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Abstract— Distorted probabilities are an important family of
fuzzy measures. In a recent paper we introduced m-dimensional
distorted probabilities, which generalize the former and permit us
to have a smooth transition from distorted probabilities to uncon-
strained ones.

In this paper we introduce the union condition and the strict union
condition, and we show that when these conditions hold for a fuzzy
measure, the fuzzy measure is a distorted probability. In addition, we
present a few results that establish some relationships between other
fuzzy measures.
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1 Introduction

Aggregation operators [28] are used in a large number of ap-
plications to combine information from different sources. Al-
though the weighted mean is probably the most well known
aggregation operator, other operators exist. E.g., the OWA,
the WOWA and some fuzzy integrals. Choquet and Sugeno
integrals are examples of such fuzzy integrals.

Fuzzy integrals permits the user to combine information
when the sources supplying the information are not indepen-
dent. To express this a priori knowledge about the sources,
fuzzy integrals combine the input data with the information
about the sources. Formally, the integrals integrate a func-
tion, which represents the data being aggregated, with respect
to a fuzzy measure, which represents the a priori information
about the sources.

A major difficulty for applying fuzzy integrals in real appli-
cations is that they are set functions, and thus, for any aggre-
gation problem with n inputs, 2n values should be defined. In
fact, properly speaking, boundary conditions on the measure
reduce this number to 2n − 2.

Real applications try to reduce the number of 2n − 2 re-
quired values using constrained measures. That is, measures
that require less than 2n − 2 parameters. Sugeno λ-measures
are probably the most used ones [22, 23, 20, 21]. Such mea-
sures solely require n values as well as an additional parame-
ter λ, which can be deduced from the n values as [10] shows.
k-order additive fuzzy measures are another family of mea-
sures with reduced complexity. This family, that has been ex-
tensively studied, is of special interest because the parameter
k permits us to find a trade-off between expressiveness and
complexity. In short, when k = 1 the measure has the lowest

complexity (only n−1 values are required) but it corresponds
to a probability distribution. Instead, when k = n, any uncon-
strained fuzzy measure can be represented but at the cost of
the highest complexity (2n − 2 values should be defined).

In this paper we study m-dimensional distorted probabili-
ties, another family of measures, introduced in [16], that gen-
eralizes distorted probabilities. Informally, distorted prob-
abilities are measures that can be expressed in terms of a
probability distribution and a function that distorts this dis-
tribution. Such measures, which were originated in psychol-
ogy [19, 4, 5], have been extensively used. See, for exam-
ple, the book by Aumann and Shapley (1974) [1] and their
recent use in game theory. Recent research on such measures
is on their determination either from examples (as in [27]) or
from interviews [9]. Nevertheless, the modeling capabilities
of distorted probabilities are limited. In [16] it was shown that
the number of such measures with respect to the number of
unconstrained ones is very small. Moreover, the larger is n,
the smaller is the proportion of distorted probabilities. So, in
most cases, fuzzy measures cannot be represented using dis-
torted probabilities. To overcome this problem, we introduced
in [16] m-dimensional distorted probabilities.

In this work we present some new results with respect to
this family of measures. We show some conditions that, when
fulfilled, imply distorted probabilities.

Other families of fuzzy measures have been studied in the
literature. Two of them, that are relevant for the present paper,
are the m-symmetric fuzzy measures [11, 12] and the hier-
archically decomposable ones [26]. Some results establish-
ing some relationships between these measures and distorted
probabilities will be given.

The structure of the paper is as follows. In Sections 2, we
review some concepts that are needed later on. In Section 3,
we present the results establishing the connections among dif-
ferent kinds of fuzzy measures. The paper finishes with some
conclusions.

2 Preliminaries
This section reviews some previous results in the literature that
are needed in the rest of the paper. We start by defining fuzzy
measures, and some of their families. Among them, we re-
view m-dimensional distorted probabilities and a few results
concerning these measures. The section finishes with a review
of a few aggregation operators that are relevant for the purpose
of this paper.
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2.1 Fuzzy measures

In this paper we will consider fuzzy measures on a finite uni-
versal set X = {x1, . . . , xn}. For the sake of simplicity, when
possible, we will consider X := {1, . . . , n}. Now, we review
the definition of fuzzy measure.

Definition 1 A set function µ : 2X → [0, 1] is a fuzzy measure
if it satisfies the following axioms:

(i) µ(∅) = 0, µ(X) = 1 (boundary conditions)

(ii) A ⊆ B implies µ(A) ≤ µ(B) (monotonicity)

In order to distinguish measures satisfying (i) and (ii) with
others that also satisfy some additional constraints (e.g. addi-
tivity µ(A∪B) = µ(A)+µ(B) when A∩B = ∅), we use the
terms unconstrained fuzzy measures for the former ones and
constrained fuzzy measures for the others.

2.2 m-symmetric fuzzy measures

The definition of these measures is based on the concept of
set of indifference. Roughly speaking, a set of indifference is
defined by elements that do not affect the value of the measure.
That is, the elements of a set are indistinguishable with respect
to the fuzzy measure.

Definition 2 [11, 12] Given a subset A of X , we say that A
is a set of indifference if and only if:

∀B1, B2 ⊆ A, |B1| = |B2|,

∀C ⊆ X \A µ(B1 ∪ C) = µ(B2 ∪ C)

In this definition | · | corresponds to the cardinality of a set.
We now consider m-symmetric fuzzy measures for the partic-
ular case of m = 2 and, then, we give the general definition.

Definition 3 [11, 12] Given a fuzzy measure µ, we say that
µ is an at most 2-symmetric fuzzy measure if and only if
there exists a partition of the universal set {X1, X2}, with
X1, X2 �= ∅ such that both X1 and X2 are sets of indiffer-
ence. An at most 2-symmetric fuzzy measure is 2-symmetric if
X is not a set of indifference.

Definition 4 [11, 12] Given a fuzzy measure µ, we say that
µ is an at most m-symmetric fuzzy measure if and only if there
exists a partition of the universal set {X1, . . . , Xm}, with
X1, . . . , Xm �= ∅ such that X1, . . . Xm are sets of indiffer-
ence.

The next proposition follows from this definition.

Proposition 1 Every fuzzy measure µ is an at most n-
symmetric fuzzy measure for n = |X|.

So, all fuzzy measures can be considered as m-symmetric
for a value of m large enough.

Definition 5 [11, 12] Given two partitions {X1, . . . , Xp}
and {Y1, . . . , Yr} on the finite universal set X , we say that
{X1, . . . , Xp} is coarser than {Y1, . . . , Yr} if the following
holds:

∀Xi∃Yj such that Yj ⊆ Xi

Definition 6 Given a fuzzy measure µ, we say that µ is m-
symmetric if and only if the coarsest partition of the universal
set in sets of indifference contains m non empty sets. That
is, the coarsest partition is of the form: {X1, . . . , Xm}, with
Xi �= ∅ for all i ∈ {1, . . . , m}.
Proposition 2 [11, 12] Let µ be an m-symmetric measure
with respect to the partition {X1, . . . , Xm}. Then, the number
of values that are needed in order to determine µ is:[

(|X1|+ 1) · · · (|Xm|+ 1)
]− 2

An m-symmetric fuzzy measure can be represented in a
(|X1|+ 1) · · · (|Xm|+ 1) matrix M .

2.3 Hierarchically S-Decomposable Fuzzy Measures

[26] introduced Hierarchically S-Decomposable Fuzzy Mea-
sures. These measures (HDFM for short) can be seen as a
generalization of S-decomposable measures. An important
characteristic of S-decomposable fuzzy measures, is that the
measure for any subset of X can be built from the measures
on the singletons and a t-conorm S. When interactions among
information sources are considered, such construction means
that the interactions among pairs (or subsets) of sources can
be expressed in a single and unique way. In particular, all in-
teractions are modeled using the t-conorm S.

The so-called hierarchically S-decomposable fuzzy mea-
sures define a more general family of fuzzy measures as they
permit us to express different kind of interactions between dif-
ferent subsets. This is achieved permitting us the use of dif-
ferent t-conorms for combining the measures of different sin-
gletons (and of different subsets).

This is obtained as follows: (i) the elements in X are struc-
tured in a hierarchy that gathers together elements that are sim-
ilar (from the interactions point of view); (ii) each node of the
hierarchy has associated a t-conorm to be used to combine the
interactions. In this way, a richer variety of interactions can be
expressed.

For example, if we have a fuzzy measure µ : 2X → [0, 1]
with X = {x1, x2, x3, x4, . . . , xn} such that µ({x1}) = 0.2,
µ({x2}) = 0.4, µ({x3}) = 0.3 and µ({x4}) = 0.3. Then,
we have a negative interaction between x1 and x2 defining
µ({x1, x2}) = max(µ({x1}), µ({x2})). Instead, for a posi-
tive interaction between x3 and x4 we define µ({x3, x4}) =
min(1, µ({x3}) + µ({x4})). Both situations can be modeled
with the t-conorms S1(x, y) = max(x, y) and S2(x, y) =
min(1, x + y).

We give below the definition for the particular case of 2-
level HDFM. That is, a measure where the hierarchy has only
two levels.

Definition 7 [26] Given a fuzzy measure µ, we say that µ is a
2-level Hierarchically Decomposable Fuzzy Measure (2-level
HDFM) if there is a partition {X1, . . . , Xm} on X (we denote
the elements in Xi by Xi = {xi,1, . . . , xi,mi}) and t-conorms
S, S1, . . . , Sm such that:

µ(A) = S(r1(A), . . . , rm(A))

where

ri(A) = Si(µ({xi,1} ∩A), . . . , µ({x1,mi} ∩A))
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In the general case of HDFM, not presented here, a com-
plete hierarchy is permitted and, then, the measure is defined
recursively for each node using the t-conorm attached to the
node, and the partition associated to the node.

2.4 Distorted probabilities

As briefly described in the introduction, distorted probabili-
ties correspond to fuzzy measures that can be represented by a
probability distribution and a distortion function. We formal-
ize these measures as well as the required concepts below:

Definition 8 Let P : 2X → [0, 1] be a probability measure.
Then, we say that a function f is strictly increasing with re-
spect to P if and only if

P (A) > P (B) implies f(P (A)) > f(P (B))

Remark: Since we suppose that X is a finite set, when
there is no restriction on the function f , a strictly increasing
function f with respect to P can be regarded as a strictly in-
creasing function on [0, 1]. Note that with respect to increas-
ingness only the points in {P (A)|A ∈ 2X} are essential, the
others are not considered by f(P (A)).

Definition 9 [1, 2] Let µ be a fuzzy measure. We say that µ is
a distorted probability if there exists a probability distribution
P and a strictly increasing function f with respect to P such
that µ = f ◦ P .

The next theorem gives the necessary and sufficient condi-
tion for a fuzzy measure µ to be a distorted probability. The
theorem is based on Scott’s condition:

Definition 10 [16] Let µ be a fuzzy measure, µ satisfies
Scott’s condition when for all Ai, Bi ∈ 2X such that∑n

i=1 1Ai
=
∑n

i=1 1Bi
the condition below holds:

µ(Ai) ≤ µ(Bi) for i = 2, 3, . . . , n implies µ(A1) ≥ µ(B1).

Here 1A represents the characteristic function of the set A.
That is 1A(x) = 1 if and only if x ∈ A.

Using this condition, we can characterize distorted proba-
bilities as follows:

Theorem 1 [16] Let µ be a fuzzy measure; then, µ is a dis-
torted probability if and only if Scott’s condition holds.

2.5 m-dimensional distorted probabilities

m-dimensional distorted probabilities were presented in [16]
to overcome the limited expressiveness of distorted probabili-
ties. They are defined as follows:

Definition 11 [16] Let {X1, X2, · · · , Xm} be a partition of
X; then, we say that µ is an at most m dimensional distorted
probability if there exists a function f on R

m and probabilities
Pi on (Xi, 2Xi) such that:

µ(A) = f(P1(A∩X1), P2(A∩X2), · · · , Pm(A∩Xm)) (1)

where f on R
m is strictly increasing with respect to each

variable.
We say that an at most m dimensional distorted probability

µ is an m dimensional distorted probability if µ is not an at
most m− 1 dimensional.

The next proposition follows from the definition above.

Proposition 3 Every fuzzy measure is an at most n-
dimensional distorted probability with n = |X|.

Note that for n = |X|, we are considering the follow-
ing partition of X: {X1 = {x1}, . . . , Xn = {xn}}. So,
f(a1, . . . , an) = µ(A) when ai = 1 if and only if xi ∈ A.

Also, we can prove that m-dimensional distorted probabil-
ities define a family of measures with increasing complexity
with respect to m. This means that increasing the value of m,
the number of measures representable increases. The follow-
ing proposition establishes this property.

Proposition 4 Let Mk be the set of all fuzzy measures that
are k-dimensional distorted probabilities and let M0 be the
empty set. ThenMk−1 ⊂Mk for all k = 1, 2, . . . , |X|.

Corollary 1 Given a fuzzy measure µ, there exists a k ∈
{1, 2, . . . , |X|} such that µ ∈Mk and µ �∈ Mk−1.

Therefore, the proposed family of fuzzy measures permits
us to cover the whole set of fuzzy measures.

2.6 Aggregation operators

Now we define the OWA and the WOWA operators. They will
be of relevance in this work. As explained in detail in [25], the
OWA operator permits to give importance to the data (with
respect to their position) while the WOWA permits to give
importance to the data (as the OWA operator) and also to the
information sources (as the weighted mean does).

Definition 12 [29, 30] Let w be a weighting vector of dimen-
sion n (i.e., wi ≥ 0 and

∑n
i=1 wi = 1), then a mapping OWA:

R
n → R is an Ordered Weighted Averaging (OWA) operator

of dimension n if

OWAw(a1, ..., an) =
n∑

i=1

wiaσ(i)

where {σ(1), ..., σ(n)} is a permutation of {1, ..., n} such that
aσ(i−1) ≥ aσ(i) for all i = {2, ..., n} (i.e. aσ(i) is the i-th
largest element in the collection a1, ..., an).

Definition 13 [25] Let p and w be two weighting vectors of
dimension n, then a mapping WOWA: R

n → R is a Weighted
Ordered Weighted Averaging (WOWA) operator of dimension
n if

WOWAp,w(a1, ..., an) =
n∑

i=1

ωiaσ(i)

where σ is defined as in the case of the OWA, and the weight
ωi is defined as:

ωi = w∗(
∑
j≤i

pσ(j))− w∗(
∑
j<i

pσ(j))

with w∗ being a non-decreasing function that interpolates
the points {(i/n,

∑
j≤i wj)}i=1,...,n together with the point

(0, 0). The function w∗ is required to be a straight line when
the points can be interpolated in this way.
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Alternatively, it is possible to define the WOWA opera-
tor directly using the function w∗. This will be denoted by
WOWAp,w∗(a1, . . . , an) or WOWAp,w∗(f) when f is a
function f : X → R such that f(xi) = ai. In this latter
case, we will read WOWAp,w∗(f) as the WOWA of f with
respect to p and w∗.

We finish the section with the definition of the Choquet in-
tegral.

Definition 14 [3] Let µ be a fuzzy measure, then the Choquet
integral of a function f : X → R

+ with respect to the fuzzy
measure µ is defined by:

(C)
∫

fdµ(= Cµ(f)) =
n∑

i=1

[f(xs(i))− f(xs(i−1))]µ(As(i))

where xi ∈ X and where f(xs(i)) indicates that the indices
have been permuted so that
0 ≤ f(xs(1)) ≤ · · · ≤ f(xs(n)) ≤ 1,
As(i) = {xs(i), . . . , xs(n)} and f(xs(0)) = 0.

3 Distorted probabilities and symmetric fuzzy
measures

3.1 A sufficient condition for distorted probablity

We have discussed above Scott’s condition: Definition 10 for
distorted probability. Nevertheless, this condition is not easy
to check. We present below another condition under which a
fuzzy measure is a distorted probability. The new condition is
easier to check.

Definition 15 We say that a fuzzy measure µ satisfies a union
condition (for short UC), if A ∩ C = ∅, B ∩D = ∅,

µ(A) ≥ µ(B), µ(C) ≥ µ(D)⇒ µ(A ∪ C) ≥ µ(B ∪D).

The next proposition is obvious from the definition.

Proposition 5 Suppose that a fuzzy measure µ satisfies UC.
We have A ∩ C = ∅, B ∩D = ∅,

µ(A) = µ(B), µ(C) = µ(D)⇒ µ(A ∪ C) = µ(B ∪D).

Definition 16 We say that a fuzzy measure µ satisfies a strict
union condition (for short SUC), if A ∩ C = ∅, B ∩D = ∅,

µ(A) > µ(B), µ(C) ≥ µ(D)⇒ µ(A ∪ C) > µ(B ∪D).

Proposition 6 Suppose that a fuzzy measure µ satisfies SUC.
We have A ∩ C = ∅, B ∩ C = ∅,

µ(A) > µ(B)⇒ µ(A ∪ C) > µ(B ∪ C).

Applying Proposition 5,6,we have the next proposition.

Proposition 7 Suppose that a fuzzy measure µ satisfies UC.
There exists a function F on

{(x, y)|x = µ(A), y = µ(B), A ∩B = ∅, A, B ∈ 2X}
such that

µ(A ∪B) = F (µ(A), µ(B))

for A, B ∈ 2X , A ∩B = ∅, and

F (x, 0) = x, F (F (x, y), z) = F (x, F (y, z)).

Moreover if µ satisfies both UC and SUC, F is strictly
monotone with respect to each variable.

Suppose that a fuzzy measure µ satisfies both UC and SUC.
Since F is strictly monotone on

{(x, y)|x = µ(A), y = µ(B), A ∩B = ∅, A,B ∈ 2X},
the domain of F can be extended to [0, 1] × [0, 1] and F is
monotone with respect to each variable and F is continuous.
Then F can be represented by strictly monotone function ϕ on
[0,1] as

F (x, y) = ϕ−1(ϕ(x) + ϕ(y)).

That is,

F (µ(A), µ(B)) = ϕ−1(ϕ(µ(A)) + ϕ(µ(B)))

for A ∩B = ∅. Therefore we have

ϕ(µ(A ∪B)) = ϕ(µ(A)) + ϕ(µ(B)).

Let P (A) := ϕ(µ(A)). Then, P is a probability and we have
µ(A) = ϕ−1(P (A)). Therefore we have the next theorem.

Theorem 2 A fuzzy measure µ is distorted probability if µ
satisfies both UC and SUC.

3.2 Symmetric fuzzy measure

We start showing that a 1-Symmetric fuzzy measure is a spe-
cial case of distorted probabilities.

Proposition 8 Let µ = f ◦P be a distorted probability. Then,
µ is a 1-symmetric fuzzy measure if and only if P (A) =
|A|/|X|.

Now we show that all m-symmetric fuzzy measures are
m-dimensional distorted probabilities. This implies that 1-
symmetric fuzzy measures are distorted probabilities.

Proposition 9 Let µ be an m-symmetric fuzzy measure with
respect to the partition {X1, . . . , Xm}. Then, µ is an m-
dimensional distorted probability.

Although the reversal of this proposition is not true, the next
proposition characterizes one case in which m-dimensional
distorted probabilities are m-symmetric fuzzy measures.

Proposition 10 Let µ be an m-dimensional distorted proba-
bility. If, pi(xj) = pi(xk) for all xj , xk ∈ Xi and for all
i = 1, . . . , m, then µ is an m-symmetric fuzzy measure.

It is known that OWA operators are equivalent to Choquet
integrals with respect to symmetric fuzzy measures. There-
fore, m-symmetric fuzzy measures permit us to define a gen-
eralization of OWA operators. The m-dimensional OWA is
defined below:

Definition 17 The m-dimensional OWA is defined as the Cho-
quet integral with respect to an m-symmetric fuzzy measure.

As proven in [24], a Weighted OWA (WOWA) operator
is equivalent to a Choquet integral with respect to a dis-
torted probability. Therefore, a Choquet integral with an m-
dimensional probability can be seen as a generalization of the
WOWA operator. We define an m-dimensional WOWA as fol-
lows:
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Definition 18 The m-dimensional WOWA is defined as the
Choquet integral with respect to an m-dimensional distorted
probability.

Then, considering Definitions 17 and 18 above, we have the
following corollary from Proposition 9:

Corollary 2 An m-dimensional OWA is a particular case of
an m-dimensional WOWA. In other words, a Choquet integral
with respect to an m-symmetric fuzzy measure is a particular
case of a Choquet integral with respect to an m-dimensional
distorted probability.

3.3 m-separable fuzzy measure

As shown in Proposition 9, m-symmetric fuzzy measures are
one special class of the m-dimensional distorted probabilities.
We present another special class of fuzzy measure

Definition 19 Let µ be a fuzzy measure. Then, we say that µ
is a m-separable fuzzy measure if there exists a function g and
a partition {X1, . . . , Xm} of X such that

µ(A) = g(µ(A ∩X1), . . . , µ(A ∩Xm)) (2)

where g is a m-dimensional function on R
m. We say that g is

a generating function for µ. We say that a generating func-
tion g is induced by h on [0, 1] × [0, 1] if g(x1, . . . , xm) =
h(h(. . . h(x1, x2), . . . , xm−1), xm), g(x1, x2, 0, . . . , 0) =
h(x1, x2).

Example 1 Let {X1, . . . , Xm} be a partition of X .

1. Suppose g(x1, . . . , xm) = x1 + · · ·+xm, so g is induced
by h(x, y) = x + y. Then we have

µ(A) = µ(A ∩X1) + · · ·+ µ(A ∩Xm).

This is an interadditivity defined in [14].

2. Suppose g(x1, . . . , xm) = x1 ∨ · · · ∨xm, so g is induced
by h(x, y) = x ∨ y. Then we have

µ(A) = µ(A ∩X1) ∨ · · · ∨ µ(A ∩Xm).

3. Suppose g(x1, . . . , xm) = (x2
1 + · · · + x2

m)1/2, so g is
induced by h(x, y) = (x2 + y2)1/2. Then we have

µ(A) = (µ(A ∩X1)2 + · · ·+ µ(A ∩Xm)2)1/2.

Suppose that µ is a m-separable fuzzy measure generated
by g and that g is induced by h. We say that h is associa-
tive if h(h(x, y), z) = h(x, h(y, z)). Suppose that h is strictly
monotone and associative. Since g is symmetric, then h is
symmetric, that is h(x, y) = h(y, x). Then there exists a
strictly monotone function ϕ such that h(x, y) = ϕ−1(ϕ(x)+
ϕ(y)). Define ϕ- Möbius inverse mϕ by

mϕ(A) :=
∑
B⊂A

(−1)|A\B|ϕ(µ(B)).

Let P be a partition of X for a m-separable fuzzy measure.
Applying theorem in [14], mϕ(A) = 0 ⇒ A �⊂ C, C ∈
P. Let M := {A|mϕ(A) �= 0} We have P ⊂ M . Define
Al := {A|A ∈ M, xl ∈ A} for X = {x1, . . . , xl, . . . , xn}
and Ml := max{|A||A ∈ Al}. Since A ⊂ C, C ∈ P for
A ∈ Al, we have the next proposition.

Proposition 11 Let µ be a m - separable fuzzy measure gen-
erated by g, and g be induced by a strict monotone and asso-
ciative h on [0, 1]. Then we have

m× min
l∈|1,...,n|

Ml ≤ n.

We say that a fuzzy measure µ is a ϕ k−order additive if
max{|A||A ∈ M} = k. If ϕ(x) = x, a ϕ k−order additive
fuzzy measure is a k-order additive fuzzy measure [6, 7].

Proposition 12 Let µ be a m-separable fuzzy measure gener-
ated by g, and g be induced by strict monotone and associative
h on [0, 1]. If µ is k- additive, then we have m× k ≥ n.

Now, we consider the relationship between the m-separable
fuzzy measures and some other families of measures.

Proposition 13 2-level HDFMs with Si Archimedean t-
conorms are a m-separable fuzzy measures.

Theorem 3 Let {X1, . . . , Xm} be a partition of X and µi

i = 1, . . . m be distorted probabilities represented by fi and
Pi (i.e., µi = fi ◦ Pi). Then, there exists a m-separable fuzzy
measure µ such that

m∑
i=1

((C)
∫

fdfi ◦ Pi) = (C)
∫

fdµ (3)

for all measurable function f .

As a corollary of this theorem, we have that the Choquet
integral with respect to a m-separable fuzzy measure µ with
g(x1, . . . , xm) = x1 + · · · + xm can be represented as a two
step Choquet integral.

Corollary 3 Let µ be a m-separable fuzzy measure µ with
g(x1, . . . , xm) = x1 + · · · + xm. Then the Choquet inte-
gral with respect to µ is represented as a two step Choquet
integral of a 1st step integral with respect to a probability on
(1, . . . , m). That is,

(C)
∫

fdµ =
∫

((C)
∫

fdfi ◦ Pi)dP (i). (4)

4 Conclusions

In this paper we have introduced two new conditions, the
Union Condition (UC) and the Strict Union Condition (SUC),
and we have studied distorted probability under these condi-
tions. We have shown that a fuzzy measure is a distorted prob-
ability when both UC and SUC conditions are satisfied.
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