixty articles from ASAHI Shinbun (ASAHI
News) have been used. They are categorized by the publisher
into three categories of ‘Economics’, ‘Politics’, and ‘Social
Affairs’; each category has 20 articles. Each of these cate-
gories are subdivided into subcategories of ‘economic statis-
tics’, ‘finance’, and so on. Terms occurred more than twice
were used and the number of terms is 556. The above measure
(22) has been used throughout. The method of fuzzy c-means
with m = 1.2 and with c = 3 has been applied. The following
two neighborhood functions have been used.

• First type uses a convex function f(x) = 1.2−d(o,o′).

• Second type uses a fuzzy equivalence: If two term oc-
currences are the same term, N(o, o′) = 1; if they are in
a same paragraph, N(o, o′) = 0.9; if they are in a same
document, N(o, o′) = 0.7; if they are in a same subcat-
egory: N(o, o′) = 0.5; if they are in a same category:
N(o, o′) = 0.3.
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Figure 1: Two-dimensional display from KPCA with three
clusters and cluster centers, where the first type of neighbor-
hood function f(x) = 1.2−d(o,o′) has been used.
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Figure 2: Two-dimensional display from KPCA with three
clusters and cluster centers, where the second type of fuzzy
equivalence has been used.

Figures 1 and 2 respectively show the two-dimensional fig-
ures of two-major axes from KPCA using the first and the
second types of neighborhoods. The three symbols of white
squares, triangles, and circles show the three clusters obtained
from KFCM: fuzzy clusters have been made crisp by the max-
imum membership rule

xk → cluster i ⇐⇒ uki = max
1≤j≤c

ukj .

The black square, triangle, and circle are the cluster centers
of the corresponding clusters. It seems that the second neigh-
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borhood of fuzzy equivalence divides more clearly the three
clusters.

We have checked the correspondence of the obtained clus-
ters with the actual classification provided from the publisher.
The six correspondences have all been checked and the maxi-
mum correspondence percentages are given next. In the calcu-
lation 1000 trials with random initial values were used and the
average numbers are shown below. That is, when we used the
first type of neighborhood, the correct classification ratio was
73.5%, while the second type of fuzzy equivalence produced
97.9%.

We also tested a subclass of the above articles: 20 ‘Eco-
nomics’ and 20 ‘Politics’ articles with the same conditions
except that the number of clusters c = 2. The number of
terms which occurred more than twice is 390. The results are
shown as Figures 3 and 4. The separation was better than the
previous case of three clusters. The correct classification ratio
was 93.2% for the first type of neighborhood and 99.8 for the
second neighborhood.
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Figure 3: Two-dimensional display from KPCA with two
clusters and cluster centers, where the first type of neighbor-
hood function f(x) = 1.2−d(o,o′) has been used.

5 Conclusion
We have proposed the use of an explicit mapping for kernel
based data analysis. To summarize, we note the following ad-
vantages of the present method.

1. Using this mapping, we do not lose any fundamental in-
formation in kernel data analysis.

2. Generally the derivation becomes simpler using this
mapping.

3. New applications of the kernel methods become easier
using this mapping.

The last statement should be put into practice. In relation to
fuzzy clustering, the method of fuzzy c-varieties should be
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Figure 4: Two-dimensional display from KPCA with two
clusters and cluster centers, where the second type of fuzzy
equivalence has been used.

studied. We moreover have many research possibilities related
to SOM.

This mapping invokes several problems to be solved. For
example, when the number of objects are large, we have a
problem of many dimensions which should be overcome us-
ing some handling large matrix techniques. We also should
consider when and where such an explicit mapping become
useless. Clarification of such a boundary between usefulness
and uselessness is the ultimate objective of the present study.
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Appendix: Notes on Proofs
Since detailed proofs are too lengthy, we give notes on how
to prove the propositions given here. The proofs are mostly
straightforward.

Note on proof of Proposition 1

The detailed proof is given in standard textbooks [9]. As a
rough sketch of the proof, note that the Mercer condition[10]∫ ∫

K(x, y)η(x)η(y)dxdy ≥ 0

for all η(x) guarantees∑
i,j

K(xi, xj)ζiζj ≥ 0

∀ζi ∈ R, by putting η(x) =
∑

i ζiδ(x − xi). Thus the matrix
K = (K(xi, xj)) is positive semi-definite. The kernel func-
tion generally does not distinguish positive semi-definiteness
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and positive definiteness, while positive-definiteness is re-
quired for the definition of an inner product. For this purpose
a simple trick is to use a regularization which means that we
take

K → K + εI (ε > 0)

where ε is sufficiently small. The matrix K + εI is positive
definite and approximates K when K is positive semi-definite.
In this paper we thus assume positive-definiteness throughout,
by using such a regularization when needed.

Note on proof of Proposition 2

The proof of this proposition is not difficult by observing
closely (6). Note that Wi given by (6) is the solution of

min
Wi

∑
k

(uki)m‖xk − Wi‖2

where the space can be an arbitrary inner product space, since
the derivation of (6) uses a general variational principle valid
for any Hilbert space. Note moreover that we substitute (11)
into (5) to have the optimal solution of U . It should be noted
that although optimal Wi is the same for all positive definite
kernel, optimal U differs because (10) give different values for
different kernels.

Note on proof of Proposition 3

A straightforward calculation shows this proposition is valid.

Note on proof of Proposition 4

The proof is immediate and omitted here.

Note on proof of Proposition 5

Take an arbitrary c ∈ O. The conclusion is immediately ob-
tained from the Pólya’s theorem [7] which states that

∑
a,b

zazbf(|x(a) − x(b)|) ≥ 0

when f is convex on [0, +∞) and f(x) → 0 as x → +∞.
Note that x(a) is the real value defined by x(a) = D(a, c)
when a is the left hand of c; x(a) = −D(a, c) when a is right
hand of c.

Note on proof of Proposition 6

To prove this proposition, we consider a partition matrix
U = (uij). Namely, an n × n real matrix U is called
a partition matrix iff there exists a partition K1, . . . , Kc of
n = {1, 2, . . . , n} (

⋃
j Kj = n and Ki ∩ Kj = ∅, for i �= j )

such that
uij = 1 ∀i, j ∈ Kh

for some h and

uij = 0 ∀i ∈ K�, j ∈ Kh

for h �= 	.
We have

Lemma: A partition matrix U is positive semi-definite. It is
positive definite if and only if U is identity matrix (U = I).

The proof of the lemma is immediate by observing

xtUx =
c∑

i=1


 ∑

xj∈Ki

xj




2

.

The proof of this proposition is now straightforward. We
assume that O is a finite set for simplicity. Then an equiva-
lence relation is represented by a partition matrix. Moreover a
fuzzy equivalence relation F is represented by a finite collec-
tion U1, . . . , Uk of partition matrix and positive β1, . . . , βk:

F =
k∑

j=1

βjUj .

Consequently we have

xtFx =
k∑

j=1

βjx
tUjx ≥ 0.

Hence N(a, b) is positive definite. From Proposition 6, p(t, t′)
is also positive definite. The proposition is thus proved.

Note on proof of Proposition 7

By straightforward calculation, we see this proposition holds.
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