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Abstract— Real options are a typical framework in economics that
involves uncertainty. Very often, in fact, managers have vague ideas
about the future expected cash flows, the cost of the project and many
other variables that are fundamental in the process decision among
many investments. The calculation of the value function of real op-
tions can take advantage of a model of uncertainty that include sto-
chastic processes and fuzzy numbers.

A special version of the multiple population differential evolution
algorithm is designed to compute the level-cuts of the fuzzy extension
of the multidimensional real valued function of fuzzy numbers in the
resulting optimization problems.

We perform some computational experiments about the option to
defer investment, that is an American call option on the present value
of the completed expected cash flows with the exercise price equal
to the required outlay. We show that fuzziness may help for a more
profitable decision.

Keywords— Fuzzy Numbers, Parametric Representation, Real
Options, Sensitivity Analysis.
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Nowadays the most suitable valuation methodology for corpo-
rate investment decisions is the real options theory (ROT) be-
cause it takes into account management’s flexibility to adapt
ongoing projects in response to uncertain conditions. Since
Myers’ ([7]) innovative idea of viewing firm’s future invest-
ment opportunities as real options — that is, the right but not the
obligation to undertake some business decision at a cost dur-
ing a certain period of time -, a vast literature has developed,
which elaborate both theoretical and empirical methods for
quantifying the values of various real (call or put) options em-
bedded in investment opportunities. Dixit and Pindyck ([3])
develop a systematic treatment of ROT, providing the funda-
mentals of this method and also emphasizing the market im-
plications of such valuation of investment decisions under un-
certainty. Trigeorgis ([12]) provides a classification of real
options that maps different categories of investments into the
space of different types of financial options.

The value of real options depends on some basic vari-
ables:(i) the underlying asset, which is the current value of
(gross) expected future operating cash flows, (ii) the exercise
price, which is the cost of the project; (iii) the time to expi-
ration of the option, that is the time up to which the project
can be undertaken (either finite or infinite); (iv) the standard
deviation of the value of the underlying risky asset; (v) the
risk-free rate of interest over the life of the option. All the
above-mentioned variables are uncertain and therefore vari-
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ous stochastic models have been introduced in ROT to deal
with the uncertainty surrounding most corporate decisions. In
general expected future cash flows are assumed to evolve ac-
cording to a geometric Brownian motion, but it often happens
that reality is more complex than a normal distribution.

The imprecision associated with the subjective judgement
and estimation of future cash flows, which is typical of man-
agement’s project decisions, needs to be incorporated in the
treatment of uncertainty. By introducing fuzzy numbers, we
are able to capture the somewhat vague and imprecise ideas
the manager possesses about the future expected cash flows,
the profitability of the project, the costs of the project, etc. To
the best of our knowledge, such an approach has never been
discussed in the literature, with the exception of Carlsson and
Fuller [1], that interpret the possibility of making an invest-
ment decision in terms of a European option, while we use
an American option. In addition, we elaborate a computing
methodology which is more general and we can represent the
shape of the value functions.

The paper is organized as follows. In section 2 we present
some basic elements of fuzzy theory which will be used in the
numerical implementation of real option models. In section 3
we describe the introduction of fuzziness in real options and
section 4 collects some of the computational experiments that
have been performed in order to capture how and how much
fuzziness affects the decision. Finally, section 5 concludes.

) SHINS ppoeldIFi H:PS ppo HhHad R&N

Fuzzy numbers (more details in [4]) are a very powerful and
flexible way to describe uncertainty or possibilistic values for
given variables for which a precise quantification is not pos-
sible or one is interested in evaluating the effects of varia-
tions around a specified value. In fact a fuzzy number models
the different specifications of intervals around a given precise
value; it is defined, informally, as a "cascade" of intervals,
which start with a given number a € R and grow increasing to
a final interval which gives the most uncertain set of possible
values. The levels of the cascade are usually parametrized by
a parameter o € [0, 1] which represents the so called mem-
bership value (or possibilistic degree) of a given interval, with
the convention that & = 1 corresponds to the possibly exact
value (the core of the fuzzy number) while o = 0 corresponds
to the highest uncertainty (the support of the fuzzy number).
With the same convention on o we can say that 1 — « is the
level of uncertainty of the corresponding interval.
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A wide class of fuzzy numbers with the core at @ € R is
obtained by considering its membership function 4 : R —
[0, 1] such that, denoting [a™, a™] the interval representing the
support,

wa) =3 R@)  if
0 otherwise

a <zx<a
a<z<a" forzcR

)
where L(x) is the left branch, an increasing function with
L(a™) = 0, L(a) = 1 and R(z) is the right branch, a de-
creasing function with R(a) = 1, R(a™) = 0. A fuzzy num-
ber obtained by the form (1) is called LR-fuzzy number (with
usual notation u = (a™, a,a™), ).
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DBI1 hR(: A fuzzy number as a "cascade" of intervals

representing increasing uncertainty around the given value a.

For values of o €]0, 1], the o — cut is defined to be the
compact interval [u], = {z|u(x) > «} and the support
is [u]o = cl{z|u(x) > 0} (cl(A) is the closure of set A).
The level-cuts of a fuzzy number are "nested" closed intervals
and this property is the basis for the LU representation (L for
lower, U for upper).

: Rieldfe ( An LU-fuzzy quantity (number or interval) u is
completely determined by any pair v = (u™,u™) of functions
u”,ut :[0,1] — R, defining the end-points of the o — cuts,
satisfying the three conditions:(i) v~ : o« — u, € R
is a bounded monotonic nondecreasing left-continuous func-
tion Yo €]0,1] and right-continuous for o = 0;(ii) u™ :
a — ul € R is a bounded monotonic nonincreasing
left-continuous function Vo €0, 1] and right-continuous for
a = 0;(i) u, <ul Vo € [0,1]. In particular, the o — cuts
of a fuzzy number or interval are nonempty, compact intervals
of the form [u],, = [u;,ul] C R.

The support of u is the interval [uy,ug] and the core is
[u, ui]. We refer to the functions u_, and u/", as the lower
and upper branches on u, respectively. The membership func-
tion can be written as 11, (z) = sup{a|z € [u,,ul]}, where
the left branch is the increasing inverse of u ) on [ug ,uy ] and
the right is the decreasing inverse of u ', on [uy", ug].

To model the monotonic branches u_ and u_ we start with
an increasing shape function p such that p(0) = 0 and p(1) =
1 and a decreasing function ¢ such that ¢(0) = 1 and ¢(1) = 0,
with the four numbers v, < u; < uf < ua' defining the
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support [ug ,ug | and the core [u; , u] | and we define

= uy — (uy —up)p(a) and

= uf — (uf —uf)q(e) forall a € [0,1].

2

g &
R4+ Q|

The two shape functions p and ¢, as suggested in [11], are se-
lected in a family of parametrized monotonic functions where
the parameters are related to the first derivatives of p and ¢
in 0 and 1; there are many ways to define p and ¢ as il-
lustrated in [9]. For each decomposition we require (in the
differentiable case) 4(N + 1) parameters u = (a;;u; ,0u; ,
u?‘, 5uj’)i:0717_,7 n satisfying the following conditions:

uy <

ou;

7

Y]
o
(o9
S
+
A
o

and on each sub-interval [o;_1, ;] we use the data u;_; <
u;, < uj‘ < uztl and the slopes du; ,6u; > 0 and
5uj‘_1, 5uj' <0.

The simplest representation is obtained on the trivial de-
composition of the interval [0, 1], with N = 1 (without inter-
nal points) and ap = 0, 3 = 1. In this simple case, u can be
represented by a vector of 8 components

“4)

In the search for the value of a real option, the fundamen-
tal step is the computation of fuzzy-valued functions. Given
a function y = f(x1,x9,...,x,) of n real (crisp) variables
x1,%2, ..., Ty, its fuzzy extension is obtained to evaluate the
effect of uncertainty on the z; modelled by the correspond-
ing fuzzy number u;. If v = f(uy,us,...,u,) denotes the
fuzzy extension of a continuous function f in n variables,
then for each level « the resulting interval [v, , v | represents
the propagation of uncertainty from x; to y. In particular, if
the uncertainty on the original variables is modelled by fuzzy
numbers, the obtained v is yet a fuzzy number starting from a
single value (at level @ = 1) to the most uncertain interval (at
level o = 0).

It is well known that the fuzzy extension of f to normal
upper semicontinuous fuzzy intervals (with compact support)
has the level-cutting property, i.e. the o — cuts v, ,v}] of v
are the images of the o — cuts of (uy, us, ..., u,) and are ob-
tained by solving the box-constrained optimization problems
(EP), :

— (= So— o+ s+ o= so— 4+ o +
u=(ug,0ug ,ug ,0ug ;uy ,0uy ,uy ,ouy ).

= min {f(xl, oy T | € [u,;a,uza], k=1, ,n}

max {f(ml, oy Tp)| Tk € [u,;a, u,:;a], k=1, ,n} .

)

With the exception of simple elementary cases for which
the optimization problems above can be solved analytically,
the direct application of (EP) may be difficult and computa-
tionally expensive. Usually, the o — cuts [v;,,v}] of v are
computed at a prefixed given number of values o; of inter-
est (say from 10 to 100 points) and the membership function
is approximated pointwise. As we will see, an advantage of
the LU-parametrization is to obtain the extended fuzzy num-
bers v = f(u1,us, ..., uy,) in the same parametric form as for
U1, U, ..., U, With a possible important reduction in the com-
putational effort and with a good approximation. As for the
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fuzzy numbers, we will consider the fuzzy extension of multi-
variate differentiable functions [ : R” — R.

For a vector of n fuzzy numbers v = (u1,us, ..., u,) let
u = (U;;Z-75“;;@“2’“5”&)2‘:071,4..71\7 fork=1,2,...n

be the LU representation of the k£ — th component. Let
v = f(u,ug,...,u,) and v = (vi_,(Svi_,v;",dv;‘)izo,lw,N
be its LU representation; the av — cuts of v are obtained by
solving the box-constrained optimization problems (5). For
each « = o4, ¢ = 0,1,..., N the min and the max (5) can
occur either at a point whose components z;, ; are internal to
the corresponding intervals [u,,,, uz ;| or are coincident with

one of the extreme values; denote by z;” = (Z7,, ...,

= (T

take place; then

z, ;) and
z,";) the points where the min and the max

v; = f(@;,Tq, 0 B, ) and ot = f(& 25,2} )
(6)

and the slopes 6v; , 5vi+ are computed (as f is differentiable)
by

frioou, (D

vy Z f1275u1§,i+ Z
k=1 k=1

=~ 0

E;L:u;L Tr,i— Uk 4
n n
+ _ 5, — It s+
v = g fi 5u,w»+ E I 5uk’i
k=1 k=1
~0 _ - ~0 __ 0
Tp i = Uk 4 Tp i= Uk ;
_ Of(@ T of @) .72,
where f;~ = % and f;t = %.To solve

the optimization problems (5), we use an implementation of
a multiple population differential evolution algorithm exten-
sively described and analyzed in [10].

- DippeRilk fgiife ¥ PRRhlenRld Rk

The option to defer investment is an American call option on
the present value of the completed expected cash flows with
the exercise price being equal to the required outlay. A project
that can be postponed allows learning more about potential
project outcomes before making a commitment. A seminal
contribution on the option to defer is McDonald and Siegel
[6] where the optimal time to invest and an explicit formula
for the value of the option to invest are derived for an irre-
versible project whose net profits follow a geometric Brown-
ian motion.

A firm is supposed to consider the following investment op-
portunity: at any time ¢ the firm can pay some estimated cost
K to install an investment project whose expected future net
cash flows conditional on undertaking the project have an es-
timated present value II. The installation of such project is
irreversible. Let II follow a geometric Brownian motion of
the form:

dIl = T(pdt + odW) ®)

where 1 < 7 is the appreciation rate, r is the risk-free interest
rate and o is the volatility (u € R, o > 0) and W is a standard
Wiener process. For simplicity, let us assume that the time
to expiration of this investment opportunity is infinite, which
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facilitates the derivation of a closed-form solution. If V =
V (II) is the option value then it holds:

%UQHQVN (1) + pIV/ (T1) —rV =0

for IT < IT* with the initial condition V' (0) = 0 and smooth-
pasting V' (IT*) = ITI* — K, V' (IT*) = 1. The solution is

9

-

witho == %+ (& -1+ 2)" > 1.

In our methodology fuzziness is present in three steps. The
estimated present value IT of future net cash flows of the
project follows the stochastic differential equation (8) and we
model the uncertainty of its parameters across intervals of val-
ues. The intervals are built with differentiated levels of un-
certainty; given a crisp value, the levels produce a shape that
can be characterized by asymmetries or nonlinearities depend-
ing on subjective beliefs and available information of the de-
cision maker. It follows that fuzzy parameters play the lead
role in a sensitivity analysis that starts gradually from a null
variation to the greatest variation of the uncertainty consistent
with data. In particular W; remains a standard Brownian mo-
tion (the theory and applications of fuzzy set-valued stochastic
differential equations has received recently several significant
contributions from the seminal paper of Feng [5]).

Fuzziness comes out also in the valuation function of the
option (obtained with the extension principle) that depends not
only on II, o and p but also on r and K, which we assume to
be fuzzy too.

Finally, fuzziness affects the crucial value IT*: as soon as
IT reaches the threshold value II*, the firm finds it optimal
to invest (case of the option to defer investment) or disinvest
and liquidate (case of the option to abandon). Thus, the deci-
sion is based on the threshold value, which depends on all the
parameters of the model. In the valuation method based on
fuzzy variables, {II;,t > 0} is assumed to be a fuzzy stochas-
tic process, which is specified by the following membership
function

1, () (@) = maz{1— | (z — T(w))/B,(w) |,0},

that is, the fuzzy random variable II; is of the triangular type,
with centre IT; (w), and left-width and right-width 5(w). The
assumption of fuzziness is related to the manager’s subjec-
tive belief about the future profitability of the project. The
choice of a triangle-type shape is not restrictive at all and
is introduced for simplicity only. Observe that the fuzzi-
ness in the process increases as $(w) becomes bigger. The
a-cuts of II;(w)(z) are Hfa(w) = [Hf_a(w),l—[f(y(w)} =

[[iu(w) = (1= @) Alw), Ty(w) + (1 - a) Bw)].
reasonable to assume that K is a fuzzy number. In the case
of an option to defer, K is the estimated liquidation value of
the firm’s stock of capital and is affected by depreciation, fluc-
tuating market evaluation and taxation regimes. In the case of
an option to abandon, K denotes the investment cost and has
many components which can change during the waiting pe-
riod, due to various unpredictable circumstances.

It is also
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The extension principle is then applied to obtain the fuzzy
IT* and V (II*) from the exact solutions given in equation (9).
In the formulae (6)-(7) the vector Z; is equal to (11;, 0, T, K i)
and some of the partial derivatives that define the slopes of the
representation are nothing else than the first order Greeks, in
particular, W w is the
Rho.

The degree of the uncertainty and the way in which it is
spread from the model, play a central role in the analysis of
the real option. The nonlinearities entering in the definition
of V (II) in (9) are the main cause of such effects and they
can propagate or contract uncertainty. It is very important to
perceive the magnitude and the type of these effects. In partic-
ular we are interested in the analysis of how the various kinds
of uncertainties inserted into the parameters will produce the
corresponding uncertainties in IT*, V* = V(II*), II** and

As soon as information (on u, o, r, K) is modelled by fuzzy
numbers, I1* and V* also become fuzzy and are represented

by a — cuts [HZ[,H;O} and [V;’,Vf} for all degrees of
possibility . The maximal uncertainty corresponds to the

is the Vega and

supports at « = 0, given by the intervals {H(’;f,l'[fjo} and

[V0*7 Ve } for IT* and V* respectively.

Due to the nonlinearity of II* and V*, the a@ — cuts are
not necessarily symmetric and, for a given uncertainty on the
input values p, o, r and K, they have different left and right
variations. Let II* and V* denote the values of IT}, and V
corresponding to o = 1. It is immediate to argue that V* is
symmetric if and only if AV * = AV} Va € [0, 1] where

AV =V SV AVE =V
The quantity AV;O represents the possible increase in V* due
to uncertainty and analogously, AV measures the possible
decrease. The same argument can be applied to II?, and I,
defining the quantities AHZO = H;‘O — II* and AllY =
o — I .

. 6fd gl KHif ek FngRhlill R ki

We test the fuzziness effect in the option to defer investment
by running several computational experiments; the fuzzy ver-
sion of the indicated parameters (say ) are obtained as trian-
gular symmetric fuzzy numbers, centered at the crisp values
and with the support being the interval [§ — 0.16,6 + 0.14],
corresponding to a symmetric uncertainty of 10% of the value
of the parameter. To analyze the effect of the uncertainty on
the output variables, we give the plots of their membership
functions and the tables including the values for @ — levels
with @ = 1 (the crisp level), & = 0.75, a = 0.5, o = 0.25,
a = 0 (corresponding to the uncertainty of 10% in the para-
meters).

The robustness of the fuzzy model for the option to defer
investment is tested with three sets of real data that we call,
for short, Datal, Data2 and Data3, referring to three differ-
ent industrial sectors. Datal refers to an investment decision
in the human genome sciences project (HGSI) whose data
are taken from the Human Genome project database (details
in http://www.ornl.gov/sci/ techresources/ Human Genome/
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home.shtml). Data? refers to an investment decision in a big
infrastructure, that is the Eurotunnel project (details in [2]).
Data3 deals with the case of an investment in new capacity
in the public-utility sector, i.e. the electricity market (details
in [8]). The values of the parameters y,o,r and K are the
following:

:HH | : HY | : HH
©o| 0.01 0.025 | 0.03
o | 0.048 | 0.183 | 0.173
r | 0.044 | 0.06 0.08
K | 704.9 | 8865 600

In figures concerning the behavior of II* we report the three
different cases that we will denote as: A/lfuzzy (straight line)
when the parameters p, o, and K are fuzzy, Kcrisp (dotted
line) when i, o, r are fuzzy and K is crisp and finally Kfuzzy
(dashed line) when p, o, r are crisp and K is the unique source
of uncertainty.

4.0.1 Results for Datal

Figure 2 shows that, as expected, the greatest uncertainty in
II* occurs in the Allfuzzy case, when all the fuzzy quantities
are considered to be fuzzy; but it is interesting to observe that
in the Kcrisp case (dotted line) the generated uncertainty is
less then in the Kfuzzy case (dashed line), i.e. the uncertainty
in the values of only K produces more uncertainty on IT* then
the uncertainty in the values of i, o and r.
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DbIl hR) 4 IT* for Datal

Table 1, Table 2 and Table 3 report values of the o« — cut for
Datal in the Allfuzzy, Kcrisp and Kfuzzy case respectively.

Table 1 Table 2
o [ TI" | OF [ I | 1T |
1.0 | 994.28 | 994.28 994.28 | 994.28
0.75 | 953.16 | 1037.56 977.60 | 1012.25
0.5 | 913.97 | 1083.26 962.07 | 1031.67
0.25 | 876.50 | 1131.69 947.56 | 1052.74
0 840.58 | 1183.25 933.98 | 1075.68
Table 3
[ o [ 1" | TF
1.0 | 994.28 | 994.28
0.75 | 969.43 | 1019.14
0.5 | 944.57 | 1043.99
0.25 | 919.71 | 1068.86
0 894.86 | 1093.71

1012



IFSA-EUSFLAT 2009

Observe that in the Kfuzzy case (Table 3) the threshold value
II* displays a symmetric shape in all analyzed projects be-
cause II* depends linearly on K. In the Allfuzzy and Kcrisp
cases, instead, we can observe an asymmetric pattern, due to
the nonlinear dependence of IT* with respect to the other vari-
ables.

At level 0.5 the average values are 998.615 in Allfuzzy and
996.87 in Kcrisp, which are larger than the crisp value 994.28.
Since on average the fuzzy threshold value is larger then with-
out fuzziness, just considering the crisp value the decision to
invest would be too early. Figure 3 shows the graphical be-
havior of the fuzzy function V'(II) in the Allfuzzy case; the
little crosses point the optimal values of II corresponding to
the levels of IT* for a = 0, 0.25, 0.5, 0.75, 1.

P S | i L i i i
[} 2 un Eo) Ei] 0 120 am 160 TEn

DbBIl hR- 4 Datal when parameters p, o, 7 and K are fuzzy.

It is evident that fuzziness implies a certain degree of free-
dom in the choice of IT*. Figure 4 illustrates V' (II) as a fuzzy
function (a sequence of fuzzy numbers).

DbIl hR. 4 V(II) in the Allfuzzy case

4.0.2  Results for Data?2

Figure 5 shows the behavior of IT* in the three different cases:
again the biggest uncertainty occurs in the Allfuzzy case,
when all the quantities are fuzzy; but we observe that in the
Kerisp case (dotted line), when p, o, r are the sources of un-
certainty and K is the unique crisp value, the uncertainty in
IT* is bigger then in the Kfuzzy case, i.e. the same level of
uncertainty in K produces less uncertainty on IT* then the un-
certainty in the other parameters. With respect to Datal, there

ISBN: 978-989-95079-6-8

is here an inversion.

DbI1 hR14 IT* for Test 2

Table 4 and Table 5 report the values of the a — cut of IT* in
the Allfuzzy and Kcrisp case for Data?2.

AR
o [ O "
1.0 [ 22249.62 | 22249.62
0.75 [ 20686.18 | 23997.55
0.5 [ 19277.60 | 25967.74
0.25 [ 18000.33 | 28209.16
0 [ 16835.43 | 30786.48
A R1
[ o [ O "
1.0 [ 22249.62 | 22249.62
0.75 [ 21216.59 | 23412.24
0.5 | 20292.21 | 24731.18
0.25 [ 19459.82 | 26241.08
0 [ 18706.04 | 27987.71

If we compute again the average values at level 0.5, they are
22622.67 in Allfuzzy and 22511.695 in Kcrisp, which are
larger than the crisp value 22249.62. It follows that in the
Data2 project it is confirmed the suggestion to wait for the
decision to invest.

4.0.3  Results for Data3

The last project we consider for an option to defer investment
is Data3; the relative values of II* are reported in Figure 6:

0 g . PN B h
000 100 1200 1300 1400 1600 1600 1700 1ED0

DbI1 hR24 IT* for Test4
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Table 6, Table 7 report values of the o — cut for Data3 in
the Allfuzzy and Kcrisp case respectively.

GH R2 GH R3
’ o \ 1= m 1= I+
1.0 | 1295.31 | 1295.31 1295.31 | 1295.31
0.75 | 1214.47 | 1384.31 1245.61 | 1350.55
0.5 | 1140.61 | 1482.98 1200.64 | 1412.36
0.25 | 1072.75 | 1593.18 1159.73 | 1482.03
0 1010.11 | 1717.32 1122.34 | 1561.20

The graphical representation of V'(IT) in Allfuzzy case is in
Figure 7.

2500

DbI1 hR34 Data3 in the Allfuzzy case

Some further considerations concerning the oo — cut val-
ues in all the data set enable us to state that our model al-
lows us to describe how the investment decision is actually
affected by a perceived increase in "fuzziness". For a pes-
simistic (optimistic) firm an increase in fuzziness decreases
(increases) the perceived value of the project in comparison
with the crisp value. On average - for most decision makers-
an increase in fuzziness has a positive impact on the invest-
ment opportunity, i.e. it increases the perceived value of the
project. As a consequence, the decision to invest is delayed
in comparison with the absence of fuzziness. However, for
pessimistic decision-makers imprecise information about the
project value becomes available over time, which makes wait-
ing with investment less valuable. Thus, for pessimistic firms
higher fuzziness erodes the subjective value of the investment
opportunity. Notice that this result is in keeping with the liter-
ature on real options and ambiguity aversion it contrasts with
the impact of volatility in the standard real option theory.

1 6feNilfei

The powerful contribution of fuzzy modelling can be shown in
many fields and, especially in human sciences like economics,
it can provide rigorous models (a detailed motivation of its
use is in Zadeh [13]). In tis paper, we model the uncertainty
involved in real options theory through fuzzy numbers repre-
sented in the LU model; when including fuzziness, the deci-
sion rule moves away from the original one and the choice to
delay or not the investment becomes a key feature of the fuzzy
model.

Our model allows us to quantify how the threshold val-
ues change with fuzzy parameters. Practically, we solve the
investment/disinvestment decision in terms of a problem of
fuzzy stopping time - that is, a fuzzification of the classical
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3000

optimal stopping time - and our computation experiments pro-
vide the sensitivity analysis of the decision variable with re-
spect to the relevant parameters. Our main results are that the
decision to invest is delayed in comparison with the case of
absence of fuzziness, the decision to disinvest is anticipated in
a fuzzy environment. The fuzzy model we use provides the
set of values within which the decision is taken by the man-
ager. Our empirical validation, which is based on case studies
from real world, seems to confirm the validity of the model
and to open up further ways of research in finance in a fuzzy
environment.
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