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Abstract— Transitivity is a very important property in order to
provide coherence to a preference relation. Usually, t-norms are con-
sidered to define the transitivity of fuzzy relations. In this paper we
deal with conjunctors, a wider family than t-norm, to define the tran-
sitivity. This more general definition allows to impove the results
found in the literature. We characterize the behaviour with respect to
transitivity of the strict preference and indifference relations of any
fuzzy preference structure associated to any large preference rela-
tion. Those two characterizations provide very general expressions.
We also obtain easier expressions in some particular cases.
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indifference generator.

1 Introduction
Decision making is present in many situations in life. Pref-
erence models are an essential part of the design phase of a
decision making process. The departure point in preference
modelling is the comparison by pairs of possible alternatives.
If this point of the process lacks of coherence, the whole pro-
cess makes no sense. One of the most important property in-
troduced to ensure coherence in the two-by-two comparison is
transitivity. In this paper we focus on this property.

Given its relevance in preference modelling, transitivity has
been widely studied (see [3, 13, 14], among others). In classi-
cal or crisp preference modelling there exists a basic relation
R, called large preference relation that allows to compare a
pair of possibilities: given the alternatives a and b, (a, b) ∈ R
expresses that alternative a is considered to be at least as good
as alternative b. From R, three relations can be defined: the
strict preference relation P , the indifference relation I and the
incomparability relation J . It is well known that the transi-
tivity of R is completely characterized by the transitivity of
I and P and two additional relational inequalities involving I
and P ; in case of completeness, the transitivity of R is only
characterized by the transitivity of I and P [2].

All those relations are crisp and therefore, they are not al-
ways appropriate to model human decisions. The lack of flex-
ibility in crisp set theory lead to introduce fuzzy sets in pref-
erence modeling and to study the concept of fuzzy preference
structure [8, 18, 24]; see [6] for a historical account of its de-
velopment. Transitivity is traditionally defined for fuzzy re-
lations by means of t-norms. In this context, the transitivity
of the (fuzzy) large preference relation R has been character-
ized in a similar way as for crisp relations, in a particular case:
when R is strongly complete [12]. But strong completeness
is a quite restrictive condition. Subsequent works have treated

more general preference relations [3, 4]. Those authors cen-
ter their study on the translation of a fixed transitivity from a
more general (fuzzy) large preference relation R to different
associated indifference and strict preference relations (I and
P respectively). We have continued along this line but we
have treated the problem from a totally different viewpoint.
On the one hand, we work with conjunctors, a wider family of
operators than t-norms, so we handle a very general notion of
transitivity. On the other hand, we do not study the preserva-
tion of the transitivity when decomposing R, but we explore
the strongest transitivity we can assure I and P satisfy. In a
previous work [15], we have fenced in the transitivity of I and
P according to the transitivity R satisfies. In this work we
go further: we provide an explicit expression for the transitiv-
ity that any I (respectively any P ) satisfies. We prove that no
stronger transitivity is fulfilled by all I (respectively for all P ).
Transitivity is a fundamental assumption in some decision-
making models, like rational model (founded in quantitative
disciplines like economics, mathematics and statistics) or po-
litical model (primarily based on the disciplines of political
science, philosophy, psychology and sociology). Without this
property, it is not possible to obtain a coherent order of the
alternatives and therefore the choice of the best alternative is
more complicate or even impossible. Thus, the study made in
this work is a first step to develop a consistent theory to order
the alternatives and therefore to provide a decision, when the
comparison between alternatives can be graded.

The work is structured in six sections. In Section 2 we re-
call the most relevant concepts concerning additive fuzzy pref-
erence structures. In Section 3 we introduce conjunctors and
we discuss some properties they satisfy and that will be useful
in next sections. In Section 4 we include the general result
we have obtained for the transitivity of the indifference rela-
tion I and we discuss the appearance of the general expression
for the three most important particular cases. In Section 5 we
characterize the transitivity of the strict preference relation P
in a very general context. We also prove that the general ex-
pression gets much simplified for the most important partic-
ular cases. In Section 6 we briefly address some conclusions
and future work.

2 Preference structures
2.1 Crisp preference structures

Let us consider a decision maker who is given a set of alterna-
tives A. Let us suppose that this person compares the alterna-
tives two by two. Given two alternatives, the decision maker
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can act in one of the following three ways: (i) he/she clearly
prefers one to the other; (ii) the two alternatives are indifferent
to him/her; (iii) he/she is unable to compare the two alterna-
tives. According to these cases, three binary relations can be
defined on A: the strict preference relation P , the indifference
relation I and the incomparability relation J . Thus, for any
(a, b) ∈ A2, we classify:

(a, b) ∈ P ⇔ he/she prefers a to b;
(a, b) ∈ I ⇔ a and b are indifferent to him/her;
(a, b) ∈ J ⇔ he/she is unable to compare a and b.

We recall that for a binary relation Q on A, its converse is
defined as Qt = {(b, a) | (a, b) ∈ Q}, its complement as
Qc = {(a, b) | (a, b) /∈ Q} and its dual as Qd = (Qt)c. If we
consider the set A2 ordered, i.e. assuming (a, b) and (b, a) as
different pairs, one easily verifies that the triplet (P, I, J) and
P t establish a particular partition of A2 [21].

Definition 1 A preference structure on A is a triplet (P, I, J)
of binary relations on A that satisfy:

(i) P is irreflexive, I is reflexive and J is irreflexive;

(ii) P is asymmetrical, I and J are symmetrical;

(iii) P ∩ I = ∅, P ∩ J = ∅ and I ∩ J = ∅;

(iv) P ∪ P t ∪ I ∪ J = A2.

Every preference structure has associated a reflexive rela-
tion that completely characterizes this structure. A preference
structure (P, I, J) on A is characterized by the reflexive bi-
nary relation R = P ∪ I , its large preference relation, in the
following way:

(P, I, J) = (R ∩ Rd, R ∩ Rt, Rc ∩ Rd). (1)

Conversely, for any reflexive binary relation R on A, the triplet
(P, I, J) constructed in this way from R is a preference struc-
ture on A such that R = P ∪ I . As R is the union of the strict
preference and the indifference, (a, b) ∈ R means that a is at
least as good as b.

Given a binary relation Q on A, we say that Q is transi-
tive if (aQb ∧ bQc) ⇒ aQc, for any (a, b, c) ∈ A3. Given
two binary relations Q1 and Q2 on A, the composition is a
binary relation denoted Q1 ◦Q2 such that for any (a, b) ∈ A2

a (Q1 ◦ Q2) b ⇔ ∃c/aQ1c ∧ cQ2b. Then, it is clear that Q is
transitive if and only if Q◦Q ⊆ Q. The transitivity of the large
preference relation R can be characterized as follows [2].

Theorem 1 For any reflexive relation R with corresponding
preference structure (P, I, J) it holds that

R◦R ⊆ R ⇔ (P◦P ⊆ P∧I◦I ⊆ I∧P◦I ⊆ P∧I◦P ⊆ P ).

In case R is complete, i.e. R∪Rt = A2, this characterization
can be simplified as follows. Note that the completeness of R
is equivalent to establish that any two elements are compara-
ble, that is, J = ∅.

Theorem 2 For any complete reflexive relation R with corre-
sponding preference structure (P, I, ∅) it holds that

R ◦ R ⊆ R ⇔ (P ◦ P ⊆ P ∧ I ◦ I ⊆ I).

Next we recall an important characterization of a preference
structure. Let us consider for every relation its characteristic
mapping i.e. Q(a, b) = 1 ⇔ aQb. Definition 1 can be written
in the following minimal way [11]: I is reflexive and symmet-
rical, and for any (a, b) ∈ A2:

P (a, b) + P t(a, b) + I(a, b) + J(a, b) = 1.

Classical preference structures can therefore also be consid-
ered as Boolean preference structures, employing 1 and 0 for
describing presence or absence of strict preferences, indiffer-
ences and incomparabilities.

2.2 Additive fuzzy preference structures

In the classical model, relations only express presence or ab-
sence of relationship, while fuzzy relations capture the nu-
ances of human choices. In fuzzy preference modelling, strict
preference, indifference and incomparability are a matter of
degree. These degrees can take any value between 0 and 1 and
fuzzy relations are used for capturing them (for a complete
review about fuzzy relations see [18]).

The intersection of fuzzy relations is usually defined point-
wisely based on some t-norm, i.e. an increasing, commutative
and associative binary operation on [0, 1] with neutral element
1. The three most important t-norms are the minimum opera-
tor TM(x, y) = min{x, y}, the algebraic product TP(x, y) =
xy and the Łukasiewicz t-norm TL(x, y) = max{x+y−1, 0}.
The minimum operator is the greatest t-norm; the smallest t-
norm is the drastic product defined by

TD(x, y) =
{

min{x, y} , if max{x, y} = 1 ,
0 , otherwise.

The above t-norms can be ordered (usual ordering of func-
tions) as follows: TD ≤ TL ≤ TP ≤ TM. Similarly, the
union of fuzzy relations is based on a t-conorm, i.e. a non-
decreasing, commutative and associative binary operation on
[0, 1] with neutral element 0. T-norms and t-conorms come
in dual pairs: to any t-norm T there corresponds a t-conorm
S through the relationship S(x, y) = 1 − T (1 − x, 1 − y).
For the above three t-norms this yields the maximum operator
SM(x, y) = max{x, y}, the probabilistic sum SP(x, y) =
x + y − xy and the Łukasiewicz t-conorm (bounded sum)
SL(x, y) = min{x + y, 1}. For more information on t-norms
and t-conorms, we refer to [19]. Along this paper we use the
notations for t-norms presented there.

The definition of a fuzzy preference structure has been a
topic of debate during several years (see e.g. [18, 23, 24]). Ac-
cepting the assignment principle — for any pair of alternatives
(a, b) the decision maker is allowed to assign at least one of
the degrees P (a, b), P (b, a), I(a, b) and J(a, b) freely in the
unit interval — has finally led to a graduation of Definition 1
with the intersection based on the Łukasiewicz t-norm and the
union based on the Łukasiewicz t-conorm. Interestingly, a
minimal definition is identical to the classical one if we re-
place ordinary by fuzzy binary relations: a triplet (P, I, J) of
fuzzy binary relations on A is a fuzzy preference structure on
A if and only if I is reflexive and symmetrical, and for any
(a, b) ∈ A2:

P (a, b) + P t(a, b) + I(a, b) + J(a, b) = 1,
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where P t(a, b) = P (b, a). This identity explains the name
additive fuzzy preference structures.

Another topic of controversy has been how to construct
such a structure from a reflexive fuzzy relation. Alsina [1]
proved a kind of impossibility theorem showing that a con-
struction based on a single t-norm is unfeasible. As a reaction,
Fodor and Roubens adopted an axiomatic approach [18]. The
most recent and most successful approach is that of De Baets
and Fodor based on (indifference) generators [8].

Definition 2 A generator i is a commutative [0, 1]2 → [0, 1]
mapping bounded by the Łukasiewicz t-norm TL, and the min-
imum operator TM: TL ≤ i ≤ TM.

Note that the definition of a generator does not speak of mono-
tonicity and therefore they are not necessarily t-norms, albeit
having neutral element 1. For any reflexive fuzzy relation R
on A it holds that the triplet (P, I, J) of fuzzy binary relations
on A defined by:

P (a, b) = R(a, b) − i(R(a, b), R(b, a)) ,

I(a, b) = i(R(a, b), R(b, a)) ,

J(a, b) = i(R(a, b), R(b, a)) − (R(a, b) + R(b, a) − 1) ,

is an additive fuzzy preference structure on A such that R =
P ∪SL

I i.e. R(a, b) = P (a, b) + I(a, b).
Popular generators (see e.g. [18]) are the Frank t-norms. For

the sake of completeness, we recall that the Frank t-norms are
given by

TF
λ (x, y) =




TM(x, y) , if λ = 0 ,
TP(x, y) , if λ = 1 ,
TL(x, y) , if λ = ∞ ,

logλ(1 + (λx−1)(λy−1)
λ−1 ) , otherwise.

We also recall that for any λ ∈ [0,∞] and for any (x, y) ∈
[0, 1]2,

TF
1/λ(x, y) = x − TF

λ (x, 1 − y).

3 Conjunctors
3.1 Generalizing T -transitivity

The usual way of defining the transitivity of a fuzzy relation
is by means of a t-norm. Recall that a fuzzy relation Q on
A is T -transitive if T (Q(a, b), Q(b, c)) ≤ Q(a, c) for any
(a, b, c) ∈ A3. However, such a framework is too restrictive
in the setting of fuzzy preference modelling. On the one hand,
even when the large preference relation R is T -transitive w.r.t.
a t-norm T , the transitivity of the generated P and I cannot
always be expressed w.r.t. a t-norm [14, 16, 15]. On the other
hand, the results we will present in the following sections also
hold when R itself is transitive w.r.t. a more general opera-
tor. From a fuzzy preference modelling point of view, it is
not that surprising that the class of t-norms is too restrictive,
as a similar conclusion was drawn when identifying suitable
generators, as briefly explained in the previous section.

As it was discussed in [15, 16], suitable operators for defin-
ing transitivity for fuzzy relations are conjunctors:

Definition 3 A binary operation f : [0, 1]2 → [0, 1] is called
a conjunctor if

1. it coincides with the Boolean conjunction on {0, 1}2;

2. it is increasing in each variable.

Given a conjunctor f , we say that a fuzzy relation Q defined
on A is f -transitive if for any (a, b, c) ∈ A3,

f(Q(a, b), Q(b, c)) ≤ Q(a, c).

It is clear that the definition of conjunctor largely extends
the notion of t-norm. However, conjunctors and generators
are not connected. The smallest conjunctor cS and greatest
conjunctor cG are given by

cS(x, y) =
{

0 , if min{x, y} < 1 ,
1 , otherwise ,

and

cG(x, y) =
{

0 , if min{x, y} = 0 ,
1 , otherwise.

As it is logical, cS ≤ TD ≤ TM ≤ cG. Moreover, for two
conjunctors f ≤ g, it obviously holds that g-transitivity im-
plies f -transitivity.

Defining the composition Q1 ◦f Q2 of two fuzzy relations
Q1 and Q2 w.r.t. a conjunctor f by

Q1 ◦f Q2(a, c) = sup
b

f(Q1(a, b), Q2(b, c)) ,

still allows us to use the shorthand Q ◦f Q ⊆ Q to denote
f -transitivity.

If we restrict our study for reflexive fuzzy relations, such as
a large preference relations, the set of all the conjunctors that
allow us to define transitivity is a proper subset of the set of all
the conjunctors. Thus, the upper bound of this subset is TM

instead of cG.

3.2 Dominance and bisymmetry

Dominance is a well-known relation for t-norms (see e.g.
[19]) and its usefulness has been demonstrated several times
(see e.g. [9, 22]). It can be generalized to conjunctors without
any problem.

Definition 4 A conjunctor f1 is said to dominate a conjunctor
f2, denoted f1 � f2, if for any (x, y, z, t) ∈ [0, 1]4 it holds
that

f1(f2(x, y), f2(z, t)) ≥ f2(f1(x, z), f1(y, t)).

But conjunctors do not verify the same properties as t-
norms do with respect to this property. For instance, not ev-
ery conjunctor dominates itself (see [15]). Dominance and
the classical order of binary operators are not related for
conjunctors neither. The minimum for example (which is
not the greatest conjunctor), dominates any other conjunctor
(see [15]).

The notion of self-dominance of conjunctors is obviously
equivalent to another well-known property: bisymmetry (see
e.g. [19]).

Definition 5 A conjunctor f is said to be bisymmetric if for
any (x, y, z, t) ∈ [0, 1]4 it holds that

f(f(x, y), f(z, t)) = f(f(x, z), f(y, t)).
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3.3 Implications

Given a t-norm T , an implication (also called R-implication
or T -residuum) based on T is defined (see e.g. [18, 19]) as
follows:

IT (x, y) = sup{z | T (x, z) ≤ y}.
This concept aims at generalizing the notion of Boolean im-
plication. The definition usually concerns only left continuous
t-norms. When T is left-continuous it holds that T (x, z) ≤
y ⇔ z ≤ IT (x, y).

Given a t-conorm S, a co-implication based on S is defined
(see again e.g. [18, 19]) as follows:

JS(x, y) = inf{z | S(x, z) ≥ y}.
When S is right-continuous it holds that S(x, z) ≥ y ⇔ z ≥
JS(x, y).

Following these ideas we can introduce two operators asso-
ciated not only for a t-norm or a t-conorm, but to any commu-
tative conjunctor.

Definition 6 Given a commutative conjunctor f : [0, 1]2 →
[0, 1], we define the following operator from [0, 1]2 into [0, 1]:

If (x, y) = sup{z | f(x, z) ≤ y},
and

Jf (x, y) = inf{z | f(x, z) ≥ y}.
Let us notice that If is an implication, but Jf is not a co-

implication.

Lemma 1 Given a commutative conjunctor f and its associ-
ated operators If and Jf , we have that

1. If and Jf are decreasing in their first arguments and
increasing in their second arguments.

2. If f is left continuous then

f(x, z) ≤ y ⇔ z ≤ If (x, y).

3. If f is upper bounded by the minimum t-norm, then

x ≤ y ⇒ If (x, y) = 1.

Moreover, if f is left-continuous and has 1 as neutral el-
ement, then we have the equivalence:

x ≤ y ⇔ If (x, y) = 1.

4 Transitivity of I

In this section we consider indifference relations. As it was
shown in Subsection 2.2, for a generator i, the symmetric
component of a large preference relation is obtained as I =
i(R,Rt). Here we study the transitivity we can derive for this
relation I when we fix the transitivity of R defined by a con-
junctor h.
We begin recalling some upper and lower bounds for the tran-
sitivity of I . We know from [15] that I is at least cS-transitive
when R is h-transitive for any conjunctor h. We also showed
in that paper that the transitivity we can assure for I is de-
fined by a conjunctor upper bounded both by the conjunctor h
and by the generator i that builds I from R. These are upper
and lower bounds. We next provide a characterization for the
transitivity of I .

Theorem 3 Let i be an increasing generator and h a con-
junctor. For any reflexive fuzzy relation R with corresponding
indifference relation I generated by means of i, it holds that

R is h-transitive ⇒ I is f i
h-transitive,

where the conjunctor f i
h is:

f i
h(x, y) = inf

1 ≥ u ≥ x
1 ≥ v ≥ y

(i (h(u, v), h (Ji(v, y), Ji(u, x)))) .

Moreover, if i is continuous, the previous one is the strongest
possible implication.

An interesting problem is to know when the transitivity of
R is inherited by I , that is, to know when, departing from an
h-transitive R we can assure that I is also h-transitive. We
have already answered that question in [15]:

Theorem 4 Let i be an increasing generator and let h be a
commutative conjunctor upper bounded by the minimum t-
norm. The associated conjunctor f i

h is equal to h if and only
if i dominates h.

In particular this result could be applied to i = TM. Thus,
when the indifference relation is obtained from the reflexive
relation R by the minimum t-norm, I = min{R, Rt}, it satis-
fies the same transitivity as R does.

Not only dominance allows us to obtain some general result,
also the usual order among conjunctor, as it is showed in the
following corollary.

Corollary 1 For any increasing and bisymmetric generator i
and any conjunctor h upper bounded by the minimum t-norm,
if i ≤ h, then f i

h = i.

Since every t-norm is increasing and bisymmetric, this re-
sult can be applied in particular to any generator that is a t-
norm. In that case, transitivity of R w.r.t. that t-norm is pre-
served.

We will now consider Theorem 4 and Corollary 1 to study
the particular case of a t-norm of the Frank family as generator.

Corollary 2 Let TF
λ be a t-norm of the Frank family, for any

λ ∈ [0,∞]. It holds that fTM

TP
= TP, f

TF
λ

TL
= TL and f

TF
λ

h =
TF

λ for any h ≥ TF
λ .

Remark 1 Combining the results in Corollary 2 leads to the
following table, where the entries are the conjunctors f i

h.

\ ih TL TP TM

TL TL TL TL

TP TL TP TP

TM TL TP TM

5 Transitivity of P

In this section we focus on the strict preference relation P and
the transitivity it can satisfy once the transitivity of R is fixed
and defined by a conjunctor h.
Let us recall that the strict preference relation P is obtained
from R by means of the generator i as follows: P = R −
i(R,Rt).
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We showed in [15] that the transitivity that can be assured
for the strict preference relation associated to any h-transitive
large preference relation R is upper bounded by the conjunc-
tor h, i.e., we cannot assure for P a stronger transitivity than
h-transitivity. Next we provide not a bound but the explicit
expression for the transitivity of P .

Theorem 5 Let i be an increasing 1-Lipschitz generator and
h a commutative conjunctor with neutral element 1. For any
reflexive fuzzy relation R with corresponding strict preference
relation P generated by means of i, it holds that

R is h-transitive ⇒ P is gi
h-transitive ,

where the conjunctor gi
h is:

gi
h(x, y) = inf

1 ≥ u ≥ x
1 ≥ v ≥ y

(h(u, v) − i(h(u, v), min{Ih(v,

Ii(u, u − x)), Ih(u, Ii(v, v − y))})) .

Moreover, the previous one is the strongest possible implica-
tion.

According to our result from [15], gi
h should always be not

greater than h. Again, we will focus our attention on the cases
the transitivity of R is totally inherited by P .

Proposition 1 Let h be a rotation-invariant conjunctor, i.e.,
for all (x, y, z) ∈ [0, 1]3 it holds that

h(x, y) ≤ z ⇔ h(y, 1 − z) ≤ 1 − x.

If i = TL, then gTL

h = h.

Two well-known rotation-invariant t-norms are TL and
the minimum nilpotent TnM defined by TnM(x, y) =
min{x, y}χ{(x,y)|x+y>1}, where χB denotes the character-
istic function of any set B. Therefore, from Proposition 1,
gTL

TL
= TL and gTL

TnM
= TnM. This last conjunctor was di-

rectly obtained in [16].

If i = TM, only some special conjuntors satisfy the equality
gTM

h = h. The minimum t-norm is one of those t-norms. The
following theorem characterizes all the conjunctors that verify
the previous equality.

Proposition 2 Let h be a commutative conjunctor with neu-
tral element 1. Then h satisfies the equality gTM

h = h if and
only if h is of the form

hd
k(x, y) =




0 if max(x, y) < d
k · min(x, y) if max(x, y) = d
min(x, y) otherwise

where k ∈ {0, 1} and d ∈ [0, 1) ∪ {k}.

For the particular case when the conjunctor defining the
transitivity of R and the indifference generator i are the same
continuous t-norm the thorny general expression obtained in
Theorem 5 gets much simpler.

Theorem 6 Let T be a continuous t-norm. For any reflexive
fuzzy relation R with corresponding strict preference relation
P generated by means of T , it holds that

R is T -transitive ⇒ P is gT
T -transitive ,

where

gT
T (x, y) = inf

0≤α≤min{1−x,1−y}
max {T (x + α, y + α) − α, 0}

and this is the strongest possible implication.

In [5] the operator gT
T was studied in depth not only for a

t-norm T but in general for any binary aggregation operator
A. In that general case, it was denoted as D[A]. We can find
there that for the Frank family of t-norms the expression can
be simplified:

Proposition 3 In case i = TF
λ = h for λ ∈ [0,∞], it holds

that

g
TF

λ

TF
λ

(x, y) =




TF
λ (x, y), if x + y > 1 ,

SM (TF
λ

(
1+x−y

2 , 1+y−x
2

) − 1−x−y
2 , 0),

otherwise.

In particular, it holds that gTL

TL
= TL (also obtained as a

consequence of Proposition 1) , gTM

TM
= TM (directly obtained

in [13]) and

gTP

TP
(x, y) =

{
TP(x, y) −

(
TL(1−x,1−y)

2

)2

, if
√

x +
√

y > 1
0, otherwise.

Other particular cases involving the three most impor-
tant t-norms, i.e. concerning h ∈ {TL, TP, TM} and i ∈
{TL, TP, TM} are presented in the following propositions.

Proposition 4 If i = TF
λ for λ ∈ [0,∞] and h = TL, it holds

that
g

TF
λ

TL
(x, y) = TF

1/λ(TL(x, y), SM(x, y)).

Proposition 5 If i = TF
λ and h = TM, it holds, for any λ ∈

[0,∞], that

g
TF

λ

TM
(x, y) = T

ϕ1/λ

nM (x, y)

where ϕλ is the automorphism of the interval [0,∞] defined
as follows

ϕλ(x) =




x if λ = 0,
√

x if λ = 1,

x+1
2 χ(0,1](x) if λ = ∞,

logλ

(√
λx − 1
λ − 1

(λ − 1) + 1

)
otherwise,

and T
ϕ1/λ

nM is the transformation by the automorphism ϕ1/λ of

the t-norm TnM. Moreover, it holds that g
TF

λ

TM
is a t-norm.

As a consequence of this proposition, we obtain that gTL

TM
=

TnM and

gTP

TM
(x, y) = Tϕ1

nM(x, y) =
{

min{x, y} if
√

x +
√

y > 1,
0 otherwise .
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In order to complete the study of all the combinations of the
three most important t-norms, two cases are missing, namely
gTL

TP
and gTM

TP
, which will be revisited in Propositions 6 and 7.

Proposition 6 It holds that

gTL

TP
(x, y) = TM

(
TP(x, y),

TL(x, y)
TM(x, y)

)
· χ(0,1](TM(x, y)).

When TL is replaced by TM as generator, the expression of
gi

TP
gets much more complicated.

Proposition 7 It holds that

gTM

TP
(x, y) = max{min 1 ≥ u ≥ x

1 ≥ v ≥ y

[
uv − min

{
u−x

v , v−y
u

}]
,

0} · χ(0,1]2(x, y).

Remark 2 Combining the results in Propositions 1, 3, 4, 5, 6
and 7 leads to the following table, where the entries are the
conjunctors gi

h.

\ ih TL TP TM

TL TL TP(TL, SM) TL(TL, SM)
TP gTL

TP
gTP

TP
gTM

TP

TM TnM Tϕ1
nM TM

6 Conclusions
This paper combines very general results with propositions
concerning the most relevant particular cases. The general re-
sults can be applied to any conjunctor employed to define the
transitivity of a large preference relation and any generator
used to decompose that relation. The specific results concern
the most important particular cases: those for which the con-
junctors and the generators are the most important t-norms.
The most general theorems we have introduced close the study
of the transitivity that can satisfy the symmetric and asym-
metric components of a (large) preference relation since those
theorems involve (almost) any conjunctor and any generator
we can use. The results concerning more particular operators
provide more easy-to-use expressions for the most usual con-
junctors and generators, i.e. for some t-norms. Only the last
example leads to an unwieldy expression.
Despite the ugly general formulae obtained in Theorems 3
and 5, we have already proven that those conjunctors sat-
isfy interesting properties for some particular cases. In future
works we would like to study in depth the general expressions
and the properties they satisfy.
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