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Abstract—This paper aims at applying a fuzzy arithmetic of 

intervals calculus and fuzzy quantities to automatic control. This 

one called ϕ–calculus fuzzy arithmetic is more practical than the 

extension principle one and �-cut based methods. It comes from a 

different representation of fuzzy numbers. The present paper 

follows up work in introducing. The present paper is interested in 

its use for a fuzzy internal model control scheme based. 
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1 Introduction 
The fuzzy set theory elaborated by L.A. Zadeh [1] has been 

shown to be used in the characterization of fuzziness and/or 

uncertainty using a coherent mathematical model. Various 

applications came at hand, in particular in the fuzzy control 

area [2, 3]. The uncertain calculus was undergoing quite a 

boom these last years. Several works exhibit interesting 

results, often referring to intervals theory [4, 5] or arithmetic 

based on fuzzy numbers such as Triangular or Trapezoidal 

Fuzzy Numbers [6, 7]. In the fuzzy arithmetic case, the 

different approaches are generally based either on Zadeh’s 

extension principle [1, 6], either on fuzzy relation [8], or 

finally use the �-cuts [9]. However, no general approach 

allowing common arithmetic operations to be used on fuzzy 

numbers is available. This work proposes the use of a so-

called �–calculus fuzzy arithmetic based on a “different” 

modeling of fuzzy numbers [10, 11]. For this algebra, the 

modeling of fuzzy numbers is considered through the 

distribution function instead of the classical membership 

function. The first part presents some generalities on this �–

calculus arithmetic.  

 

One of the main interests of this algebra is to provide some 

nice properties for what is called “exact calculus” with fuzzy 

numbers. These properties can be used in order to invert a 

fuzzy model. Therefore, the second part presents a possible 

application in control to fuzzy internal model control 

scheme. 

2 Fuzzy arithmetic: �-calculus 
In the literature, many modeling approaches of imprecision, 

which is involved in many applications and domains, use 

fuzzy numbers and fuzzy arithmetic. In many works, the 

methods have led to the development of various membership 

functions for representing fuzzy numbers. Fuzzy numbers are 

often represented in applications by LR fuzzy sets and in 

particular, triangular and trapezoidal fuzzy sets. There exist 

two approaches for fuzzy arithmetic, on one hand the 

Zadeh’s extension principle, on the other hand, the alpha-

cuts and intervals arithmetic. Our works concern the first 

case, using a new modeling for fuzzy numbers [11], and it 

allows including a large part of the results existing in the 

domain of arithmetic [4, 6, 8, 12]. 

 

2.1 Fuzzy numbers modeling 

Usually, a fuzzy number is modeled by its membership 

function 
aµ �  not null on a bounded set ( )Supp a ⊂� � . For 

example, a triangular fuzzy number (TFN) a�  can be 

represented by the shorthand symbol ( ), ,b m c  with ( ) 1a xµ =�  

for x m=  (mode) and the kernel defined by the interval 

[ ],m b m c− + . 

 

Herein, instead of the classical membership function, the 

modeling used for the representation of fuzzy numbers is 

based on the distribution function a
ϕ�  defined by the 

following expression: 

           ( )
( )

( )

x

a

a

a

t dt

x

t dt

µ

ϕ

µ

−∞

+∞

−∞

⋅

=

⋅

�

�
�  (1) 

 

Convergence of ( )a t dtµ
+∞

−∞

⋅�  (finite cardinality of a� ) is 

assumed by considering only membership functions on a 

compact support I ⊂ � . Thus, the major interest is that the 

distribution function for all fuzzy number a�  is always an 

increasing monotone function, from ( )Supp a�  to [ ]0,1 . Thus, 

an inverse function 
1

a
ϕ−
�  from [ ]0,1  to [ ]( ) ,Supp a a a=�  can 

always be defined and its definition is very important for the 

operations. The set of fuzzy numbers represented by a 

distribution function is noted Φ . 

 

It should be noticed that the distribution function for a 

singleton is also a singleton and the one for an interval is a 

line between its bounds. 
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2.2 Fuzzy realization and extension 

Similarly to defuzzification and fuzzification concepts, it is 

necessary to define a relation between a crisp value and a 

fuzzy number. Therefore, an application from Φ  to � , 

which associates a crisp number to a fuzzy number, is called 

fuzzy realization. Conversely, an application from �  to Φ  

is called fuzzy extension. 

 

The choice of a realization depends obviously on the 

application. The most frequently encountered are: 

- The median realisation noted ( )med
R a� , it associates to 

a distribution function 
a

ϕ �  the number 
0

a  such as 

( )0
0.5

a
aϕ =� . Through this median realization, the 

following equivalence relation ℜ  in Φ  can be 

defined: the set of the functions 
a

ϕ �  such as 

( )0
0.5

a
aϕ =�  defines the class of equivalence of 

0
a ∈� . Every element of this class will be called 

“fuzzy 
0

a ”, and denoted  
0

a� .  

- The modal realisation noted ( )mod
R a�  is defined as: 

( ) ( ) ( )0 mod 0
1

a a
x a

a R a a Max xϕ µ
∈

= ⇔ = =� �� �� ��
� .  

- The mean realization noted ( )mean
R a�  is defined as: 

( ) ( )
1

1

0

0

.mean aa R a y dyϕ −= = � �� . 

2.3 arithmetic operations 

Consider two fuzzy numbers a�  and b�  using their 

distribution 
a

ϕ �  and 
b

ϕ � . For a fuzzy number a�  whose 

support includes 0 let us also define its “negative” 
a

ϕ �  and 

“positive” 
a

ϕ �  parts as 
a a a

ϕ ϕ ϕ= +� � �  with: 

( ) ( )

0 if 

if [ ,0]

1 if 0

a a

x a

x x x a

x

ϕ ϕ

<�
�

= ∈�
� >	

� � ,        (2) 

( ) ( )

0 if 0

if [0, ]

1 if 

aa

x

x x x a

x a

ϕ ϕ

<�
�

= ∈�
� >	

��         (3) 

 

The classical arithmetic operations on fuzzy numbers 

(addition a b+ �� , pseudo-opposite a− � , subtraction a b− �� , 

multiplication a b× �� , pseudo-inverse only for a non mixed-

type fuzzy number 1
1b b

− =� �  and division a b��  ) are defined 

hereinafter [9].  

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

1

1

1 1 1

1 1 1

1 1 1

1 1
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1 1
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aa b b
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x x x
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ϕ ϕ
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−

− − −
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− − −
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− − −
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− −
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= − − ∀ ∈

= +

= +

= − ∀ ∈

=

� ���

� �

� ���

� � �� � �

��

� �� �

�

�

       (4) 

with 1 1 1 1 1min ,
a aa b bb

ϕ ϕ ϕ ϕ ϕ− − − − −

×
� �= × ×� �� �� � ��  and 

1 1 1 1 1max ,
a aba b b

ϕ ϕ ϕ ϕ ϕ− − − − −

×
� �= × ×� ���� � ��

.
 

 

Let us notice that these four classical operations are 

compatible with the Moore’s interval operations. 

 

2.4 Weighted fuzzy fusion operator 

This part deals with a fusion operator introduced within the 

framework of this Φ -calculus algebra. This operator is 

called the weighted fuzzy fusion (WFF) [13] and is useful for 

the next sections. 

 

Consider two fuzzy numbers ,a b ∈ Φ��  and their distribution 

[ ], : 0,1
a b

x yϕ ϕ ∈ → ∈�� � . The weighted fuzzy fusion 

(WFF) of the two fuzzy numbers is defined as: 

           ( )
( ) ( )

,   
a a b b

WFF

a b

p x p x
x x

p p

ϕ ϕ
ϕ

⋅ + ⋅
= ∀ ∈

+

� �� �

��

�   (5) 

 with ,
a b

p p ∈�� �  and 1
a b

p p+ =�� . 

 

3 Internal model control 

3.1 Principle of the structure 

As with any open-loop control scheme, the internal model 

control (IMC) structure applies only on stable systems with a 

minimum phase behavior, according to Fig. 1.  

 

�������
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Figure 1: Internal model control scheme. 

The filter F  is introduced in order to filter out the 

measurement noise and to introduce some robustness in the 

loop. Its static gain is 1 . Classically for linear models, it can 

be shown that the output equation 
k

y  (Fig. 1) is given by: 

          ( ) ( )1 1

kk FB sp yd ky F q y S q d
− −= ⋅ + ⋅  (6) 

 

with: 

( )
( ) ( )

( ) ( ) ( ) ( )

1 1

1

1 1 1 11
FB

m

G q C q
F q

C q F q G q G q

− −

−

− − − −
=

� �+ −� �
 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1

1 1 1 1

1

1

m

yd

m

G q C q F q
S q

C q F q G q G q

− − −

−

− − − −

−
=

� �+ −� �
 

 

and the control law equation is given by: 
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( )

( ) ( ) ( )
( )( )

1

1

1 1 11
kk c k

m

C q
u y F q y

C q F q G q

−

−

− − −
= −

−
 (7) 

 

The minimum purpose of the internal model structure is to 

guarantee closed-loop stability and disturbance rejection, i.e. 

( )1 1
FB

F =  and ( )1 0
yd

S = . 

 

Recall also that the internal model control performs a kind of 

model simplification. Therefore its extension to fuzzy 

internal control needs the definition of an inverse model. The 

next part treats this issue.  

 

3.2 Model inversion 

 

Let us consider a stable time-invariant controllable SISO 

linear process model whose mathematical description is 

given in the form of recurrent equation: 

          ( )
1

N

k i k i i k i

i

y a y b u− −
=

= − ⋅ + ⋅
  (8) 

where 
k

y  and 
k

u  correspond to the process output and input 

at sample k , { }, , 1, ,
i i

a b i N∈ � , denote the model 

parameters. 

Suppose now that these parameters are fuzzy numbers, 

{ }, , 1, ,
i i

a b i N∈�� �  leading to: 

          ( )
1

N

k i k i i k i

i

y a y b u− −
=

= − ⋅ + ⋅
 ��  (9) 

For model inversion, the following question arises [14]:  

knowing the description of uncertainties for the model, is 

it possible to synthesize a controller, based on the inverse 

model, able to maintain the model output within a tolerance 

envelope around the exact trajectory 
sp

y ?  

Which means: 

          Model output ,sp spy y� �∈ − ∆ + ∆� �  (10) 

where ∆  is the accepted tolerance around the nominal 

trajectory. 

To answer to this question, this work will use an approach 

developed in [14]. Notice that the “fuzzy” part of the 

uncertainties is not really taken into account, i.e. this 

problem could be solved using interval techniques, for 

example [15, 16, 17]. Nevertheless, the arithmetic provided 

therein gives an “easy” way to solve non exact calculus by 

means of probability distribution. 

To compute the control law 
k

u  at sample k , the terms 

defined at previous samples { }1
, 1, ,

k
y i N− = �  and 

{ }1
, 1, ,

k
u i N− = �  are known. As 

1
0b ≠ , equation (6) can 

be rewritten as: 

     ( ) ( )1 1 1

1 21

1 N N

k k i k i i k i

i i

u y a y b u
b

+ − + − +

= =

� �
= + ⋅ − ⋅ �

� �

 
  (11) 

Or, considering the unknown term at sample k , 
1k

y + , 

expression (9) can be rewritten as follow: 

        ( )( )( )1

1

1
k ku y z k

b
ψ+= +  (12) 

with  

( )( ) 1 1

1 2

N N

i k i i k i

i i

z k a y b uψ − + − +
= =

= ⋅ − ⋅
 
  and 

( ) [ ] 2 1

1 1 1

T N

k k N k k N
z k y y u u −

− + − − += ∈� � � . 

For a linear model without time delay, if 
1k

y +  is replaced 

with the desired reference trajectory the ideal result is: 

1 kk spy y+ = . Therefore, with a perfect compensation, the 

model output follows the desired trajectory with a pure time 

delay corresponding to one sample. 

Going back to the question (cf. (10)), we want to guarantee 

that 1 1 1,k k ky y y+ + +
� �∈ � � . With equations (11)  and (12), for a 

fuzzy model (9), we have straightforwardly: 

       ( )( )( )1

1

1
k ku y z k

b
ψ+= + �� � ��           (13) 

( )( ) 1 1

1 2

N N

i k i i k i

i i

z k a y b uψ − + − +
= =

= ⋅ − ⋅
 
 �� � � ��  and 

( ) [ ] 2 1

1 1 1

T N

k k N k k N
z k y y u u −

− + − − += ∈� � � �� � � � . 

Equation (13) gives a model inversion description using 

fuzzy numbers. The term 
1k

y +
�  is replaced with a desired 

trajectory defined by a fuzzy number 
kspy�  to obtain a causal 

control law. For example, if 
kspy�  is a triangular fuzzy 

number (TFN) written as:  

       ( ), ,
ksp sp sp spy triple y y y= − ∆ + ∆�        (14) 

the control law is: 

       ( )( )( )
1

1
kk spu y z k

b
ψ= + �� � ��           (15) 

( )( ) 1 1

1 2
k

N N

i sp i i k i

i i

z k a y b uψ − + − +
= =

= ⋅ − ⋅
 
 �� � � ��  and 

( ) 2 1

1 1 1k k

T
N

sp sp N k k Nz k y y u u
−

− + − − +
� �= ∈� �� � � �� � � � . 

Of course, the vector ( )z k�  depends on the control part 

meaning that all 
i

y�  are replaced with desired set point 
ispy�  

which corresponds to the schematic diagram of Fig. 2. 

 

M�1
M

−�
ksp

y�
ku� k

y�

 
 

Figure 2: Fuzzy model inversion. 

Naturally, perfect cancellation, i.e. 1 kk spy y+ =� �  is not 

possible. Moreover using arithmetic of fuzzy numbers, or 

intervals or ϕ–calculus will introduce over-estimations. To 

illustrate this important point, an example issued from [14] is 

discussed hereinafter.  

Let us consider the second-order: 

       1 1 2 2 1 1 2 2k k k k k
y a y a y b u b u− − − −= − ⋅ − ⋅ + ⋅ + ⋅� �� � � � � � �     (16) 

 where 1a� , 2a� , 1b�  and 2b�  are fuzzy numbers defined as: 
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( )

( )

( )

( )

1

2

1

2

0.6, 0.55, 0.5

0.05, 0.1, 0.15

0.6, 0.625, 0.65

0.15, 0.2, 0.25

a triple

a triple

b triple

b triple

= − − −

=

=

=

�

�
�

�

        (17) 

The desired trajectory is: 

       
2 2

0.5 sin sin
50 75ksp

k k
y

π π� �� � � �
= ⋅ + � �  �

� � � �� �
      (18) 

and 
kspy�  is chosen as 

       ( )1, , 1
k k k ksp sp sp sp

y triple y y y= − +�        (19) 

Using (15), the evolutions of the set point 
kspy�  envelopes 

(minimum 
kspy  and maximum 

kspy  of ( )
ksp

Supp y� ) and the 

output model 
k

y�  envelopes are illustrated in Fig. 3. 

Obviously, like interval calculus or α-cut fuzzy arithmetic, it 

clearly appears that the ϕ–calculus arithmetic generates 

overestimated results. 

 
 

Figure 3: Set point 
kspy�  and output model 

k
y�  envelopes. 

We claim that this overestimation is not justified in such 

cases. Therefore, we need to introduce some extra 

constraints in order to take into account some knowledge and 

to reduce the pessimism of the results. 

 

3.3  “Exact” inverse computation 

Equation (15) corresponds to resolution of a fuzzy affine 

equation: 

       b x a y× + =� � � �               (20) 

The idea developed in [15] is to exactly solve this equation 

according to the two following steps.  

Step1: Solve (20) with respect to d b x= ×� � � . 

The objective is to compute an “acceptable” solution d�  of 

the equation d a y+ =� � � ; i.e. the solution being exact when 

possible and approximated otherwise.  

Notice that the exact solution can always be computed 

according to the arithmetic used: 

       ( ) ( ) ( )1 1 1

y ad
u u uϕ ϕ ϕ− − −= −� � �           (21) 

The problem arises when the result ( )1

d
uϕ −

�  is not an 

increasing function, resulting to d ∉ Φ� . Nevertheless we can 

provide an approximate solution to the problem 
app

d ∈ Φ� . 

The fact of proposing an alternative to exact calculus is the 

key idea. Contrary to what generally authors accept, i.e. no 

solution for interval arithmetic or α-cut fuzzy arithmetic 

cases [14], we provide an approximate solution based on the 

initial ( )1

d
uϕ −

� . 

For that purpose, we propose to use the weighted fuzzy 

fusion (WFF) operator on the set of pairs ( )( )1
,i id

u uϕ −
� , 

{ }1, ,i N∈ � . It results in a re-ordering of the pairs that 

constructs an increasing function 
app

d� , thus 
app

d ∈ Φ�  is a 

feasible solution to the problem. 

Step2: Finding a solution to equation d b x= ×� � �  with 

( )0 Supp b∉ � . If 0b >�  and 0d >� , the exact calculus uses a 

point by point division: 

       ( ) ( ) ( )1 1 1

x d b
u u uϕ ϕ ϕ− − −= � ��           (22) 

In the general case, we use a “positive-negative” 

decomposition (see section 2.3) for d�  and x� . We define: 

       
( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

d d d

x x x

u u u

u u u

ϕ ϕ ϕ

ϕ ϕ ϕ

− +

− +

− − −

− − −

� = +�
�

= +�	

� � �

� � �

         (23) 

with ( )1

d
uϕ

−

−
� , ( )1

d
uϕ

+

−
� , ( )1

x uϕ
−

−
�  and ( )1

x uϕ
+

−
�  defined 

equations (3) and (4). At last, the exact solution is given by: 

       

( )( )

( ) ( ) ( )( )
( )

, ,
0,

, ,
0,

x d b x d b
if b

x x x

x d b x d b
if b

x x x

+ + − −

+ −

+ + − −

+ −

� � = = − −�� > �
� = +�	�
�

� = − = − − −� �
<� �

� = − +�		

� � � �� ��
� � �

� � � �� ��
� � �

 (24) 

Once again the problem arises when the result ( )1

x
uϕ −

�  is not 

an increasing function, resulting to x ∉ Φ� . Therefore 

approximate solution to the problem 
app

x ∈ Φ�  is generated in 

the same way using the WFF operator on the set of pairs 

( )( )1
,x i iu uϕ −

� , { }1, ,i N∈ � . 

Consider an example to illustrate this second step with the 

fuzzy numbers ( )1, 2, 2b triple=�  and ( )3, 3, 4d triple=� . As 

shown Fig. 4(a), the exact solution x ∉ Φ� , i.e. 1

x
ϕ −
�  is not a 

monotone increasing function. Using the weighted fuzzy 

fusion (WFF) operator, an approximate solution 
app

x�  is 

generated by re-ordering 1

x
ϕ −
� . Fig. 4(b) shows the 

comparison between d�  and 
app

b x×� � . In a sense, the 

difference between these two fuzzy numbers exhibits the 

pessimism induced by the method when no exact solution in 

Φ  is available. This pessimism can be shown comparing the 

supports of the numbers: 

( ) [ ] ( ) [ ]3, 4 1.87, 6
app

Supp d Supp b x= ⊂ × =� � � .  

ky  

k
y  

kcy  

kcy  

 samples 
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The next example demonstrates very clearly the interest of 

the complete algorithm used to find solutions to the problem 

b x a y× + =� � � � . Consider again the inverse model of section 

3.2 with the fuzzy numbers (17) and the desired trajectory 

(18), (19). Fig. 5 shows the same trial as for Fig. 3. For this 

test, we obtain the result considering, i.e. 1 kk spy y+ =� � . This 

result indicates that an “exact solution” has been found at 

each time k . 

 
     a) « Exact » result                b) ϕ–calculus result 

Figure 4: Results with the numbers b�  and d� . 

 
 

Figure 5: Set point 
kspy�  and output model 

k
y�  envelopes. 

In order to show the interest of the method, we will change 

the constraints level. To do so, the values of model 

uncertainties (17) are increased in order to deal with cases 

where an exact inversion is not always possible. New bounds 

for the fuzzy numbers (17) are defined. They correspond to 

the greatest possible values with pole-zero assignment 

located inside the unit circle – for evident stability purpose. 

Moreover, the fuzzy numbers are not more symmetric and 

correspond to: 

       

( )

( )

( )

( )

1

2

1

2

0.825, 0.4, 0.3

0.175, 0.25, 0.95

0.415, 0.625, 0.835

0.01, 0.2, 0.41

a triple

a triple

b triple

b triple

= − −

= −

=

= −

�

�
�

�

       (25) 

Fig. 6 repeats the same trial with the desired trajectory (18), 

(19). The figure exhibits that an exact simplification, i.e. 

1 kk spy y+ ≠� �  is not always possible. Contrary to have no 

solution in such cases, the proposed approximate solutions 

seem perfectly adapted. 

With the help of this inverse model control strategy based on 

constraints, justified in the control framework, it is now 

possible to consider a fuzzy internal model control. 

 

 

 
 

Figure 6: Set point 
kspy�  and output model 

k
y�  envelopes. 

 

3.4 Fuzzy internal model control 

From Fig. 6 showing IMC scheme and different equations 

(6) and (7), it is possible to define several solutions.  

 

First solution: Let ( ) ( )1 1r

m mG q q G q
− − + −= , ( )1

mG q
+ −

 

corresponds to function with an inverse (exactly proper and 

stable). We chose ( )
( )

1

1

1

m

C q
G q

−

+ −
=  and propose the 

equivalent model given Fig. 7. 

Σ

������

F

kspy k
u

k
y

� �

�

d

�
1M −�

rq−

�

�
Fref

M

 
 

Figure 7: IMC1, equivalent scheme. 

Indeed, equation (7) can be rewritten as follow: 

 

      
( ) ( )( )

( )( )1

1 1

1

1
kk c kr

m

u y F q y
G q q F q

−

+ − − −
= −

− ⋅
 (26) 

 

By analogy, we have the fuzzy inverse model ( )
1

1

m
G q

−
+ −� �� �
�  

multiplied by linear transfer function 
( )

( )

1

11 r

F q

q F q

−

− −− ⋅
. 

For every case, it is possible to add a model reference control 

ref
M  in order to attenuate the control signal. 

b�  x�  
app

x�  

d�  

app
x b× ��  appx�  

ky  

k
y  kcy  

( )
kmed c

R y�  

kcy  
( )med k

R y�  

ky  

k
y  

kcy  

( )
kmed c

R y�  

kcy  

( )med k
R y�  

samples 

samples 
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3.5 Example 

Consider a nominal second-order transfer function: 

      
( )
( )

( )
( )

1 1 1 2

1 21 1

0.0233 0.0197

1 1.5729 0.6037

y q B q q q

q qu q A q

− − − −

− −− −

⋅ + ⋅
= =

− ⋅ + ⋅
 (27) 

and the following definition for the fuzzy numbers: 

       

( )

( )

( )

( )

1

2

1

2

1.574, 1.573, 1.497

0.602, 0.603, 0.652

0.013, 0.023, 0.033

0.01, 0.02, 0.03

a triple

a triple

b triple

b triple

= − − −

=

=

=

�

�
�

�

      (28) 

The control structure used is the IMC1 Fig. 7 with a 

reference model defined as: 

      
( )
( )

1 1 2

1 21

0,1784 0,1071

1 0,9315 0,2169

m

m

B q q q

q qA q

− − −

− −−

⋅ + ⋅
=

− ⋅ + ⋅
 (29) 

 

Fig. 8 shows the results for different set points. The first set-

point leads to results around the nominal model (27) 

(represented by the value 2). Secondly, two successive 

variations are made (set-point value of 3 and set-point value 

of 4), lastly a return to nominal position. 

During both successive changes the model is changed in 

order to reach the bounds on 
1

a�  and 
2

b� . Two disturbances 

have been also added at samples 900 and 2300. The 

responses show a good robustness according to the 

parametric variations of the model.  

This work presents a first possible track to use fuzzy 

arithmetic for control purpose. Next steps would be to prove 

stability and evaluate the robustness of these approaches. We 

can think to several possibilities including Lyapunov 

approach that are insightfully used for Takagi-Sugeno 

models [18] or Kharitonov polynomials [19]. 

 
 

Figure 8: IMC1 results. 

4 Conclusions 
This paper attempts to show possible applications of the ϕ–

calculus arithmetic for automatic control. As a first step, a 

new characterization of fuzzy numbers by the distribution 

function instead of the classical membership function has 

been presented. For this algebra, it is possible to use a set of 

arithmetic operators (addition, opposite and subtraction, 

multiplication, inverse and quotient) compatible with the 

classical algebra by using the median realization, or the 

Moore’s calculus by using the fuzzy number support. A 

procedure allowing an “exact” calculus of an inverse model 

was proposed on the basis of ϕ–calculus. This approach was 

successfully implemented on internal model control 

structures.  

Thus, the application of ϕ–calculus arithmetic to the stability 

of system seems to open some new prospects for other basic 

concepts (observation, stabilization…). 
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