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Abstract— Reasoning in the presence of imprecision and vague-
ness is inevitable in many real-world applications including those in
robotics and intelligent agents. Although, reasoning about actions is
a major component in these real-world applications, current actions
languages for reasoning about actions lack the ability to represent
and reason about actions in the presence of imprecision and vague-
ness that stem from effects of actions in these real-world applications.
In this paper we present a new action language called fuzzy action
language, AF , that allows the representation and reasoning about
actions with vague (fuzzy) effects. In addition we define the notions
of fuzzy planning and fuzzy plan in the fuzzy action language AF .
Furthermore, we describe a fuzzy planner based on the fuzzy action
language AF that is developed by translating a fuzzy action theory,
FT, in AF into a normal logic program with answer set semantics,
Π, where trajectories in FT are equivalent to the answer sets of
Π. In addition, we formally prove the correctness of our translation.
Furthermore, we show that fuzzy planning problems can be encoded
as a SAT problem.

Keywords— Answer set programming, fuzzy planning, reasoning
about actions with fuzzy effects, reasoning under uncertainty.

1 Introduction
Reasoning about the properties of actions is fundamental in
many real-world applications. Therefore, many action lan-
guages that allow representing and reasoning about actions
have been developed which include [2, 5, 9, 10, 11, 12, 18,
21, 22, 24]. Furthermore, uncertainty is a main issue in rep-
resenting and reasoning about actions in these real-world ap-
plications. Uncertainty in these real-world applications stems
from different sources including incompleteness, erroneous,
or imprecision (vagueness). For reasoning under uncertainty,
probability theory is used to reason in the presence of incom-
pleteness or erroneous, however, fuzzy set theory is used to
reason in the presence of imprecision or vagueness. To deal
with probabilistic uncertainty in reasoning about actions, dif-
ferent proposals have been presented. These proposals include
[2, 5, 12, 21, 22]. Although, these proposals deal with un-
certainty probabilistically, they are inappropriate in situations
where actions have imprecise or vague effects, which need a
different formalism from the one required in reasoning about
actions with probabilistic effects as in [2, 5, 12, 21, 22]. This is
because the underlying formalism in reasoning about actions
with probabilistic effects is the probability theory, however,
the formalism required for reasoning about actions with im-
precise effects is the fuzzy set theory. Actions with imprecise
effects appear in many domains including robotics and intel-

ligent agents. Consider the following example adapted from
[23]. Consider a planner that controls an autonomous car that
is moving in a highway with the goal to keep the car close
to the middle of a lane. The autonomous car planner’s uses
the action navigate whose effect is to make the car close to
the middle of the lane. The effect of the action navigate is
neither probabilistically nor precisely defined. Therefore, ac-
tion languages, for example [9, 10, 11, 18, 24], that reason
about actions whose effects are precisely defined (either en-
tirely true or entirely false), and action languages, for example
[2, 5, 12, 21, 22], that reason about actions whose effects are
probabilistically defined (either true or false to a probabilis-
tic degree), can not be used to correctly represent and reason
about these kind of actions whose effects are imprecisely or
vaguely defined.

In this paper we present a new action language called fuzzy
action language, AF , that allows the representation and rea-
soning about actions with vague (fuzzy) effects. In addition,
we define the notions of fuzzy planning and fuzzy plan in the
fuzzy action language AF . Furthermore, we describe a fuzzy
planner based on the fuzzy action language AF that is devel-
oped by translating a fuzzy action theory, FT, in AF into a
normal logic program with answer set semantics, Π, where
trajectories in FT are equivalent to the answer sets of Π. In
addition, we formally prove the correctness of our translation.
Furthermore, we show that fuzzy planning problems can be
encoded as SAT problems.

This paper is organized as follows. Section 2 reviews the
answer set semantics of normal logic programs and the funda-
mental notions of the fuzzy set theory. The syntax and seman-
tics of the fuzzy action language, AF , is introduced in section
3. In section 4, a translation from a fuzzy planning problem
in the fuzzy action language AF into a normal logic program
with answer set semantics is presented. The correctness of the
translation is introduced in section 5. Finally, conclusion and
related work is presented in section 6.

2 Preliminaries
In this section we review the answer set semantics of normal
logic programs [7] and the basic notions of fuzzy set theory
[27].

2.1 Normal Logic Programs with Answer Set Semantics
Let L be a first-order language with finitely many predicate
symbols, function symbols, constants, and infinitely many
variables. The Herbrand base of L is denoted by B. A Her-
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brand interpretation is a subset of the Herbrand base B. A
normal logic program is a finite set of rules of the form

a ← a1, . . . , an, not b1, . . . , not bm

where a, a1, . . . , an, b1, . . . , bm are atoms and not is the
negation-as-failure. Intuitively, the meaning of the above rule
is that if it is believable (provable) that ai is true and it is not
believable that bi is true then it is believable that a is true. A
normal logic program is ground if no variables appear in any
of its rules.

Let Π be a ground normal logic program, S be a Herbrand
interpretation, and r be a rule as above. Then, we say that
• S satisfies ai (denoted by S |= ai) iff ai ∈ S.
• S satisfies not bj (denoted by S |= not bj) iff bj /∈ S.
• S satisfies (a1, . . . , an, not b1, . . . , not bm) (denoted

by S |= (a1, . . . , an, not b1, . . . , not bm)) iff
{a1, . . . , an} ⊆ S and {b1, . . . , bm} � S.

• S satisfies a ← a1, . . . , an, not b1, . . . , not bm iff S |=
a or S � (a1, . . . , an, not b1, . . . , not bm).

A Herbrand interpretation is said to satisfy a normal logic pro-
gram Π iff it satisfies every rule in Π. A Herbrand model of
a normal logic program Π is a Herbrand interpretation of Π
that satisfies Π. A Herbrand interpretation S of a normal logic
program Π is said to be an answer set of Π if S is the mini-
mal Herbrand model (with respect to the set inclusion) of the
reduct, denoted by ΠS , of Π w.r.t. S, where ΠS is a set of
rules of the form

a ← a1, . . . , an

such that

a ← a1, . . . , an, not b1, . . . , not bm ∈ Π

and {b1, . . . , bm} � S

Intuitively, for any not bj in the body of a rule in Π with
bj /∈ S is simply satisfied by S, and not bj is safely removed
from the body of the rule. If bj ∈ S then the body of the rule
is not satisfied and the rule is trivially ignored.

2.2 Fuzzy Sets
In this section we review the basic notions of fuzzy sets as pre-
sented in [27]. Let U be a set of objects. A fuzzy set, F , in U
is defined by the grade membership function µF : U → [0, 1],
where for each element x ∈ U , µF assigns to x a value µF (x)
in [0, 1]. The support for F denotes the set of all objects x in U
for which the grade membership of x in F is a non-zero value.
Formally, support(F ) = {x ∈ U | µF (x) > 0}. The inter-
section (conjunction) of two fuzzy sets F and F ′ in U , denoted
by F ∧f F ′ is a fuzzy set G in U where the grade membership
function of G is µG(x) = min(µF (x), µF ′(x)) for all x ∈ U .
However, the union (disjunction) of two fuzzy sets F and F ′

in U , denoted by F∨f F ′ is a fuzzy set G in U where the grade
membership function of G is µG(x) = max(µF (x), µF ′(x))
for all x ∈ U . The complement (negation) of a fuzzy set F
in U is a fuzzy set in U denoted by F where the grade mem-
bership function of F is µF (x) = 1 − µF (x) for all x ∈ U .
A fuzzy set F in U is said to be contained in another fuzzy
set G in U if and only if µF (x) ≤ µG(x) for all x ∈ U .
Notice that we use the notations ∧f and ∨f to denote fuzzy

conjunction and fuzzy disjunction respectively to distinguish
them from ∧ and ∨ for propositional conjunction and disjunc-
tion respectively. Furthermore, other function characteriza-
tions for the fuzzy conjunction and fuzzy disjunction opera-
tors can be used. However, we will stick with the min and
max function characterizations for the fuzzy conjunction and
fuzzy disjunction as originally proposed in [27].

3 Fuzzy Action Language AF

In this section we develop a novel action language, called fuzzy
action language, AF , that allows the representation of actions
with vague (fuzzy) effects. An action theory in AF is capa-
ble of representing the grade membership distribution of the
possible initial states, the executability conditions of actions,
and the grade membership distribution of the fuzzy effects of
actions. The semantics of AF is based on a transition function
that maps an action and a set of states to a set of states. The
fuzzy action language AF is inspired by the action languages
in [21, 22].

3.1 Language syntax
A predicate that describes a property of the environment,
which may contain variables, is called a fluent. Let A be
a set of action names that can contain variables and F be a
set of fluents. A fluent f ∈ F or ¬ f , the negation of f is
called a fluent literal. A conjunction of fluent literals of the
form l1∧ . . .∧ ln is called a conjunctive fluent formula, where
l1, . . . , ln are fluent literals. Sometimes we abuse the nota-
tion and refer to a conjunctive fluent formula as a set of fluent
literals (∅ denotes true).

A fuzzy action theory, FT, in AF is a tuple of the form
FT = 〈S0,AD〉, where S0 is a proposition of the form (1),
AD is a set of propositions from (2-3) as follows:

initially




ψ1 : v1

ψ2 : v2

. . .
ψn : vn

(1)

executable a if ψ (2)

a causes




φ1 : v1 if ψ1

φ2 : v2 if ψ2

. . .
φn : vn if ψn

(3)

where ψ, ψ1, . . . , ψn, φ1, . . . , φn are conjunctive fluent for-
mulae, a ∈ A is an action, and for all 1 ≤ i ≤ n, we have
vi ∈ [0, 1]. The set of all ψi must be mutually exclusive. Let
S be the set of all states formed from the fluents in F .

Proposition (1) is a fuzzy set in the set of all states S. It rep-
resents the grade membership of the possible initial states. We
consider that only ψi with grade membership that is non-zero
is listed in (1). Proposition (1) says that the grade member-
ship of the possible initial state ψi is vi for all 1 ≤ i ≤ n.
Proposition (2) represents the executability condition of ac-
tions, where each variable that appears in a also appears in ψ.
It states that an action a is executable in any state in which
ψ holds. A proposition of the form (3) represents the fuzzy
(vague) effects resulting from executing an action a in the
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states in which a is executable. For each 1 ≤ i ≤ n, all vari-
ables that appear in φi also appear in a and ψi. It describes
that a causes φi to hold with grade membership vi in a suc-
cessor state to a state in which a is executed and ψi holds for
all 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, ψi is called a precondi-
tion of an action a that corresponds to an effect φi, φi is called
an effect of a, vi is the grade membership that φi holds given
that ψi holds, where vi is a non-zero value in [0, 1]. For any
proposition of the form (3), the set of ground preconditions ψi

are mutually exclusive and exhaustive.
It will be more convenient for the subsequent results to rep-

resent an action a as a set of the form a = {a1, . . . , an}, where
each ai corresponds to φi, vi, and ψi. Therefore, alternatively,
for each 1 ≤ i ≤ n, proposition (3) can be represented as

ai causes φi : vi if ψi

A fuzzy action theory is ground if it does not contain any vari-
ables.

3.2 Semantics
A consistent set of ground literals φ is a set of literals that does
not contain a pair of complementary literals, i.e., l and ¬l /∈ φ.
If a literal l ∈ φ, then we say l is true (holds) in φ (denoted by
φ |= l), and l is false (does not hold) in φ if ¬ l is in φ (denoted
by φ |= ¬ l). If a set of literals σ is contained in φ then we
say σ is true (holds) in φ (denoted by φ |= σ), otherwise, σ is
false (does not hold) in φ (denoted by φ � σ). A state s is a
complete and consistent set of literals that describes the world
at a certain time point.

Definition 1 Let FT = 〈S0,AD〉 be a ground fuzzy action
theory, S is the set of all states in FT, s be a state whose
grade membership µS(s) is v, ai causes φi : vi : if ψi

(1 ≤ i ≤ n) be a proposition in AD, and a = {a1, . . . , an}
be an action, where each ai corresponds to φi, vi, and ψi for
1 ≤ i ≤ n. Then, s′ = Φ(ai, s) is the state resulting from
executing a in s, given that a is executable in s, where:

• l ∈ Φ(ai, s) and ¬ l /∈ Φ(ai, s) if l ∈ φi and the
precondition ψi holds in s.

• ¬ l ∈ Φ(ai, s) and l /∈ Φ(ai, s) if ¬ l ∈ φi and the
precondition ψi holds in s.

• Otherwise, l ∈ Φ(ai, s) iff l ∈ s and ¬ l ∈ Φ(ai, s) iff
¬ l ∈ s.

where the grade membership of the resulting state s′ =
Φ(ai, s) is µS(s′) = min(µS(s), vi) = min(v, vi). We call Φ
a fuzzy transition function.

Example 1 Consider the following fuzzy planning task
adapted from [14]. An arm of a robot is grasping a block
from a table, where the pickup action the robot performs has
effects that are imprecisely defined. The arm is able to tightly
hold a block (hb) with a grade membership 0.9 after executing
the pickup action in the state in which the gripper is dry (gd),
and the arm tightly cannot hold the block (¬hb), after execut-
ing the pickup action in the same state, with grade member-
ship value 0.4. On the other hand, when executing the pickup
action in the state while the gripper is not dry (¬ gd) causes
the block to be tightly held (hb) with grade of membership
equal to 0.3 and tightly not held (¬ hb) with grade member-
ship 0.6. We assume the initial grade membership distribution

of the initial states of the world is given by the grade member-
ship function µS such that µS(s1) = 0.9 and µS(s2) = 0.5,
where s1 = {gd,¬hb} and s2 = {¬gd,¬hb}, with the un-
derstanding that the grade membership of the other states of
the world is 0. This fuzzy planning domain can be represented
in the fuzzy action language AF as the fuzzy action theory
FT = 〈S0,AD〉 where

S0 = initially
{

{gd,¬hb} : 0.9
{¬gd,¬hb} : 0.5

and AD consists of:

executable pickup if ∅

pickup causes




{hb} : 0.9 if {gd}
{¬hb} : 0.4 if {gd}
{hb} : 0.3 if {¬ gd}
{¬ hb} : 0.6 if {¬ gd}

The pickup action can be represented as the set pickup =
{pickup1, pickup2, pickup3, pickup4}, where

pickup1 causes {hb} : 0.9 if {gd}
pickup2 causes {¬hb} : 0.4 if {gd}
pickup3 causes {hb} : 0.3 if {¬ gd}
pickup4 causes {¬ hb} : 0.6 if {¬ gd}

The grade membership distribution resulting from executing
the pickup action in the initial states s1 and s2 is given by:

• s
′
1 = {gd, hb} = Φ(pickup1, {gd,¬hb}),

where µS(s
′
1) = min(µS(s1), 0.9) = min(0.9, 0.9) =

0.9.
• s

′
2 = {gd,¬hb} = Φ(pickup2, {gd,¬hb}),

where µS(s
′
2) = min(µS(s1), 0.4) = min(0.9, 0.4) =

0.4.
• s

′
3 = {¬gd, hb} = Φ(pickup3, {¬gd,¬hb}),

where µS(s
′
3) = min(µS(s2), 0.3) = min(0.5, 0.3) =

0.3.
• s

′
4 = {¬gd,¬hb} = Φ(pickup4, {¬gd,¬hb}),

where µS(s
′
4) = min(µS(s2), 0.6) = min(0.5, 0.6) =

0.5.

Definition 2 (Fuzzy Plan) A se-
quence of actions 〈a0, a1, . . . , an−1〉 is called a fuzzy plan,
where each (0 ≤ i ≤ n − 1) ai is an action with fuzzy effects.

The grade membership that a fuzzy plan P satisfies a con-
junctive fluent formula G after executing P in a given state s
is given by the following definition.

Definition 3 Let FT be a ground fuzzy action theory, s, s′ be
states, sI be a variable ranging over the possible initial states,
G be a conjunctive fluent formula, and 〈a0, a1, . . . , an−1〉 be
a fuzzy plan. Then the grade membership that G is true in a
state s′ that results after executing 〈a0, a1, . . . , an−1〉 in the
possible initial states sI is given by

µ′
P(s′|sI , 〈a0, a1, . . . , an−1〉) =

max
s′′

(min
sI=s

(µ′
P(s′′|s, a0), µ′

P(s′|s′′, 〈a1, . . . , an−1〉)))

where P is the set of all plans in FT, and µ′
P(s′′|s, a0) =

µS(s′′) = min(µS(s), v) such that s′′ = Φ(a0, s). In gen-
eral, for any action a ∈ A, µ′

P(s′′|s, a) = µS(s′′) =
min(µS(s), v) such that s′′ = Φ(a, s).
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Definition 4 A fuzzy planning problem is a 4-tuple FP =
〈S0,AD,G, T 〉, where S0 is a fuzzy set in the set of all states
S that represents the initial agent knowledge about the world
states at the time of execution (the initial grade membership
distribution over states), AD is a fuzzy action description, G
is conjunctive fluent formula represents the goal to be satis-
fied, and 0 ≤ T ≤ 1 is the fuzzy threshold for the goal G to
be achieved. We say 〈a0, . . . , an−1〉 is a fuzzy plan for FP iff
each ai appears in AD and µ′

P(s′|sI , 〈a0, a1, . . . , an−1〉) ≥
T , where sI is a variable ranging over the possible initial
states, and G is true in s′.

4 Fuzzy Planning Using Answer Set
Programming

This section presents a translation from a fuzzy planning prob-
lem FP = 〈S0,AD,G, T 〉 into a normal logic program with
answer set semantics, ΠFP, where the rules in ΠFP encode
(1) the initial grade membership distribution S0, (2) the fuzzy
transition function Φ, (3) the fuzzy action description AD, (4)
and the goal G. The answer sets of ΠFP correspond to valid
trajectories in FP. The normal logic program translation of a
fuzzy planning problem FP is mainly adapted from [25]. We
assume that the length of the fuzzy plan that we are looking for
is known. We use the predicates holds(L, T ) to represent the
fact that a literal L holds at time moment T and occ(AC, T )
to describe that an action AC executes at time moment T . We
use lower case letters to represent constants and upper case
letters to represent variables.

Let ΠFP be the normal logic program translation of a fuzzy
planning problem FP = 〈S0,AD,G, T 〉, where ΠFP is the
set of rules described as follows. In addition, given p is
a predicate and ψ = {l1, . . . , ln}, we use p(ψ) to denote
p(l1), . . . , p(ln).

• For each action a = {a1, . . . , an} ∈ A, we add to ΠFP

the set of facts
action(ai) ← (4)

for each 1 ≤ i ≤ n. States of the world are described by
literals that are encoded in ΠFP by the rules

literal(A) ← atom(A) (5)
literal(¬A) ← atom(A) (6)

where atom(A) is a set of facts that describe the proper-
ties of the world. To present that A and ¬A are contrary
literals, the following rules are added to ΠFP.

contrary(A,¬A) ← atom(A) (7)
contrary(¬A,A) ← atom(A) (8)

• The initial grade membership distribution initially ψi :
vi for 1 ≤ i ≤ n is represented in ΠFP as follows. Con-
sider that s1, s2, . . . , sn form the set of possible initial
states, where for each 1 ≤ i ≤ n, si = {li1, . . . , lim}, and
the grade membership of si is µS(si) = vi. Moreover,
let s = s1 ∪ s2 ∪ . . . ∪ sn, s′ = s1 ∩ s2 ∩ . . . ∩ sn,
ŝ = s−s′, and s′′ = { l | l ∈ ŝ∨¬l ∈ ŝ}. To generate the
set of all possible initial states, the following set of rules
are added to ΠFP. For each literal l ∈ s′, the fact

holds(l, 0) ← (9)

is in ΠFP. This fact presents that the literal l holds at time
moment 0. This set of facts specifies the set of literals
that hold in every possible initial state. Moreover, for
each literal l ∈ s′′, we add to ΠFP the rules

holds(l, 0) ← not holds(¬l, 0) (10)
holds(¬l, 0) ← not holds(l, 0) (11)

The above rules say that the literal l (similarly ¬l) holds
at time moment 0, if ¬l (similarly l) does not hold at the
time moment 0.

• Each executability condition proposition of an action a =
{a1, . . . , an} of the form (2) is encoded in ΠFP for each
1 ≤ i ≤ n as

exec(ai, T ) ← holds(ψ, T ) (12)

• For each proposition of the form ai causes φi :
vi if ψi ( 1 ≤ i ≤ n), in AD, we proceed as follows.
Let φi = {l1i , . . . , lmi }. Then, ∀ (1 ≤ i ≤ n), we have
for each 1 ≤ j ≤ m,

holds(lji , T + 1) ← occ(ai, T ), exec(ai, T ), holds(ψi, T ) (13)

belongs to ΠFP. This rule states that if the action a oc-
curs at time moment T and the precondition ψi holds at
the same time moment, then the literal lji holds at the time
moment T + 1.

• The frame axioms are presented in ΠFP as below. For
any literal L we have the rule

holds(L, T + 1) ← holds(L, T ), not holds(L′, T + 1),
contrary(L,L′) (14)

in ΠFP. The above rule states that L holds at the time
moment T + 1 if it holds at the time moment T and its
contrary does not hold at the time moment T + 1.

• To encode the fact that a literal A and its negation ¬A
cannot hold at the same time, we add the following rule
to ΠFP

← holds(A, T ), holds(¬A, T ) (15)

• Action generation rules are described by

occ(ACi, T ) ← action(ACi),
not abocc(ACi, T ) (16)

abocc(ACi, T ) ← action(ACi), action(ACj),
occ(ACj , T ), ACi 	= ACj (17)

The above rules generate action occurrences once at a
time, where ACi and ACj are variables representing ac-
tions.

• Let G = g1 ∧ . . . ∧ gm be a goal expression, then G is
encoded in ΠFP as

goal ← holds(g1, T ), . . . , holds(gm, T ) (18)
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Example 2 The normal logic program translation, ΠFP, of
the fuzzy planning problem FP = 〈S0,AD,G, T 〉, described
in Example 1 proceeds as follows, where S0 and AD are as
presented in Example 1, G = {hb}, and T ∈ [0, 1]. In ad-
dition to the rules (5), (6), (7), (8), (14), (15), (16), and (17),
ΠFP contains the rules

action(pickup1) ←
action(pickup2) ←
action(pickup3) ←
action(pickup4) ←

where pickup is in A. Properties of the world are described
by the atoms gd (gripper dry) and hb (holding block), which
are encoded in ΠFP by the rules

atom(gd) ←
atom(hb) ←

Executability conditions of action pickup are encoded in ΠFP

by the rules

exec(pickup1, t) ←
exec(pickup2, t) ←
exec(pickup3, t) ←
exec(pickup4, t) ←

where 0 ≤ t ≤ n. The set of possible initial states are encoded
in ΠFP by the rules:

holds(¬hb, 0) ←
holds(gd, 0) ← not holds(¬gd, 0)
holds(¬gd, 0) ← not holds(gd, 0)

Effects of the pickup action are encoded in ΠFP by the rules

holds(hb, T + 1) ← occ(pickup1, T ),
exec(pickup1, T ), holds(gd, T )

holds(¬hb, T + 1) ← occ(pickup2, T ),
exec(pickup2, T ), holds(gd, T )

holds(hb, T + 1) ← occ(pickup3, T ),
exec(pickup3, T ), holds(¬gd, T )

holds(¬hb, T + 1) ← occ(pickup4, T ),
exec(pickup4, T ), holds(¬gd, T )

The goal is encoded in ΠFP by the rule

goal ← holds(hb, T )

5 Correctness

In this section we prove the correctness of our translation.
We show that the answer sets of the normal logic program
translation, ΠFP, of a fuzzy planning problem, FP, corre-
spond to trajectories in FP. Consider that the domain of T
is {0, . . . , n}. Assume that Φ is the fuzzy transition func-
tion associated with FP, s0 is a possible initial state, and
a0, . . . , an−1 be a set of actions in A. Any action ai can be
represented as a set where ai = {a1i

, . . . , ami
}. Therefore, a

trajectory in FP is s0 aj0 s1 . . . ajn−1 sn for (1 ≤ j ≤ m)
and (0 ≤ i ≤ n), such that ∀(0 ≤ i ≤ n), si is a state, ai is an
action, aji

∈ ai = {a1i
, . . . , ami

}, and si = Φ(aji−1 , si−1).

Theorem 1 Let FP = 〈S0,AD,G, T 〉 be a fuzzy planning
problem, P be a fuzzy plan in FP, and TP be the set of all
trajectories in P . Then, s0 aj0 s1 . . . ajn−1 sn is a trajectory
in TP iff occ(aj0 , 0), . . . , occ(ajn−1 , n−1) is true in an answer
set of ΠFP.

Theorem 1 presents that any fuzzy planning problem, FP, can
be translated into a normal logic program with answer set se-
mantics, ΠFP, such that a trajectory in FP is equivalent to
an answer set of ΠFP. Theorem 1 shows that normal logic
programs with answer set semantics can be used to find fuzzy
plans for fuzzy planning problems in two steps. The first step
is to translate a fuzzy planning problem, FP, into a normal
logic program whose answer sets correspond to valid trajecto-
ries in FP. From the answer sets of the normal logic program
translation of FP, the set of trajectories TP that correspond
to a fuzzy plan P in FP is determined. The second step is to
calculate the grade membership of the fuzzy plan P using the
formula

max
s0 aj0 s1...ajn−1 sn∈TP

(
min

0≤i≤n−1
(µS(si), µS(si+1))

)

Furthermore, we show that any fuzzy planning problem can
be encoded as a SAT formula. Hence, state-of-the-art SAT
solvers can be used to find fuzzy plans for fuzzy planning
problems. Any normal logic program, Π, can be translated
into a SAT formula, S, where the models of S are equiva-
lent to the answer sets of Π [19]. Therefore, the normal logic
program translation of a fuzzy planning problem FP can be
encoded into an equivalent SAT formula, where the models of
S correspond to valid trajectories in FP.

Theorem 2 Let FP be a fuzzy planning problem and ΠFP be
the normal logic program encoding of FP. Then, the models
of the SAT encoding of ΠFP are equivalent to valid trajecto-
ries in FP.

6 Conclusions and Related Work
We described a novel action language called fuzzy action lan-
guage, AF , that allows the representation and reasoning about
actions with fuzzy effects. In addition we introduced the no-
tions of fuzzy planning and fuzzy plan in the fuzzy action lan-
guage AF . Furthermore, we described a fuzzy planner based
on the fuzzy action language AF that is developed by trans-
lating a fuzzy planning problem, FP, in AF into a normal
logic program with answer set semantics, ΠFP, where trajec-
tories in FP are equivalent to the answer sets of ΠFP. In
addition, we formally proved the correctness of our planner.
Furthermore, we showed that a fuzzy planning problem can
be encoded as a SAT problem.

The literature is rich with action languages that are capable
of representing and reasoning about actions in the presence
of probabilistic uncertainty, which include [2, 3, 5, 12, 14, 21,
22]. In [22], a probabilistic action language P is described that
allows the representation of imperfect sensing actions (with
probabilistic outcomes), non-sensing actions with probabilis-
tic effects, the initial probability distribution over the possible
initial states, and the indirect effects of actions. The action
language E+ [12] allows sensing actions under the assump-
tion that the agent’s sensors are perfect, actions with proba-
bilistic effects, and actions with non-deterministic effects. In

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

829



addition, the semantics of E+ is based on description logic.
Other high level probabilistic action description languages are
described in [2, 5]. These languages are similar to E+ in the
sense that they represent and reason about actions with prob-
abilistic effects, except that they do not allow actions with
non-deterministic effects or sensing actions. In [21], a high
level action language called AMD is presented that allows
the factored representation and reasoning about Markov De-
cision Processes for reinforcement learning. In addition to the
fact that AF is a high level language, the major difference be-
tween AF and these languages is that AF represent and rea-
son about actions under the presence of fuzzy uncertainty or
imprecision. This is achieved in AF by allowing description
of actions with fuzzy effects, the executability conditions of
actions, and the initial grade membership distribution of the
initial states.
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