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Abstract— In this paper we present a procedure to deal with a
kind of single-stage decision problems with imprecise utilities. In
this type of problems the product measurability of the utility function
is not required. So that, the involved expectations are calculated by
means of iterated integrals instead of integrals over product spaces.
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1 Introduction
There are situations in which product measurability of cer-
tain mappings is not satisfied, but iterated integrals are well-
defined (see [10]). This type of situations appear in single-
stage decision problems where we need conditions which al-
lows us to exchange iterated expectations in order to perform
a Bayesian analysis. This paper studies the case of Bayesian
analysis of single-stage decision problems with imprecise util-
ities and non product-measurable utility funtion.

Several studies have been developed before to evaluate im-
precise utilities, see for instance Watson et al. [27], Tong and
Bonissone [26], Dubois aand Prade [7, 8, 9], Gil and Jain [11],
Billot [1], Chen and Klein [3], Gil et al. [13], Krätschmer [16],
Bordley [2], Rébillé [22] or Rodrı́guez-Muñiz and López-Dı́az
[25].

Here we model the imprecise utilities by means of fuzzy-
valued utility functions (based on the concept of random upper
semicontinuous functions or fuzzy random variable). How-
ever, only in [25] the non-product measurable case has been
analyzed for this type of furrzy utilities, based on the theoreti-
cal results on iterated integrals of random upper semicontinu-
ous functions given in [24].

In this paper we gather theoretical and applied results about
how to deal with the type of problems referred above.

The paper is organized as follows: Preliminaries and nota-
tion constitutes Section 2, Section 3 contains theoretical re-
sults and Section 4 gather the statistical decision analysis re-
sults.

2 Preliminaries
Let us consider Kc the class of nonempty compact convex sub-
sets of R, endowed with a semilinear structure by means of the
Minkowski addition and the product by a scalar. Also, con-
sider the Hausdorff metric on Kc (see [6]). On a measurable
space (Ω,A) we can define S : Ω → Kc a randon set as a
A|BdH

-measurable mapping ([14]).
A random set S is said to be integrably bounded with re-

spect to measure µ, if ‖S‖ ∈ L1(Ω,A, µ), where ‖S‖(ω) =

supx∈S(ω) ‖x‖. The integral, or expected value in case of µ
being a probability, of S, is given by the Kudo-Aumann inte-
gral and it will be denoted either by

∫
Ω

S(ω) dµ(ω) or E(S|µ)
([14]).

Let Fc denote the class of upper semicontinuous functions
or fuzzy sets U : R → [0, 1] such that Uα ∈ Kc for all α ∈
[0, 1], where Uα = {x ∈ R : U(x) ≥ α} for α ∈ (0, 1], and
U0 = cl {x ∈ R : U(x) > 0}, cl denoting the topological
closure.

The class Fc can be endowed with a semilinear structure,
where addition and product by a scalar can be defined by
means of Zadeh’s extension principle ([28, 19]). On Fc we
consider the d∞ metric ([19]). The magnitude of U ∈ Fc is
given by ‖U‖ = d∞(U,1{0}) = dH(U0, {0}).

Given a measurable space (Ω,A), a mapping X : Ω → Fc

is said to be a random upper semicontinuous function (r.u.s.f.
for short) if Xα : Ω → Kc with Xα(ω) = (X(ω))α for all
ω ∈ Ω, is a random set for all α ∈ [0, 1] ([21, 4]).

A r.u.s.f. X is said to be integrably bounded with respect to
a measure µ : A → R, if the mapping ‖X‖ ∈ L1(Ω,A, µ),
where ‖X‖ : Ω → R is given by ‖X‖(ω) = ‖X(ω)‖ for all
ω ∈ Ω.

For an integrably bounded r.u.s.f., in [21] is defined its inte-
gral, denoted by

∫
Ω

X(ω) dµ(ω) or E(X|µ), as the unique
set in Fc such that E(X|µ)α = E

(
Xα

∣∣µ)
for every α ∈

[0, 1]. When Ω = [a, b], we will use also the notation∫ b

a
X(ω) dµ(ω).
If µ is a probability measure, an r.u.s.f. is also referred to as

a fuzzy random variable and its integral as the fuzzy expected
value of X .

It is possible to extend to upper semicontinuous functions
the concept of Hukuhara difference or Minkowski difference
for subsets ([15, 20]), so given U, V ∈ Fc, its Hukuhara dif-
ference, denoted by U −h V , is the set W ∈ Fc (if it exists)
such that U = V + W .

Let T be a nonempty open subset of R. A mapping G :
T → Fc is said to be Hukuhara differentiable at t0 ∈ T if
there exists G′(t0) ∈ Fc, which is called the Hukuhara dif-
ferential of G at t0, such that

lim
∆t→0+

d∞

(
G(t0 + ∆t) −h G(t0)

∆t
, G′(t0)

)

= lim
∆t→0+

d∞

(
G(t0) −h G(t0 − ∆t)

∆t
, G′(t0)

)
= 0.

The above definition ([20, 23]) is an extension of the
Hukuhara’s differentiability criterion for set-valued mappings
([15]).
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If a mapping G depends on more than one argument, we
will make use of the usual symbol of partial derivative to indi-
cate with respect to which argument the Hukuhara differential
is considered.

Throughout the paper, for any set Ω ⊂ R
k with k ∈ N,

BΩ will denote the Borel σ-field on Ω. Given (Ω,BΩ) and
m1, m2 : BΩ → [0,∞] two σ-finite measures, m1 � m2

will indicate that m1 is absolutely continuous with respect to
m2, and dm1

dm2
will denote a Radon-Nikodym derivative of m1

with respect to m2. If it is supposed that there exists a con-
tinuous Radon-Nikodym derivative, then dm1

dm2
will denote this

particular function.
As we will model the imprecise utilities by means of fuzzy-

valued functions it should be necessary to rank fuzzy sets.
For this purpose the ranking criterion introduced by De Cam-
pos and González [5] will be considered. Therefore, we will
say that U ∈ Fc is greater than or equal to W ∈ Fc in
the λ, µ-average sense, we will denote it by U ≥λ,µ W, if
V λ

µ (U) ≥ V λ
µ (W ), where λ ∈ [0, 1] represents a kind of de-

gree of optimism/pessimism and µ is a measure on [0, 1] (see
[18] for more details).

3 Theoretical results
We include in this section those theoretical results regarding
the exchange of iterated integrals that are necessary to prove
the applied results in Section 4.

The first result is about differentiating under the integral
sign, by using Hukuhara derivative.

Proposition 3.1 Let (Ω,A, P ) be a probability space with
Ω ⊂ R

k, and let m denote the Borel measure on the inter-
val [a, b]. For every ω ∈ Ω, let Pω be a probability measure
on ([a, b],B[a,b]) with Pω � m, such that there exists a con-
tinuous Radon-Nikodym derivative.

If X : Ω × [a, b] → Fc satisfies the following conditions:

i) for every ω ∈ Ω, the mapping Xω : [a, b] → Fc, with
Xω(t) = X(ω, t), is an integrably bounded r.u.s.f. with
respect to Pω, and Xω is continuous a.s. [P ],

ii) there exists h ∈ L1(Ω,A, P ),
such that

∥∥X(ω, t)dPω

dm (t)
∥∥ ≤ h(ω) a.s. [P ] for every

t ∈ [a, b], and the mapping ω 	→ X(ω, t)dPω

dm (t) is con-
tinuous a.e. [m],

iii) there exists g ∈ L1([a, b],B[a,b],m) with∥∥X(ω, t)dPω

dm (t)
∥∥ ≤ g(t) a.e. [m] for every ω ∈ Ω,

then, the mapping

t ∈ [a, b] 	→
∫

Ω

( ∫ t

a

X(ω, s) dPω(s)
)
dP (ω)

is Hukuhara differentiable on (a, b), and for every t ∈ (a, b)
it holds that

∂

∂t

∫
Ω

( ∫ t

a

X(ω, s) dPω(s)
)

dP (ω)

=
∫

Ω

X(ω, t)
dPω

dm
(t) dP (ω).

Starting from last result, we can go one step further to prove
a exchange of iterated integrals:

Theorem 3.2 Let (Ω,BΩ, P ) be a probability space with
Ω ⊂ R

k and let m denote the Borel measure on the interval
T = [a, b]. For every t ∈ T , let Pt be a probability measure
on (Ω,BΩ) such that Pt � P and there exists a continuous
Radon-Nikodym derivative. For every ω ∈ Ω, let Pω be a
probability on (T,BT ) such that Pω � m and there exists a
continuous Radon-Nikodym derivative.

Let X : Ω × T → Fc be a mapping satisfying that:

i) for every t ∈ T , Xt is an integrably bounded r.u.s.f. with
respect to Pt,

ii) for every ω ∈ Ω, Xω is an integrably bounded r.u.s.f.
with respect to Pω and it is continuous a.s. [P ],

iii) there exists h1 ∈ L1(Ω,BΩ, P )
such that

∥∥X(ω, t)dPω

dm (t)
∥∥ ≤ h1(ω) a.s. [P ] for every

t ∈ T , and the mapping ω 	→ X(ω, t)dPω

dm (t) is continu-
ous a.e. [m],

iv) there exists a mapping g ∈ L1([a, b],B[a,b],m) such that
for every ω ∈ Ω, ‖X(ω, t)dPω

dm (t)‖ ≤ g(t) a.e. [m] for
every ω ∈ Ω,

v) the mapping t 	→ X(ω, t)dPt

dP (ω) is continuous on T a.s.
[P ],

vi) there exists h2 ∈ L1(Ω,BΩ, P )
such that ‖X(ω, t)dPt

dP (ω)‖ ≤ h2(ω) a.s. [P ] for every
t ∈ T .

Let m′ be a probability measure on (T,BT ) such that m′ �
m and there exists a continuous Radon-Nikodym derivative. If
for every t ∈ T , the equality

dPω

dm
(t) =

dPt

dP
(ω)

dm′

dm
(t) a.s. [P ]

holds, then ∫
Ω

( ∫ t

a

X(ω, s) dPω(s)
)

dP (ω)

=
∫ t

a

( ∫
Ω

X(ω, s) dPs(ω)
)

dm′(s)

for every t ∈ T .

And also an unbounded version of previous theorem can be
obtained.

Theorem 3.3 Assume the conditions in Theorem 3.2 with the
interval T being not necessarily bounded, and suppose that
there exists g′ ∈ L1(Ω,BΩ, P ) such that∫

T

‖X(ω, s)‖dPω(s) ≤ g′(ω) a.s. [P ] .

Then, the following equality holds,∫
Ω

( ∫
T

X(ω, s) dPω(s)
)

dP (ω)

=
∫

T

( ∫
Ω

X(ω, s) dPs(ω)
)

dm′(s) .

It should be remarked that the conditions in Theorems 3.2
and 3.3 do not imply that X is an r.u.s.f. on the product mea-
surable space as is illustrated in [24].
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4 Applied results

In this section we are using the theoretical results obtained in
Section 3 to obtain applied results to the single-stage decision
problem under non-product measurability conditions. Obvi-
ously, different conditions than in the Fubini-applicable case
will be obtained, but it is again very important to underline
that under the conditions stated here product measurability is
not implied.

We first introduce the concept of fuzzy utility function con-
sidered in this communication. We will use the following no-
tation: Θ is the state space and it will be considered an interval
of R, BΘ is the Borel σ-field on Θ, with m the Borel measure
and A is the action space.

Definition 4.1 A mapping U : Θ × A → Fc is said to be a
fuzzy utility function on Θ × A if

i) for every a ∈ A, the projection Ua : Θ → Fc is an r.u.s.f.
on (Θ,BΘ),

ii) for every pair a1, a2 ∈ A, a1 will be considered pre-
ferred or indifferent to a2 with respect to a probability
distribution ξ on (Θ,BΘ), if E(Ua1 |ξ) ≥λ,µ E(Ua2 |ξ)
(for fixed λ ∈ [0, 1] and measure µ).

The decision problem with fuzzy utilities will be denoted
by (Θ,A, U).

On the other hand, it will be considered a Bayesian context,
so the existence of a probability distribution π on (Θ,BΘ), the
prior distribution, will be assumed. Then the “value” of the
decision problem will be the fuzzy value E(Uaπ |π), where
aπ is a prior Bayes action in the λ, µ-average sense, this is,
aπ ∈ A verifies E(Uaπ |π) ≥λ,µ E(Ua|π) for all a ∈ A.

Similar to the case of real-valued utilities, it is useful for
increasing the expected utility to incorporate sample infor-
mation. Let X be a statistical experiment characterized by
a probability space (X,BX, Pθ), where θ ∈ Θ, BX is the Borel
σ-field on X ⊂ R

k and the experimental distribution Pθ de-
pends on the true unknown state θ. We will denote by P the
marginal (predictive) distribution of the experiment.

After the experiment is performed, if X = x is the available
sample information, the fuzzy expected utility associated with
an action a ∈ A is given by E(Ua|πx), where πx is the pos-
terior distribution of θ given X = x, obtained on the basis of
Bayes’ formula. So, a posterior Bayes action is any aπx ∈ A
such that E(Uaπx |πx) ≥λ,µ E(Ua|πx) for every a ∈ A.

In order to generalize the choice of an action for each pos-
sible sample, the concept of decision rule, as a mapping from
X to A satisfying several conditions (based on Theorems 3.2
and 3.3) is formalized. These conditions will allow the proper
extension of the normal and extensive forms of the Bayesian
analysis.

Definition 4.2 Let (X,BX, Pθ) be the probability space of a
statistical experiment X associated with the decision problem
(Θ,A, U). A decision rule is a mapping d : X → A satisfying
that

i) for every θ ∈ Θ, U(θ, d()) : X → Fc is an integrably
bounded r.u.s.f. with respect to Pθ,

ii) for every x ∈ X, U(, d(x)) : Θ → Fc is an integrably
bounded r.u.s.f. with respect to πx, moreover, it is contin-
uous a.s. [P ],

iii) there exists h1 ∈ L1(X,BX, P ) such that∥∥U(θ, d(x))dπx

dm (θ)
∥∥ ≤ h1(x) a.s. [P ] for every θ ∈ Θ,

and the mapping x 	→ U(θ, d(x))dπx

dm (θ) is continuous
a.e. [m],

iv) there exists g ∈ L1(Ω,BΩ,m) such that for every x ∈
X, it holds that ‖U(θ, d(x))dπx

dm (θ)‖ ≤ g(θ) a.e. [m] for
every x ∈ X,

v) the mapping θ 	→ U(θ, d(x))dPθ

dP (x) is continuous on Θ
a.s. [P ],

vi) there exists h2 ∈ L1(X,BX, P ) such that∥∥U(θ, d(x))dPθ

dP (x)
∥∥ ≤ h2(x) a.s. [P ] for every θ ∈ Θ,

vii) there exists g′ ∈ L1(X,BX, P ) with∫
Θ
‖U(θ, d(x))‖ dπx(θ) ≤ g′(x).

Now, on the one hand we can consider the normal Bayesian
analysis. In this case we should find a Bayes decision rule,
that is, a rule dB such that

∫
Θ

( ∫
X

U(θ, dB(x)) dPθ(x)
)

dπ(θ)

≥λ,µ

∫
Θ

( ∫
X

U(θ, d(x)) dPθ(x)
)

dπ(θ)

for every decision rule d. In this case, the “value” of the prob-
lem is ∫

Θ

( ∫
X

U(θ, dB(x)) dPθ(x)
)

dπ(θ). (1)

On the other hand, we can consider the extensive Bayesian
analysis. We should obtain for each sample information x
a posterior Bayes action aπx , and consider the decision rule
which associates with each x an action aπx . In this analysis,
the “value” of the experiment X is quantified by the fuzzy
expected terminal utility, defined as follows:

Definition 4.3 Given (Θ,A, U) a decision problem and X =
(X,BX, Pθ), an associated experiment, the fuzzy expected ter-
minal utility of X is given by

Ut(X) =
∫

X

( ∫
Θ

U(θ, aπx) dπx(θ)
)

dP (x). (2)

We are now showing the equivalence between the two forms
of the Bayesian analysis in the sense that (1) and (2) are equal
in the λ, µ-average sense. Previously, the following result for
the exchange of the integrals is stated.

Theorem 4.4 Let (Θ,A, U) be a decision problem, let Θ ⊂
R and let π be a prior probability on (Θ,BΘ) such that
π � m with a continuous Radon-Nikodym derivative. Let
X = (X,BX, Pθ) be an associated experiment, and let P
be the marginal distribution. For every θ ∈ Θ, suppose
that Pθ � P and there exists a continuous Radon-Nikodym
derivative. For every x ∈ X, let πx be the posterior distribu-
tion on (Θ,BΘ) such that πx � m with a continuous Radon-
Nikodym derivative.
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If for every θ ∈ Θ, it holds that dπx

dm (θ) = dPθ

dP (x) dπ
dm (θ)

a.s. [P ], then∫
X

( ∫
Θ

U(θ, d(x)) dπx(θ)
)

dP (x)

=
∫

Θ

( ∫
X

U(θ, d(x)) dPθ(x)
)

dπ(θ)

whatever the decision rule d : X → A may be.

As a consequence, the following key result, which states
the equivalence between the normal and extensive forms of
Bayesian analysis, is obtained.

Theorem 4.5 Assume the conditions of Theorem 4.4. Let us
consider the mapping which associates with each sample x ∈
X a posterior Bayes action aπx . If this mapping satisfies the
definition of decision rule, then it is a Bayes decision rule.
Moreover, Ut(X) is equal, in the λ, µ-average sense, to the
fuzzy expected utility associated with any Bayes decision rule,
this is

Ut(X) =λ,µ

∫
X

( ∫
Θ

U(θ, dB(x)) dπx(θ)
)

dP (x)

Thus, the fuzzy expected terminal utility, so calculated, can
be interpreted as the “value” of the decision problem once the
experiment X is performed and one Bayes decision rule is cal-
culated. This lead us not only to express the information of the
problem by a value but also as a criterium to rank experiments
in order to obtain the more informative.

5 Conclusions
By using a theoretical result about exchanging iterated inte-
grals of [0, 1]R-valued r.u.s.f., the model established in this
paper provides a framework for single-stage decision prob-
lems in which both forms of Bayesian analysis (normal and
extensive) are proved to be equivalent when imprecise utili-
ties are not necessarily product measurable. Thus, these re-
sults together with those in [12, 17, 13] cover most of the
situations which one can found when analyzing single-stage
decision problems with imprecise utilities modeled by fuzzy
random variables.
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[12] M.A. Gil, M. López-Dı́az. Fundamentals and Bayesian analy-
ses of decision problems with fuzzy-valued utilities. International
Journal of Approximate Reasoning, 15: 203-224, 1996.
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