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Abstract— The setting of formal concept analysis presupposes the
existence of a relation between objects and properties. Knowing that
an unspecified object has a given property induces a formal possibil-
ity distribution that models the set of objects known to possess this
property. This view expressed in a recent work by the authors of the
present paper, has led to introduce the set-valued counterpart to the
four set functions evaluating potential or actual, possibility or neces-
sity that underlie bipolar possibility theory, and to study associated
notions. This framework puts formal concept analysis in a new, en-
larged perspective, further explored in this article. The “actual (or
guaranteed) possibility” function induces the usual Galois connex-
ion that defines the notion of a concept as the pair of its extent and
its intent. A new Galois connexion, based on the necessity measure,
partitions the relation in “orthogonal” subsets of objects having dis-
tinct properties. Besides, the formal similarity between the notion of
division in relational algebra and the “actual possibility” function
leads to define the fuzzy set of objects having most properties in a
set, and other related notions induced by fuzzy extensions of division.
Generally speaking, the possibilistic view of formal concept analysis
still applies when properties are a matter of degree, as discussed in
the paper. Lastly, cases where the object / property relation is incom-
plete due to missing information, or more generally pervaded with
possibilistic uncertainty is also discussed.
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1 Introduction

Formal concept analysis [1] exploits the duality between ob-
jects and properties in a lattice theory setting, which has led to
an original and practical view of the notion of a formal con-
cept with application in data mining. A concept is then a pair
made of a set of objects and a set of properties that are in mu-
tual correspondence. These two sets are the extent and of the
intent of the concept respectively. In this framework, proper-
ties are binary, and complete information is assumed about the
relation linking objects and properties.

Fuzzy set theory [2] has emphasized the idea that proper-
ties are not always all-or-nothing notions, but are rather often
a matter of degree. This has led to an extension of the orig-
inal formal concept analysis setting by allowing intermediate
truth values for the propositions “object x has property y” [3].
However, complete information is still assumed. Namely, for
any pair (object, property), it it is known to what degree the
object has the property. Besides, fuzzy sets have also been the
starting point for the development of a new approach for the
representation of uncertainty, named possibility theory [4, 5].
Fuzzy sets then have a disjunctive reading and represent states
of incomplete information, i.e. (soft) restrictions on the mutu-
ally exclusive possible values of a single-valued variable.

The authors of the present paper have recently advocated
the interest of a possibilistic reading of formal concept analy-
sis where the possibility theory set-functions are shown to be
meaningful in formal concept analysis [6]. Under this view,
the set of objects known to possess a given property plays the
role of a formal possibility distribution that restricts the pos-
sible value (identity) of an unspecified object only described
as having the given property. This leads to an enlarged setting
that we continue to investigate in this paper. Besides, this en-
larged setting can be itself extended either by allowing prop-
erties to be non-Boolean, or by considering that the relation
between objects and properties may be incompletely known.

The next section provides the background on a possibility
theory-inspired view of formal concept analysis. Four ba-
sic operators that are the counterparts of the four basic set-
functions in bipolar possibility theory are introduced, leading
to consider another Galois connexion distinct from the usual
one that gives birth to the notion of concept. Section 3 briefly
describes the extension of the enlarged setting to fuzzy prop-
erties, i.e., when the relation linking objects and properties
becomes fuzzy. Section 4 relates the operator underlying clas-
sical formal concept analysis and the notions of division (and
quotient) in relational algebra. This provides a basis for defin-
ing the fuzzy set of objects having most properties in a set
(where most is a fuzzy quantifier) and other related notions.
Section 5 deals with the situation where information is incom-
plete or uncertain. Due to the lack of space, the paper only
outlines new ideas, without developing them.

2 A possibility theory view of concept analysis
A formal information system is viewed here as a binary rela-
tion R between a set Obj of objects and a set Prop of Boolean
properties. Some authors speak of ‘attribute’ instead of ‘prop-
erty’. As we shall see in Section 5, this distinction only mat-
ters for attributes with non-binary domains. R is called context
in formal concept analysis. If X ⊆ Obj, X is its complement
Obj \ X . The notation (x, y) ∈ R means that object x has
property y. R(x) = {y ∈ Prop|(x, y) ∈ R} is the set of prop-
erties of object x. Similarly, R−1(y) = {x ∈ Obj|(x, y) ∈
R} is the set of objects having property y. Its characteristic
function induces a two-valued possibility distribution π:

∀x ∈ Obj, π(x) =
{

1 if x ∈ R−1(y)
0 otherwise,

Intuitively speaking, if all we know about an unknown object
is that it has property y then this object may be any x such
that π(x) = 1 in context R. Thus, the relation R for a par-
ticular property y plays the role of a possibility distribution π
encoding a set of possible values for x.
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2.1 Possibility theory
In possibility theory [5], two “measures” are associated with a
possibility distribution π defined on a universe U as the char-
acteristic (membership) function of a fuzzy set E representing
the available information (in the above case U = Obj, and
E = R−1(y) is an ordinary subset of U ). Namely

i) a possibility measure Π (or “potential possibility”):

Π(A) = max
x∈A

π(x).

It estimates to what extent event A is consistent with the infor-
mation represented by π. Π(A ∪ B) = max(Π(A), Π(B)) is
the characteristic property of possibility measures [4].

ii) a dual measure of necessity N , expressing that an event
is all the more necessarily (certainly) true as the opposite event
is more impossible. N thus reflects an “actual necessity”:

N(A) = 1 − Π(A) = 1 − max
x �∈A

π(x),

where A = U \ A. N(A) estimates to what extent event A
is implied by the information E represented by π (inasmuch
as this information entails that any realization of A is more or
less impossible). Necessity measures are characterized by the
decomposability property N(A ∩ B) = min(N(A), N(B)).

Π and N are based on the maximum of π over A and A
respectively; two other set-functions [5] use the minimum:

iii) a measure of “actual (or guaranteed) possibility”

∆(A) = min
x∈A

π(x),

which estimates to what extent all elements in A are possi-
ble. ∆ can be also termed “sufficiency measure” since
∆(A) = 1 is enough for ensuring that all realizations of A are
actually possible. Clearly, ∆ ≤ Π. Note also that ∆(A) and
N(A) are unrelated. ∆(A ∪ B) = min(∆(A), ∆(B)) is the
characteristic property of guaranteed possibility measures.

iv) a dual measure of “potential necessity or certainty”

∇(A) = 1 − ∆(A) = 1 − min
x �∈A

(π(x))

which estimates to what extent there exists at least one value in
the complement of A that has a zero (or more generally a low)
degree of possibility. This is clearly a necessary condition
for having “x ∈ A” somewhat certain. Property ∇(A ∩ B) =
max(∇(A),∇(B)) characterizes these measures.

2.2 An enlarged formal concept analysis setting
These four set functions make sense in the formal concept
analysis. Namely, four remarkable sets can be defined:

RΠ(X) = {y ∈ Prop|R−1(y) ∩ X 	= ∅}
RN(X) = {y ∈ Prop|R−1(y) ⊆ X}
R∆(X) = {y ∈ Prop|R−1(y) ⊇ X}
R∇(X) = {y ∈ Prop|R−1(y) ∪ X 	= Obj}

whose respective characteristic functions are Π(X), N(X),
∆(X), and ∇(X). Their meanings are as follows w. r. t. a
subset of objects X in context R.

• RΠ(X) is the set of properties that are associated with at
least one object in X . Formally, we have

RΠ(X) = ∪x∈XR(x).

RΠ(X) is such that any object that satisfies one of them
is possibly in X . In other words, if an object has none
of the properties in RΠ(X) then it cannot belong to X .
Moreover, we have RΠ(X1∪X2) = RΠ(X1)∪RΠ(X2).

• RN (X) is the set of properties s. t. any object that sat-
isfies one of them is necessarily in X . Having any prop-
erty in RN(X) is a sufficient condition for belonging to
X , and RN(X) = RΠ(X) = Prop \ RΠ(X). Thus,

RN (X) = ∩x �∈XR(x).

and RN (X1 ∩ X2) = RN (X1) ∩ RN(X2).

• R∆(X), set of properties shared by all objects in X is

R∆(X) = ∩x∈XR(x).

In other words, satisfying all properties in R∆(X) is a
necessary condition for an object to belong to X . R∆(X)
is a partial conceptual characterization of objects in X :
objects in X should have all the properties of R∆(X)
and may have some others (that are not shared by all ob-
jects in X). It is worth noticing that RΠ(X) provides
a negative conceptual characterization of objects in X
since it gathers all the properties that are never satis-
fied by any object in X . Besides, it can be checked that
RN (X) ∩ R∆(X) is the set of properties possessed by
all objects in X and only by them. Moreover, we have
R∆(X1 ∪ X2) = R∆(X1) ∩ R∆(X2).

• Note that R∇(X) = R∆(X) = Prop \ R∆(X). Thus
R∇(X) is the set of properties in Prop that are not satis-
fied by at least one object in X , i.e. R∇(X) is the set of
properties that some object in X misses. In other words,
in context R, for any property in R∇(X), there exists at
least one object outside X that misses it. We have

R∇(X) = ∪x �∈XR(x).

and the following decomposability property holds
R∇(X1 ∩ X2) = R∇(X1) ∪ R∇(X2).

Note that RΠ(X) and RN(X) get larger when X increases,
while R∆(X) and R∇(X) get smaller. The four modal-like
operators RΠ, RN , R∆, and R∇ have been considered by
Düntsch and Orlowska [7] in the Boolean algebra setting,
where R∆ is called sufficiency operator, and its representa-
tion capabilities are studied. Taking inspiration as the previ-
ous authors from rough sets [8], Yao [9] also lays bare these
four subsets. In both cases, the four operators were introduced
without any mention of possibility theory.

Results in possibility theory have their counterparts in the
enlarged formal concept analysis setting, as, e.g., [6]: If R−1

is s. t. ∀y ∈ Prop, R−1(y) 	= ∅ and R−1(y) 	= Obj, then

∀X ⊆ Obj, RN(X) ∪ R∆(X) ⊆ RΠ(X) ∩ R∇(X). (1)

Assuming that the property y is non trivial with respect to
the set of objects Obj, i.e. R−1(y) 	= ∅ (at least one object
has property y) and R−1(y) 	= Obj (at least one object has
not property y), then the four sets RΠ(X), R∆(X), RN (X),
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Situation y ∈ RΠ(X) y ∈ R∆(X) y ∈ RN (X) y ∈ R∇(X)
1. X = R−1(y) 0 0 0 0
2. X ⊂ R−1(y) 0 0 0 1
3. R−1(y) ⊂ X 1 0 0 0
4.R−1(y) ∩ X 	= ∅, 1 0 0 1

R−1(y) ∩ X 	= ∅
5. R−1(y) ⊂ X 1 0 1 1
6. X ⊂ R−1(y) 1 1 0 1
7. R−1(y) = X 1 1 1 1

Figure 1: The seven possible positions of X and R−1(y)

R∇(X) are necessary and sufficient for describing (and dis-
tinguishing between) the seven relative possible positions of
X and R−1(y), as shown in Table 1, where 1 (resp. 0) stands
for y ∈ A (resp y 	∈ A) where A is the set R∗(X) associated
to the column (and ∗ is Π, ∆, N , or ∇). Note that the 9 = 16 -
7 remaining binary 4-tuples are ruled out by the constraints in-
duced by (1), namely RN(X) ⊆ RΠ(X), R∆(X) ⊆ RΠ(X),
R∆(X) ⊆ R∇(X), RN(X) ⊆ R∇(X). For instance, the
“trivial” cases R−1(y) = ∅ and R−1(y) = Obj (ruled out by
the constraints) would be captured by distinct 4-tuples in Ta-
ble 1, namely (0 0 1 1) and (1 1 0 0) respectively.

The above characterization of remarkable sets of prop-
erties w. r. t. a set of objects can be easily adapted for
defining the corresponding sets of objects associated to a
set of properties Y ∈ Prop: namely R−1Π(Y ), R−1N(Y ),
R−1∆(Y ), and R−1∇(Y ). Their definitions can be easily
obtained by swapping R and R−1 and exchanging the roles
of the sets Obj and Prop. Namely,

R−1Π(Y ) = {x ∈ Obj|R(x) ∩ Y 	= ∅} = ∪y∈Y R−1(y)
R−1N(Y ) = {x ∈ Obj|R(x) ⊆ Y } = ∩y �∈Y R−1(y)
R−1∆(Y ) = {x ∈ Obj|R(x) ⊇ Y } = ∩y∈Y R−1(y)
R−1∇(Y ) = {x ∈ Obj|R(x) ∪ Y 	= Obj} = ∪y �∈Y R−1(y).

Remark The above operators can be combined together.
For instance, consider an object x0. Let R(x0) be the
set of its (known) properties. Compute R−1∆(R(x0)),
the set of objects that share these properties. Then get
RΠ(R−1∆(R(x0))), which is the set of properties that are
associated with at least one object sharing the properties
of x0. Viewing the table Obj × Prop as the information
pertaining to a repertory of cases, and x0 as a partially known
extra object (not in Obj) for which one tries to guess other
properties, the expression RΠ(R−1∆(R(x0))) may be viewed
as the result of a case-based reasoning procedure, i.e. a set
of potential properties that x0 may also have. Besides, its
subset RN (R−1∆(R(x0))) is the set of properties that alone
characterize the objects sharing the properties of x0. Thus,
if one of the properties in RN (R−1∆(R(x0))) is not already
among the known properties of x0, it may be considered as a
serious candidate property for x0.

2.3 Galois connexions

In formal concept analysis, the pair of set valued functions R∆

and R−1∆ induces a Galois connexion [10] between 2Obj and

objects
1 2 3 4 5 6 7 8

a × × × ×
b × ×
c × × ×
d × × × ×
e ×
f × × ×
g × × × ×
h × × ×
i ×

Figure 2: R: a relation objects/properties a, b, c, ..., i

2Prop. Then, a formal concept is a pair (X, Y ) such that
X = {x ∈ Obj|R(x) ⊇ Y } and Y = {y ∈ Prop|R−1(y) ⊇
X}, i.e. such that X = R−1∆(Y ) and Y = R∆(X), X is
called its extent and Y its intent. In other words, in a for-
mal concept (X, Y ), Y is the set of properties shared by all
the objects in X , and X is the set of objects that possess all
the properties in Y . Then X × Y ⊆ R, i.e. ∀x ∈ X, ∀y ∈
Y, (x, y) ∈ R. A formal concept is a maximal pair that sat-
isfies the latter condition (where maximality is taken in the
sense of set inclusion).

Putting formal concept analysis in the perspective of possi-
bility theory, it becomes then natural to also consider

- the pairs (X, Y ) s. t. X = R−1Π(Y ) and Y = RΠ(X);
- the pairs (X, Y ) s. t. t X = R−1N(Y ) and Y = RN (X);
- the pairs (X, Y ) s. t. X = R−1∇(Y ) and Y = R∇(X).
First, observe that X = R−1∇(Y ) and Y = R∇(X) holds

if and only if X = R−1∆(Y ) and Y = R∆(X) holds, i.e., if
(X, Y ) is a formal concept, due to the duality between opera-
tors R∆ and R∇. Similarly, X = R−1Π(Y ) and Y = RΠ(X)
holds if and only if X = R−1N (Y ) and Y = RN (X)
holds. But, it can be easily seen that a pair (X, Y ) such that
X = R−1N (Y ) and Y = RN (X), i.e. such that X = {x ∈
Obj|R(x) ⊆ Y } and Y = {y ∈ Prop|R−1(y) ⊆ X} is not
generallly a formal concept, as now exemplified. This Galois
connexion has been introduced by [11] on a formal basis, but
its practical meaning was apparently not really discussed.

Example 1 We consider an example of relation R described
by the table of Figure 2. This relation defines the links between
eight objects Obj = {1, 2, 3, 4, 5, 6, 7, 8} and nine properties
Prop = {a, b, c, d, e, f, g, h, i}. There is a “×” in the cell
corresponding to an object x and to a property y if the object
x has property y, in other words the “×”s describe the rela-
tion R (or context). An empty cell corresponds to the fact that
(x, y) 	∈ R, i.e., it is known that object x has not property y.
It can be checked that the pairs ({1, 2, 3, 4}, {g, h, i}),
({5, 6, 7, 8}, {a, b, c, d, e, f}) are pairs (X, Y ) such that X =
R−1N (Y ) and Y = RN (X). These two pairs are not for-
mal concepts. They are disjoint w. r. t. both Obj and
Prop. Examples of formal concepts are ({2, 3, 4}, {g, h}),
({6, 7, 8}, {a, c, d}), or ({5, 6, 7, 8}, {a, d}). Note that these
latter examples are here obtained by considering appropriate
subsets in the previous pairs.

A pair (X, Y ) that satisfies X = R−1N (Y ) and Y = RN (X)
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objects

properties

1 2 3 4 5 6 7 8
a × × × ×
b × ×
c × × ×
d × × × × ×
e ×
f × × ×
g × × × ×
h × × ×
i ×

Figure 3: R′: relation R modified

is such that all the objects in X possess at least one prop-
erty in Y and the properties in Y are only (possibly) pos-
sessed by the objects in X . While the intent of a formal con-
cept is a conjunction of properties, the pairs (X, Y ) forming
an “N-block” correspond to sets of objects defined through
disjunctions of properties. Finding such pairs, which may
not exist, aims at decomposing the relation R into independent
blocks without object or property in common, as in the Fig-
ure 2 example. When such a decomposition no longer holds,
as in Figure 3, pairs (X, Y ) such that X = R−1N (Y ) and
Y = RN (X) no longer exist, except for the trivial pair (Obj,
Prop), as shown in the next example.

Example 2 Let us now consider a modified version of re-
lation R, say R′, depicted in the table of Figure 3, where
object 4 has also the additional property d now. Then
it can be checked that we still have R′N ({1, 2, 3, 4}) =
{g, h, i}, but R′−1N ({g, h, i}) = {1, 2, 3}, since R′(4) =
{d, g, h, i} 	⊆ {g, h, i}. Similary, R′−1N({a, b, c, d, e, f}) =
{5, 6, 7, 8}, but R′N({5, 6, 7, 8}) = {a, b, c, e, f} since
R′−1(d) = {4, 5, 6, 7, 8} 	⊆ {5, 6, 7, 8}. Thus the pairs
({1, 2, 3, 4}, {g, h, i}), ({5, 6, 7, 8}, {a, b, c, d, e, f}) are no
longer pairs (X, Y ) such that X = R′−1N(Y ) and Y =
R′N (X) in the new context R’.

3 Handling fuzzy properties in the new setting
In the previous section, properties were supposed to be
Boolean. Hence, when an object satisfies a property, it fully
satisfies it: there is no intermediary degree of satisfaction since
the property is not gradual. Thus, the relation linking objects
and properties was all-or-nothing. When properties become a
matter of intensity, i.e., when an object may have a property
to some degree, the relation R between objects and proper-
ties becomes fuzzy. However, when relaxing the Booleanity
assumption, we still assume that we have complete informa-
tion. Namely, it is known to what extent α object x has prop-
erty y for any pair (x, y), which is denoted µR(x, y) = α.
Then, µR−1(y)(x) = α denotes the fact that object x satisfies
property y at degree α where µR−1(y) is the membership func-
tion of the fuzzy set of objects that constitutes the extension
of R−1(y). Such an extension to standard concept analysis
(based on the operator called here ∆) has been studied by Be-
lohlavek [3]; see also [12].

Then, the four operators introduced in the previous section

easily extend to the case where relation R is fuzzy. Namely,

µRΠ(X)(y) = Πy(X) = maxx∈X µR−1(y)(x)
µRN (X)(y) = Ny(X) = minx �∈X 1 − µR−1(y)(x)
µR∆(X)(y) = ∆y(X) = minx∈X µR−1(y)(x)
µR∇(X)(y) = ∇y(X) = maxx �∈X 1 − µR−1(y)(x)

where Πy , Ny, ∆y and ∇y are respectively potential pos-
sibility, actual necessity, actual possibility, and potential ne-
cessity measures, based on the gradual possibility distribution
π = µR−1(y). They thus enjoy the corresponding characteris-
tic decomposability properties of these respective measures.

The following results are straightforward:

• µRN (X)(y) = 1 − µRΠ(X)(y);

• µR∇(X)(y) = 1 − µR∆(X)(y)

• if µRΠ(X)(y) = α then ∃x ∈ X, µR(x, y) = α and ∀x ∈
X, µR(x, y) ≤ α

• if µRN (X)(y) = α then µR(x, y) > 1 − α ⇒ x ∈ X

• if µR∆(X)(y) = α then x ∈ X ⇒ µR(x, y) ≥ α

• if µR∇(X)(y) = α then ∃x 	∈ X, µR(x, y) = 1 − α and
∀x 	∈ X, µR(x, y) ≥ 1 − α

The first two results extend duality relations to the graded
case. The other ones express the meaning of each fuzzy
set. Thus a property belongs to RΠ(X) to degree α inas-
much as objects in X possess this property to at most de-
gree α. Then h(RΠ(X)) = maxy∈Y µRΠ(X)(y) = 0 means
that no object in X possesses a property in Y to any ex-
tent. A property belongs to RN (X) to degree α if any ob-
ject possessing this property to a degree greater than 1 − α
necessarily belongs to X . In particular, any object possess-
ing this property to some positive degree belongs to X , if
α = 1. A property belongs all the more to R∆(X) as any
object in X possesses this property to a greater degree. Lastly,
�(R∇(X)) = miny∈Y µR∇(X)(y) = α means that for any
property y in Y objects outside X possess this property to at
most to degree 1−α. In particular, if �(R∇(X)) = 1, for any
property in Y there exists an object outside X that misses it.

Moreover, we have the following counterpart to (1):

Proposition 1 If R−1(y) is such that for y ∈ Prop,
h(µR−1(y)) = 1 and �(µR−1(y)) = 0, then

∀X ⊆ Obj, max(Ny(X), ∆y(X)) ≤ min(Πy(X),∇y(X)).

Lastly, it is clear that when nesting the operators as in the
Remark at the end of Section 2.2, or when extending Ga-
lois connexions when R is fuzzy, we are led to extend again
the above definitions to cases where X and Y become fuzzy
sets themselves. From a possibility theory point of view, this
means defining generalized measures for fuzzy events. De-
pending on the properties we want to preserve, several choices
are possible here (see on this point [13], especially pages 51–
64), which would lead to different extensions for the four op-
erators. Choosing the appropriate extensions depends on the
intended use and interpretation of the definition we want to
generalize. We leave these questions for further research.
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4 Generalized quotient and fuzzy quantifiers
In a relational database, given an ordered set of attributes
A = {A1, ..., An}, information is stored in a relational table
R where each column corresponds to an attribute, and a row to
an object belonging to Obj. Thus a cell in such a relational ta-
ble corresponds to the value of an attribute for an object. Any
row in the relational table R is also called a ‘tuple’. A ‘tuple’
is thus an ordered set of attribute values pertaining to an ob-
ject. Let T u(R) denote the set of tuples in R. Quotients are
relational algebra operations that aim at finding out the subre-
lational table R ÷ S of a finite relational table R, containing
subtuples of R that have for complements in R all the tuples
of a relational table S. The quotient operation is defined by

Definition 1 Relational quotient.

R÷ S = {t, ∀s ∈ T u(S), (t, s) ∈ T u(R)}

where s denotes a tuple of S and t a subtuple of R such that
(t, s) is a tuple of R.

The definition of R∆(X) can be viewed as a particular case
of such a division. Indeed R∆(X) = {y ∈ Prop|R−1(y) ⊇
X} = {y ∈ Prop|∀x ∈ X, (x, y) ∈ R}. Besides, a relation
R ⊆ Prop×Obj can be viewed as equivalent to a 2-attribute
relational table R with A = {Object − name, Property −
name}, where (x, y) (resp. (y, x)) is a tuple in R (resp.
R−1) if and only if (x, y) ∈ R. Then, it becomes clear that
R∆(X) = R−1 ÷ X , where X is the one-attribute relational
table containing the object names. Similarly, R−1∆(Y ) =
R÷Y (Y is the one-attribute relational table associated to Y ).

The fuzzy extensions of the basic operationsR∆, R−1∆,
which underly formal concept analysis, can thus be related to
fuzzy division operations in fuzzy relational databases where
tuples are weighted [14, 15]. As we shall see, this also pro-
vides a way for introducing fuzzily quantified conjunctions in
order to require that tuples in R are associated with “at least
k”, or more generally ‘most’ objects in X , rather than all el-
ements in X as in formal concept analysis basic operations.
In the following, we discuss these extensions in the setting of
formal concept analysis.

First, the definition of R∆(X) extended to the case where
R becomes fuzzy, as given in the previous section, namely
µR∆(X)(y) = minx∈XµR−1(y)(x), is the exact counterpart
to the fuzzy division µR−1÷X (y) = minx∈T u(X ) µR(x, y),
for all pair (y, x) in T u(R−1), when R is a fuzzy relation and
X remains a classical set. The definition of a fuzzy division in
fuzzy relation databases includes the more general case where
X is also a fuzzy set. This can be done as well here, choosing
an appropriate type of inclusion between fuzzy sets, i.e. an
implication connective → in the expression:

µR∆(X)(y) = min
x∈Obj

µX(x) → µR−1(y)(x)

in relation with the intended meaning of having X fuzzy. For
instance, taking Gödel implication (a → b = 1 if a ≤
b, and a → b = b if a > b) amounts to seeing µX(x)’s as
a significance threshold to which µR(x, y) is compared, while
using Dienes implication (a → b = max(1 − a, b)) would

be more in agreement with the idea of viewing µX(x) as a
level of priority of x, just requiring the inclusion of important
objects in R−1(y) (indeed the less important x, the greater
(1 − µX(x)), and the smaller the impact of x on the global
evaluation, even when x totally fails to have property y (see
[14, 15] for details).

Having both a fuzzy relation R and a fuzzy set X of objects
may sound unrealistic in practice. In formal concept analysis,
it is the starting point for natural weakening of the quantifier
‘for all’ into “at least k”, or even into ‘most’. The idea is to
require that “at least k” (or more generally ‘most’) objects in
X are the important objects that are the most in relation R
with property y.

Let I be a fuzzy constraint on integers, defined by a mem-
bership function of the form: µI(0) = 1andµI(i) ≥ µI(i+1).
For instance, “at least k objects are important” is represented
by µI(i) = 1 if 0 ≤ i ≤ k and µI(i) = 0 for i ≥ k + 1, n
where n = |X |. Let us reorder the µR−1(y)(xk)’s decreas-
ingly, so that objects (xk)’s that are more in relation R with y
are the most important ones:

µR−1(y)(xσ(1)) ≥ µR−1(y)(xσ(2)) ≥ ... ≥ µR−1(y)(xσ(n)).

Then the extent to which property y is possessed by ‘at least
k’ objects in X can be computed as

µR∆(X),I(y) = min
i

max(µR−1(y)(xσ(i)), 1 − µI(i)),

I being defined as above. This expression, which involves an
absolute fuzzy quantifier, may be easily modified in order to
introduce relative quantifiers Q like ‘most’, having an increas-
ing membership function in [0, 1], by changing 1 − µI(i + 1)
into µQ(i/n) for i = 0, n− 1 and µQ(1) = 1. It gives

µR∆(X),Q(y) = min
i

max(µR−1(y)(xσ(i)), µQ(
i − 1

n
)).

Clearly, if Q means ‘all’, µQ(t) = 0 for t < 1, then the above
expression reduces to µR∆(X)(y) = minx∈X µR−1(y)(x).

5 Incomplete and uncertain information
Until now, it has been assumed that we have complete infor-
mation about the existing links between properties in Prop
and objects in Obj. Namely, (x, y) ∈ R means that object
x satisfies property y and (x, y) 	∈ R means that object x
does not satisfy property y, rather than “we do not know if
(x, y) ∈ R or not”. Clearly, this assumption may be relaxed,
while Boolean properties are still assumed: One may consider
that there are pairs (x, y) for which it is not known at all if x
has property y or not. This case has been considered in [16].
Information may be also uncertain, i.e., we are certain at level
α that x has property y, or at level β that x has not property y.

In the most general case, properties are non Boolean (i.e.
µR(x, y) is supposed to belong to [0, 1]), but the extent
µR(x, y) to which an object x has a property y may be only
fuzzily known under the form of a possibility distribution
π

(x,y)
µR on [0, 1] that restricts its possible values. Then one

may not be even sure in general that some property y is pos-
sessed by an object x at least at some degree α). Since the
information about µR(x, y) is now represented by a fuzzy
set (on [0, 1]), and the four measures introduced in Section 3
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µRΠ(X)(y) = Πy(X), µRN (X)(y) = Ny(X), µR∆(X)(y) =
∆y(X), µR∇(X)(y) = ∇y(X) can themselves only be known
under the form of induced possibility distributions (using the
fuzzy set extension principle [2]). Let us take the example of
µRΠ(X)(y) = Πy(X) = maxx∈X µR(x, y). The induced
possibility distribution is given by
πΠy(X)(t) = maxi:maxi ti=t minxi∈X π

(xi,y)
µR (ti) i.e.

πΠy(X)(t) =

maxi min(π(xi,y)
µR (t), minj �=i(maxtj≤t π

(xj ,y)
µR (tj)).

Such a computation may be heavy in practice, but one may
at least compute an upper bound of the possibility that a
property y is associated to an object x with a degree equal
to α, as π∗

Πy(X)(α) = maxx∈X π
(x,y)
µR (α). One may also

compute the degree of membership of property y to the
fuzzy set of properties that are possibly associated with at
least one object in X at least to a degree ρ as Πy,ρ(X) =
maxx∈X max{t|t≥ρ} π

(x,y)
µR (t).

A maybe more promising approach for dealing with incom-
plete information in formal concept analysis is to first slightly
modify the setting we start with by accommodating directly
many-valued attributes instead of binary ones. We now out-
line this idea. Indeed when attribute domains are two-valued,
they only give birth to a binary property (and its negation),
while any non empty subset of a many-valued attribute do-
main (different from the domain itself) defines a non-trivial
property. Take the example of the color attribute with do-
main {black, red, yellow, blue, green, ...}, red or green, or
red or yellow or blue are (imprecise) properties, beside the
basic colors black, red, etc. Let Y now denote a set of at-
tributes y, dom(y) be the domain of y, Py denote a non-empty
subset of dom(y). Let Γy(x) represent the available informa-
tion about the value of attribute y for object x. It is assumed
that Γy(x) ⊆ dom(y). Information is imprecise if Γy(x) is
not a singleton. For the moment, we suppose that information
may be incomplete but not uncertain. Γy(x) = ∅ means that
y does not apply to x, and Γy(x) = dom(y) means that the
value of y is unknown for x. Γy(x) 	= ∅ is now assumed.

Then R−1N (Py) = {x|Γy(x) ⊆ Py} is the set of ob-
jects that (certainly) have property Py w. r. t. attribute y.
Three other similar sets can be defined by reversing ⊆, or re-
placing it by non-empty intersection, or non-covering union
conditions, in the spirit of the basic definitions of Section 2.
Let R−1N� be the relation that expresses that certainly ob-
jects have some (maybe imprecise) properties; it is defined on
X×∪y∈Y P(y), where P(y) denote the power set of dom(y).
Since (P(y),⊆) is a Boolean lattice, (x, Py) ∈ R−1N� en-
tails (x, P ′

y) ∈ R−1N� as soon as Py ⊆ P ′
y (if an object is

red, it is also red or green). Clearly, {x|(x, red or green) ∈
R−1N�} = {x|Γcolor(x) = red}∪{x|Γcolor(x) = green}∪
{x|Γcolor(x) = red or green}. Moreover, we can also find
out if there are only possibly red or green objects, e.g. those
that are known to be red or blue. If not, it means that there
is no completion of the knowledge that can alter the extension
of the set of red or green objects in our example. More gen-
erally, we can look for concepts associated with sufficiently
imprecise properties that remain stable under any knowledge
completion. This can be extended to gradual uncertain knowl-
edge by working with the α-cuts of the Γy(x)’s, i.e. pieces of
information that are (1−α)-certain. These are lines for further

research.

6 Concluding remarks
Starting with a possibility-theoretic reading of concept anal-
ysis, we have reintroduced four operators, that enable us to
describe all the different possible relations between a set of
objects and a set of properties. Apart from retrieving the Ga-
lois connexion defining formal concepts, another Galois con-
nexion based on the “actual necessity” operator is laid bare
for decomposing the relation into independent blocks. The
proposed setting extends to graded properties, leading to two
kinds of Galois connected pair of fuzzy sets, whose mean-
ing must be laid bare. Besides, the formal similarity between
the actual possibility operator and relational algebra division
operation, suggests a relaxation of the definition of concepts,
computing the extent to which a property is highly possessed
by most objects in a set. Lastly, extensions of the formal con-
cept analysis setting to incomplete or uncertain information
have been outlined. It is clear that many pending issues re-
main, such as e.g. the use of rough set reducts in this setting.
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