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Abstract— An L-fuzzy context is a triple consisting of a set of ob-
jects, a set of attributes and an L-fuzzy binary relation between them.
An l-cut is a classical context over the same sets with relation as a
set of all object attribute pairs, which fuzzy relation assigns truth de-
gree geater or equal than l. Proto-fuzzy concept is a triple made of
a set of objects and a set of attributes, which form a concept in some
cut of L-fuzzy context and a supremum of all degrees in which cuts
this concept exists. Aim of the paper is to show the connection of
the structure of proto-fuzzy concepts and fuzzy concept lattice con-
structed in the way of [1][5]. This connection can help to generate
of all fuzzy concepts.

Keywords— formal concept analysis, fuzzy concept lattice, fuzzy
Galois connection

1 Preliminaries
Basic notions of Formal Concept Analysis(FCA) are formal
context and formal concept.

Definition 1 A formal context 〈B, A,R〉 consists of a set of
objects B, a set of attributes A and a relation R between B
and A.

Definition 2 Define the mappings ↑: B2 → A2 and ↓: A2 →
B2. The first assigns to the set X ⊆ B the set of all attributes
common to all objects of the set X

↑ (X) =
{
a ∈ A :

(∀o ∈ X
)
(o, a) ∈ R

}
and the second assigns to the set Y ⊆ A the set of all objects
common to all attributes of the set Y

↓ (Y ) =
{
o ∈ B :

(∀a ∈ Y
)
(o, a) ∈ R

}
.

Definition 3 A formal concept of the context 〈B, A,R〉 is a
pair 〈X, Y 〉 such that X ⊆ B, Y ⊆ A, ↑ (X) = Y and
↓ (Y ) = X .

Ganter and Wille in [3] showed that the pair of mappings( ↑, ↓ ) is a Galois connection and the composite mappings
↑↓: B2 → B2 and ↓↑: A2 → A2 are closure operators. Au-
thors prooved an important theorem in FCA well known as
The Basic Theorem On Concept Lattices.

Theorem 1 (The Basic Theorem on Concept Lattices)The
Concept Lattice (lattice of concepts with ordering 〈X1, Y1〉 ≤
〈X2, Y2〉 iff X1 ⊆ X2 iff Y1 ⊇ Y2) is a complete lattice in
which infimum and supremum are given by∧

i∈I

〈Xi, Yi〉 =
〈⋂

i∈I

Xi, ↑↓
(⋃

i∈I

Yi

)〉
∨
i∈I

〈Xi, Yi〉 =
〈
↓↑
(⋃

i∈I

Xi

)
,
⋂
i∈I

Yi

〉
.

A complete lattice V is isomorphic to the concept lattice of
some context 〈B, A,R〉 if and only if there are mappings β :
B → V and α : A → V , such that β(B) is supremum-
dense in V and α(A) is infimum-dense in V and (o, a) ∈ R
is equivalent to β(o) ≤ α(a) for all o ∈ B and a ∈ A. In
particular V is isomorphic to the concept lattice of context
〈V, V,≤〉.

Bělohlávek and Krajči in [1, 2, 5, 6] showed that above
mentioned basic notions may be generalized by applying the
fuzzy logic.

Everybody knows that reality provides situations where
many of attributes are rather fuzzy than crisp. Answer of ques-
tion “Does the object has the attribute?” is rather somewhere
in the middle of false (0) and true (1).

Definition 4 An L-fuzzy formal context is a triple 〈B, A, r〉
consists of a set of objects B, a set of attributes A and an L-
fuzzy binary relation r, i.e. the L-fuzzy subset of B × A or
mapping from B × A to L, where L is a complete residuated
lattice.

The class of all L-fuzzy sets in X will be denoted by XL.
If L is complete then the relation ⊆ (defined by f ⊆ g iff
f(x) ≤ g(x) for all x ∈ X) makes XL into a complete lattice.

Definition 5 A complete residuated lattice is an algebra L =
〈L,∧,∨,⊗,→, 0, 1〉 where

(a) 〈L,∧,∨, 0, 1〉 is a complete lattice with the least element
0 and the greatest element 1,

(b) 〈L,⊗, 1〉 is a commutative monoid,

(c) ⊗ and → satisfy adjointness, i.e.

a ⊗ b ≤ c ⇐⇒ a ≤ b → c

for each a, b, c ∈ L (≤ is the lattice ordering).

Definition 6 (Bělohlávek) A triple 〈B, A, r〉 is an L-fuzzy
context where r : B × A → L and L is a complete residu-
ated lattice. Define mappings ↑: BL → AL and ↓: AL → BL
such that for every f ∈ BL and g ∈ AL

↑ (f)(a) =
∧
o∈B

(
f(o) → r(o, a)

)
↓ (g)(o) =

∧
a∈A

(
g(a) → r(o, a)

)
.
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Table 1: Example of L-fuzzy formal context.

a1 a2 a3 a4

o1 0,2 0,8 0,8 1
o2 1 1 0,8 1
o3 0,2 0,6 0,4 1
o4 0,8 0,4 0,2 0
o5 0,2 0,4 0,4 0,2

Table 2: 1-cut, 0,6-cut, 0,2-cut

a1 a2 a3 a4

o1 •
o2 • • •
o3 •
o4

o5

a1 a2 a3 a4

o1 • • •
o2 • • • •
o3 • •
o4 •
o5

a1 a2 a3 a4

o1 • • • •
o2 • • • •
o3 • • • •
o4 • • •
o5 • • • •

The aim of this paper is to give a new equivalent definition
of Belohlavek’s mappings, but using so-called protto-fuzzy
concepts as basic building units for constructing the fuzzy
concepts. In the next section an l-cuts of L-fuzzy contexts
will be defined for any truth degree l ∈ L, main properties of
their concepts and a relationship of concepts of different cuts
will be showed. Finally Proto-fuzzy concepts will be defined.
Then an equality of new mappings with Bělohlávek ones will
be showed.

2 Cuts of L-fuzzy context
Lets have an example of L-fuzzy context (Table 1). In our
example is the lattice of truth degrees is
〈{1;0,8;0,6;0,4;0,2;0, };≤〉.

Definition 7 Let l ∈ L be an arbitrary truth degree. An l-cut
of some L-fuzzy set f ∈ XL is a classical set denoted by

fl =
{
x ∈ X : f(x) ≥ l

}
.

Definition 8 An l-cut of the L-fuzzy formal context
〈B, A, r〉 for l ∈ L is the classical context 〈B, A, rl〉 where
rl =

{
(o, a) ∈ B × A : r(o, a) ≥ l

}
.

Some of cuts of our example are in the tables.

Definition 9 For every truth value l ∈ L lets define mappings
↑l: B2 → A2 and ↓l: A2 → B2. For every object or attribute
subset X ⊆ B and Y ⊆ A put

↑l (X) =
{
a ∈ A : (∀o ∈ X)r(o, a) ≥ l

}
↓l (Y ) =

{
o ∈ B : (∀a ∈ Y )r(o, a) ≥ l

}
.

Lemma 1 Let K ⊆ L be an arbitrary subset of truth degrees.
Then for every set of objects X ⊆ B and attributes Y ⊆ A
holds that

↑(
W

K) (X) =
⋂
l∈K

↑l (X)

↓(
W

K) (Y ) =
⋂
l∈K

↓l (Y ).

Proof:
⊆ Cuts of the L-fuzzy context were defined such that for

every l1, l2 ∈ L if l1 ≤ l2 then rl1 ⊇ rl2 . Hence for every
subset of objects X or subset of attributes Y , ↑l1 (X) ⊇↑l2

(X) and ↓l1 (Y ) ⊇↓l2 (Y ), which for every l ∈ K implies
↑W

K (X) ⊆↑l (X) and ↓W
K (Y ) ⊆↓l (Y ). And from above

we have ↑(
W

K) (X) ⊆ ⋂
l∈K ↑l (X) and ↓(

W
K) (Y ) ⊆⋂

l∈K ↓l (Y ).
⊇ Let a be an arbitrary attribute from

⋂
l∈K ↑l (X).

For all l ∈ K and for every object o ∈ X , r(o, a) ≥ l.
From the properties of supremum is r(o, a) ≥ ∨

K for all
objects o ∈ X . It means that a ∈↑(

W
K) (X). Hence⋂

l∈K ↑l (X) ⊆↑(
W

K) (X).
The second part can be prooved dually. ��

Lemma 2 For all l ∈ L the pair (↑l, ↓l) forms a Galois con-
nection between the power-set lattices B2 and A2.

Now lets define the concept on the l-cut for some truth de-
gree l ∈ L.

Definition 10 Let 〈B, A, r〉 be the L-fuzzy context. A pair
〈X, Y 〉 is called an l-concept iff

↑l (X) = Y , and ↓l (Y ) = X ,

hence the pair is a concept in a classical context 〈B, A, rl〉.
The set of all l-concepts will be assigned Cl(B, A, r), shortly
Cl.

2.1 Relationship of concepts in different cuts
Lemma 3 Let l1, l2 ∈ L be an arbitrary truth values, such
that l2 ≤ l1. Let

〈
X, Y

〉 ∈ Cl1 . Then there exists an in-
terval I in concept lattice Cl2 , such that for every l2-concept〈
Z, W

〉 ∈ I holds that X ⊆ Z and Y ⊆ W .

Proof: From
〈
X, Y

〉 ∈ Cl1 we know that ↑l1 (X) = Y and
↓l1 (Y ) = X . So as the greatest element of wanted interval
we can use the

〈 ↓l2↑l2 (X), ↑l2 (X)
〉

and the least one
〈 ↓l2

(Y ), ↑l2↓l2 (Y )
〉
. From the fact rl1 ⊆ rl2 we have inclusions

Y =↑l1 (X) ⊆↑l2 (X)

X =↓l1 (Y ) ⊆↓l2 (Y ).

From closure property of conclusion of mappings we have

↓l2↑l2 (X) ⊇ X and ↑l2↓l2 (Y ) ⊇ Y .

From Y =↑l1 (X) ⊆↑l2 (X) we have

↓l2 (Y ) ⊇↓l2↑l2 (X)

and from properties of concepts from [3] we know that it is
equivalent to

↑l2↓l2 (Y ) ⊆↑l2 (X).

��
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〈
X,Y

〉 〈 ↓l2↑l2 (X), ↑l2 (X)
〉

〈 ↓l2 (Y ), ↑l2↓l2 (Y )
〉

r : B × A → L

Figure 1: l1-concept and its l2-superconcepts

Definition 11 Define an ordering ”�” on the set of all l-
concepts of all cuts of L-fuzzy context. Lets have two concepts
of two different cuts 〈X,Y 〉 ∈ Cl1 and 〈Z, W 〉 ∈ Cl2 (because
of these pairs are concepts in two different cuts so we can as-
sign them 〈X, Y 〉l1 and 〈Z, W 〉l2) then 〈X,Y 〉l1 � 〈Z, W 〉l2
iff X ⊆ Z and Y ⊆ W and l2 ≤ l1.

The lattice in the picture 3 isn’t the concept lattice. It is the
lattice of all l-concepts for all l ∈ L and lines is assigning new
ordering from definition.

Lemma 4 Let l1, l2 ∈ L are arbitrary truth values such that
l2 ≤ l1. Let

〈
X1, Y1

〉
,
〈
X2, Y2

〉 ∈ Cl1 , such that
〈
X1, Y1

〉 �〈
X2, Y2

〉
. Than the geatest and least elements of correspond-

ing intervals of l2-concepts are ordered same as correspond-
ing l1-concepts.

Proof: If X1 ⊆ X2 from properties of closure operator we
have ↓l2↑l2 (X1) ⊆↓l2↑l2 (X2) And from Y2 ⊆ Y1 we have
↓l2 (Y1) ⊆↓l2 (Y2). ��

3 Proto-fuzzy concepts

c1

c2
c11

c12

c21

c22

Cl2(B,A, r)

Cl1(B,A, r)

Figure 2: The relationship of concepts of different cuts

As we can see in the figure 3, some of l-concepts are equal,
but in different cuts. If we fix some l-concept and look on the
set of truth degrees in which cuts the conceot exists, we can
see two important properties described in next theorems.

Theorem 2 is sayng that for every concept of some cut, a
set of all truth degrees in which cut the concept exists is closed
under its supremum.

Theorem 2 Let K ⊆ L be an arbitrary set of truth degrees,
〈X, Y 〉 ∈ Cl for all l ∈ K. Then 〈X, Y 〉 ∈ CW

K .

Proof: The lemma 1 implies

↑W
K (X) =

⋂
l∈K

↑l (X) =
⋂
l∈K

Y = Y ,

↓W
K (Y ) =

⋂
l∈K

↓l (Y ) =
⋂
l∈K

X = X .

Hence 〈X, Y 〉 ∈ CW
K . ��

Next theorem 3 is saying that if some concept exist in two
different cuts, then exists in every cut between them.

Theorem 3 (Convexity) Let l1, l2 ∈ L be an arbitrary truth
degrees, and let 〈X,Y 〉 ∈ Cl1 ∩ Cl2 . Then for all l ∈ L, such
that l1 ≤ l ≤ l2, 〈X, Y 〉 ∈ Cl.

Proof: The lemma 1 implies, that for every set of object X
and any two arbitrary truth degrees k,m ∈ L, such that k ≤ m
holds

↑k (X) ⊆↑k (X)∩ ↑m (X) = ↑W{k,m} (X) =↑m (X)

and

↓k (Y ) ⊆↓k (Y )∩ ↓m (Y ) = ↓W{k,m} (Y ) =↓m (Y ).

So
Y =↑l1 (X) ⊇↑l (X) ⊇↑l2 (X) = Y ,

X =↓l1 (Y ) ⊇↓l (Y ) ⊇↓l2 (Y ) = X .

Hence ↑l (X) = Y and ↓l (Y ) = X , which implies 〈X, Y 〉 ∈
Cl. ��
Definition 12 Let

〈
X, Y

〉 ∈ ⋃k∈L Ck(B, A, r) be the con-
cept of some cut of the fuzzy context

〈
B, A, r

〉
. Triple 〈X, Y, l〉

such that l =
∨{

k ∈ L :
〈
X, Y

〉 ∈ Ck(B, A, R)
}

will be
called a proto-fuzzy concept. The set of all proto-fuzzy con-
cepts will be denoted by PFC(B, A, r).

Definition 13 Define a mapping pd : B2× A2 → L such that
for every set of objects Z ⊆ B and set of attributes W ⊆ A is

pd(Z, W ) =
∨{

l ∈ L : (∃X ⊆ B)(∃Y ⊆ A)

〈X, Y, l〉 ∈ PFC(B, A, r)Z ⊆ XW ⊆ Y
}

.

This mapping assigns to every pair of sets of objects and at-
tributes the truth degree of highest proto-fuzzy concept which
owns them. Notation pd means proto-degree of input sets.

4 Alternative definition of Bělohlávek’s
mappings

Lets go back to introduction.

Definition 14 A triple 〈B, A, r〉 is L-fuzzy context where r :
B × A → L and L is the complete residuated lattice. Define
mappings ↑: BL → AL and ↓: AL → BL such that for every
f ∈ BL and g ∈ AL

↑ (f)(a) =
∧
o∈B

(
f(o) → r(o, a)

)
↓ (g)(o) =

∧
a∈A

(
g(a) → r(o, a)

)
.
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∅
∅
1

{o1, o2, o3} {o2}

{o1, o2}

{o2} {o1, o2, o3}

{o2, o4}

{o1, o2} {o2} {o1, o2, o3} {o2, o4}

{o1, o2, o3} {o2} {o2, o4}{o1, o2, o3, o5} {o1, o2, o3, o4, o5}

{o1, o2, o3, o5} {o1, o2, o3, o4, o5}

{o1, o2, o3, o4, o5}

{a4} {a1, a2, a4}

{a2, a3, a4}

{a1, a2, a3, a4} {a4}

{a1}

{a2, a3, a4} {a1, a2, a3, a4} {a2, a4} {a1}

{a2, a3, a4} {a1, a2, a3, a4} {a1, a2}{a2, a3} {a2}

{a1, a2, a3, a4} {a1, a2, a3}

{a1, a2, a3, a4}

1 1

0, 8

0, 8 0, 8

0, 8

0, 6 0, 6 0, 6 0, 6

0, 4 0, 4 0, 40, 4 0, 4

0, 2 0, 2

0

Figure 3: Lattice of all l-concepts of example for all l ∈ L,〈 ∪l∈L Cl(B, A, r),� 〉
Lets define new mappings and show that they are equivalent

to the mappings above.

Definition 15 A triple 〈B, A, r〉 is L-fuzzy context where r :
B × A → L and L is the complete residuated lattice. Define
mappings ⇑: BL → AL and ⇓: AL → BL such that for every
f ∈ BL and g ∈ AL

⇑ (f)(a) =
∧

l∈rng(f)

(
l → pd(fl, {a})

)
⇓ (g)(o) =

∧
l∈rng(g)

(
l → pd({o}, gl)

)
.

Theorem 4 For every set Z of objects, an every set W of at-
tributes, ∧

(o,a)∈Z×W

r(o, a) = pd(Z, W ).

Proof:
≤ Let l =

∧
(o,a)∈Z×W r(o, a). If a ∈ W then (∀o ∈

Z)r(o, a) ≥ l, i.e. a ∈↑l (Z), so W ⊆↑l (Z). Take Y =↑l

(Z) and X =↓l (Y ) clearly 〈X, Y 〉 ∈ Cl(B, A, r). Hence
〈X, Y, m〉 ∈ PFC(B, A, r) where m =

∨{k ∈ L : 〈X, Y 〉 ∈
Ck(B, A, r)}.

Because W ⊆↑l (Y ) and Z ⊆↓l↑l (Z) =↓l (Y ) = X , we
have

pd(Z, W ) ≥ m ≥ l =
∧

(o,a)∈Z×W

r(o, a).

≥ Let 〈X, Y, l〉 ∈ PFC(B, A, r), Z ⊆ X and W ⊆ Y .
Then l =

∨{k ∈ L : 〈X, Y 〉 ∈ Ck(B, A, r)} and it follows
from Theorem 2 that 〈X, Y 〉 ∈ Cl(B, A, r). It means that,
for all o ∈ X and a ∈ Y is r(o, a) ≥ l
Hence

∧
(o,a)∈Z×W r(o, a) ≥ ∧

(o,a)∈X×Y ≥ l. It follows
that

∧
(o,a)∈Z×W r(o, a) ≥ ∨{l ∈ L : (∃X ⊆ B)(∃Y ⊆

A)〈X, Y, l〉 ∈ PFC(B, A, r), Z ⊆ X, W ⊆ Y } = pd(Z, W ).
��

Theorem 5 For above defined mappings holds

↑ = ⇑ and ↓ = ⇓.

Proof: Note these three facts:

• Because → is antitone in the first argument, f(o) ≥ l
implies

f(o) → r(o, a) ≤ l → r(o, a)

• Because {o ∈ B : f(o) ≥ l} ⊇ {o ∈ B : f(o) = l}, we
have ∧

o∈B:f(o)≥l

(l → r(o, a)) ≤
∧

o∈B:f(o)=l

(l → r(o, a))

• ⋃
l∈rng(f)

{o ∈ B : f(o) ≥ l} =

=
⋃

l∈rng(f)

⋃
m∈rng(f):m≥l

{o ∈ B : f(o) = m} =

=
⋃

l∈rng(f)

{o ∈ B : f(o) = l}

Using the previous facts we obtain∧
l∈rng(f)

∧
o∈B:f(o)=l

(f(o) → r(o, a)) =

=
∧

l∈rng(f)

∧
o∈B:f(o)≥l

(f(o) → r(o, a)) ≤

≤
∧

l∈rng(f)

∧
o∈B:f(o)≥l

(l → r(o, a)) ≤

≤
∧

l∈rng(f)

∧
o∈B:f(o)=l

(l → r(o, a)) =

=
∧

l∈rng(f)

∧
o∈B:f(o)=l

(f(o) → r(o, a))

It follows that both inequalities are in fact equalities, hence
(using Theorem 4)

↑ (f)(a) =
∧
o∈B

(f(o) → r(o, a)) =
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=
∧

l∈rng(f)

∧
o∈B:f(o)=l

(f(o) → r(o, a)) =

=
∧

l∈rng(f)

∧
o∈B:f(o)≥l

(l → r(o, a)) =

=
∧

l∈rng(f)

(l →
∧

o∈B:f(o)≥l

r(o, a)) =

=
∧

l∈rng(f)

(l →
∧

o∈fl

r(o, a)) =

=
∧

l∈rng(f)

(l → pd(fl, {a})) =⇑ (f)(a)

The second part can be proved dually. ��
4.1 One-sided fuzzy concepts
In [8] we defined so-called one-sided fuzzy concepts, the pairs
consisting of one classical set of objects and fuzzy set of at-
tributes and defined mappings which are creating them.

Definition 16 For L-context 〈B, A, r〉 define mappings �:
B2 → AL and �: AL → B2. For an arbitrary set of
objects X ∈ B2 and an L-fuzzy set of attributes g ∈ AL put

� (X)(a) =
∧

o∈X

r(o, a)

� (g) = {o ∈ B : (∀a ∈ A)g(a) ≤ r(o, a)}.

By the theorem 4 we can write � (X)(a) = pd(X, {a}).
Bělohlávek’s theorem ([2]) say:

Theorem 6 For X ∈ B2 and g ∈ AL and mappings ↑, ↓,�
,� we have

� (X) =↑ (X ′) and � (g) = (↓ (g))1

and X ′ means L-fuzzy set of objects corresponding to X , and
(↓ (g))1 means 1-cut of ↓ (g).

With the theorem 5 we can in previous theorem change the
mappings ↑, ↓ by ⇑,⇓.

5 Sketch of algorithm for generating all fuzzy
concepts

Set<Object> B;
Set<Attribute> A;
Set<TrueDegree> L;
LFuzzy binary relation r;
Set<PFConcept> PC(B,A,r)
Set<FConcept> fcs;

public Set<FuzzyConcept> generateAllFC(
Set<Proto-fuzzy concept> PC(B,A,r)

){

// generating all basic L-fuzzy concepts

for ( PFConcept pc : PC(B,A,r) ){
Set<Object> objs = pc.getObjects();

Set<Attribute> atrs = pc.getAttributes();
True Degree deg = pc.getTruthDegree();
for ( TruthDegree m : L )
for ( TruthDegree k : L )
if ( m== k --> deg ){
//new L-fuzzy set of Objects
LFSObjs f = new LFSObjs(

<obj,m> if obj : objs,
<obj,0> if obj : B-objs

);
//new L-fuzzy set of Attributes
LFSAtrbs g = new LFSAtrbs(

<atr,k> if atr : atrs,
<atr,0> if atr : A-atrs

);
//every fuzzy concept will remeber of which
//of proto fuzzy concepts was created

fcs.add(
new FConcept(

f ,
g ,
new Set<PFConcept>{ pfc } )

);
}

}

// creating connected L-fuzzy concepts

for ( LFuzzyConcept fc1 : fcs )
for ( LFConcept fc2 : fcs ){
Set<PFConcept> pfcs1 = fc1.getPFConcepts();
Set<PFConcept> pfcs2 = fc2.getPFConcepts();
boolean ordered = true;
for ( PFConcept pfc1 : pfcs1 )
for ( PFConcept pfc2 : pfcs2 )
if ( !pfc1 <= pfc2 AND !pfc2 <= pfc2 )
ordered = false;

if ( ordered )
fcs.add( createNewFC( fc1 , fc2 ) );

}

return fcs;
}

public FConcept createNewFConcept(
FConcept fc1 ,
FConcept fc2 )

{
//new L-fuzzy set of Objects
LFSObjs f = new LFSObjs(
<obj,fc1.getDeg(obj)>

if fc1.getDeg(obj)>=fc2.getDeg(obj),
<obj,fc2.getDeg(obj)>

if fc2.getDeg(obj)>=fc1.getDeg(obj)
);
//new L-fuzzy set of Attributes
LFSAtrbs g = new LFSAtrbs(
<atr,fc1.getDeg(atr)>

if fc1.getDeg(atr)>=fc2.getDeg(atr),
<atr,fc2.getDeg(atr)>

if fc2.getDeg(atr)>=fc1.getDeg(atr)
);
//Union of sets of proto-fuzzy concepts
Set<PFConcept> pfc =

unite(
fc1.getPFConcepts,

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1256



fc2.getPFConcepts
)

return new FConcept( f , g , pfc );
}

6 Future work
Our future work will be to finish the sketched algorithm, to proove
his good working and apply it.

We are grateful for precious comments of our colleague and friend
Jozef Pócs.

Paper was created with support of grant 1/3129/06 Slovak grant
agency VEGA.
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