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Abstract— A survey of fuzzy logic applications and principles in
wireless communications is presented, with the aim of highlighting
successful usage of fuzzy logic techniques in applied telecommuni-
cations and signal processing. To the best of our knowledge, this is
the first such study of its kind. This paper will focus firstly on dis-
cerning prevalent fuzzy logic or fuzzy-hybrid approaches in the areas
of channel estimation, channel equalization and decoding, and sec-
ondly outlining what conditions and situations for which fuzzy logic
techniques are most suited for these approaches. Furthermore, after
insights gained from isolating fuzzy logic techniques applied to real
problems, this paper proposes areas for further research targeted to
practice-oriented researchers.
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1 Introduction
Fuzzy Logic has been successfully applied in various areas
pertaining to wireless communication systems. As fuzzy logic
is used to model systems and situations, taking into consider-
ation uncertainty and ambiguity, it can be an efficient tool to
be utilized in problems for which knowledge of all factors is
insufficient or impossible to obtain. Methods furnished with
fuzzy logic have been shown to be useful in difficult con-
ditions with respect to non-linear and time-variant systems.
Additionally, the often mentioned advantages of using fuzzy
logic in practical applications is to reduce complexity as well
as to add robustness to the system under study.

Fuzzy logic and, more specifically, fuzzy control tradition-
ally incorporates human expert knowledge into a rule-based
framework. It may, however, be further expanded with learn-
ing algorithms to derive the fuzzy control parameters from
sample data. These parameters may be obtained by combin-
ing fuzzy logic with related soft computing disciplines such
as, e.g., neural networks, evolutionary computation techniques
etc. On the other hand, a method developed by Wang and
Mendel [1] derives the fuzzy rule base by using a combination
of human experience and numerical data.

Wireless communications is a rapidly evolving industry,
constantly challenging researchers for new techniques in or-
der to meet the demands of ever higher performance and ef-
ficiency. The most obvious products of wireless communica-
tions, e.g., the worldwide adoption of the mobile telephone,
wireless local area networks etc., exert a strong influence on
many people’s lives today.

In a wireless communication system, the channel is the
medium by which information-bearing signals are transferred

from a transmitter to a receiver. The characteristics of the
channel are generally unknown, and, barring any distortion
imposed by the channel, i.e., in ideal conditions, the transmit-
ted data will be received without any errors.

In practice, however, it is unavoidable for the channel to be
affected by distortion, hence degrading the performance of the
receiver, severely limiting the throughput of the system. The
wireless channel poses tough challenges for achieving reliable
and fast transfers. While interference typically is not a major
concern in wired transmission, i.e., in predicting the behav-
ior of the signal in the transmission channel, it poses a great
challenge in wireless transmission.

When there is no line-of-sight between the transmitter and
the receiver, distortions to the signal in the form of effects such
as scattering and reflections, etc. will follow, all of them re-
sulting in a phenomenon called multipath propagation. Due
to multipath propagation, the receiver encounters many sig-
nal paths from the transmitter, where each of these paths is
delayed by an arbitrary amount and attenuated by various fac-
tors. As a result there will be a superposition of the different
copies of the signal being in different phases, hence causing an
amplification or attenuation of the signal power – also referred
to as fading. Multipath propagation will cause previously sent
data bits to smear into current data bits, referred to as inter-
symbol interference. The aim of the receiver in the communi-
cation system is to overcome the disturbances of the channel,
intersymbol interference and noise, and correctly decode the
data having been transmitted.

2 Contemporary Uses of Fuzzy Logic in
Wireless Communications

In this section we will focus on fuzzy logic applications in
channel estimation, channel equalization and decoding. The
purpose of channel estimation is to accurately describe the
channel and track its variations, and with the aid of chan-
nel equalization and decoding recover the original transmit-
ted data. In the case of time-varying channels, adaptive tech-
niques have to be employed and it is in this area that fuzzy
techniques and/or neural networks find their main uses.

2.1 Channel Estimation
In [2] channel estimation is performed by tracking the channel
coefficients, applying a fuzzy tracking method in a multipath
fading Code Division Multiple Access (CDMA) [3] channel.
CDMA is a spread-spectrum technology that makes it possi-
ble for transmitters to share the same frequency range. The
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fuzzy tracking method is based on Kosko’s fuzzy associative
memory models [4]. The fuzzy associative memory models
combines fuzzy logic and a single-layer feed-forward neural
network that saves the fuzzy logic rule-base in matrix form.
The tracking used in [2] is iterative with the estimated sym-
bol being used in the prediction of the coefficient. There are
two inputs to the fuzzy tracker: the difference between the
measured and predicted coefficients, and the change of dif-
ference between current and previous differences between the
measured and predicted coefficients. The output of the fuzzy
tracker yields a correction term for the next coefficient.

The motivation in [2] for using fuzzy channel estimation
is due to fuzzy estimation not needing exact process models.
Comparisons are made between the fuzzy tracker and a non-
fuzzy tracker, a.k.a. the alpha tracker, where it is shown that
the fuzzy tracker performs better under noisier multipath con-
ditions.

Channel estimation using a fuzzy approach has also been
performed with a multi-carrier modulation technique called
Orthogonal Frequency Division Multiplexing (OFDM) [5]. In
OFDM, multiple orthogonal subcarriers are used for the same
channel. The data stream is divided into lower bit-rate data
streams, each modulating a separate subcarrier.

There are two different methods for estimating the channel
parameters at each subcarrier: blind channel estimation tech-
niques and pilot assisted channel estimation, with the pilot be-
ing a reference signal used by the transmitter and the receiver.
The blind channel estimation techniques do not use pilot sam-
ples and are thus more spectrally efficient, but at the cost
of higher computational complexity and slower convergence
rate. Pilot assisted channel estimation has typically been based
either on the Minimum Mean-Square-Error (MMSE), the LS
(Least Square) or the LMS (Least Mean-Square) algorithms
[6], with the MMSE algorithm being more robust and per-
forming better in time-varying channels.

In [7] a Takagi-Sugeno-Kang (TSK) [8] model is used for
the pilot assisted channel estimation in an OFDM system.
The TSK method is similar to that of the traditional Mam-
dani method – the difference being that the output of the TSK
model is a linear function of the input variables instead of
fuzzy sets. Pilot symbols are used in order to train the TSK
fuzzy model as well updating the fuzzy model in order to track
the channel. A Gaussian membership function is chosen, as it
has been shown that a fuzzy system with bell-shaped Gaus-
sians can approximate any continuous functions on compact
sets to any degree of accuracy [9]. The TSK learning algo-
rithm consists of defining the center and width of the rules
dependent on the number of rules chosen, after which an ad-
justable parameter of the TSK model is trained from the first
snapshot of the pilot subcarriers. Finally the channel transfer
function is estimated and the adjustable parameter updated to
track the channel. Simulation results show that the proposed
TSK channel estimation model performs closely to the ideal
MMSE, but with lower computational complexity.

The TSK fuzzy modeling technique used in [7] has been
updated for a multiple-input multiple-output (MIMO) OFDM
system in [10] with two transmit and two receive antennas.
MIMO [11] is a way to increase system throughput with-
out the need for higher transmit power or bandwidth, and
has hence become a highly popular research topic. MIMO

achieves increased throughput by using multiple antennas at
the transmitter and the receiver. It is shown in [10] with com-
puter simulations that the Word Error Rate (WER) is close to
the MMSE method with lower computational complexity.

In [12] an MMSE linear receiver was proposed in which a
fuzzy inference system was inserted into the LMS algorithm.
The motivation to use fuzzy logic was for convergence and sta-
bility reasons. The LMS algorithm was modified with a fuzzy
logic controlled adaptive step size and partial update. This
modified algorithm was then used in simulations of noise can-
cellation in a space-time joint direct-sequence (DS) CDMA
system in a dynamic fading multipath channel. It was shown
that the performance of the authors’ modified LMS algorithm
was superior to that of the LMS algorithm.

The proposed algorithm in [12] was further used in [13] for
channel estimation and tracking in OFDM systems for a time-
variant channel. Simulation results indicated that the modi-
fied LMS algorithm had lower steady-state Mean-Square Er-
ror (MSE) and faster convergence speed compared to the or-
dinary LMS algorithm.

In [14], an adaptive neuro-fuzzy inference system (ANFIS)
was evaluated for channel estimation in OFDM systems. The
ANFIS uses a hybrid learning algorithm based on the LS and
the gradient descent methods in order to train the parameters
of the membership functions of a TSK fuzzy inference system.
Clustering is used in order to group data and from this generate
the TSK fuzzy rule-base. From the results of the computer
simulations performed in [14] it can be seen that the ANFIS
performs very closely to that of the MMSE algorithm albeit
with less computational complexity.

2.2 Channel Equalization

Channel equalization is the process of removing the degrada-
tion caused by the channel with the aim of reconstructing the
transmitted data. The wireless channel is time-variant, and in
this kind of channel, non-linear distortion is usually encoun-
tered. Due to linear equalization not performing very well in
these channels, efficient equalization should be both adaptive
and non-linear.

The first results that seem to appear in the literature with
regards to fuzzy logic applications in channel equalization
are [15, 16]. Here fuzzy adaptive filters based on both the
LMS and the Recursive Least Squares (RLS) algorithms are
constructed and applied to channel equalization. Initially the
fuzzy sets are defined over the filter input space, after which
linguistic information from human experts and numerical data
are combined and incorporated into the filter. The algorithms
are then used to update the free parameters. The objective of
using fuzzy adaptive filters is to improve the adaptation speed
of the algorithms with the extra help of linguistic inference
rules. The results indicate that the bit error rates of the fuzzy
equalizer is close to that of the optimal equalizer.

Whereas Wang and Mendel in [15, 16] assumed a fixed de-
lay, in [17] the delay and the membership functions are de-
rived from training data. Two membership functions and two
rules are defined that correspond to the input of the channel,
which is binary, i.e. it takes on two different values. To-
gether they form an output grounded on the conclusion of a
fuzzy rule, from which an independent decision results. Test
symbols are transmitted and the correlation between the de-
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sired outputs and the received signals are determined and form
weights assigned to fuzzy outputs. A weighted sum of all the
rules is used in the fuzzy inference, after which the defuzzified
value is fed through a thresholding device for the final decision
of the equalizer. The results from the simulations performed in
[17] show that the fuzzy logic equalizer outperforms the LMS
in non-linear channels as well as a neural network equalizer
using the backpropagation algorithm. The fuzzy logic equal-
izer also needs fewer training samples compared to the LMS
in linear channels for the same error performance.

The Wang-Mendel RLS Fuzzy Adaptive Filter [16] is ex-
tended in [18] to a complex fuzzy filter that can handle com-
plex channel models and signals. In [19] human expert knowl-
edge and heuristic reasoning are replaced altogether by a Mul-
tilayer Perceptron (MLP) preprocessor unit. The MLP unit
consists of a 3-layer network, the training of which provides
information to the fuzzy logic system. The LMS algorithm,
less computationally complex than the RLS algorithm, is then
used to update the free parameter of the system.

In [20] a Bayesian equalization architecture has been de-
veloped by using a fuzzy adaptive filter construction as in
[15]. The adaptive equalization is visualized as a classifica-
tion problem in which an observation vector is mapped to sig-
nal constellations. In contrast to a channel equalizer such as
the maximum likelihood sequence estimation (MLSE) there
is no need to include a channel estimator, thus making the
equalization process less computationally complex. The de-
rived fuzzy filter function in [20] using fuzzy basis functions
[21], product inference, a center of gravity (COG) defuzzifier,
and Gaussian membership functions, is able to properly rep-
resent the Bayesian decision solution. The performance of the
fuzzy equalizer is close to the Bayesian, with the advantage of
reduced computational complexity.

In [22] a further development of the fuzzy adaptive filters is
presented: the type-2 fuzzy adaptive filter, which based on an
unnormalized type-2 TSK fuzzy logic system using a training
sequence. This is used to implement the Bayesian equalizer
with a decision feedback structure, reducing the complexity
of the equalizer compared to that of the transversal equalizer
(TE). In contrast to a traditional transversal equalizer or filter,
the decision feedback equalizer uses previous detector deci-
sions to cancel intersymbol interference. The type-2 fuzzy
sets [23] is an extension of ordinary fuzzy sets in that the
membership grades are fuzzy as well. It is shown that an un-
normalized output type-1 TSK fuzzy logic system is able to
implement a Bayesian equalizer for a time-invariant channel,
albeit being model free and not based on a Gaussian probabil-
ity model. This is further developed into a more generalized
form with the type-2 fuzzy adaptive filter to accommodate a
time-varying channel.

To a lesser extent, work has also been conducted on blind
methods for channel equalization. Blind methods are distin-
guished by only using information contained in the received
signal, thus making both channel estimation and training data
unnecessary, with the advantage of higher spectral efficiency.
However, this also means that they are strongly dependent on
the obtained statistical data.

In [24] the fuzzy-C-means (FCM) algorithm is used to per-
form joint equalization and demodulation of a signal mod-
ulated with the Quadrature Amplitude Modulation (QAM)

scheme. The receiver mapping the signal onto a set of sym-
bols can be reduced to a classification problem, rendering a
clustering analysis useful. The aim of clustering analysis is
to classify objects into groups or classes (clusters) with the
objects in the same group having similarities. The FCM algo-
rithm is an unsupervised algorithm, i.e., no external informa-
tion outside the data itself is needed on which the algorithm
operates. The membership functions are used as a measure
of what degree the data is connected to the clusters, which in
this particular application depends on the amplitude and the
phase distances between the received symbols, i.e. the sig-
nal constellation points. The results, for a test environment
with a static channel, indicate that the algorithm converges
very quickly, is robust and has lower computational complex-
ity than that of conventional MLSE receivers. One of the prob-
lems with the FCM algorithm however is that it forces points
seriously degraded by noise to belong to one or more clusters
with some degree, instead of giving it low or no membership
in any cluster.

The FCM algorithm in [24] is improved on in [25] by in-
troducing what is referred to as a fuzzy possibilistic C-means
(FPCM) assisted blind channel equalization scheme for time-
varying channels. The FPCM algorithm solves the problem
with the FCM algorithm above by making it less sensitive to-
ward the highly noisy symbol samples. The scheme also al-
lows the receiver to take into account cluster center informa-
tion in previous data, thereby improving the accuracy of the
cluster centers with more data samples. However, it is also
suggested that a forgetting factor might be taken into consid-
eration to reduce the significance of cluster centers in previ-
ous data in a time-varying channel. Due to a rather large co-
herence time in high speed wireless transmission systems, it
is stated in [25], that the accumulation of cluster centers is
feasible even under time-variant conditions. The FPCM out-
performs the FCM algorithm due to the former’s capability of
rejecting the interference of data seriously degraded by noise.
It is also shown that the performance of both algorithms de-
pend on the amount of data involved, as can be expected.

In [26] and [27] a blind equalization algorithm based on a
fuzzy neural network is outlined. Equalization is performed
with a combination of channel estimation and a fuzzy neu-
ral network classifier. The algorithm first blindly estimates
the channel by using the fourth cumulants of the received se-
quences [28]. Afterward, an approximate deconvolution is
carried out. The output from the deconvolution is then fed into
a fuzzy neural network classifier. Simulations undertaken in
time-invariant channels with 64-QAM, indicate that the con-
vergence speed as well as BER are improved compared to that
of a feedforward neural network blind equalization algorithm.

Similarly, in [29] an improvement of a feedforward neural
network blind equalization algorithm is proposed by using a
fuzzy neural network consisting of an input layer, a fuzzifica-
tion layer, a rule layer, a normalization layer and a defuzzifi-
cation layer with the aim of improving the convergence rate.
Simulation results for 16-QAM shows that the fuzzy neural
network has faster convergence speed and lower BER com-
pared to that of the feedforward neural network blind algo-
rithm.
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2.3 Decoding and Equalization

In contrast to conventional communication systems where en-
coding/decoding and channel equalization are performed sep-
arately, turbo equalization schemes combine the two mecha-
nisms. This combination is carried out by iterating the equal-
izer and the channel decoder on the same set of received
data. Since turbo equalizers have been implemented with the
Bayesian algorithm, and it was shown that a TSK fuzzy logic
system is able to implement a Bayesian model in [22], a turbo-
fuzzy equalization approach should be feasible. Such an ap-
proach was introduced in [30], where a turbo equalizer using
fuzzy filters is proposed. The fuzzy turbo equalizer is intro-
duced with the motivation that fuzzy filters could deal with
uncertainty characterized by impulse noise, and also has lower
computational complexity compared to the Bayesian equal-
izer. To adapt the parameters of the fuzzy equalizer, the back-
propagation algorithm is used.

A critique against the turbo-fuzzy equalizer in [30] can be
found in [31] where it is stated that the turbo-fuzzy equalizer
in [30] is unable to use the a priori information provided by
the decoder, hence not having an iterative extrinsic informa-
tion exchange between the fuzzy system and the decoder. This
is improved on in [31] and [32] where fuzzy turbo equalization
schemes with low complexity are proposed.

In [32] a turbo equalization scheme, based on the radial ba-
sis functions (RBF), is proposed by using an extended FCM
algorithm. An emphasis is made on the low computational
complexity this scheme provides compared to a turbo equal-
ization scheme based on the Jacobian RBF in the context of
binary phase-shift keying (BPSK) modulation in a Rayleigh-
fading channel. Simulation results show that the scheme pro-
posed performs closely to that of the Jacobian RBF based
turbo equalization scheme but with a significant reduction in
computational complexity.

In [31] the Jacobian RBF turbo equalization scheme is
modified by using the same Bayesian equalization architec-
ture based on a fuzzy adaptive filter structure as introduced
in [20]. The simulations are performed for BPSK and QAM
in a Rayleigh fading channel, and indicate that the proposed
fuzzy adaptive filter TEQ scheme considerably reduces the
computational complexity with only a slight degradation in
performance compared to the Jacobian RBF turbo equaliza-
tion scheme, providing a trade-off for highly low complexity-
oriented circuit implementation.

3 Conclusions

In this paper we have traced the research being conducted
over the last two decades, leading up to current research, in
which the usage of fuzzy logic in wireless communications
has yielded successful results. To the best of our knowledge,
this is the first such study of its kind. The three areas in
wireless communications focused on in this paper have been:
channel estimation, channel equalization and decoding.

In channel estimation, the fuzzy based methods to have
been applied have ranged from fuzzy tracking based on
Kosko’s fuzzy associative memory models and the TSK
model, as well as fuzzy logic used in combination with adap-
tive algorithms such as the LMS and RMS algorithms or a
neuro-fuzzy inference system. The neural network and adap-

tive algorithms are commonly used in order to train the param-
eters of membership functions in a fuzzy inference system.

In channel equalization the research in fuzzy adaptive fil-
ters, both type-1 and more recently type-2 TSK fuzzy logic
systems, from Wang and Mendel have been highly influential.
These fuzzy adaptive filters are able to use input from both
human experts and/or training data. Using as a foundation
the adaptive fuzzy filters, a Bayesian architecture has been de-
veloped which incorporates fuzzy basis functions and Gaus-
sian membership functions, being able to properly represent
the Bayesian decision solution. Another category in channel
equalization is the blind methods which uses variants of the
fuzzy-C-means algorithm or a fuzzy neural network. Turbo
equalization has either been based on the Bayesian equaliza-
tion architecture or the clustering approach with the fuzzy-C-
means algorithm.

Conclusions that can be drawn from the research collated
and presented in this paper with regards to the main benefits
of using fuzzy logic based methods are:

• Fuzzy logic based methods particularly perform well un-
der non-linear and time-variant conditions, where adap-
tive techniques have to be employed.

• When dealing with complex models that are not com-
pletely known and varying with time, fuzzy logic based
methods can be used for faster convergence and re-
duced complexity with a slight degradation in perfor-
mance compared to that of standard methods.

• When human expert knowledge is available, a fuzzy ap-
proach is highly suitable to incorporate this knowledge to
complement available numerical data.

Building on the study we have presented in this paper, there
are a few research areas that we consider merit further at-
tention. These are: fuzzy adaptive equalization techniques
for time-varying MIMO-channels, and fuzzy power control
in MIMO-OFDM systems. Furthermore, another interesting
area in which research is being conducted, is in cognitive ra-
dio [33]. Cognitive radio is an intelligent wireless communi-
cation system that adapts to its environment with the purpose
of improving the spectrum efficiency. Both signal processing
and machine learning techniques are of interest in cognitive
radio, with, e.g., game theory being a commonly used method
to model the transmit-power control problem. Research has
also been conducted in fuzzy based game theory with the aim
of application in cognitive radio in [34].

The purpose of this paper has been to give a background to
common problems in wireless communication systems. More-
over, a survey of relevant research has been presented in wire-
less communication systems in which fuzzy methods have
been used successfully. The aim has been to give a condensed
and clear overview of conducted research as well as highlight-
ing the common features of the problems in which fuzzy logic
has been used in order to discern future areas to be investigated
further by the ambitious researcher.
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