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Abstract— In this paper, we study the OWA operator on the real
line, which corresponds to the Continuous OWA operator (COWA).
After defining it, we introduce some properties and fundamental for-
mulas for its computation. Among them, we give as an example, a dif-
ferential equation for the COWA operator. Keywords: Fuzzy mea-
sures, Order weighted averaging operator, Choquet integral, Contin-
uous OWA operator

1 Introduction
Aggregation operators [1, 3, 8] are used to combine informa-
tion to obtain a datum of better quality. In recent years there
is an increasing interest in these topics for their application in
decision problems and artificial intelligence.

Among aggregation operators, one of the most well known
and useful one is the Ordered Weighted Averaging opera-
tor (OWA) introduced by Yager [12, 13, 14]. The OWA
is regarded as a Choquet integral with respect to a fuzzy
measure[6, 9].

In classical statistics, when the amount of data is large, it
is usual to approximate a discrete distribution, such as a bino-
mial distribution, by a continuous distribution. A continuous
distribution, such as the normal distribution, is a Lebesgue in-
tegral on the real line and is based on lots of results of classical
integral theory. At present, there are a very few theoretical re-
sults about the Choquet integral on the real line. This paper is
the first step for a theory of Choquet integral on the real line.

The structure of this paper is as follows. In Section 2 we
review fuzzy measures and the OWA operator, and introduce
a few results related to the OWA operator.

In Section 3, we define the OWA operator on the real
line, called the Continuous OWA operator (COWA) operator
and introduce some fundamental formulas and expressions for
their computation.

In Section 4, we show an example of differential equation,
which will be a hint to find a weighting function for the COWA
operator. The paper finishes with some conclusions.

2 Preliminaries
In this section, we define fuzzy measures, the Choquet integral
and the OWA operator, and show their basic properties.

To introduce both a discrete space and a non-discrete space
in a unified way, we use the terms in general topology in this
section. Let X be a locally compact Hausdorff space and B

be a class of Borel sets, that is, the smallest σ−algebra which
includes the class of all closed sets. We say that (X,B) is a
measurable space.

Example 1 We consider two examples of Hausdorff spaces:

(1) The set of all real numbers R is a locally compact Haus-
dorff space. If X = R, B is the smallest σ− algebra
which includes the class of all closed intervals.

(2) Let X := {1, 2, . . . , N}. X is a compact Hausdorff
space with a discrete topology. Then we have B = 2X .

Definition 1 [7] Let (X,B) be a measurable space. A fuzzy
measure (or a non-additive measure) µ is a real valued set
function, µ : B −→ [0, 1] with the following properties;

(1) µ(∅) = 0

(2) µ(A) ≤ µ(B) whenever A ⊂ B, A, B ∈ B.

We say that the triplet (X,B, µ) is a fuzzy measure space if
µ is a fuzzy measure.

A fuzzy measure is said to be continuous if An ↑ A implies
µ(An) ↑ µ(A) and An ↓ A implies µ(An) ↓ µ(A).

Definition 2 Let (X,B) be a measurable space. A function
f : X → R is said to be measurable if {x|f(x) ≥ α} ∈ B for
all α ∈ R.

Example 2 Let f be a continuous function. Then, for all α ∈
R, {f ≥ α} is a closed set. Therefore, f is measurable.

F(X) denotes the class of non-negative measurable func-
tions, that is,

F(X) = {f |f : X → R+, f : measurable}

Definition 3 [2, 5] Let (X,B, µ) be a fuzzy measure space.
The Choquet integral of f ∈ F(X) with respect to µ is de-
fined by

(C)
∫

fdµ =
∫ ∞

0

µf (r)dr,

where µf (r) = µ({x|f(x) ≥ r}).
Let A ⊂ X . The Choquet integral restricted on A is de-

fined by

(C)
∫

A

fdµ := (C)
∫

f · 1Adµ.
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Definition 4 Let D ⊂ RN . An aggregation operator Ag is a
function Ag : D → R with the following properties;

(1) (Unanimity or idempotency)

Ag(a, . . . , a) = a if (a, . . . , a) ∈ D

(2) (Monotonicity)

If ai ≤ bi for all i = 1, . . . , n, a = (a1, . . . , aN ),b =
(b1, . . . , bN ) a,b ∈ D, then Ag(a) ≤ Ag(b).

Yager introduced the Ordered Weighted Averaging operator
in [12].

Definition 5 [12] Given a weighting vector w with weights
(w1, . . . , wN ), the Ordered Weighted Averaging operator is
defined as follows:

OWAw(a) =
N∑

i=1

wiaσ(i)

where σ defines a permutation of {1, . . . , N} such that
aσ(i) ≥ aσ(i+1), a = (a1, . . . , an).

A fuzzy measure µ on B is said to be symmetric [4] if
µ(A) = µ(B) for |A| = |B|, A, B ∈ B. Symmetric fuzzy
measures on {1, . . . , N} can be represented in terms of N

weights wi for i = 1, . . . , N so that µ(A) =
∑|A|

i=1 wi. Us-
ing a symmetric fuzzy measure, we can represent any OWA
operator as a Choquet integral.

Proposition 6 Let X := {1, 2, . . . , N}; then, for every
OWAw, there exists a symmetric fuzzy measure satisfying
µ({1}) := w1 and µ({1, . . . , i}) := w1 + · · · + wi for
i = 1, 2, . . . , N , such that

OWAw(a) = (C)
∫

adµ

for a ∈ RN
+ .

3 Continuous OWA operator

In the following we consider aggregation operators on the real
line. Let λ be a Lebesgue measure on [0, 1], that is, λ([a, b]) =
b − a for [a, b] ⊂ [0, 1].

Definition 7 Let Fb([0, 1]) be a class of bounded measurable
function on [0, 1]. A continuous aggregation operator Ag on
the real line is a functional Ag : Fb([0, 1]) → R with the
following properties;

(1) (Unanimity or idempotency)

Ag(a) = a if a(x) = a for all x ∈ [0, 1]

(2) (Monotonicity)

If a(x) ≤ b(x) for all x ∈ [0, 1], then Ag(a) ≤ Ag(b).

(3) (Continuity) Let an, a ∈ Fb([0, 1]) for n = 1, 2, 3, . . .
and limn→∞ an = a. Then, limn→∞ Ag(an) = Ag(a).

Let D ⊂ RN . For every a := (a1, . . . , an) ∈ D, we can
define a function f ∈ Fb([0, 1]) by f(x) := ak if
(k − 1)/n ≤ x < k/n. Therefore the definition above is one
of the generalization of aggregation operators on D.

Since the Choquet integral with respect to a continuous
fuzzy measure satisfies all the conditions above, the Choquet
integral with respect to a continuous fuzzy measure is a con-
tinuous aggregation operator.

Using the Choquet integral we can define the continuous
OWA (COWA) operator.

Definition 8 Let µ be a fuzzy measure on ([0, 1],B). µ is said
to be symmetric, if λ(A) = λ(B) implies µ(A) = µ(B).

Definition 9 Let a ∈ F�([0, 1]). The continuous OWA opera-
tor is defined by

COWAµ(a) = (C)
∫

adµ

where µ is a symmetric fuzzy measure.

Let µ be a symmetric fuzzy measure on ([0, 1],B). Sup-
pose that λ(A) < λ(B). Then there exists B′ ∈ B such that
λ(B) = λ(B′) and A ⊂ B′. Then we have

µ(A) < µ(B′) = µ(B).

Therefore we have the next proposition.

Proposition 10 Let µ be a symmetric fuzzy measure on
([0, 1],B). Then there exists a monotone function ϕ : [0, 1] →
[0, 1] such that µ = ϕ ◦ λ.

It follows from the proposition above that we can consider
the Choquet integral with respect to ϕ ◦ λ as the COWA oper-
ator. We will write COWAϕ instead of COWAϕ◦λ and we
will say that ϕ is the weight for the COWA operator.

Let f : [0, 1] → R be monotone increasing with f(0) = 0
and differentiable. We define the sequence of functions {fk}
by f1 = f , fk+1 =

∫ x

0
fkdλ for x ∈ [0, 1], k = 1, 2, . . . .

Then we have

(C)
∫

[0,1]

fdλn =
∫ ∞

0

λn(f · 1[0,x]≥α)dα

=
∫ f(x)

0

(x − f−1(α))ndα

Let t := x − f−1(α), Since we have dα = −f ′(x − t)dt,
t = x if α = 0 and t = 0 if α = f(x), then

(C)
∫

[0,1]

fdλn =
∫ 0

x

tn · (−f ′(x − t))dt

=
∫ x

0

tnf ′(x − t)dt

Next let s := x − t, we have

(C)
∫

[0,1]

fdλn =
∫ x

0

(x − s)nf ′(s)ds

= [(x − s)nf(s)]x0 + n

∫ x

0

(x − s)n−1f1(s)ds

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1133



Since f(x) = 0, we have

(C)
∫

[0,1]

fdλn = n

∫ x

0

(x − s)n−1f1(s)ds.

It follows from integration by part again that
∫ x

0

(x − s)n−1f1(s)ds = (n − 1)
∫ x

0

(x − s)n−2f2(s)ds.

Repeating above calculation, we have the next lemma.

Lemma 11 Let f : [0, 1] → R be monotone increasing with
f(0) = 0 and differentiable. We define the sequence of func-
tions {fk} by f1 = f , fk+1 =

∫ x

0
fkdλ for x ∈ [0, 1],

k = 1, 2, . . . . Then we have

(C)
∫

[0,x]

fdλn = n!fn(x)

for x ∈ [0, 1].

Example 3 Let f(t) = t, we have f1 = 1
2x2, · · · , fn =

1
(n+1)!x

n+1.

(C)
∫

[0,x]

tdλn(t) =
1

n + 1
xn+1

for x ∈ [0, 1].

Let the weight w be ∞-order differentiable. Then we can
express w by

w(x) :=
∞∑

k=1

akxk.

Since the Choquet integral is linear with respect to the fuzzy
measures. We have

(C)
∫

[0,x]

fdw ◦ λ =
∞∑

k=1

k!akfk(x)

for x ∈ [0, 1]. Therefore we have the next theorem.

Theorem 12 Let f : [0, 1] → R be monotone increasing
with f(0) = 0 and differentiable. We define the sequence of
functions {fk} by f1 = f , fk+1 =

∫ x

0
fkdλ for x ∈ [0, 1],

k = 1, 2, . . . .

COWAw(f) =
∞∑

k=1

k!akfk(1)

for x ∈ [0, 1].

4 Differential equation for COWA operator
In this section we consider the definition of a weight for the
COWA. As we will see below, a differential equation helps in
this definition.

Let us define a weight w(x) :=
ex − 1
e − 1

. Then we have

w(x) =
1

e − 1

∞∑
k=1

1
k!

xk.

Since ak =
1

(e − 1)k!
, we have

(C)
∫

[0,x]

fdw ◦ λ =
1

e − 1

∞∑
k=1

k!fk(x)

for x ∈ [0, 1].
Then we have the next differential equation for a weighting

function.

d

dx
(C)

∫
[0,x]

fdw ◦ λ = f(x) +
1

e − 1

∞∑
k=1

k!fk(x)

for x ∈ [0, 1]. Therefore we have the next differential equa-
tion.

d

dx
(C)

∫
[0,x]

fdw ◦ λ = f(x) + (C)
∫

[0,x]

fdw ◦ λ

for x ∈ [0, 1].

Proposition 13 Let f be a monotone increasing function with
f(0) = 0 and let f be differentiable. If the weighting function
satisfies the next equation:

d

dx
(C)

∫
[0,x]

fdw ◦ λ = f(x) + (C)
∫

[0,x]

fdw ◦ λ

for x ∈ [0, 1], then we have

w(x) =
ex − 1
e − 1

5 Conclusion
We defined the OWA operator on the real line (COWA opera-
tor), and show some fundamental formulas for its calculation.
We give an example of differential equation to find a weight-
ing function for COWA operator. This methods will be ap-
plicable to the Weighted OWA (WOWA) operator introduced
by Torra [10, 11], which is one of the generalization of OWA
operator. We expect to have some new results related to the
WOWA operator in the near future.
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