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Abstract— In this paper we introduce an application of interval-
valued systems to the segmentation of prostate ultrasound images.
The system classifies each pixel as prostate or background. The in-
put variables are the values of each pixel in different processed im-
ages as proximity, edginess and enhanced image. The system has
20 rules and is trained with ideal images segmented by an expert.
Interval-valued fuzzy systems have been used due to their potential
to capture uncertainty in a more robust way compared to ordinary
fuzzy systems.
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1 Introduction
Ultrasound images are used in clinical settings to evaluate
anomalies, tissues and organs. Ultrasound imaging is a quite
common modality due to its low cost, portability and harm-
lessness to human body. Transrectal ultrasound images of the
prostate in male patients are frequently used for both diagnosis
and treatment purposes. Detecting the outline of the prostate –
prostate segmentation – is therefore the first step regardless the
following step is of diagnostic nature or treatment planning as
for brachytherapy of prostate cancer.

Ultrasound image segmentation is strongly affected by the
lower quality of these images. Speckle noise, shadows and
prostate inhomogeneity make the segmentation a complicated
task. There exist several methods to segment ultrasound im-
ages, a complete review can be found in [12]. Some methods
use machine learning techniques to extract the objects/lesions.
In those methods ideally segmented images created by an ex-
pert radiologist are used to train the system. In [18] reinforce-
ment learning is used to train an agent devoted to segment
prostate ultrasound images. Zhang et al. [20] optimize the
weights of a weighed wavelet to detect microcalcifications in
mamographic images. Neural networks were used in [13] to
identify possible injuries in liver images and in [5] a genetic
algorithm optimizes the weights of a self-organized neural net-
work (Kohonen net).

One of the problems of the Neural Networks is the black
box reasoning. In medical applications it is very useful to
know how a certain task has been done the process of segment-
ing the image. Hence, we propose to use a fuzzy logic system
to segment ultrasound images since they provide a convenient
way of interpreting the tasks/results.

Due to the complexity of the ultrasound images we are go-
ing to use interval-valued fuzzy sets enabling us to represent
the uncertainty that is within these images. In [9] Mendel pro-
poses an adaptation of the fuzzy rule learning algorithm to
interval type 2 fuzzy rules. Note what he called interval type
2 fuzzy sets are the same as interval-valued fuzzy sets in some
cases (when a = 1, please see section 2). The objective of
this paper is to develop an interval-valued fuzzy logic system
(from now IT2FLS following the notation given in [9]) to seg-
ment prostates in transrectal ultrasound images.

Why to use interval-valued fuzzy systems instead of clas-
sical fuzzy systems? When we design a fuzzy system that is
going to be trained using typical machine learning algorithms,
we must choose the input variables, the output of our system
and the number of rules. If we train the system with the past
data, we can understand this process as function fitting prob-
lem, in which the fuzzy rule base system is a parametrized
function and the training process is the modification of said
parameters. This means that the output of the system fits the
training data. If the system uses interval-valued fuzzy sets
instead of classical fuzzy sets, the number of parameters to
define an interval fuzzy rule is larger than the one needed for a
classical fuzzy rule. So, in the training process, with the same
data, the interval fuzzy system has more parameters, more de-
grees of freedom, which means it can be adjusted in a bet-
ter way to the data. Some researchers suggest that this is an
advantage compared to ordinary fuzzy systems. Therefore it
means that for the same linguistic complexity (number of rules
and number of variables) interval-valued fuzzy systems can, at
least in theory, achieve better accuracy. We have made a com-
parative study to verify this hypotheses.

This work is organized as follows: first we present an in-
troduction of interval-valued fuzzy logic systems. In section
3 we review Mendel’s algorithm to generate an IT2FLS from
training data. Later, in section 4 we present the model that we
propose to segment ultrasound images. Finally we show some
experimental results, conclusions and future research.

2 Interval-valued fuzzy systems
An interval-valued fuzzy set constitutes that the membership
degree of every element to the set is given by a closed subin-
terval of interval [0,1]. The concept of type 2 fuzzy sets was
introduced by Zadeh [19] as a generalization of an ordinary
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fuzzy set. The membership degree of an element to a type 2
fuzzy set is a fuzzy set in [0,1].

An interval type 2 fuzzy set
=

A in U is defined as

A = {(u,A(u), µu(x))|u ∈ U,A(u) ∈ L([0, 1])},

where A(u) = [A
−

(u),
−

A(u)] is a membership function; i.e., a
closed subinterval is [0, 1], and function µu(x) represents the
fuzzy set associated with the element u ∈ U obtained when x

is within [0, 1]; µu(x) is given in the following way:

µu(x) =


 a if A

−

(u) ≤ x ≤
−

A(u)

0 otherwise
,

where 0 ≤ a ≤ 1.
In [8]–[10], it is proved that an interval type 2 fuzzy set is

the same as an interval-valued fuzzy set if a = 1.
Example: We can represent an interval-valued fuzzy set by

means of an upper bound membership function and a lower
bound membership function. In this work, all of the mem-
bership functions are going to be represented by a Gaussian
function:

µl
k(xk) = exp

[
−

1

2

(
xk − ml

k

σl
k

)]
σl

k ∈ [σl
k1, σ

l
k2] (1)

In fig. 1 we show the membership function with parameter
ml

k = 0.4. We take σl
k1 = 0.05 to represent the lower bound

and σl
k2 = 0.1 for the upper bound.
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Figure 1: Interval-valued membership function with a Gaus-
sian primary membership function and m = 0.4, σl

k1 = 0.05
y σl

k2 = 0.1.

An IT2FLS is a rule-based system in which the sets that
represent the antecedents and consequents are interval-valued
fuzzy sets (or interval type 2 fuzzy sets). In fig. 2 we depict
the most important modules of an IT2FLS (see [9]).

The input of the system is a set of values. The fuzzfier trans-
forms the inputs into interval-valued fuzzy sets. Then, the
main part of the system, using the rules carries out the infer-
ence to generate conclusions, represented by interval-valued
fuzzy sets. To use these conclusions (decisions) in the real
world, the defuzzifier transforms these sets into crisp values.
Commonly, before defuzzification, we can reduce the sets
from interval-valued fuzzy sets to classical fuzzy sets, such
a way typical defuzzifying techniques could be used to obtain
crisp values.

Figure 2: Interval Type 2 Fuzzy Logic System

Considering an IT2FLS with p inputs x1 ∈ X1, · · · , xp ∈
Xp and one output y ∈ Y . Then we assume that the system
has M rules in the following way:

Rl : IF x1 is F l
1 AND . . . AND xp is F l

p,

THEN y is Gl con l = 1, . . . , M (2)

where F l
1, . . . , F

l
p, G

l are interval-valued fuzzy sets. Each
rule is interpreted as an implication:

Rl : F l
1 × F l

2, · · · × F l
p → Gl = Al → Gl with l = 1, . . . , M

(3)
Rl is described by the membership function µRl(x, y) =
µ(x1, . . . , xp, y) where,

µRl(x, y) = µAl→Gl(x, y) =

[
p⋂

i=1

µF l
i
(xi)

] ⋂
µGl(y) (4)

Using the extension of the Zadeh’s compositional rule to
interval-valued fuzzy sets, the consequent is calculated as fol-
lows:

µBl(y) = µAl◦Rl(y) =
⋃

x∈X

[
µAx

(x)
⋂

µRl(x, y)
]

with y ∈ Y, l = 1, . . . , M (5)

There exist several works regarding the inference with
interval-valued fuzzy rules [2, 6], but in this work we are go-
ing to use the method proposed by Mendel in [9] (for a more
detailed study see [10]).

3 Design of Interval-valued fuzzy systems
from data

In this section we show how we can design an IT2FLS from
training data.
Given a collection of N pairs of input-output data
(x(1), y(1)), (x(2), y(2)), · · · (x(N), y(N)) where x(t) is the in-
put vector and y(t) is the output value of the t training pair, we
define the error of the IT2FLS for the t-th input as:

e(t) = fs2(x(t)) − y(t) t = 1, . . . , N (6)

where fs2 is the output of the IT2FLS. Such a value depends
on the parameters that define the interval-valued fuzzy sets of
the antecedents and consequents of the corresponding rules
(ml

k, σl
k1, σl

k2, y
j
l and yj

r , with k = 1, . . . , p, for p inputs,
j = 1, . . . , M , for M rules). Also y

j
l and yj

r represent the
bounds of the membership function of the consequent after
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the type reduction.
We define the quadratic error of the IT2FLS in t-th input as:

E(t) =
1

2
[e(t)]2 t = 1, . . . , N (7)

and the performance of the system as

E =
N∑

i=1

E(t) t = 1, . . . , N (8)

The training of an IT2FLS aims at finding the optimal val-
ues of the parameters that define the system such that equa-
tions (7) or (8) are minimized. If we minimize equation (7)
(such a method is explained in [9]), the learning process is
done in an incremental way, because the parameters are ad-
justed iteratively after processing every training pair. If we
minimize equation (8), as we have done in this work, the
learning process is done as a batch processing, because the pa-
rameters are adjusted after processing all of the training pairs.
When we process all of the N training pairs and modify the
parameters it is called a training epoch. In this work, in ev-
ery epoch the parameters are adjusted proportional to the error
gradient ∂E

∂ml
k

, ∂E
∂σl

k1

, ∂E
∂σl

k2

, ∂E

∂yj

l

and ∂E

∂yj
r

.
This quantity is calculated using the resilient backpropaga-

tion algorithm (RPROP, [14]). This algorithm automatically
adjusts its own parameters during the training process, and is
very easy to implement and can achieve a high convergence
speed.

4 Proposed method

The objective of our method is to classify each pixel of the
image. That is, decide if each pixel belongs to the important
area (prostate) to segment or if it belongs to the background.
Since the size and the position of the prostate are subject to
change, the user must select the central point of the region
(also called the seed point) to avoid false detections (and to
focus on the segmentation itself). Therefore, the method is
semi-supervised due to user suppling some relevant informa-
tion. However, automation of this step is quite possible and
has been repeatedly reported in literature.

The IT2FLS that we propose has 5 inputs, one output and
consists of 20 rules. The inputs are:

1. posi: The distance, in pixels, of the pixel considered
from the central point in the horizontal axes.

2. posj : The distance, in pixels, of the pixel considered
from the central point in the vertical axes.

3. dist: The proximity of the pixel w.r.t. to the central point,
calculated via a flooding algorithm.

4. edg: Edginess of each pixel.

5. mgr: Average gray level of the pixels neighborhood (e.g.
5 × 5 neighborhoods) in the enhanced image.

In the following subsections we present the techniques used
to obtain the values of enhancement, proximity and edginess.

4.1 Enhanced image

The algorithm used to enhance ultrasound images is the one
proposed by Sahba et al. [15, 16, 17], in which fuzzy rules
such as the following have been used:

IF the pixel does not belong to the prostate,
THEN leave it unchanged
IF the pixel belongs to the prostate AND is dark,
THEN make it darker
IF the pixel belongs to the prostate AND is gray,
THEN make it dark
IF the pixel belongs to the prostate AND is bright,
THEN make it brighter

We use a simplified version of these rules in form of

IF the pixel belongs to the object AND is dark,
THEN make it darker,

or in a even more simple formulation and to save time we
can use rules such as:

IF the pixel belongs to the object,
THEN make it darker,

where the degree of “belonging” of each pixel to the object
is a function of its distance to the central point of the object or
the inside of an initial/coares segment as proposed by Sahba
et al. The main idea of enhancement is to eliminate the noise
in the images and enhance the gray levels of selected area (re-
gional contrast enhancement). First the noise is eliminated us-
ing a median filter (7×7 or 9×9). Then each pixel is fuzzyfied
depending on its intensity with a membership function that is
constructed taking into account the mean level of gray of the
surroundings and the position of the selected point.

4.2 Proximity image

The proximity image represents the proximity of every pixel
to the central point (similar to [7, 15, 16]), but taking into ac-
count the edges that separate the different regions of the origi-
nal image. First we calculate the edges of the enhanced image
using the Canny algorithm [4]. Then, starting from the cen-
tral pixel selected by the user the algorithm labels the pixels
with their distance to the central pixel step by step. In the first
step the neighbors are labeled with distance 1 and so on (Fig.
3). The pixels marked as edge by the Canny edge detector are
used as walls and cannot be labeled, so the proximity values
generated are related with areas of the image.

4.3 Edginess

To create the edginess image, we calculate what is commonly
called false edges. In [3] we presented a method to obtain
false edges by means of t-norms and t-conorms. For every
pixel a neighborhood matrix is constructed (3×3, 5×5, etc.).
Applying t-norms to the elements of the matrix we obtain a
lower bound of an interval. Applying t-conorms we obtain
the upper bound of that interval. We called the length of the
interval, that is the difference between the upper bound and the
lower bound of the interval, false edge. The most known case
is obtained when using minimum as the t-norm and maximum
as the t-conorm.
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Figure 3: Top left to bottom right: Original image, ideally
segmented image, edginess image, proximity image

5 Experimental results
To evaluate the performance of the IT2FLS we have a set of
ten prostate ultrasound images with their corresponding ideal
segmentation created by an expert. Each image has a central
point of the prostate provided by the expert (for many prostate
images automated detection of central point is relatively easy
[1]). We use two of these images for the training and the other
six for the validation. From the two training images we select
randomly 200 pixels which are the training data pairs. This
training data set is used to adjust the parameters of the system
as described in section 3. The data is also split into two groups,
the training set (80% of the data pairs) and the validation set
(20%). To evaluate the performance of the IT2FLS we use an
overlap measure SA between the areas of the IT2FLS result
and the ideally segmented image.

SA =
|Ideal ∩ IBF |

|Ideal ∪ IBF |
, (9)

where Ideal is the binary image segmented by the expert,
IBF is the binary image obtained using our method, ∩ and ∪
are the intersection and the union between crisp sets, respec-
tively. Due to the initial values of the parameters of the system
are selected randomly before training, we can obtain different
possible solutions. In Table 1 we show the best ones after 20
trials. In Fig. 4 and 5 we show the binary images obtained by
IT2FLS.

Table 1: Area overlap of segmented images with ideally seg-
mented prostates.

Image 1 2 3 4 5 6 7 8 9 10
IVFS SA(%) 84 61 74 75 77 75 62 64 71 72

Fuzzy SA 86 67 77 78 77 80 71 72 70 73

Table 2: Percentage of convergence.
System Percentage of convergence
Fuzzy 90 %
IVFS 30 %

In the experimental results we show that interval-valued
fuzzy rule systems perform similar to classical fuzzy systems.

The point is that the convergence of IVFS systems is really
poor and also the mean performance achieved by these sys-
tems is a bit worse than ordinary fuzzy sets. It means that the
extra adjustable parameters, if we dont use a specific learning
algorithm with the IVFS system, are not worth in this case.

Original Ideal Result

Figure 4: Comparison between ideally segmented images and
IT2FLS segmented images used for training.

6 Conclusions and future research
We have proposed a new method to segment ultrasound im-
ages using an interval-valued fuzzy system. The system has 5
inputs, 20 rules and one output and can be trained using im-
ages previously segmented by an expert. An average overlap
of 72% between the segmented area and the ideal segmenta-
tion has been reached. Nevertheless the results of the classical
fuzzy systems are a bit better than the IVFSs system, mainly
due to poor convergence of the learning algorithm.Taking into
account the size of the proposed system on one hand and the
challenging nature of prostate ultrasound segmentation on the
other hand, the results can be regarded as promising.

The results show poor spatial consistency, which could be
improved by adding some constraints or rules regarding shape
and boundaries of the areas to the system. Also, we want to
obtain interval input values to capture the uncertainty existing
in the ultrasound images and deal with it via the IT2FLS in
order to obtain better results.
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