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Abstract— The indicator of groundwater contamination devel-
oped and used in agriculture is calculated from data available in
the field or data estimated by an expert. The modeling of this indica-
tor generally requires a large number of parameters whose measure
is imprecise. Several information sources provide information about
the same imprecise quantities which have to be combined for defining
what is called an ”indicator of groundwater contamination” (Igro).
This indicator estimates the impact of cultivation practices on the
groundwater contamination.
In this paper, we explore a possibilistic information fusion method by
using the notion of maximal coherent subsets to represent the impre-
cisions of multisource variables of the indicator. We also calculate
the bounds of this indicator, and we propagate imprecision by using
an interval analysis. Finally, we present the indicator’s results for
pesticides applied on different crops.

Keywords— Possibility theory, fuzzy set, fusion, maximal coher-
ent subset, interval analysis, indicator

1 Introduction
Data used in application domains are often imperfect: impre-
cise, uncertain, incoherent... Some data come from informa-
tion sources (database, expert) and others are approximative
measurements. When multiple sources –such as a database,
an expert, a website, a book– deliver information about some
unknown quantity, aggregating this information can be a te-
dious task, especially when information are incoherent. Actu-
ally, there are many approaches to specify the impact of input
parameter imprecision of a model, such as statistical sampling
methods, the Monte-Carlo method [1], and bayesian method.
These methods require either a significant number of data and
a lot of computation time, or an exact definition of the sta-
tistical properties of the input parameters. There exists also
alternative approaches based on fuzzy set and possibility the-
ory [2, 3] to express, in a non-probabilistic sense, imprecision
of parameters. Each approach represents parameters impreci-
sion in a specific way. When, we need to aggregate data from
multiple sources, fuzzy approaches show more flexibility in
the treatment of incoherent information. Recently, Destercke
et al [4] explored a possibilistic information fusion using the
notion of maximal coherent subsets to synthesize information
from several incoherent data. In this paper, we will use this
method to synthesize an information from several information
sources to calculate variables used in indicator assessment.
An indicator measures a certain aspect of the agrosystem. It
is proposed to help farmers to improve the environmental sus-

tainability of their agricultural practices and to reduce the pol-
lution of environment such as indicator of groundwater con-
tamination Igro. It estimates the possibility for a pesticide to
reach groundwater through leaching. The modeling and the
assessment of an indicator generally require a large number of
parameters whose measure is imprecise such as the variable
”soil depth”, that indicates how thick the soil cover is. Multi-
ple sources provide information about the imprecise quantities
which compose the indicator Igro, for example, pesticide char-
acteristics such as pesticide half-life DT50. The calculation
of Igro is based on a system of decision rules using fuzzy sets
[5]. Authors in [5] do not take into account the imprecision in
parameters of the indicator.
In this paper, we present an original work that, at our knowl-
edge, has not been carried out until now. We propose here an
analysis of imprecision of the indicator, especially variables
used and their nature. We are interested in imprecision of pa-
rameters provided by several sources. Then, we use impreci-
sion for evaluating the amplitude and the effect of imprecision
on the value of the indicator Igro. Firstly, we change the input
values of variables in the process of calculation. Then, we use
intervals of values in place of single values of input variables
in the calculation process of the indicator Igro. We also ex-
plore a fusion method, using the notion of maximal coherent
subset, for summarizing information about the quantity given
by several sources [4]. Finally, we calculate a variation inter-
val for the indicator Igro given by the input intervals of the
variables.
The paper is divided as follows: the first section presents the
indicator of groundwater contamination Igro, its definition,
structure and data used. Theoretical preliminaries are intro-
duced in the third section. Then, the fourth section describes
the fusion method used and the way how maximal coherent
subsets can be used to obtain intervals of the imprecise vari-
ables; we also explore a way to compute the lower and upper
bounds of the indicator. Then, the fifth section presents the
indicator of groundwater contamination, its definition and its
structure. Finally, the sixth section shows the results of the
indicator for four pesticides applied in different crops.

2 Application description

In this section, we define the indicator Igro, its structure and
data used in the process of calculation.
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2.1 The risk of groundwater contamination Igro

2.1.1 Definition and data used
The indicator module Igro reflects the potential of a pesticide
to reach groundwater through leaching and to affect its poten-
tial use as a source of drinking water. Igro as proposed by Van
der Werf and Zimmer [5] depends on four input variables : (1)
pesticide leaching potential (GUS); (2) position ; (3) leach-
ing risk, and (4) toxicity of the pesticide for humans (based
on Acceptable Daily Intake). Table 1 shows variables used to
calculate Igro.

Table 1: All variables for the Igro and their description.
Variables Description
Pesticide characteristics (quantitative variables)
GUS pesticide leaching potential
DT50 pesticide half-life
koc organic-carbon partition
ADI Acceptable Daily Intake
Environmental characteristics (qualitative variables)
Leaching risk Quantity leaching
Application characteristics (quantitative variables)
Position Position of application

Variable ”pesticide leaching potential” (GUS) provides an es-
timation of the risk of leaching of the compound. This poten-
tiel is calculated by the formula:

GUS = log(DT50) ∗ (4 − log(koc)) (1)

where variable DT50 is the pesticide half-life and ”koc” is the
organic-carbone partition coefficient.
Variable DT50 is the time required for the pesticide concen-
tration under defined conditions to decrease to 50% of the
amount in application. Variable ”koc” is the organic-carbon
constant that describes the tendency of a pesticide to bind to
soil particles. Variable ”position” is the position of application
of the pesticide (on the crop, on the soil, in the soil). This posi-
tion is the interception rate of active ingredient per leaf area of
studied culture. It is obtained from variable ”soil cover”. Vari-
able ”soil cover” is a value thats depends on the leaf surface
of the culture. The variation of ”soil cover” over time is fixed.
Then, the position depends on the date of application by the
farmer. The variable ”leaching risk” depends on characteris-
tics of the soil. In Igro, the estimation of soil ”leaching risk” is
given by experts on a scale between 0 (minor leaching risk)
and 1 (major leaching risk). The ”position” and ”leaching
risk” take values between 0 and 1. The variable ”Acceptable
Daily Intake” (ADI) reflects chronic toxicity from humans.
The pesticide properties (DT50, koc, and ADI) are given by
several heterogeneous information sources such as Agritox
(database, France), RIVM (database, Netherlands), Pesticide
Manual (book, england), Dabene (expert, France), etc . . . . For
each pesticide, these infomation sources give fuzzy intervals
for each characteristic. Let us consider the following example:
Three sources (Pesticide manuel: a book, Agritox: a database,
Dabene: an expert) provide information, about the variable
”DT50” (pesticide half-life) of ”Igro”, in term of two intervals
Int1 and Int2. The information is summarized in Table 2 and
represented on Figure 1. The interval Int2 represents the most
plausible values for the variable DT50.

Table 2: Example information from sources
Source Int1 Int2
Dabene [10,42] [20,35]
Agritox [46,53] 50
Pesticide Manual [21,56] [35,40]

Figure 1: An example of values of DT50 given by sources,
α-cut with α = 0.4 and the support of data given by Dabene

2.1.2 The structure of the indicator of groundwater
contamination Igro

The indicator of groundwater contamination Igro is calculated
on a scale between 0 (maximal risk) and 10 (minimal risk).
These values are calculated according to fuzzy if-then rules
and to the degree of membership of the input variables to fuzzy
subsets. The mechanism is explained below.

To calculate the indicator Igro, we need to aggregate ex-
pertise knowledge and variables heterogeneous (qualitatives
and quantitatives), authors in [5] are used fuzzy control [6] for
achieving this two goals. For all input variables, two fuzzy
subsets F (Favourable, i.e. the sets of values giving rise to ac-
ceptable environmental effect) and U (Unfavourable, i.e. the
set of values giving rise to unacceptable environmental effect)
are defined. Table 3 shows favourable and unfavourable limits
for input variables of Igro, which are extracted from literature
or based on human expert knowledge.

Table 3: Favourable and unfavourable limits of input variables
Variable Favourable limit Unfavourable limit
DT50 1 30
GUS 1.8 2.8
ADI 1 10−4

Position 1 0
Leaching risk 0 1

For each class (favourable, unfavourable, and transition in-
terval which corresponds to values between favourable and
unfavourable limits ), we have defined a membership func-
tion on knowledge of experts.
The membership of values of input variables takes any value
in the interval [0,1]. The value 0 represents complete non-
membership and the value 1 represents complete membership.
Values between 0 and 1 are used to represent partial member-
ship. The membership function is defined in such a way that
the value of an input variable either belongs fully to one of the
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two fuzzy subsets (favourable, unfavourable), or partially to
both. In the latter case, the value is within a transition inter-
val. We used membership functions that are sinus shaped in
the transition interval, as they provide smoother variations of
the output values than membership functions that are linear in
the transition interval [5].
For example, experts classify the leaching potential GUS into
three classes. They affect pesticides classified as ”leacher”
(i.e. GUS > 2.8 or called unfavourable subset) a membership
value of 1 for the fuzzy subset U and membership value of
0 for the fuzzy subset F. Pesticides classified as ”no-leacher”
(GUS < 1.8 or called favourable subset) are given a member-
ship value of 0 for the subset U and a membership value of
1 for the fuzzy subset F. The class of borderline compounds
(1.8 < GUS < 2.8) falls within a transition interval where
the membership value for F decreases from 1 (GUS = 1.8)
to 0 (GUS= 2.8), and the membership value of U increases
from 0 to 1 (see Fig. 2). The favourable (respectively un-
favourable) membership function ”F-Function” (respectively
”U-Function”) of GUS is the degree for GUS to be in the
favourable subset (respectively unfavourable subset). We have
also ”U-Function” = 1 - ”F-Function”. The function of subset
favourable of GUS is 0.5 + 0.5 cos(π(GUS − 1.8)). If vari-
able GUS has a value of 2.5, then ”F-Function” = 0.16 and
”U-Function” = 0.84.

Figure 2: F-Function and U-Function function of variable
GUS

The calculations are carried out according to a set of if-then
rules. The experts attribute values between 0 and 10 for each
rule.They consider firstly –what determines the leaching– the
properties of organic matter (molecule), so they use variable
GUS. If the variable GUS is favourable (GUS < 1.8), then
there is no problem. The molecule does not present the char-
acteristics of leaching. If variable GUS is unfavourable (GUS
> 2.8), the experts are interested in the other variables of indi-
cator. When a molecule is able to leach, it is able to reach the
soil. Then, the experts use variable ”position” of application.
If the variable ”position” is favourable, experts set a value to
9 for indicating the risk of leaching, but it is not too impor-
tant. Then the environment is taken into account through the
variable ”leaching risk” (is the molecule leaching or not?, is
the soil sensitive to the leaching?) and, finally they set on the
variable ”ADI”.
Fig. 3 shows the if-then rules of Igro. For example, if all in-
put variables of Igro are F then conclusion is 10. If all input
variables of Igro are U then conclusion is 0.

For each rule, we obtain the truth value by applying the
minimum operator on the set of membership of the rule. For
the first rule, if all input variables are F, the memberships of

Figure 3: If-then rules of the indicator Igro (Igro has 24 = 16
rules)

four input variables are fi for each variable, then the truth
value is ω1 = mini=1,...,4(fi). The final score of the indicator
is the average of rule conclusions weighted by their values of
truth

Igro =
∑16

i=1
ωisi∑16

i=1
ωi

3 Preliminaries
3.1 Problem statement

In this paper, we consider the indicator of groundwater con-
tamination Igro, which depends on parameters: GUS, DT50,
”koc”, ADI, ”leaching risk” and ”position”. It is calculated by
Van der Werf and others in [5] as Igro =

∑16
i=1 ωisi∑16

i=1 ωi
, where ωi

depends of variables of Igro, and si ∈ [0, 10].
We are interested here in multisource variable DT50, koc,
ADI. Assume that the set of n information sources provide n
fuzzy intervals about these variables (see Table 2). We have to
search the most plausible values to calculate the indicator. We
use here the support of fuzzy interval (α-cut with α = 0 i.e.
the interval Int1 in Table 2). We use the notion of maximal
coherent subset into a possibilistic fusion to synthesize a final
result for multisource variables. These results combined with
values of others variables will be used to compute the bounds
(lower and upper) of the indicator Igro.
In this paper, ∀x ∈ R, x− and x+ represent the lower and
upper bounds of interval where x can vary.

3.2 Possibility theory, fuzzy sets

In this section, we briefly summarize basic concepts of possi-
bility theory, which are needed for understanding this paper.
Fuzzy sets were firstly introduced by Zadeh [2] as a possible
way to handle uncertainty in processing incertain or imprecise
data, and to control expert knowledge. This theory allows the
notion of graduation to express whether an element belongs to
a set (For more details, see[2, 3, 7]).

3.2.1 Possibility theory
Possibility theory was introduced in 1978, in connection with
fuzzy set theory, to allow reasoning to be carried out on impre-
cise or vague knowledge, making it possible to deal with un-
certainties on knowledge [3, 8]. The basic tool of possibility
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theory is possibility distribution. A possibility distribution is
equivalent to the definition of a normalized fuzzy membership
function. We are interested in this theory, in this paper, be-
cause we need to synthesize information of a variables which
come from various sources. When we want to synthetize the
value of a variable (i.e. approximate the value of the variable
depending a set of a different sources (This process is called
”information fusion” (see here after). In such a situation, pos-
sibility theory can be used to handle this kind of problems.
This theory presents many choices of fusion operators in dif-
ferent contexts.

3.3 Information fusion

Definition 1 Information fusion consists of merging, or ex-
ploiting conjointly, several sources of information for answer-
ing questions of interest and make proper decisions.

A large set of information fusion operators has been designed
in the possibility theory framework [3]. They can be split into
three subsets, according to the behavior of operators:

• Conjunctive type operators: it is the equivalent of a set
intersection. It makes the assumption that all sources are
reliable (i.e. all sources give information with high con-
fidence), and usually results in very precise information.
If there is an incoherence between variable values (i.e.
detected by domain expert), then the result of the con-
junction becomes poorly reliable, or even empty.

• Disjunctive type operators: it is the equivalent to a set
union. It makes the assumption that at least one source
is reliable. The result of a disjunctive operator can be
considered as very reliable.

• Trade-off type operators: they are compromise operators
between conjunctive and disjunctive operators. They are
typically used when sources are partially conflicting (i.e.
in contradiction). As its name indicates, such an operator
tries to make a trade-off between disjunction and con-
junction for achieving a good balance between informa-
tiveness and reliability.

4 Methodology
4.1 Fusion based on maximal coherent subsets to assess

imprecision of multi-source variables

Information sources which supply the information about im-
precise variables (DT50, koc, ADI) are heterogeneous (book,
expert, database). They come from different places (France,
USA, Netherlands), then the type of soil, weather and labo-
ratory conditions are not similar. Furthermore, we ignore the
reliability of sources (they do not supply a degree of confi-
dence with the value). They provide data in term of a fuzzy
interval (or fuzzy number). Also, no information about con-
flict and relations between sources is available. Then, we can
not use a conjunctive rule (respectively disjunctive and com-
promise rule). We need a fusion method which take into ac-
count all information given by sources (i.e. without discarding
any source). The notion of maximal coherent subset is a nat-
ural way for achieving this goal. The fusion method using
the notion of maximal coherent subset consists firstly inn ap-
plying a conjunctive operator into each non-conflicting subset

of sources, then a disjunctive operator between those partial
results. With such a method, as much precision as possible is
gained when we do not ignore any sources [9, 10]. We will ex-
plain in details how this approach applies to support of fuzzy
intervals of variables of Igro (see the section 4.3).

4.2 Computing maximal coherent subsets of intervals

In this section, we describe how we can obtain values of mul-
tisource variable using the fusion method based on maximal
coherent subset of intervals, which are give by information
sources. Let us consider n intervals, Ii = [ai, bi], (i =
1, . . . , n). This method allows to find every maximal subsets
of sources. A maximal subset is obtained when

⋂
i∈[n]

Ii 	=
∅, where [n] represents the set of 2n subsets of the set
{1, . . . , n}. Then, we apply the union of these partial results
(i.e.

⋃
j

⋂
i∈[n]

Ii).
Algorithm 1: Maximal coherent subset of intervals
Input: n intervals
Output: List of m maximal coherent subsets Ij

List=∅;j = 1;Ij = ∅;
Order in an increasing order
{ai, i = 1, . . . , n} ∪ {bi, i = 1, . . . , n};
Rename them {ci, i = 1, . . . , 2n}with type(i) = a

if ci = ak and type(i) = b if ci = bk;
for i = 1 to 2n − 1 do

if type(i) = a then
Add source k to Ij t.q. ci = ak;
if type(i + 1) = bthen

Add k to List (Ij);
j = j + 1;

else
Remove source k from Ij such as ci = bk;

Algorithm 1, that finds maximal coherent subsets, was in-
troduced by Dubois and others in [11]. The algorithm 1 is
linear in the number of intervals, and thus computationally ef-
ficient. The algorithm is based on an increasing sorting of the
interval end-points into a sequence (ci)i=1,...,2n. Each time
and only then, an element ci of type upper bound which is an
upper bound of an interval, followed by an element ci+1 of
type lower bound wich is a lower bound of an interval meet, a
maximally coherent set is obtained.

4.3 Example of application

We consider the variable DT50 (pesticide half-life) provided
by three information sources (see Table 2): a French expert
(Dabene), a French database (Agritox), and an England book
(Pesticide Manual).
Using algorithm 1 on the level α = 0 (i.e. the support Int1
of fuzzy intervals in Table 2), we find two maximal coher-
ent subsets K1 = {Dabene, Pesticide Manual} and K2 =
{Agritox, Pesticide Manual}. After applying the maximal co-
herent subset method, the result of the variable DT50 is:
(Dabene ∩ Pesticide Manual) ∪ (Agritox ∩ Pesticide Manual)
= [21,42] ∪ [46,53].

4.4 Computation method to the fuzzy weighted average

The objective of this section is to compute the bounds of the
indicator Igro. The function f(s1, s2, . . . , sn, ω1, . . . , ωn) =
∑ n

i=1 ωisi∑ n
i=1 ωi

, where ωi is a fuzzy interval and si ∈ R, is called
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fuzzy weighted average by Dong and Wong [12]. Authors in
[12] proposed an algorithm to compute the fuzzy weighted av-
erage. Their algorithm is based on the α-cut representation of
fuzzy sets and combinatorial interval analysis. Subsequently,
Liou and Wang [13] suggested an improved fuzzy weighted
average algorithm to simplify the computational process. Af-
terwards, Lee and Park [14] have proposed an even more ef-
ficient algorithm for fuzzy weighted average by reducing the
number of arithmetic operations to O(n log n). The main idea
of Lee and Park in [14] is to sort the si variables such as for
all i < j, we have si ≤ sj . In this order, we can find a rank
k with 1 < k < n such as for all i ≤ k, the function f is
decreasing with respect to ωi, and for all i > k, the function
f is increasing with respect to ωi. Then, we can compute the
lower and the upper bounds of the fuzzy weighted average in
accordance with [15],which are bounds of Igro, as:

f−
k =

∑k
j=1

(ωj)+.sj +
∑n

j=k+1
(ωj)−.sj∑k

j=1
(ωj)+ +

∑n
j=k+1

(ωj)−
(2)

f+

k =

∑k
j=1

(ωj)−.sj +
∑n

j=k+1
(ωj)+.sj∑k

j=1
(ωj)− +

∑n
j=i+1

(ωk)+
(3)

Where ω−
i and ω+

i are respectively the lower and upper
bounds of ωi. The equation (2) (respectively (3)) represent the
lower (upper) bound of the level k and k = 1, . . . , n. Then, we
determinate the fuzzy interval of indicator such as introduced
by Fortin and others in [15]:

[ min
k=1,...,n

(f−
k ), max

k=1,...,n
(f+

k )] (4)

5 Results
In this application when computing Igro, about fifteen in-
formation sources are used such as ARS (USA), Agritox
(France), Pesticide manual (England)... These sources provide
information based on a fuzzy interval or on a fuzzy number. In
this paper, we use the support of fuzzy intervals given by the
sources. The decision rules do not change. For each variable,
we replace the input value by an input interval. We propagate
the imprecision into computation indicator to calculate a fuzzy
interval of indicator. For a pesticide application, an indicator
of groundwater contamination score is calculated.
The application considers the indicator of groundwater con-
tamination Igro in several sites with different crops. The po-
sitions of application of pesticides is shown in Table 4. Its

value is calculated as: ”position =soil coverd by the crop
100

”.
The ”soil covered” by the crop is estimated by the user of the
systems [16]. The variable ”leaching risk” set the value of 0.9
[16].

Table 4: Values of the variables of application condition
Pesticide name Position soil covered
Chloridazone 0.9 90
Glyphosate 0.75 75
Nicosulfuron 0.1 10
Isoproturon 0.1 10

Pesticide properties (DT50, koc, and ADI) given by several

information source are calculated by fusion based on maxi-
mal coherent subsets. Table 5 shows the results of pesticide
characteristics. The values shown in Table 5 are convexified
to simplify the calculation. By using the interval analysis [17]
and the equation 1, we compute the fuzzy interval of variable
GUS, such as:

GUS− = log(DT50−) × (4 − log(koc+)) (5)

GUS+ = log(DT50+) × (4 − log(koc−)) (6)

where ([DT50−,DT50+]) and ([koc−,koc+]) are fuzzy in-
tervals of variables DT50 and Koc.

Table 5: Results of pesticide characteristics
Pesticide name GUS DT50 koc ADI
Chloridazone [2.53,3.19] [21,46] 120 0.025
Glyphosate [0.73,2.97] [18,47] [167,2640] 0.3
Nicosulfuron [2.78,5.39] [15,43] [5,43] 0.4
Isoproturon [2.68,3.03] [22,28] [80,99.99] 0.4

Afterwards, we compute the membership intervals of input
variables of indicator. For each input variable that varies in
[a, b] and has a membership function f , we compute the mem-
bership interval by using the function:

f([a, b]) =

{
[f(a), f(b)] if f is increasing
[f(b), f(a)] if f is decreasing

(7)

Then, we calculate the truth intervals of the sixteen de-
cision rules of Igro. These truth intervals can be com-
puted by minimum extension applied on intervals such as
min([a, b], [c, d]) = [min(a, c), min(b, d)]. Then, we use the
equations (2) and (3) to compute respectively the lower and
upper bounds of indicator for the sixteen α-cuts established
by the fuzzy input membership intervals. Finally, we obtain
the final interval of indicator by the equation (4).
The Table 6 shows the results of Igro for different pesticides.
The fuzzy interval in Table 6 represent the exact interval when
the indicator is varying. It represents also the support, of the
fuzzy interval of the indicator Igro, that can obtain from all
fuzzy intervals of input variables.

Table 6: Results of indicator
Pesticide name Interval of Igro

Chloridazone [4.3,9.82]
Glyphosate [0,10]
Nicosulfuron [4.42, 4.45]
Isoproturon [4.42,5.27]

The results presented in Table 6 show a lot of impreci-
sion in some cases. We take example of the organic mat-
ter ”glyphosate”: the indicator obtained by application of
glyphosate on the soil varies between 0 and 10. This impreci-
sion is due to the variable GUS –which varies in [0.73,2.97]–
that reach limits fixed by experts in Table 3 (i.e (lower limit) <
(favourable limit), and (upper limit) > (unfavourable limit)).
We note that the indicator varies in [0,10], when we have one
of the input variables has a lower (respectively upper) limit
exceeds favourable (respectively unfavourable) limit. In the

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

711



calculation of only one value of indicator Igro [5], the role of
the variable GUS is more important than the role of others
variables. In this paper, all variables have the same influence
in the final result.

6 Discussion and conclusions
In this paper, we introduced the calculus of the indicator of
groundwater contamination Igro. We try to control the im-
precisions of input variables by using a possibilistic fusion
method based on the maximal coherent subsets. Then, we
use the notion of interval analysis to propagate the impreci-
sion in the process of calculus of indicator. A fusion method
for merging fuzzy subsets, based on the notion of maximal co-
herent subsets, is proposed to represent the imprecision of in-
put parameters of the indicator of groundwater contamination.
This notion appears as a very natural way to conciliate two ob-
jectives, gaining information and considering all the conflicts
between sources. The method of fusion is simple: it can be
applied without any additional information, and its computa-
tional complexity remains affordable. The way is summarizes
information is conceptually attractive: maximal coherent sub-
sets are the best we can do in the presence of conflict.
We have also described a way to calculate the bounds of in-
dicator. The method of fuzzy interval arithmetic used in this
paper is also simple. The support of the fuzzy number of in-
tervals is calculated. Also, we can calculate the membership
function of indicators by computing several values of α-cut
of input variables. This method allows to obtain exact fuzzy
profiles of indicator with reducing time complexity as in the
sampling case. It still remains to validate the fusion method
using the notion of maximal coherent subset in contrast with
other fusion rules. We have to calculate the fuzzy interval for
all α-cut to obtain the distribution of Igro. We plane to use the
methodology described in this paper (representing by fuzzy
intervals the imprecision and propagating this imprecision by
interval analysis) to calculate other indicators such as indicator
of pesticide in environment which has a process of calculation
similar to process of Igro.
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