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Abstract— In this paper, we present new approaches to handle
drift and shift in on-line data streams using evolving fuzzy systems
(EFS), which are characterized by the fact that their structure is not
fixed and not pre-determined. When dealing with drifts and shifts
in data streams one needs to take into account two major issues: a)
automatic detection of, and b) automatic reaction to this. To address
the first problem we propose an approach based on the concepts of
age and utility of fuzzy rules/clusters. The second problem itself is
composed of two sub-problems concerning the influence of the drifts
and shifts on: 1) the antecedent parts (fuzzy set and rule structure)
and 2) the consequent parts (parameters) of the fuzzy models. To ad-
dress the latter sub-problem we propose an approach that introduces a
gradual forgetting strategy in the local learning process. To address
the former sub-problem we introduce two alternative methods: one
that is based on the evolving density-based clustering, eClustering
(used in eTS); and one that is based on the automatic adaptation of
the learning rate of the evolving vector quantization approach (eVQ)
(used in FLEXFIS). The paper is concluded with an empirical evalu-
ation of the impact of the proposed approaches in (on-line) real-world
data sets where drifts and shifts occur.
Keywords— drifts and shifts in data streams, evolving fuzzy
systems, detection and reaction to drifts and shifts, age of a
cluster/fuzzy rule, gradual forgetting

1 Introduction

1.1 Motivation and State of the Art

Nowadays data-driven fuzzy systems enjoy a great at-
traction in many industrial applications, as opposed to
expert-based fuzzy systems. They can be automatically
generated from process data such as measurements, im-
ages (features) or signal streams. Furthermore, they are
proven universal approximators [27], i.e. being able to
model a given problem to (theoretically) any degree of
accuracy. Moreover, they also allow an insight in the
form of linguistically and visually interpretable rules to
be gained [8].

During the last decade, the research field of ’evolv-
ing fuzzy systems’ (EFS) emerged as an important part
of the fuzzy systems research [4] [11], as they are ca-
pable to include new information on demand into the

∗This work was partially supported by the Upper Aus-
trian Technology and Research Promotion and by The Royal
Academy, UK. This publication reflects only the authors’
views.

models and on-the-fly without necessarily using prior
knowledge. EFS can also permanently learn from their
environment and are applicable in fast on-line identifi-
cation [4] and modelling processes as well as huge data
bases which cannot be loaded into the virtual memory
at once [18]. Often, there are no enough data in advance
(off-line) to build reliable models with high predictive
quality which can also require application of EFS as in
[23].

Various approaches for EFS have been set up during
the last years, one of the most popular and pioneering
approach is the eTS family which comes with a regres-
sion [4], [3] and a classification variant [5]. Another
approach for adaptation and evolution of clusters in-
spired by the evolving vector quantization (eVQ) [19] is
the so-called FLEXFIS family [21], in particular FLEXFIS
for regression [20] and for classification [22] (denoted as
FLEXFIS-Class). A range of other alternative approaches
includes ePL [16], SAFIS [12], and evolving fuzzy neural
networks such as SOFNN [15] or GDFNN [28].

All these methods have a common denominator: they
all are life-long learning approaches, which means that
they incorporate all the data samples into the fuzzy
models with equal weights in the same order as they
are coming in during the on-line process. Hence, fuzzy
models reflect a compact information of all the samples
seen so far with equal importance. This is a beneficial
to adapt the models, especially when a convergence to
an optimality criterion or stable state of the model struc-
ture is achievable [20]. However, this benefit is only true
in case of data streams which are generated from the
same underlying data distribution respectively which
do not show any drift or shift to other parts of the in-
put/output space [26]. Drift (respectively shift) indicate
the necessity of out-dating of previously learned rela-
tionships (in terms of structure and parameters) as these
are not valid any longer and hence should be eliminated
from the model. In order to cope with this problem, drift
handling was already applied in other machine learn-
ing techniques, e.g. in connection with SVMs [14], en-
semble classifiers [24] or instance-based (lazy) learning
approaches [7] but to the best of our knowledge this con-
cept was not yet applied to fuzzy systems.
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1.2 Our Approach

Hence, in this paper we are dealing with approaches for
an appropriate handling of drifts and shifts by EFS. How-
ever, parts of the concepts, especially the detection of,
and reaction to drifts in the consequent parts of the rules,
can be applied to a wider range of EFS approaches in-
cluding eTS and FLEXFIS. A more detailed description
will be given in Section 2. For achieving an automatic
approach, we propose 1.) the detection of a drift respec-
tively shift based on the concepts of fuzzy rule age and
utility function, and 2.) the reaction to a detected drift
respectively shift, both in rule antecedent (for eCluster-
ing as applied in eTS and eVQ as applied in FLEXFIS) as
well as consequent parts of Takagi-Sugeno fuzzy models
[25].

The paper is concluded with an empirical evaluation
of the impact of the proposed approaches on predictive
accuracy of the evolving fuzzy models when applying
to real-world data streams where drifts and shifts occur
(Section 5). Note, that no benchmark data from the In-
ternet or well-known data bases can be applied for em-
pirical evaluation as these are usually all smooth in the
sense that no drift occurs therein.

2 Problem Statement

In machine learning literature, they distinguish between
different types of ’concept change’ of the underlying dis-
tribution of (on-line) data streams: a) drifts, and b) shifts,
see [26]. Drift refers to a gradual evolution of the concept
over time. The concept drift concerns the way the data
distribution slides smoothly through the data/feature
space from one region to another. For instance, one may
consider a data cluster moving from one position to an-
other. This concept is closely related to the time-space
representation of the data streams. While the concept of
(data) density is represented in the data space domain,
drift and shift are concepts in the joint data-time space
domain.

An (artificial) example of a drift is demonstrated in
Figure 1. There, the original data distribution (in a 2-
D data space) is marked by circular samples, which
changes over time into a data distribution marked by
rectangular samples. If a conventional clustering pro-
cess is applied by weighting all new incoming samples
equally, the cluster center would end up exactly in the
middle of the whole data bunch, averaging old and new
data. Such a clustering approach is applied in EFS ap-
proaches to identify the local regions that can be used to
form (the antecedent parts of the) fuzzy rules.

On the other hand, the concept shift refers to a sudden,
abrupt change of the underlying concept to be learned.
A shift in the input space opens up a data cloud in an un-
explored region and hence usually automatically causes
a new rule to be evolved by the incremental/evolving
clustering algorithm. In Figure 2 a case of a shift in the
output variable is shown: the original trajectory (con-
sisting of dense data samples) on the right-hand side is
marked with a light line, whereas the shift is represented
by the dark data samples forming a trajectory above the
other one. In case if only apply the usual adaptation

Figure 1: A drift in an evolving cluster (used for learning
the antecedent parts of EFS), the distribution before the
drift shown in circular, after the drift shown in rectan-
gular samples.

Figure 2: Example of a shift in the output variable; com-
pare light dots (original data distribution) with dark
dots (data distribution after the shift) on the right-hand
side of the image (also marked by arrows)

of the consequent parameters with weighted recursive
least squares without forgetting the old data due to the
shift the approximation curve of the fuzzy model will
end up exactly in-between these two.

In this paper, we demonstrate novel approaches for
autonomous drift and shift detection and handling when
learning fuzzy rule-based systems of Takagi-Sugeno
type from on-line data streams in an evolving manner
[4]. We focus on EFS approaches exploiting the Takagi-
Sugeno model architecture [25].

3 Autonomous Detection of Drifts and
Shifts in Data Streams by EFS

In this section the method for autonomous detection of
shifts and drifts in data streams based on the age and
utility of the cluster/fuzzy rule [1], [10] is described.
This is an important step in the process of handling
non-stationarity in data streams and for building au-
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Figure 3: Evolution of the age of the clusters/fuzzy rules;
drifts are related to the inflexion points; shifts are related
to forming new clusters/fuzzy rules.

tonomous self-developing, self-learning, and evolving
models and systems.

3.1 Detecting Drifts by Age of Clusters (Rules) [1]

In [1], the concept of cluster (respectively fuzzy rule) age
was introduced. We extend this by including the mem-
bership degrees of the rules (Φi,l in case of the ith rule
for the lth sample)

agei = k −
∑ni

l=1 IlΦi,l

ni
(1)

where i is the rule index; ni denotes the support of rule i;
Ij denotes the time instance when the data sample was

read; k is the current time instance. Since
∑ni

l=1 Il

ni
can also

be accumulated recursively, the age can be easily calcu-
lated when necessary. Age of the cluster/rule changes
with each new data sample being read. If the newly read
data sample does not fall into that cluster (supports that
fuzzy rule with a low or even 0 value of Φi,l in case of
fuzzy sets with finite support) the age grows by the rate
of one sample at a time. That means, if a certain clus-
ter (fuzzy rule) is not supported by any future samples
after being initiated (say in the time instant, ti) then its
age at any time instant, k will be k − ti. However, if any
new data sample (between ti and k) falls into that cluster
(supports that fuzzy rule with a high value of Φi,l), the
age does not grow with the same rate, but with a smaller
one and one can say that the cluster (fuzzy rule) is being
refreshed.

The fuzzy rule age is important and closely linked to
the data streams (which are sequences of data in time)
and to the concept drift. We propose to analyze the age
of clusters (respectively, fuzzy rules) on-line by using the
gradient of the ageing curve as well as its second deriva-
tive which indicate a change in the slope of the ageing
curve. When there is a significant change of the age-
ing which results in a significant change of the slope,
then obviously the second derivative of the age curve
will be indicative of this inflection points. An example
is demonstrated in Figure 3, where the drift and shift are
clearly marked on the age evolution curves.

3.2 Detecting Shifts by Utility Function

Shift in the data streams is a more significant, abrupt and
sudden change of the data concept. Therefore, the dis-
tinction between drift and shift is the pace, the degree
and speed of the changes, while both indicate a change
in the data distributions with time. Essentially, the reac-
tion to a detected shift has to be reflected in the structure
evolution of the fuzzy rule base. While drift is related
more to a smooth forgetting of parameters, learning and
forgetting, shift is closely related to changes in the struc-
tural components.

Shift can be detected by the utility of the fuzzy rule.
Utility is a parameter of the quality of the fuzzy rule that
is defined [2] as the accumulated firing level of each rule
given by Ψi summed over the life of each rule:

U i
k =

1
k − Ii

k

Ii
k∑

l=1

Ψl (2)

Utility, U accumulates the weight of the rule contribu-
tions to the overall output during the life of the rule
(from the current time instant back to the moment when
this rule was generated). It is a measure of importance
of the respective fuzzy rule comparing to the other rules
(comparison is hidden in the relative nature of Ψ).

If the utility of a fuzzy rule is low then this rule be-
comes obsolete or not used very much. A shift away
from or to a cluster/fuzzy rule can be detected by the
derivative of the utility — if the value of the first deriva-
tive of the utility is large then there is a shift towards the
cluster. The shift is away from a cluster if the deriva-
tive of the utility is large negative. Then this fuzzy rule is
deemed obsolete (does not contribute significantly to the
overall prediction/estimation/classification) and can be
removed from the rule base [10].

4 Reactions to Drifts and Shifts in Data
Streams by EFS

4.1 Reaction to Drift and Shift in the Antecedents

In this section, we introduce methods for addressing
both drifts and shifts in data streams by adapting learn-
ing mechanisms for consequent parts and by evolving
antecedent part. We demonstrate this on the example of
the popular eTS method [4] and on FLEXFIS [20].

4.1.1 By eClustering
Reaction to a detected shift is by either a) forming a new
rule around a new data sample which becomes an attrac-
tion point for the global data distribution, or b) replace-
ment of a fuzzy rule which itself consists of; i) form-
ing a new rule around the new point, and ii) removal
of the rule which has lower density and is close to this
newly added one [2] — see Figure 4. If locally optimal
learning is being applied then removing a cluster and
respectively a locally valid Kalman filter/RLS does not
affect the overall learning significantly (only through the
fuzzy weight Ψ [4]). If globally optimal learning is being
applied, removal of a cluster (respectively fuzzy rules)
does affect n columns and n rows of the covariance ma-
trix directly and the remaining values of the covariance
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Figure 4: Shift in the time domain representation and
two new rules evolved as a reaction to it.

matrix indirectly [4]. Deleting old fuzzy rules was ap-
plied in classification in [5] and in prediction [2].

4.1.2 By eVQ
When shifts in the data stream occur, usually new clus-
ters are evolved automatically in eVQ, as they cause new
data clouds in previously unexplored regions of the data
space (in regions further away than a fraction of the
space diagonal in the input space to which the vigilance
parameter ρ is usually set, i.e. 0.1 to 0.3 of the space di-
agonal, see [19]. Synchronously, older clusters can be
deleted by the concept of utility [9] [10] as discussed in
Section 3.2. This does not affect the learning of conse-
quent parameters for the other rules if local learning is
applied.

For reacting to drifts in the antecedent parts of the
rules we propose to re-adjust the parameter in the eVQ
clustering algorithm η [19] which steers the learning
gain. We define the tracking concepts for the ith rule
throughout this section, which can be generalized to any
rule in a straightforward manner. Currently, in eVQ the
learning gain is defined by the following formula [18]:

ηi =
0.5
ni

(3)

If a drift occurs in a data stream, the centers and widths
of the cluster(s) should change to the new data distri-
bution (as shown in Figure 1). For re-activating the
converged clusters, i.e. re-animating them for stronger
movements in a drifting case, we suggest a sudden in-
crease for the first sample in the drift phase, followed by
a gradual decrease for the next samples in order to bal-
ance in the new sample distribution in the same manner
as is done for original ones.

Here, we propose the following mechanisms for the
learning gain η: first we transform the forgetting factor
λ, used in the gradual out-weighting when doing con-
sequent learning (see next section) and denoting the in-
tensity of a drift, to a value in [0, 1]. Hereby, 0.9 (minimal
value for λ) is mapped to 0.99, whereas 1 is mapped to
0, hence:

λ trans = −9.9λ + 9.9 (4)

Then, when a drift occurs, we re-set the number of sam-
ples forming the ith cluster (ni) (used in the denomina-

Figure 5: Abrupt increasing learning gain η during in
case of a drift (after 100 samples) when applying differ-
ent values for the forgetting factor λ.

tor of the calculation of ηi) by

ni = ni − ni ∗ λ trans (5)

This means that the stronger the drift is, the more ni is
decreased and hence the stronger the forgetting effect
will be. In Figure 5 it is demonstrated how ηi devel-
ops (lines) in usual (non-drift) case (for the first 100 sam-
ples), then a drifting scenario is artificially caused with
three intensities leading to the three λ values (in differ-
ent line styles). After the drift indicator (at sample 100),
it is decreased in usual way such that the jumped center
can converge to the new data distribution.

4.2 Reaction to Drifts and Shifts in the Consequents

For the rule consequents drifts and shifts can be handled
in one sweep as it is just a matter of the setting of the for-
getting factor as we will see below. Whenever a drift in
the output variable occurs (as shown in Figure 2) and
is detected, it is necessary to apply a specific mecha-
nism in the sample-wise incremental learning steps of
the consequent parameters in Takagi-Sugeno fuzzy sys-
tems. When locally optimal fuzzily weighted Recursive
Least Squares (wRLS) learning approach [4] is used this
can easily be accommodated as detailed later on.

If we do not take drift into account all newer samples
lying in the same local positions relative to the rules
as the older samples are included with the same rule
weights in the update process. Then the fuzzy model
will end up with approximation curve as shown in the
left image of Figure 6 with dotted lines. Obviously, the
approximation ends up in the middle of the two tra-
jectories (the newer after the drift shown in light font,
the older shown in darker font), as trying to minimize
the quadratic errors (least squares) of all samples to the
curve. Hence, it is necessary to include a parameter in
the update process, which forces older samples to be
out-dated over time. Gradualism is important here in
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Figure 6: Left: The adapted model (dotted line) with the
new incoming samples (dark dots) when applying con-
ventional recursive weighted least squares approach;
right: the adapted model (dotted line) by including a
forgetting factor of 0.95 and using (7)-(9), the approxi-
mation surface lying exactly on the trajectory of the data
samples denoting the novel data distribution

order to guarantee a smooth forgetting and to prevent
abrupt changes in the approximation surface. For doing
so, we re-define the least squares optimization function
for the ith rule by

Ji =
N∑

k=1

λN−kΨi(�x(k))e2
i (k) −→ min

w
(6)

with ei(k) = y(k) − ŷ(k) the error of the ith rule in sam-
ple k. Assuming N the number of samples loaded so far,
this function out-dates the sample processed i steps ago
by λN−k. Usual values of λ lie between 0.9 and 1, where
a value near 1 means a slow forgetting and a value near
0.9 a fast forgetting of former loaded data samples and
the exact choice depends strongly on the strength of the
drift (see below). Following a similar recursive deduc-
tion scheme as in conventional recursive least squares
(RLS) [17], we obtain the following incremental update
formulas for consequent parameters �wi for the ith rule:

�̂wi(k + 1) = �̂wi(k) + γ(k)(y(k + 1)−�rT (k + 1) �̂wi(k)) (7)

γ(k) =
Pi(k)�r(k + 1)

λ
Ψi(�x(k+1)) + �rT (k + 1)Pi(k)�r(k + 1)

(8)

Pi(k + 1) = (I − γ(k)�rT (k + 1))Pi(k)
1
λ

(9)

with Pi(k) = (Ri(k)T Qi(k)Ri(k))−1 the covariance ma-
trix and �r(k+1) = [1 x1(k+1) x2(k+1) . . . xp(k+1)]T

the regressor values of the k + 1th data sample, Ψi the
fulfillment degree of the ith rule, serving as weight in
the recursive least squares algorithm.

The final question is how to set the parameter λ in or-
der to guarantee an appropriate drift tracking. We pro-
pose a strategy to deduce it directly from the age curves
analysis [10] since they are indicative of the speed of a
drift (see Section 3). In Section 3, it was mentioned that
the age of a rule always lies in [0, k]. Hence, we normal-
ize the age of the ith rule to [0, 1] by agei norm = agei

k in
order to achieve gradients of the normalized rule ages
∆agei norm also lying in [0, 1]. Whenever the change of

the gradient in the rule age curve is significant, recursive
weighted RLS with forgetting (wRLSf) should be trig-
gered. We use the following estimation for λ:

λ = 1 − 0.1∆2agei norm (10)

This guarantees a λ between 0.9 (strong forgetting)
and 1 (no forgetting), according to the degree of the gra-
dient change (1 = maximal change, 0 = no change). The
forgetting factor is then kept for a while at this level (oth-
erwise only one single sample would cause a gradual
forgetting) and set back to 1, after a stable gradient phase
is achieved (usually after around 20 to 30 samples show-
ing a moderate value of ∆2agei norm). Setting back to 1
is necessary, as otherwise the forgetting will go on inside
the new data distribution. This cause the drift phase in
the antecedents to stop.

5 Evaluation

This section deals with the evaluation of the impact of
reacting on drifts and shifts in case of data streams where
actually drifts and shifts occur. This is done by imple-
menting the approaches discussed throughout this pa-
per. One application example is coming from a rolling
mill, where the task was to identify a prediction model
on-line for the resistance value of a steel plate at a rolling
mill. The other application concerns a polymerization
process in chemical industry.

5.1 On-Line Prediction Models at Rolling Mills

The task was to identify a prediction model for the re-
sistance value of a steel plate at a rolling mill. This
should be done in a first step with some off-line (pre-
collected) measurement data in order to obtain a feeling
about the achieved quality of the fuzzy model and then
to refine the prediction model with newly recorded on-
line data. The later step was possible as first a prediction
for the resistance is given, influencing the whole process
at the rolling mill, whereas a few seconds later (after the
steel plate is passed), the real value for the resistance
is measured, which can then be incorporated into the
model adaptation process. In this sense, the correct mea-
sured value not the predicted (which might have been
wrong)one is taken for learning. In fact, an improve-
ment in terms of predictive power could be achieved
when updating the fuzzy models trained in batch mode
with 6000 samples during on-line operation mode with
further 6600 samples. For details of the experimental
setup and results see [20] (and also Table 1 below sum-
marizing all the results).

Now, in this paper we want to examine whether a re-
action onto drifts by a gradual forgetting of older sam-
ples during the on-line process may further improve the
quality of the models. A justification of an application
of reaction onto drifts is that the operation process at
rolling mills is divided into different ”stitches”. One
stitch represents one closed cycle in the rolling process.
In the on-line mode the measurements come in continu-
ously from stitch to stitch. However, for the current pro-
cessed stitch, the previous stitch should play only little
or even no role. However, the measurements from the
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Table 1: Comparison of prediction with and without ap-
plying gradual forgetting

Method MAE Max MAE Too High /
Max MAE Too Low /

# MAEs > 20
Analytical 7.84 63.47 / 87.37 / 259
Static fuzzy models 6.76 45.05 / 81.65 / 176
FLEXFIS 5.41 38.05 / 78.88 / 159
FLEXFIS with forg. 4.65 31.99 / 74 / 68

previous stitch are already included in the fuzzy mod-
els as updated by their samples. Thus, this means that
older samples from the previous stitch should be forgot-
ten when including samples from the current stitch. An-
other aspect is that here we do not need any drift/shift
detection, as the drift/shift is indicated by the begin-
ning of a new stitch. As no drift detection was carried
out, λ was set to 0.97, which is a good compromise be-
tween fast forgetting (=strong locality of models) and
low forgetting (=weak locality of models). The results
are demonstrated in Table 1. Here, we also demonstrate
the improvement of the predictive accuracy over analyt-
ical models by both, static and evolving fuzzy models.
Three different types of errors are reported: the mean
absolute error over all on-line samples (note that first a
prediction is done and then the model updated with the
same samples and based on feedback), the number of
mean absolute error greater than 20, the maximal mean
absolute error over all samples where the prediction was
too low and the maximal mean absolute error over all
samples where the prediction was too high. The latter
value is the most important one as harming the steel
plate is more dangerous as in case of predicting too low
values. The results (Table 1) demonstrate the impact of
the gradual forgetting.

Another interesting aspect is that the error on the sin-
gle measurements starts to drift over time when gradual
forgetting is not applied. This is underlined in the left
image of Figure 7 which shows the single errors over
the 6600 on-line samples: note the drift of the main er-
ror area away from the zero line at the end of the data
stream.

Figure 7: Left: The error curve for the 6600 on-line sam-
ples when no forgetting is applied: at the end the error
starts drifting; right: no drift.

Figure 8: A comparison of the predicted and real data of
product quality. Solid line - predictions by eTS with shift
and drift detection; diamonds - real data.

5.2 Another application example

A case study based on real data (courtesy of Dr. Arthur
Kordon, The Dow Chemical Co.) from the chemical in-
dustry is used as an illustration of the detection and re-
action to drift and shift in eTS [6]. The eTS has been ap-
plied for prediction of the properties of a chemical com-
position by modelling the product composition in a dis-
tillation tower. The data set includes a change of the op-
erating regime of the process which brings a challenge
to the structure of the model (fuzzy rule based system).
The data set includes also a number of other challenges,
such as noise in the data, a large number of initial vari-
ables, etc. These problems cover a wide range of real
issues in the industry. The process data is retrieved from
physical (’hard’) sensors used as inputs to the eTS apply-
ing hourly averages for every eight hours. The product
composition (real output) is estimated by a laboratory
analysis for comparison (it is given with diamonds in
the Figure 8).

The estimation of the product composition contains
noise due to the nature of the analysis. A significant
operating condition change takes place after sample 127
(please see the Figure 8). The eTS was able to efficiently
detect and react to this shift as well as to the drifts as
depicted in Figures 3 and 4. The overall prediction is
very good and compares favorably with the conven-
tional models as detailed in the Table 2. Note, that the
non-dimensional error index (NDEI) is defined as the ra-
tio of the root mean square error over the standard de-
viation of the target data and should be ideally 0 while
the variance accounted for (VAF) is defined as the ra-
tio between the variance of the real data and the model
output and is given out of a maximum of 100 (when the
predictions coincide with the real data).

6 Conclusion

In this paper, we propose novel strategies and tech-
niques for addressing concept drift and shift in on-line
data streams. Therefore, two EFS approaches (eTS and
FLEXFIS) are exploited as on-line modelling methodolo-
gies. These are extended by mechanisms which are 1.)
able to detect drifts and shifts with fuzzy rule age and util-
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Table 2: Error measures when applying eTS with (Col-
umn #3) and without (Column #2) drift detection and
reaction in chemical composition modelling

Measure Without With Best (theor.) value
NDEI 0.3559 0.33465 0
VAF, % 87.319 88.807 100
correlation 0.9357 0.94285 1

ity, and 2.) to react on such occurrences appropriately.
The latter is applied 1.) to the rule antecedent parts di-
rectly in the cluster space for reacting on drifts and shifts
in the input space and 2.) to rule consequent parameters
for reacting on drifts and shifts in the output variable, ap-
plicable to any EFS technique exploiting Takagi-Sugeno
type fuzzy systems. Evaluation on real-world data sets
shows that the novel techniques are able to improve the
accuracy and stability of the fuzzy models, whenever
the occurrence of drifts and shifts is present.
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