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Abstract— There exists a generalization of the Teichmüller space
of a covering group. In this paper we combine this generalized Te-
ichmüller space T (G) and any fuzzy subgroup A : G −→ F where G
is a subgroup of the group consisting of such orientation preserving
and orientation reversing Möbius transformations which act in the
upper half-plane of the extended complex plane. A partially ordered
set F = (F ,≤) consists of stabilizers of G and all of their inter-
sections. After preliminaries we present two new results concern-
ing this special case of fuzzy subgroups. These conclusions are then
applied to the known theory of the parametrization of the general-
ized Teichmüller space . As consequence, the equivalence classes of
fuzzy subgroups (with an equivalence relation) become the elements
of T (G) where G is generated by a finite set of hyperbolic Möbius
transformations. Let the number of the generators be n. Then there is
an embedding ψ : T (G) −→ R

3n−3 and therefore a homeomorphism
T (G)−→ ψ(T (G)). Through parametrization of T (G) ψ(A(G)) has
3n−3 real coordinates which are also the coordinates of A(G) up to
identification.

Keywords— Fuzzy subgroups, Möbius groups, Möbius transfor-
mations, compact Riemann surfaces, Teichmüller spaces.

1 Introduction
Orientation preserving and orientation reversing Möbius
transformations form a group denoted by M̂. Following [2],
we say that every subgroup of M̂ is a Möbius group. In Sec-
tion 2 we first take some basic knowledge of Möbius transfor-
mations and then list all the types of Möbius transformations
acting in the upper half-plane H which means that they are
self-mappings of H. Let G and G′ be Möbius groups fixing H.
Then we define geometric isomorphisms j : G −→ G′ which
play an important role in our representation.

In Section 3 we present two new Propositons 1 and 2 which
the author of this paper has proved in [1]. It is not relevant to
give the proofs in this connection because they are too long to
show as well as many preliminaries are required. The propo-
sitions constitute the relationship between subgroups of the
group of Möbius transformations and certain kind of fuzzy
subgroups.

Let G, G′, G1 and G2 be Möbius groups with a fixed G.
Defining a delation δ( j) of an isomorphism j : G −→ G′
by means of multipliers of Möbius transformations g ∈ G
we say that any two isomorphisms j1 : G −→ G1 and j2 :
G −→ G2 with some properties are equivalent precisely when
δ( j2 j−1

1 ) = 1. The set E(G) of equivalence classes [ j] forms a
metric space (E(G),d) with a metric d. In the theory of com-
pact Riemann surfaces this space can be regarded as a gener-
alization of the Teichmüller space of a covering group G. So,
(E(G),d) is denoted by T (G). All the presented premilimi-
naries and the parametrization of the generalized Teichmüller

space can be found from [2], [3] and [4]. We will consider
them in Section 4 so much as needed for Section 5.

Suppose that there exists a set F in G such that the
parametrization condition in Proposition 3 is satisfied. Then
we obtain an embedding ψ : T (G) −→ R

3n−3 where G is
finitely generated by n hyperbolic elements. More precisely,
T (G)−→ψ(T (G)) is a homeomorphism. Then, up to homeo-
morphism, [ j] is an element of R

3n−3 with coordinates k( j(g))
which are the multipliers of Möbius transformations j(g) for
every g ∈ F .

In Section 5 we apply fuzzy subgroups to the theory of the
parametrization of the generalized Teichmüller space. Ac-
cording to Corollary 1 the type-preserving isomorphisms j1 :
G −→ G1 and j2 : G −→ G2 as well as the fuzzy subgroups
A( j1(g)) and A( j2(g)) are simultaneously equivalent. The
definition of the fuzzy subgroups is given by (3) in Proposi-
tion 1 and the equivalence between two fuzzy subgroups is de-
fined by conjugation with a Möbius transformation. Roughly
speaking, it is now possible to replace any element [ j] by the
corresponding [A( j(g))] in Proposition 4. This leads to the
representation of [A( j(g))] with real coordinates (up to iden-
tification) in the Euclidean space R

3n−3.
In the following special case, we refer to [3]: If G is a cov-

ering group of the upper half-plane H over some compact Rie-
mann surface S, then [ j] has coordinates in R

6s−6+3n where S
is of genus s and n is the number of conformal disks removed
from S. The coordinates of [A( j(g))] are given in subsection
5.2.

2 Preliminaries for Möbius transformations
In this section we refer to [2].

2.1 Möbius transformations

Directly conformal automorphisms of the extended complex
plane Ĉ are orientation preserving Möbius transformations

g(z) =
az+b
cz+d

a, b, c, d ∈ C, ad −bc = 1, (1)

and g(− d
c ) = ∞, g(∞) = a

c .
Indirectly conformal automorphisms of Ĉ are of the form

g(z) =
az+b
cz+d

a, b, c, d ∈ C, ad −bc = −1 (2)

which are orientation reversing Möbius transformations. The
mappings (1) and (2) form the group M̂. Two transformations
g1 and g2 in M̂ are conjugate if g1 = hg2h−1 for some Möbius
transformation h.
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A point z is said to be a fixed point of g if g(z) = z. Every
non-identity orientation preserving Möbius transformation g
has one fixed point or two fixed points. Then

• g with one fixed point is parabolic and it is conjugate to
z �→ z+1.

• If g has two fixed points and it is conjugate to z �→ kz
for some k ∈ C\{0}, then g is loxodromic if |k| �= 1 and
elliptic if |k| = 1, k �= 1.

• Loxodromic transformations fixing the upper half-plane
H are called hyperbolic. Otherwise they are strictly lox-
odromic.

In the loxodromic case we set

P(g) = lim
n→∞

gn and N(g) = lim
n→∞

g−n,

which are the attracting and repelling fixed points of g. Be-
cause the fixed points of any loxodromic g are real iff g(H) =
H, hyperbolic transformations have fixed points on the real
axis R. Therefore P(g) and N(g) are real if g is hyperbolic. A
circle or line in H perpendicular to to the real axis is a non-
Euclidean line. Now the non-Euclidean line through P(g) and
N(g) is called the axis ax(g) of g. In the elliptic case g(H) = H
iff the fixed points of g are complex conjugates.

The multiplier of a Möbius transformation g is defined by
means of the cross-ratio

k(g) = (g(z),z,x,y) =
g(z)− x
g(z)− y

z− y
z− x

,

where x and y are two different fixed points of g. In the
parabolic case we set k(g) = 1. For the above complex number
k we have k = k(g). The multiplier is invariant in conjugation.

We are only interested in such orientation reversing Möbius
transformations which act in H (fix H). This leads to the next
consideration: the axis ax(σ) = {z | σ(z) = z} of a reflection
σ fixing H is also a circle or line orthogonal to R. Denote by
x and y the real fixed points of σ. Then

• the reflection σ(z) = η(z) where η is the elliptic trans-
formation defined by k(η) = −1, η(x) = x and η(y) = y,

• a glide-reflection s fixing H is of the form s = τσ where τ
is a hyperbolic transformation fixing H, σ is a reflection
fixing H and ax(τ) = ax(σ).

The reflection σ has an infinite number of fixed points but
two real fixed points (if ax(σ) is not a line). For the multiplier
we set k(σ) = −1. The glide-reflection s and the hyperbolic
τ have the same two fixed points. Moreover, the multiplier
k(s) = −k(τ).

It is known that transformations (1) and (2) fix the upper-
half plane H iff the coefficients a,b,c,d are real. In fact, there
are the following types of Möbius transformations fixing H:
hyperbolic, parabolic and elliptic transformations, the identity
transformation, reflections and glide-reflections.

Suppose that G and G′ are groups of Möbius transfor-
mations (or Möbius groups) acting in H. An isomorphism
j : G −→ G′ is induced by a Möbius transformation h if
j(g) = hgh−1 for all g ∈ G. We say that j : G −→ G′ is type-
preserving if g and j(g) are of the same type for all g ∈ G. A

type-preserving isomorphism j : G −→ G′ is geometric on R

if there exists a homeomorphism ϕ : R̂ −→ R̂ inducing j on
R̂, which is the boundary of the upper half-plane. Especially
ϕ(P(g)) = P( j(g)) and ϕ(N(g)) = N( j(g)) for any hyperbolic
g. Since every Möbius transformation is a homeomorphism
Ĉ −→ Ĉ, then for every ϕ which induces a geometric isomor-
phism j we have h | R̂ = ϕ (h : Ĉ −→ Ĉ is a Möbius transfor-
mation).

3 Connection between fuzzy subgroups and
Möbius transformations

Let (P,≤) be a partially ordered set and A a nonempty set.

(i) A mapping A : A −→ P is a P-(fuzzy)set on A.

(ii) For every p ∈ P, Ap = {x ∈ A | A(x) ≥ p} is a p-level set
subset (in short a level subset) of A .

(iii) Let G = (G,◦) be a group such that (Ap,◦) is a subgroup
of G for every p ∈ P. Then a P-set on G, A : G → P, is
said to be a P-(fuzzy) subgroup of G .

Proposition 1. [1] Let G be a subgroup of the group of
Möbius transformations and let Gz = {g ∈ G | g(z) = z} be
a stabilizer of G at z ∈ Ĉ. If F is a set of stabilizers of G
and all of their intersections, and F = (F ,≤) is a partially
ordered set under p ≤ q iff p ⊇ q (p,q ∈ F ), then A : G → F

A(g) =
�

(p ∈ F | g ∈ p) =
�

(Gz | g ∈ Gz) (3)

is a F -subgroup of G.

We set an equivalence relation between fuzzy subgroups (3)
by conjugation: A(g1)∼A(g2) iff there exists a Möbius trans-
formation h such that A(g1) = hA(g2)h−1. Observe that sta-
bilizers form a group and the conjugation of the intersection
of the groups Gz occurs by elements in formula (3). Recall
that a Möbius group is a subgroup of the group M̂.

Proposition 2. [1] Let G and G′ be Möbius groups acting in
the upper half-plane, F a set of stabilizers of G and all of their
intersections. Let A : G −→ F be defined by (3) and suppose
that there is a type-preserving isomorphism j : G −→ G′.
Then the following conditions are equivalent:

(i) A(g) ∼ A( j(g)) for every g ∈ G,

(ii) k(g) = k( j(g)) for every g ∈ G,

(iii) j is induced by a Möbius transformation,

(iv) j : G −→ G′ is a geometric isomorphism.

Further, let j1 : G−→G1 and j2 : G−→G2 be type-preserving
isomorphisms. Then

A( j1(g)) ∼ A( j2(g)) for every g ∈ G

iff

j2 j−1
1 : G1 −→ G2 is induced by a Möbius transformation.

4 Coordinates of the generalized Teichmüller
space

In this section we refer to [3].
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4.1 The set E

Let G and G′ be Möbius groups acting in the upper half-plane
H and j : G −→ G′ an isomorphism. We suppose that G has
a set E = {g1,g2, · · ·} of hyperbolic generators satisfying the
following conditions:

(i) ax(g1)∩ax(g2) is a set of two points,

(ii) (ax(g1)∪ax(g2))∩ax(gi) = /0, i = 3,4, · · · ,
(iii) (N(gi),P(gi),N(g1),P(g1)) < 1, i = 3,4, · · · .
4.2 The dilation

Let j : G −→ G′ be an isomorphism between Möbius groups.
The dilation δ( j) of j is the smallest number of the numbers
a ≥ 1 satisfying

|k(g)| 1
a ≤ |k( j(g))| ≤ |k(g)|a (4)

for all g ∈ G. If there exists no number a ≥ 1 we define
δ( j) = ∞.

For a fixed G, let J(G) be a set of all isomorphisms j : G−→
G′ with the following properties:

(i) G and G′ are Möbius groups acting in H,

(ii) the dilation δ( j) is finite,

(iii) there exists a homeomorphism ϕ : R̂ −→ R̂ such that
ϕ(P(gi)) = P( j(gi)) and ϕ(N(gi)) = N( j(gi)) for all gi ∈
E.

Define in J(G) an equivalence relation ∼ by setting j1 ∼ j2
iff δ( j2 j−1

1 ) = 1. Then the set E(G) of equivalence classes [ j]
becomes a metric space (E(G),d) with the dilation metric d
defined by d([ j1], [ j2]) = log δ( j2 j−1

1 ) [4].

Definition 1. [3] The space T (G) = (E(G),d) is called the
generalized Teichmüller space of a Möbius group G.

4.3 Parametrization of the Teichmüller space T (G)

Let us construct a set F containing the next elements:

(1) gi, i = 1,2, · · · ,
(2) gig1, i = 2,3, · · · ,
(3) g2gig−1

2 g−1
i , i = 3,4, · · · ,

where every gi ∈ E. The following proposition shows the sig-
nificance of the set F if we want to find the condition for
the parametrization of T (G). We say that F parametrizes the
space T (G) or the set J(G).

Proposition 3. [3] Suppose that there exists a homeomor-
phism ϕ : R̂ −→ R̂ for which ϕ(P(gi)) = P( j(gi)) and
ϕ(N(gi)) = N( j(gi)) for all gi ∈ E. If

k( j(g)) = k(g)

for all g ∈ F, then j is induced by a Möbius transformation
h : Ĉ −→ Ĉ.

Since multipliers are invariant in conjugation the converse
holds trivially.

Proposition 4. [3] Suppose that E = {g1, · · · ,gn} is finite.
Then there is an embedding

ψ : T (G) −→ R
3n−3, ψ([ j]) = (x1, · · · ,x3n−3),

where

xi = k( j(gi)), i = 1, · · · ,n,

xn−1+i = k( j(gi) j(g1)), i = 2, · · ·n,

x2n−3+i = k( j(g2) j(gi) j(g2)−1 j(gi)−1), i = 3, · · · ,n.

Proof. The mapping ψ : T (G) −→ R
3n−3 is continuous with

the dilation metric d [3], [4]. By Proposition 3, ψ is injec-
tive [3]. Furthermore, the inverse ψ−1 : ψ(T (G)) −→ T (G)
is continuous. Hence ψ : T (G) −→ ψ(T (G)) is a homeomor-
phism.

5 Fuzzy subgroups in the Teichmüller space

5.1 The main results

Let G, G1 and G2 be Möbius groups. According to Proposition
2 and inequalities (4) we conclude

Corollary 1. Let j1 : G −→ G1 and j2 : G −→ G2 be type-
preserving isomorphisms. Then the following statements are
equivalent:

(i) j1 ∼ j2,

(ii) δ( j2 j−1
1 ) = 1,

(iii) k( j2 j−1
1 (g)) = k(g) for every g ∈ G,

(iv) j2 j−1
1 : G1 −→ G2 is induced by a Möbius transforma-

tion,

(v) A( j1(g)) ∼ A( j2(g)) for every g ∈ G.

Let j ∈ J(G) and suppose that j : G −→ G′ is geometric.
Then j is type-preserving and satisfies the condition (iii) in
subsection 4.2. Following the definition of E(G), let us denote
the set of equivalence classes [A( j(g))] by E ′(G). By Corol-
lary 1,(i),(v), (E ′(G),d) becomes also a metric space having
the same metric d. This leads to the new form of the gener-
alized Teichmüller space, T ′(G) = (E ′(G),d). Reformulation
of Proposition 4 for the fuzzy subgroups A( j(g)) yields

Proposition 5. Suppose that E = {g1, · · · ,gn} is finite. Then
there is an embedding

ψ′ : T ′(G) −→ R
3n−3, ψ′([A( j(g)]) = (x1, · · · ,x3n−3),

for every g ∈ G, and where

xi = k( j(xi)), i = 1, · · · ,n,

xn−1+i = k( j(gi) j(g1)), i = 2, · · ·n,

x2n−3+i = k( j(g2) j(gi) j(g2)−1 j(gi)−1), i = 3, · · · ,n.
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5.2 The covering group of a compact Riemann surface

Let G be a Möbius group acting in the upper half-plane H and
suppose that G is a covering group of H over the compact Rie-
mann surface S. Since any non-identity cover transformation
of G has no fixed points in H, we know that all elements of
G are hyperbolic or parabolic Möbius transformations, or it
is the identity mapping. We say that G is of signature (s,n)
if S = H/G is of genus s from which n conformal disks are
removed.

Assume that G is a fixed covering group of signature (s,n)
with s > 0 and n > 0. Then G has 2s+n hyperbolic generators
satisfying the defining relation:

cn · · · c1 b−1
s a−1

s bs as · · · b−1
1 a−1

1 b1 a1 = id

from which cn can be solved. As conclusion the set

E = {a1,b1,a−1
2 ,b2, · · · ,a−1

s ,bs,c−1
1 , · · · ,c−1

n−1}
generates G freely. Moreover, E satisfies the conditions
(i)− (iii) in subsection 4.1. Then the mapping ψ′ : T ′(G) −→
R

3n−3 in Proposition 5 takes the form

ψ′ : T ′(G) −→ R
6s−6+3n, ψ′([A( j(g)]) = (x1, · · · ,x6s−6+3n)

with coordinates

xt = k( j(ai)), i = 1, · · · ,s,
k( j(bi)), i = 1, · · · ,s
k( j(ci)), i = 1, · · · ,n−1,

for t = 1, · · · ,2s+n−1,

x2s+n−2+t = k( j(bi) j(a1)), i = 1, · · · ,s,
k( j(ai)−1) j(a1)), i = 2, · · · ,s,
k( j(ci)−1) j(a1)) i = 1, · · · ,n−1,

for t = 2, · · ·2s+n−1,

x4s+2n−5+t = k( j(b1) j((ai)−1) j((b1)−1) j(ai)),
i = 2, · · · ,s
k( j(b1)( j(bi) j((b1)−1) j((bi)−1)),
i = 2, · · · ,s
k( j(b1) j((ci)−1) j((b1)−1) j(ci)),
i = 1, · · · ,n−1,

for t = 3, · · · ,2s+n−1.

Example 1. Let us construct a compact Riemann surface
S = H/G with a covering group G of signature (1,1). Then S
consists of one handle from which one conformal disk is re-
moved. Therefore G has a set E = {a,b,c−1} of hyperbolic
generators with the defining relation

c−1 a b = id,

where c is a boundary mapping of the disk satisfying c = ab.
Then a and b generates G freely, G =< a,b >. In fact, the
hyperbolic a and b have no comman fixed points and G is
a purely hyperbolic group. It does not contain parabolic or

elliptic elements. The first one is concluded from [3] and the
second one holds because G is a covering group.

An embedding

ψ′ : E ′(G) −→ R
3,

ψ′([A( j(g)]) = (k( j(a1)),k( j(b1)),k( j(b1) j(a1)))

gives the coordinates (k( j(a1)),k( j(b1)),k( j(b1) j(a1))) of
[A( j(g)] up to homeomorphism for any g ∈ G and some geo-
metric isomorphism j of G and j ∈ J(G).
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