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Abstract— This paper provides a new value (solution concept or

allocation rule) of cooperative games via posets induced by graphs.

Several values in a graph-restricted communication situation have

been proposed or introduced by Myerson, Borm, and Hamiache...

However, these values have been subjected to some criticisms in cer-

tain types of games. The value proposed in this paper withstands

these criticisms. Moreover, these existing values have been defined

only in situations represented by undirected graphs, while the notion

of the value proposed in this paper can be extended to situations rep-

resented by directed graphs.

Keywords— graph-restricted situations, communication situa-
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1 Introduction and Preliminaries
Throughout the paper, N denotes the universal set of n ele-
ments. For convenience, we often number the elements such
that the universal set is N = {1, 2, . . . , n}. A real-valued func-
tion v : 2N → R with v(∅) = 0 is called a game. A monotone
game (i.e., v(A) ≤ v(B) whenever A ⊆ B ⊆ N) is called a ca-

pacity or a fuzzy measure. We often call the pair (N, v), rather
than v, a game or a capacity. The set of all games on N is de-
noted by GN . A real vector-valued function Φ : GN → R|N| is
called a value. In cooperative game theory, N is considered to
be the set of all players. For every subset S of N, often called a
coalition, v(S ) represents the (transferable) utility/profits that
players in S can obtain if they decide to cooperate. For every
game (N, v), the value Φ(N, v) represents an allocation rule,
which provides an assessment of the benefits for each player
from participating in a game v. For the sake of simplicity, we
mainly discuss games in terms of various set functions (e.g.,
games, capacities, fuzzy measures, and so forth.) on N.

To avoid cumbersome notations, we often omit braces for
singletons, e.g., by writing v(i), U \ i instead of v({i}), U \ {i}.
Similarly, for pairs, we write i j instead of {i, j}. Furthermore,
cardinalities of subsets S , T, . . . , are often denoted by the cor-
responding lower case letters s, t, . . . , otherwise by the stan-
dard notation |S |, |T |,...
1.1 Games and capacities with graph restricted situations

In ordinary cooperative game theory it is implicitly assumed
that all coalitions of N can be formed; however, this is gener-
ally not the case. For players to coordinate their actions, they
must be able to communicate. The bilateral communication
channels between players in N are described by a communica-

tion network. Such a network can be represented by an undi-

rected graph (N, L), which has the set of players as its nodes

S ⊆ N and in which the players are connected by the set of

links L ⊆ {i j | i, j ∈ N, i � j}; i.e., players i and j can commu-
nicate (directly) with each other if i j ∈ L. This paper will deals
with only situations induced by communication networks de-
scribed by undirected graphs. Many other approaches to the
situations can be seen via the literatures [1, 2].

Definition 1.1 (communication situation)
The triple (N, v, L), which reflects a situation consisting of a
game v on N and a communication network (N, L), is called
a communication situation. We denote the set consisting of
all communication situations on N by CS

N . For a coalition
T ⊆ N, the restriction of (N, L) to T is denoted by (T, L(T ))
and defined by L(T ) := {i j ∈ L | i j ⊆ T }.
Definition 1.2 (feasible coalition) We say that players j and
k are connected in S ⊆ N if j = k or there exists a subset
{i1, · · · , im} ⊆ S such that j = i1, k = im, and {it, it+1} ∈ L

for all t ∈ {1, · · · ,m − 1}. Then we denote j ∼S k. Clearly,
this relation ∼S is an equivalence relation. Hence, the notion
of connectedness in S induces a partition S/L := S/ ∼S of S .
A coalition S ⊆ N is said to be feasible in the communica-
tion network (N, L) if any two players, j ∈ S and k ∈ S , are
connected in S (i.e., S/L = {S }).
Example 1.1
Consider the communication situation (N1, v, L1) with N1 =

{1, 2, 3, 4, 5, 6, 7} and L1 = {12, 15, 26, 37, 47, 56} (Fig.1).
Then, all the players in {1, 2, 6} can communicate with other;

Figure 1: Communication network(N, L1).

i.e., the coalition {1, 2, 6} is feasible. Hence, they can fully
coordinate their actions and obtain the value v({1, 2, 6}). On
the other hand, in the coalition {1, 2, 3, 4}, players 1 and 2
can communicate with each other, but players 3 and 4 can-
not communicate with any other players in {1, 2, 3, 4}. Thus,
feasible subcoalitions of {1, 2, 3, 4} are {1, 2}, {3}, and {4}
(i.e., forming the coalition {1, 2, 3, 4} is unfeasible). Hence,
the value attainable by the players in {1, 2, 3, 4} should be
v({1, 2})+v({3})+v({4}). In general, the value attainable by the
players in S ∈ N under a communication situation (N, v, L) is
represented by ∑

T∈S/L
v(T ). (1)
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Definition 1.3 (network-restricted game [3]) The network-

restricted game (N, vL) associated with (N, v, L) is defined as

v
L(S ) :=

∑

T∈S/L
v(T ) for each S ⊆ N. (2)

Note that if (N, L) is the complete graph (i.e., L = {i j | i, j ∈
N, i � j}), the network-restricted game v

L is equal to the orig-
inal game v.

The network-restricted game evaluates the possible gains
from cooperation in a communication situation from the view-
point of the players. The next example focuses on the impor-
tance of communication channels and links in a communica-
tion situation.

Example 1.2 In the communication situation L1 depicted in
Fig.1, the value obtainable by the players in the grand coali-
tion N is

v
L1 (N) = v({1, 2, 5, 6})+ v({3, 4, 7}), (3)

since N/L1 = {{1, 2, 5, 6}, {3, 4, 7}}. If for some reason
the communication link between players 4 and 7 is lost,
the communication network L1 becomes the new commu-
nication network L2 = {12, 15, 26, 37, 56}. Then, N/L2 =

{{1, 2, 5, 6}, {4}, {3, 7}} and the value obtainable by the players
in the grand coalition N becomes

v
L2 (N) = v({1, 2, 5, 6})+ v({4}) + v({3, 7}). (4)

Then,
v

L1 (N) − v
L2 (N) (5)

can be interpreted as a type of marginal contribution of the
link {4, 7} ∈ L1 to the communication network L1.

Definition 1.4 (link game [4]) The link game (L, γv) associ-
ated with (N, v, L) consisting of a zero-normalized game v is a
game on L defined by

γv(M) := v
M(N) =

∑

T∈N/M
v(T ) for each M ⊆ L. (6)

Note that, for an ordinary game v, γ v is not a game on L since
γv(∅) = ∑T∈N/∅ v(T ) =

∑
i∈N v({i}) � 0.

The link game γv(M) represents the worth of the communi-
cation network M ⊆ L as the worth of the grand coalition in
the communication situation (N, v,M) through the network-
restricted game v

M.

Definition 1.5 (Möbius Transform [5]) The Möbius trans-

form of a game v : 2N → R (resp. γ : 2L → R) is a game
on N (resp. L) denoted by ∆v : 2N → R (resp. ∆γ : 2L → R)
and is defined by

∆v(S ) :=
∑

T⊆S

(−1)|S \T |v(T ) for each S ∈ 2N . (7)

(resp. ∆γ(M) :=
∑

K⊆M

(−1)|M\K|γ(K) for each M ∈ 2L). (8)

Equivalently, we have that

v(S ) =
∑

T⊆S

∆v(T ) ∀S ∈ 2N . (9)

(resp. γ(M) =
∑

K⊆M

∆γ(K) ∀M ∈ 2L). (10)

Thus, the worth v(S ) (resp. γ(M)) of a coalition S (resp. com-
munication network M) is equal to the sum of the Möbius
transform of all its subcoalitions (subnetworks). This gives
a recursive definition of the Möbius transform. The Möbius
transform of every singleton is equal to its worth, while recur-
sively, the Möbius transform of every coalition (resp. com-
munication network) of at least two players (resp. links) is
equal to its worth minus the sum of the Möbius transform
of all its proper subcoalitions (resp. subnetworks). In this
sense, the Möbius transform of a coalition S (resp. commu-
nication network M) can be interpreted as the extra contribu-
tion of the cooperation/synergy among the players in S (resp.
links in M) that they did not already achieve by smaller coali-
tions (resp. networks). In fact, in the context of interaction

indices (e.g.,[6, 7]), the Möbius transform ∆ v(S ) is called the
internal interaction index of S , which represents the magni-
tude of a type of interaction among the elements in S . The
Möbius transform is also occasionally called the Harsanyi

dividends[8].

Definition 1.6 (unanimity game) The unanimity game for a
non-empty coalition T ⊆ N is denoted by uT and defined by

uT (S ) =


1 if S ⊇ T ,
0 otherwise.

(11)

For any game v : 2N → R, v can be represented as

v(S ) =
∑

T (�∅)∈2N

∆v(T ) · uT (S ) ∀S (� ∅) ∈ 2N . (12)

2 Values for communication situations

In this section, we briefly introduce the Shapley value for ordi-
nary cooperative games and three existing values for commu-
nication situations that appear in the literatures [3, 4, 9], the

Myerson value, the position value, and the Hamiache value.

Definition 2.1 (the Shapley value [10]) The Shapley value

Φ : GN → R|N| for a game (N, v) ∈ GN is defined by

Φi(N, v) :=
∑

T	i

1
|T | ∆

v(T ) for each i ∈ N. (13)

Definition 2.2 (the Myerson value [3]) The Myerson value

Ψ : CS
N → R|N| for a communication situation (N, v, L) ∈

CS
N is defined by

Ψ(N, v, L) := Φ(N, vL). (14)

The Myerson value is the allocation rule that assigns to
every communication situation (N, v, L) the Shapley value of
the network-restricted game (N, vL). Note that Ψ(N, v, L) =
Φ(N, v) if (N, L) is the complete graph.

Definition 2.3 (position value [4]) The position value π :
CS

N → R|N| for a communication situation (N, v, L) ∈ CS
N is

defined by

πi(N, v, L) :=
1
2

∑

l∈L
l	i

Φl(L, γv) for each i ∈ N. (15)
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The Shapley value Φl(L, γv) of a link l ∈ L, which is in-
duced via (13) for the link game (L, γ v), can be interpreted
as a type of expected marginal contribution of the link l to
all communication networks containing l. Then, the value is
divided equally between the two players at the ends of the con-
sidered link l ∈ L. The position value of a given player i ∈ N

is obtained as the sum of all these shares.

We focus to a third value for communication situations, in-
troduced by Hamiache [9]. Given a communication situation
(N, v, L) and S ⊆ N, we denote by S

∗ the set of all nodes of
the communication network (N, L) that are adjacent to at least
one of the nodes of S ,

S
∗ := {i ∈ N | ∃ j ∈ S such that i j ∈ L}. (16)

Definition 2.4 (associated game [9]) For a value φ on CS
N

(i.e., φ : CS
N → R|N|), the associated game v

∗
φ of v with

respect to φ is defined for S ⊆ N, by

v
∗
φ(S ) :=



v(S )+∑

j∈S ∗\S

(
φi(S + j, v|S + j , L(S + j)) − v( j)

)
if |S/L| = 1,

∑

T∈S/L
v
∗
φ(T ) otherwise,

(17)
where S

+ j := S ∪ { j} and v|S + j is the restriction of v to S
+ j.

Hamiache [9] claims that there is a unique value φ, the so-
called Hamiache value, for communication situations satisfy-
ing the following five properties, component-efficiency, linear-

ity w.r.t. games, independence of irrelevant players, positivity,
and associated consistency:
Component-efficiency :

For any (N, v, L) and any S ∈ N/L,
∑

i∈S
φi(N, v, L) = v(S ). (18)

Linearity w.r.t. games :
For any α, β ∈ R and (N, v, L), (N,w, L) ∈ CS

N ,

φ(N, αv + βw, L) = αφ(N, v, L) + βφ(N,w, L). (19)

Independence of irrelevant players :
For any (N, L) and for any two feasible coalitions R ⊆ T ,

φi(N, uR, L) = φi(T, uR, L(T )) ∀i ∈ T. (20)

Positivity :
For any feasible coalition T ⊆ N,

φi(T, uT , L(T )) ≥ 0 ∀i ∈ T. (21)

Associated consistency:
For any (N, v, L) ∈ CS

N ,

φ(N, v, L) = φ(N, v∗φ, L). (22)

Note that φ(N, v, L) = Φ(N, v) if (N, L) is the complete graph.

3 Posets induced by communication networks
3.1 Communication networks and posets

In this subsection, we consider and introduce a subposet of
B(n) := (2N ,⊆) induced by a communication network (N, L).

For a communication network (N, L), the set of all fea-
sible coalitions in (N, L) is denoted by P(N, L). i.e.,

P(N, L) := {S ⊆ N | |S/L| = 1}. (23)

The set P(N, L), together with set inclusion ⊆ as an
order on P(N, L), is called the poset induced by the

communication network (N, L).
Example 3.1 Let N = {1, 2, 3}, La = {12, 13, 23}, Lb =

{13, 23}, and Lc = {12}. Then the posets induced by com-
munication networks (N, La), (N, Lb), and (N, Lc), as shown in
(a) – (c) in Fig. 2, are represented as shown in (a) – (c) in Fig.
3, respectively.

Figure 2: Communication networks on N = {1, 2, 3}.

Figure 3: Posets corresponding to networks in Fig. 2.

Definition 3.1 (Möbius transform on posets)
Let P := (N,≤) be a poset. For a function v : P → R, the
Möbius transform ∆v of v is a function on P satisfying the
following equation:

v(x) =
∑

y≤x

∆v(y) ∀x ∈ P. (24)

Definition 3.2 (representation functions)
The representation function of a communication situation

(N, v, L) is a function v
P on the poset P(N, L) defined by

v
P(S ) = v(S ) for each S ∈ P(N, L). (25)

Then, the Möbius transform ∆v
P of v

P is represented as

∆v
P

(S ) :=
∑

T∈P(N,L)
T⊆S

(−1)|S \T |vP(T ) ∀S ∈ P(N, L). (26)

Conversely,

v
P(S ) :=

∑

T∈P(N,L)
T⊆S

∆v
P

(T ) ∀S ∈ P(N, L). (27)

Definition 3.3 (poset representation) The poset representa-

tion of a communication situation (N, v, L) is the pair
(P(N, L),∆v

P) of the poset induced by (N, v, L) and the Möbius
transform ∆v

P of representation function v
P of (N, v, L).
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4 A new value in communication situations

In this section, we introduce a new value for communication
situations.

4.1 An interpretation of the Shapley value

Now, we consider the case N = {1, 2}; the Shapley value
Φ1(N, v) of player 1 in a game v is obtained, from (13), as

Φ1(N, v) =
1
1
∆v({1}) + 1

2
∆v({1, 2}). (28)

This can be interpreted as an allocation rule of Harsanyi divi-

dends (i.e., the Möbius transform) described as follows:

Allocation rule of Harsanyi dividends : We consider
a process to form the coalition {1, 2}. Then, there are
two shortest paths from ∅ to {1, 2} in Fig. 2. One is
the path ∅ → {1} → {1, 2}; another is the path ∅ →
{2} → {1, 2}. The path ∅ → {1} → {1, 2} can be inter-
preted as follows: Player 1 makes an offer to player

2 for forming the coalition {1, 2}. Player 2 accepts

the offer and adds to the coalition {1} to form the new

coalition {1, 2}. Among these two paths, the only path
that passes through {1} is ∅ → {1} → {1, 2}. That is,
the number of paths from ∅ to {1, 2} is 2, while of
the number of paths via {1} is 1. Then player 1 ob-
tains 1 path

2 paths
of the amount of the Harsanyi dividend

∆v({1, 2}) (i.e., 1
2∆

v({1, 2})). In the same way, player 1
obtains 1

1∆
v({1}) and 0

1∆
v({2}). The Shapley value of

player 1 is obtained as the sum of all these shares.

Figure 4: The Boolean lattice B(2) on N = {1, 2}.

This allocation rule can be extended to the case N = {1, 2, 3}
(Fig. 5).

Figure 5: The Boolean lattice on N = {1, 2, 3}.

Indeed,

Φ1(N, v) =
1
1
∆v({1}) + 1

2
∆v({1, 2}) + 1

2
∆v({1, 3})

+
0
2
∆v({2, 3}) + 2

6
∆v({1, 2, 3}). (29)

For instance, there are six shortest paths from ∅ to {1, 2, 3}.
Among them, two paths pass through {1}, as shown in Fig. 6.

Figure 6: Shortest paths from ∅ to {1, 2, 3}.

4.2 An interpretation of the Myerson value

The Myerson value of (N, v, L) is the Shapley value of the
network-restricted game (vL,N). That is, the Myerson value
is obtained by applying the above allocation rule to Harsanyi
dividends {∆v

L } of v
L. Then ∆v

L is given as follows:

Proposition 4.1 Let (N, v, L) ∈ CS
N be a communication sit-

uation and (B(n),∆v
L) the poset representation of the network-

restricted game (N, vL) associated with (N, v, L). Then,

∆v
L

(S ) =



∆v(S ) if S ∈ P(N, L),

0 otherwise.
(30)

4.3 Criticisms of existing values

Each of the existing values for communication situations, the
Myerson value, the position value, and the Hamiache value,
has been subject to criticisms, as follows.

The Myerson value :

Ψi(N, uS , L) = Ψi(N, uS ,M) =
1
|S | ∀i ∈ N (31)

whenever S is a feasible coalition in both (N, L) and
(N,M). For example, consider the communication
situation with L = {i j ⊆ N | j ∈ N \ i} (i.e., L

is a star with a central player i); then every player
receives the same value (see Example Ψ(N, v, Le) in
Example 5.3).

The position value :

Irrelevant null players often have positive values
(see Example 5.2), where a null player i ∈ N of the
game (N, v) is a player satisfying v(S ∪ i) = v(S ) for
any S ⊆ N.

The Hamiache value :

It is very complex to compute the Hamiache value.
Not only that, associated consistency is rather tech-
nical.
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4.4 A new value in communication situations

In this section, we propose a new value for communication
situations that withstands all these criticisms.

Definition 4.1 (chain, saturated chain) A chain (or a totally

ordered set or linear ordered set) is a poset in which any two
elements are comparative. That is, a subset C of P(N, L) is
called a chain if S ⊆ T or T ⊆ S for any S , T ∈ C. The
chain C of P(N, L) is saturated (or unrefinable) if there does
not exist W ∈ P(N, L) \ C such that S � W � T for some
S , T ∈ C and that C ∪W is a chain.

Definition 4.2 (shortest path) For two feasible coalitions S ,
T ∈ P(N, L), a saturated chainP of P(N, L) is called a shortest

path from S to T if S , T ∈ P and S ⊆ W ⊆ T for any W ∈ P.
Then, we denote the set of all shortest paths from S to T by
{S → T }.

In the following, we propose a new value in communica-
tion situations, based on the interpretation of the Shapley value
mentioned in Subsection 4.1.

Definition 4.3 We now propose a new value σ(N, v, L) of a
communication situation (N, v, L), as follows.

σi(N, v, L) :=
∑

S∈P(N,L)

|{i→ S }|
|{∅ → S }| ∆

v
P

(S ) for each i ∈ N.

(32)

The number |{∅ → S }| of all shortest paths from ∅ to S indi-
cates the number of all processes in which the feasible coali-
tion S is formed. Also, |{i → S }| indicates the number of all
processes in which the feasible coalition S is formed by the
initiator i ∈ N. Then, the player i ∈ N obtains |{i→ S }|

|{∅ → S }| of

the amount of ∆v
P (S ) if ∆v

P (S ) is allocated in proportion to
the frequency with which the player i initiates the formation
of the feasible coalition S . The value proposed here of a given
player i ∈ N is obtained as the sum of all these shares.

Now we show an example that supports the naturalness of
the definition of this value.

Example 4.1 We consider the communication situation
(N, v, L) with N = {1, 2, 3}, L = {13, 23}, and ∆v

P (S ) ≥ 0 for
any S ∈ P(N, L). The valueσi(N, v, L) proposed here of player
i ∈ N is represented as the values of the ammeters Ai in the
electric circuit with current sources IS = ∆

v
P (S ), as shown in

Fig.7.

Figure 7: Electric circuit representing (N, v, L).

Property 1 The value σ proposed here satisfies component-

efficiency, linearity w.r.t. games, independence of irrelevant

players, and positivity.

Property 2 Let (N, uN , L
∗
c) be a communication situation with

L
∗
c
= {c j | j ∈ N \ c}, c ∈ N. Then,

σi(N, uN , L
∗
c
) =



1
2

if i = c,
1

2(n − 1)
otherwise.

(33)

That is, if the communication network (N, L) is a star-graph
with central player c ∈ N, in the unanimity game u N , the cen-
tral player obtains a half of the total amount of u N(N) = 1 and
the rest of the amount are shared out equally among the other
players (see Lb, Le in example 5.3).

However, we have not found any axiomatic characterization
of the value proposed in this paper yet.

5 Comparison of existing values
In this section, we compare the existing four values (the Shap-
ley, Myerson, position, and Hamiache values) and the value
proposed in this paper. Examples 5.1 and 5.2 not only com-
pare them but also illustrate the criticisms against the Shapley,
Myerson, and position values, respectively.

Example 5.1 Consider the communication situation (N, v, L)
with N = {1, 2, 3}, L = {13, 23} ((b) in Fig. 2), and

v(S ) =



0 if |S | ≤ 1
30 if |S | = 2
36 if S = N.

(34)

Then,
Φ(N, v) = (12, 12, 12), Ψ(N, v, L) = (7, 7, 22),
π(N, v, L) = (9, 9, 18), φ(N, v, L) = (9, 9, 18),

σ(N, v, L) = (9, 9, 18).

Example 5.2 Consider the communication situation (N, v, L)
with N = {1, 2, 3}, L = {12, 13, 23} (Ld in Fig. 8), and

v(S ) =


12 if S ⊇ {1, 2}
0 otherwise.

(35)

Then,
Φ(N, v) = (6, 6, 0), Ψ(N, v, L) = (6, 6, 0),
π(N, v, L) = (5, 5, 2), φ(N, v, L) = (6, 6, 0),

σ(N, v, L) = (6, 6, 0).

Example 5.3 Consider communication situations (N, uN , L)
with 2 ≤ |N | ≤ 4, |N/L| = 1 (i.e., (N, L) is connected).
Fig.8 shows all connected graphs (up to isomorphism) with
2 ≤ n ≤ 4 nodes. Then, for any such communication situa-
tions (N, uN , L),

Φi(N, uN , L) = Ψi(N, uN , L) =
1
|N | ∀i ∈ N. (36)

Table 1 shows comparisons of the remaining values (i.e., the
position value π, the Hamiache value φ, and the value σ pro-
posed in this paper), and illustrates that the value σ does not
always coincide with the Hamiache value φ.
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Figure 8: Graphs with at most four nodes.

Table 1: Comparison of existing values.

π φ σ

La ( 1
2 ,

1
2 ) ( 1

2 ,
1
2 ) ( 1

2 ,
1
2 )

Lb ( 1
4 ,

1
2 ,

1
4 ) ( 1

4 ,
1
2 ,

1
4 ) ( 1

4 ,
1
2 ,

1
4 )

Lc ( 1
6 ,

2
6 ,

2
6 ,

1
6 ) ( 1

8 ,
3
8 ,

3
8 ,

1
8 ) ( 1

8 ,
3
8 ,

3
8 ,

1
8 )

Ld ( 1
3 ,

1
3 ,

1
3 ) ( 1

3 ,
1
3 ,

1
3 ) ( 1

3 ,
1
3 ,

1
3 )

Le ( 1
6 ,

1
6 ,

1
6 ,

3
6 ) ( 1

6 ,
1
6 ,

1
6 ,

3
6 ) ( 1

6 ,
1
6 ,

1
6 ,

3
6 )

L f ( 3
12 ,

2
12 ,

2
12 ,

5
12 ) (0.172, 0.190, 0.190, 0.448) ( 2

14 ,
3
14 ,

3
14 ,

6
14 )

Lg ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 )

Lh ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 )

Li ( 13
60 ,

17
60 ,

17
60 ,

13
60 ) ( 3

14 ,
4
14 ,

4
14 ,

3
14 ) ( 2

10 ,
3
10 ,

3
10 ,

2
10 )
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ory of Möbius functions. Z. Wahrscheinlichkeitstheorie und

Verw. Gebiete, 2:340–368, 1964.

[6] K. Fujimoto. Interaction indices with respect to fuzzy measures
(in japanese). Journal of Japan Society of Fuzzy Theory and

Intelligent Informatics, 16(4):303–310, 2004.

[7] K. Fujimoto, I. Kojadinovic, and J.-L. Marichal. Axiomatic
characterizations of probabilistic and cardinal-probabilistic in-
teraction indices. Games and Economic Behavior, 55:72–99,
2006.

[8] J. Harsanyi. A simplified bargaining model for the n-person
cooperative game. International Economic Review, 4:194–220,
1963.

[9] G. Hamiache. A value with incomplete information. Games

and Economic Behaviour, 26:59–78, 1999.

[10] L. Shapley. A value for n-person games. Contribution Theory of

Games, II. Annals of Mathematics Studies, 28:307–317, 1953.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

641


