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Abstract— There exists a generalization of the Teichmiiller space
of a covering group. In this paper we combine this generalized Te-
ichmiiller space T (G) and any fuzzy subgroup A : G — F where G
is a subgroup of the group consisting of such orientation preserving
and orientation reversing Mobius transformations which act in the
upper half-plane of the extended complex plane. A partially ordered
set F = (F,<) consists of stabilizers of G and all of their inter-
sections. After preliminaries we present two new results concern-
ing this special case of fuzzy subgroups. These conclusions are then
applied to the known theory of the parametrization of the general-
ized Teichmiiller space . As consequence, the equivalence classes of
fuzzy subgroups (with an equivalence relation) become the elements
of T(G) where G is generated by a finite set of hyperbolic Mobius
transformations. Let the number of the generators be n. Then there is
an embedding y : T(G) — R33 and therefore a homeomorphism
T(G) — Y(T(G)). Through parametrization of T (G) ¥(A4(G)) has
3n —3 real coordinates which are also the coordinates of A(G) up to
identification.

Keywords— Fuzzy subgroups, Mobius groups, Mobius transfor-
mations, compact Riemann surfaces, Teichmiiller spaces.

1 Introduction

Orientation preserving and orientation reversing Mobius
transformations form a group denoted by M. Following [2],
we say that every subgroup of M is a Mobius group. In Sec-
tion 2 we first take some basic knowledge of Md&bius transfor-
mations and then list all the types of M&bius transformations
acting in the upper half-plane H which means that they are
self-mappings of H. Let G and G’ be Mgbius groups fixing H.
Then we define geometric isomorphisms j : G — G’ which
play an important role in our representation.

In Section 3 we present two new Propositons 1 and 2 which
the author of this paper has proved in [1]. It is not relevant to
give the proofs in this connection because they are too long to
show as well as many preliminaries are required. The propo-
sitions constitute the relationship between subgroups of the
group of Mobius transformations and certain kind of fuzzy
subgroups.

Let G, G, Gy and G, be Mébius groups with a fixed G.
Defining a delation 8(j) of an isomorphism j: G — G’
by means of multipliers of Mobius transformations g € G
we say that any two isomorphisms j; : G — Gy and jj :
G — G, with some properties are equivalent precisely when
8(joj;") = 1. The set E(G) of equivalence classes [ j] forms a
metric space (E(G),d) with a metric d. In the theory of com-
pact Riemann surfaces this space can be regarded as a gener-
alization of the Teichmiiller space of a covering group G. So,
(E(G),d) is denoted by T(G). All the presented premilimi-
naries and the parametrization of the generalized Teichmiiller
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space can be found from [2], [3] and [4]. We will consider
them in Section 4 so much as needed for Section 5.

Suppose that there exists a set F' in G such that the
parametrization condition in Proposition 3 is satisfied. Then
we obtain an embedding v : T(G) — R3~3 where G is
finitely generated by n hyperbolic elements. More precisely,
T(G) — y(T(G)) is ahomeomorphism. Then, up to homeo-
morphism, [;] is an element of R3~3 with coordinates k(j(g))
which are the multipliers of Mobius transformations j(g) for
every g € F.

In Section 5 we apply fuzzy subgroups to the theory of the
parametrization of the generalized Teichmiiller space. Ac-
cording to Corollary 1 the type-preserving isomorphisms jj :
G — Gy and jr : G — G as well as the fuzzy subgroups
A(j1(g)) and 4(j2(g)) are simultaneously equivalent. The
definition of the fuzzy subgroups is given by (3) in Proposi-
tion 1 and the equivalence between two fuzzy subgroups is de-
fined by conjugation with a Mobius transformation. Roughly
speaking, it is now possible to replace any element [j] by the
corresponding [4(j(g))] in Proposition 4. This leads to the
representation of [4(j(g))] with real coordinates (up to iden-
tification) in the Euclidean space R3 3.

In the following special case, we refer to [3]: If G is a cov-
ering group of the upper half-plane H over some compact Rie-
mann surface S, then [j] has coordinates in R®~6+3" where S
is of genus s and n is the number of conformal disks removed
from S. The coordinates of [4(j(g))] are given in subsection
5.2

2 Preliminaries for Mobius transformations
In this section we refer to [2].

2.1 Mobius transformations

Directly conformal automorphisms of the extended complex
plane C are orientation preserving Mobius transformations

_ az+b
" cz+d

8(2)

_d
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a,b,c,deC, ad—bc=1, (1)

a

Indirectly conformal automorphisms of C are of the form

and g(

()_aEer
&z oz +d

which are orientation reversing Mobius transformations. The
mappings (1) and (2) form the group M. Two transformations
g1 and g in M are conjugate if gy = hgoh~! for some Mabius
transformation /.

a,b,c,deC, ad—bc=-1 (2)
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A point z is said to be a fixed point of g if g(z) = z. Every
non-identity orientation preserving Mobius transformation g
has one fixed point or two fixed points. Then

e ¢ with one fixed point is parabolic and it is conjugate to
Z—z+ 1.

e If ¢ has two fixed points and it is conjugate to z — kz
for some k € C\ {0}, then g is loxodromic if |k| # 1 and
elliptic if |k| =1, k # 1.

e Loxodromic transformations fixing the upper half-plane
H are called hyperbolic. Otherwise they are strictly lox-
odromic.

In the loxodromic case we set
P(g) = lim g" and N(g) = lim g ",
n—o0 n—o0

which are the attracting and repelling fixed points of g. Be-
cause the fixed points of any loxodromic g are real iff g(H) =
H, hyperbolic transformations have fixed points on the real
axis R. Therefore P(g) and N(g) are real if g is hyperbolic. A
circle or line in H perpendicular to to the real axis is a non-
Euclidean line. Now the non-Euclidean line through P(g) and
N(g) is called the axis ax(g) of g. In the elliptic case g(H) = H
iff the fixed points of g are complex conjugates.

The multiplier of a Mobius transformation g is defined by
means of the cross-ratio

8(z) —x z—

k(g) = (8(2),2,x,y) ey 1=x'

where x and y are two different fixed points of g. In the

parabolic case we set k(g) = 1. For the above complex number

k we have k = k(g). The multiplier is invariant in conjugation.
We are only interested in such orientation reversing Mobius

transformations which act in H (fix H). This leads to the next

consideration: the axis ax(c) = {z | 6(z) = z} of a reflection

o fixing H is also a circle or line orthogonal to R. Denote by

x and y the real fixed points of 6. Then

e the reflection 6(z) = n(z) where 1 is the elliptic trans-
formation defined by k() = —1,n(x) =x and n(y) =y,

e a glide-reflection s fixing H is of the form s = TG where T
is a hyperbolic transformation fixing H, G is a reflection
fixing H and ax(t) = ax(o).

The reflection ¢ has an infinite number of fixed points but
two real fixed points (if ax(c) is not a line). For the multiplier
we set k() = —1. The glide-reflection s and the hyperbolic
T have the same two fixed points. Moreover, the multiplier
k(s) = —k(7).

It is known that transformations (1) and (2) fix the upper-
half plane H iff the coefficients a, b, c,d are real. In fact, there
are the following types of Mdobius transformations fixing H:
hyperbolic, parabolic and elliptic transformations, the identity
transformation, reflections and glide-reflections.

Suppose that G and G’ are groups of Mdobius transfor-
mations (or Mobius groups) acting in H. An isomorphism
j: G — G is induced by a Mobius transformation A if
j(g) = hgh~! for all g € G. We say that j : G — G’ is type-
preserving if g and j(g) are of the same type forall g € G. A
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type-preserving isomorphism j: G — G is _geometric on R
if there exists a homeomorphism ¢ : R — R inducing j on
R, which is the boundary of the upper half-plane. Especially

o(P(g)) =P(j(g)) and 9(N(g)) = N(j(g)) for any hyperbolic
g- Since every Mobius transformation is a homeomorphism
C — C, then for every ¢ which induces a geometric isomor-
phism j we have / | R= o (h: C — C is a Mébius transfor-
mation).

3 Connection between fuzzy subgroups and
Mobius transformations

Let (P, <) be a partially ordered set and A a nonempty set.
(i) A mapping 4:A — P is a P-(fuzzy)set on A.

(ii) Forevery pe P,A, ={x€A|A(x) > p} is a p-level set
subset (in short a level subset) of 4.

(iii) Let G = (G, o) be a group such that (A,,0) is a subgroup
of G forevery p € P. Thena P-seton G, 4: G — P, is
said to be a P-(fuzzy) subgroup of G.

Proposition 1. [1] Let G be a subgroup of the group of
Mbébius transformations and let G, = {g € G | g(z) = z} be
a stabilizer of G at 7 € C. If F is a set of stabilizers of G
and all of their intersections, and F = (F,<) is a partially
ordered set under p < qiff p 2q(p,q € F), then 4: G — F

Ag)=(reFleep)=((G:|2€G) (3
is a F-subgroup of G.

We set an equivalence relation between fuzzy subgroups (3)
by conjugation: A(g1) ~ A(g>) iff there exists a Mobius trans-
formation % such that 4(g;) = hA4(g>)h~'. Observe that sta-
bilizers form a group and the conjugation of the intersection
of the groups G occurs by elements in formula (3). Recall
that a Mobius group is a subgroup of the group M.

Proposition 2. [1] Let G and G' be Mbius groups acting in
the upper half-plane, F a set of stabilizers of G and all of their
intersections. Let A : G — F be defined by (3) and suppose
that there is a type-preserving isomorphism j: G — G'.
Then the following conditions are equivalent:

(i) A(g) ~ A(j(g)) for every g € G,

(ii) k(g) = k(j(g)) for every g € G,
(iii) j is induced by a Mobius transformation,
(iv) j: G — G is a geometric isomorphism.

Further, let j1 : G — Gy and j, : G — Gy be type-preserving
isomorphisms. Then

A(j1(g)) ~ A(j2(g)) foreveryg € G
iff
jzjl_1 : Gy — Gy is induced by a Mobius transformation.

4 Coordinates of the generalized Teichmiiller
space

In this section we refer to [3].

822



IFSA-EUSFLAT 2009

4.1 The set E

Let G and G’ be Mobius groups acting in the upper half-plane
H and j : G — G’ an isomorphism. We suppose that G has
aset E ={g1,82, -} of hyperbolic generators satisfying the
following conditions:

(i) ax(g1)Nax(gz) is a set of two points,
(ii) (ax(g1)Uax(g2))Nax(gi) =0,i=3,4,---,
(i) (N(g:),P(8:),N(81),P(g1)) <1.i=3,4,.

4.2  The dilation

Let j : G — G’ be an isomorphism between Mobius groups.
The dilation 8(j) of j is the smallest number of the numbers
a > 1 satisfying

Ik(g)s < [k(j(g))] < [k(g)" )

for all g € G. If there exists no number a > 1 we define

8(j) = ee.

For a fixed G, let J(G) be a set of all isomorphisms j: G —
G’ with the following properties:
(i) G and G’ are Mobius groups acting in H,
(ii) the dilation d(j) is finite,

(iii) there exists a homeomorphism @ : R — R such that

¢(P(gi)) = P(j(gi) and 9(N(g:)) = N(j(gi)) forall g; €
E.

Define in J(G) an equivalence relation ~ by setting j; ~ jo
iff 8(j2j; ') = 1. Then the set E(G) of equivalence classes [/]
becomes a metric space (E(G),d) with the dilation metric d
defined by d([j1]. [12]) = log 8(j2ji ') 14].

Definition 1. [3] The space T(G) = (E(G),d) is called the
generalized Teichmiiller space of a Mobius group G.

4.3 Parametrization of the Teichmiiller space T (G)

Let us construct a set F' containing the next elements:
1 gi,i=12,--,

(2) gig1,i=2,3,-,

(3) g28ig; '8 ' =34,

where every g; € E. The following proposition shows the sig-
nificance of the set F' if we want to find the condition for
the parametrization of 7(G). We say that F' parametrizes the
space T(G) or the set J(G).

Proposition/\3. [3 ]ASuppose that there exists a homeomor-
phism @ : R — R for which ¢(P(g;)) = P(j(gi)) and
O(N(gi)) =N(j(gi)) forall g; € E. If

k(j(g)) =k(g)

Jor all g € F, then j is induced by a Mobius transformation
h:C—C.

Since multipliers are invariant in conjugation the converse
holds trivially.
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Proposition 4. [3] Suppose that E = {g;,---
Then there is an embedding

,&n} Is finite.

YiT(G) — R 3 y([j]) = (x1, ,x30-3),

where

k(j(gi), i=1,-,n,
))? i=2 T,

lj(gi)il)a =3, ,n

Xi =

Yoo = k(j(gi)j(g1

Xon-3+i = k(j(g2)j(gi)i(g2)

Proof. The mapping y : T(G) — R¥~3 is continuous with
the dilation metric d [3], [4]. By Proposition 3, y is injec-
tive [3]. Furthermore, the inverse y~! : (T (G)) — T(G)
is continuous. Hence y : T(G) — y(T(G)) is a homeomor-
phism. O

5 Fuzzy subgroups in the Teichmiiller space

5.1 The main results

Let G, G and G, be Mobius groups. According to Proposition
2 and inequalities (4) we conclude

Corollary 1. Let j; : G — Gy and jo : G — G; be type-
preserving isomorphisms. Then the following statements are
equivalent:

(i) ji~ jn,
(ii) 8(joji') =1,
(iii) k(j2ji"(3)) = k(g) for every g € G,

(iv) jzjfl : G1 — Gy is induced by a Mobius transforma-
tion,
(v) A(j1(g)) ~ A(j2(g)) for every g € G.

Let j € J(G) and suppose that j : G — G’ is geometric.
Then j is type-preserving and satisfies the condition (iif) in
subsection 4.2. Following the definition of E(G), let us denote
the set of equivalence classes [4(j(g))] by E'(G). By Corol-
lary 1,(i),(v), (E'(G),d) becomes also a metric space having
the same metric d. This leads to the new form of the gener-
alized Teichmiiller space, T'(G) = (E'(G),d). Reformulation
of Proposition 4 for the fuzzy subgroups 4(j(g)) yields

Proposition 5. Suppose that E = {g1,--- ,gn} is finite. Then

there is an embedding

Vi T(G) — RY 7 ((A3(8)]) = (1, sx3n3),

for every g € G, and where

xi = k(j(x)), i=1,--n,
Xn—1+i k(j(gi)](gl))’ i=2,-n,
Xon-avi = k(j(82)i(8)i(g2) " j(g) "), i=3,- .
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5.2 The covering group of a compact Riemann surface

Let G be a Mobius group acting in the upper half-plane H and
suppose that G is a covering group of H over the compact Rie-
mann surface S. Since any non-identity cover transformation
of G has no fixed points in H, we know that all elements of
G are hyperbolic or parabolic Mobius transformations, or it
is the identity mapping. We say that G is of signature (s,n)
if S=H/G is of genus s from which n conformal disks are
removed.

Assume that G is a fixed covering group of signature (s,n)
with s > 0 and n > 0. Then G has 25+ n hyperbolic generators
satisfying the defining relation:

Cp o Cl b;l a;lbsas bflafl bia; = id

from which c¢,, can be solved. As conclusion the set

-1 -1 —1 —1
E = {(H,b],az abZa"'7as 7bS7C1 7"'7cn_1}

generates G freely. Moreover, E satisfies the conditions
(i) — (iii) in subsection 4.1. Then the mapping ' : T'(G) —
R3"=3 in Proposition 5 takes the form

¥ T'(G) — RO/ ([A(j(8)]) = (1, Xey—6:+3n)

with coordinates

x = k(jla)), i=1,---,s,
k(](b,)), l_lv' )
k(jci)), i=1,---,n—1,

X2stn—2+4t = k(](b,)](al)), i=1,---,s,

Xasron—ste = k(j(b1)j((a)"")j((b1) ") j(a)),
i=2,---,8
k(j(b1)(j(Bi)j((b1)"")i((B:) ")),
i=2,---,8
k(j(b1) (i)™ j((b1) ")),
i=1,---,n—1,

for t=3,--- 2s+n—1.

Example 1. Let us construct a compact Riemann surface
S = H /G with a covering group G of signature (1,1). Then S
consists of one handle from which one conformal disk is re-
moved. Therefore G has a set E = {a,b,c~'} of hyperbolic
generators with the defining relation

clab =id,

where c is a boundary mapping of the disk satisfying ¢ = ab.
Then a and b generates G freely, G =< a,b >. In fact, the
hyperbolic a and b have no comman fixed points and G is
a purely hyperbolic group. It does not contain parabolic or
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elliptic elements. The first one is concluded from [3] and the
second one holds because G is a covering group.
An embedding

Vv E'(G) — R?,
v ([AG()]) = (k(j(a1)),k(j(b1)), k(j(b1)j(a1)))

gives the coordinates (k(j(ai)),k(j(b1)),k(j(b1)j(ar))) of
[4(j(g)] up to homeomorphism for any g € G and some geo-
metric isomorphism j of G and j € J(G).
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