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Abstract— In this paper we investigate properties of multicriteria
methods that are used for building land-use suitability assessment
criteria. We identify and describe fundamental properties that are of
interest in the land-use suitability analysis and the design of suitabil-
ity maps. The existing multicriteria methods can be evaluated from
the standpoint of their ability to support the desirable properties that
affect the expressive power of evaluation methods. In this paper we
investigate simple additive scoring, MAVT, MAUT, AHP, OWA, out-
ranking methods and LSP.
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1 Introduction
This paper has two main goals. The first goal is to iden-
tify properties that affect the expressive power of multicri-
teria decision methods (MCDM) that can be used to create
suitability maps of a specific geographic region. The second
goal is to investigate land-use suitability assessment meth-
ods that are based on simple additive scoring (SAS), multi-
attribute value technique (MAVT), multiattribute utility tech-
nique (MAUT), analytic hierarchy process (AHP), ordered
weighted average (OWA), outranking methods (ELECTRE,
PROMETHEE), and logic scoring of preference (LSP) in view
of satisfaction of the identified properties.

We assume that the analyzed geographic region is di-
vided into cells and that each cell with coordinates x, y
is characterized by an array of suitability attribute values
a1(x, y), . . . , an(x, y), n ≥ 1 [5]. The attributes are defined
as quantitative parameters that affect the suitability of a cell
for some specific land-use (e.g. housing, recreation, agricul-
ture, industrial development, etc.). The set of attributes must
be complete, i.e., it must include all relevant components.
Generally, the attributes must be justifiable and not redundant
with each other.

The purpose of MCDM is to provide a criterion function
σ : R

n → [0, 1] for computing an overall degree of suitability
S(x, y) = σ(a1(x, y), . . . , an(x, y)) that reflects the suitabil-
ity of location x, y for specific land-use. The overall suitability
is a matter of degree: 0 ≤ S(x, y) ≤ 1. As in all soft comput-
ing models, here 0 denotes a completely unsuitable location,
and 1 denotes the highest level of suitability. A suitability map
is defined as a distribution of the overall suitability S(x, y) for
a specific geographic region [7].

Nowadays suitability maps are assumed to be dynamically
created using data from GIS databases in a way illustrated in

Fig. 1. The multicriteria decision model must be interfaced
both with the user and with the GIS database. An attribute
ETL interface is necessary to Extract, Transform, and Load
the set of cell attribute values from the GIS database. The
multicriteria decision model is used to implement the crite-
rion function σ and to generate the overall suitability S(x, y).
The user input includes a specification of desired suitability
attributes and parameters of the decision model. A suitability
criterion interface is necessary for accepting user input and for
rendering the resulting suitability map.
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Figure 1: Dynamic generation of suitability maps using GIS.

Suitability maps introduced in GIS literature use a vari-
ety of decision models [16, 9, 11, 5, 20]. The emphasis of
such efforts is primarily (and naturally) on the selection of at-
tributes and the use of suitability maps. So far the GIS litera-
ture avoided problems of evaluating the credibility of MCDM
used for the development of suitability maps.

Except for interfacing with GIS components, the land-use
suitability assessment problems do not differ from evaluation
problems in other areas. All multicriteria decision models are
ultimately models of human decision making in the area of
evaluation of complex alternatives. Therefore, the credibil-
ity of MCDM used in GIS context depends on their ability to
express observable properties of human evaluation logic [4].
The primary purpose of this paper is to evaluate the expres-
sive power of GIS-related MCDM based on the level of their
ability to support the concepts of human evaluation logic.

The remainder of this paper is structured as follows. In Sec-
tion 2, the logic properties of GIS-related MCDM are studied.
In Section 3, the logic properties of the selected decision meth-
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ods are investigated. The major contributions of the paper are
summarized and some conclusions are presented in Section 4.

2 Ten fundamental properties of MCDM

The properties of human evaluation logic are easily observ-
able, and they are also observable in the context of land-use
evaluation. Our goal is to first identify properties that are fre-
quently encountered in all worth assessment problems. The
most important properties include the following:

1. Ability to combine any number of attributes.
2. Ability to combine objective and subjective inputs.
3. Ability to combine absolute and relative criteria.
4. Flexible adjustment of relative importance of attributes.
5. Modelling of simultaneity requirements.

(a) Modelling of soft simultaneity.
(b) Modelling of hard simultaneity.

6. Modelling of replaceability requirements.
(a) Modelling of soft replaceability.
(b) Modelling of hard replaceability.

7. Modelling of balanced simultaneity/replaceability.
8. Modelling of mandatory, desired, and optional require-

ments.
9. Modelling of sufficient, desired, and optional require-

ments.
10. Ability to express suitability as an aggregate of useful-

ness and inexpensiveness (separation of the usefulness
analysis and the cost analysis).

2.1 Ability to combine any number of attributes

We assume that the analyzed geographic region is divided
into cells and that each cell is characterized by attributes
a1, . . . , an, n ≥ 1. In special cases n = 1. For example,
the acoustic pollution (noise) maps presented in [11] uses in
each cell a single scalar value, the level of noise. However, in
all cases of more complex suitability maps we have n > 1.
For example, the housing suitability maps discussed in [5] use
n = 11. If we want to develop maps of complex suitability
indicators that depend on variety of inputs it is reasonable to
expect that the number of inputs can be large. So, in a general
case, MCDM used to compute the land-use suitability must be
able to support any number of inputs.

It should be noted that this requirement indirectly trans-
forms into a requirement to use nonlinear MCDM models. In-
deed, in the case of linear weighted aggregation models, the
overall suitability S(x, y) is a dot product of a vector of n suit-
ability components s = [s1(x, y), . . . , sn(x, y)] (one compo-
nent for each attribute) and a corresponding vector of relative
weights W = [W1, . . . , Wn]: S(x, y) =

∑n
i=1 Wisi(x, y)

where 0 ≤ si(x, y) ≤ 1, 0 < Wi < 1, i = 1, . . . , n, and
W1 + · · · + Wn = 1.

Obviously, a large value of n yields a low significance of
individual components. For example, if n = 100 the average
significance (the ability to change the overall suitability S)
of each input is only 1%, and in the case of unequal weights
some inputs will have the significance considerably below 1%
which means that such inputs may (and should) be neglected.
This is not acceptable since credible decision models must be
equally applicable for any number of inputs.

2.2 Ability to combine objective and subjective inputs

Some input attributes are objectively measurable values (e.g.,
distances, slopes, altitudes, temperatures, etc). Other inputs
are subjective and must be assessed by experts (e.g., aesthetic
quality of an area, the quality of educational and/or medical in-
stitutions, quality of public transportation, development costs,
etc.). MCDM for GIS applications must be able to combine
and aggregate objective and subjective inputs.

2.3 Ability to combine absolute and relative criteria

Each suitability attribute must satisfy specific requirements.
The requirements can be defined as elementary criterion func-
tions gi : R → [0, 1], i = 1, 2, . . . , n. By definition, the
attribute suitability si(x, y) = gi(ai(x, y)) is the degree of
satisfaction of the attribute requirements. The suitability of an
attribute is a component of the overall suitability of the evalu-
ated location x, y.

Suppose that a decision maker (DM) needs a suitability map
for housing in a rural area where it is possible to buy land and
build a house. Let the attribute ai(x, y) = t denote the travel-
ing time between location L(x, y) and the closest elementary
school (or hospital, or airport, or any other point of interest).
An absolute criterion is a criterion that evaluates location L
regardless of other competitive locations. E.g., a DM may
specify the absolute requirements as threshold times tmin and
tmax so that all times t ≥ tmax are considered unacceptable
and all times t ≤ tmin are considered perfectly acceptable.
Then the elementary criterion function might be defined as
follows: gi(t) = max(0,min(1, (tmax − t)/(tmax − tmin))).
So, gi(t) specifies the attribute suitability for any value of t. If
DM wants to compare locations L1 and L2, with respect to the
access to school then the comparison can be based on gi(t1)
and gi(t2). If tmin and tmax are well justifiable values, then
gi(t1) and gi(t2) are very credible results.

Another approach is to define a relative criterion. In the
case of k locations an example of such a criterion could be
gi(t) = tmin/t, tmin = min(t1, . . . , tk). The relative cri-
terion evaluates relationships between competitors regardless
of DM’s actual needs: the closest location is considered per-
fectly suitable (gi(tmin) = 1) and a location where t = 2tmin

gets gi(t) = 0.5. Obviously, the credibility of relative criteria
is much less under DM’s control than the credibility of cor-
responding absolute criteria. E.g., if only two locations are
available, then the location that is 2 minutes from the closest
school is likely to be equally attractive as the location that is
1 minute from the school, and locations that are 1 hour and 2
hours from the closest school might be equally unacceptable;
in both cases the suitability levels of 1 and 0.5 are inappro-
priate. For some other values, e.g., tmin = 7 minutes, the
presented relative criterion might be appropriate.

It is highly unlikely that DM knows what is better, but does
not know what is good. In other words, if DM can specify a
justifiable relative criterion, it is very likely that DM can also
specify a justifiable absolute criterion. Absolute criteria can
be used to evaluate a single alternative (e.g., a single location),
while relative criteria can be applied only if we have multiple
alternatives. Relative criteria are appropriate only in situations
where expected values of attributes are unknown. Such situa-
tions are not frequent, but exist, and MCDM must be able to
combine and aggregate absolute and relative attribute criteria.
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2.4 Flexible adjustment of the relative importance of
attributes

In a general case, multiple attributes are not equally important.
The relative importance of an attribute is usually expressed
using multiplicative or implicative weights [3]. The relative
importance has two roles in suitability criteria: it defines the
level of contribution of an attribute to the overall suitabil-
ity, and it defines compensatory properties between attributes.
Assuming that the overall suitability is a function of at-
tribute suitability degrees, S = λ(s1, . . . , sj , . . . , sk, . . . , sn),
we expect that if the suitability sj is more important than
the suitability sk, then ∂S/∂sj ≥ ∂S/∂sk. Under the
same assumptions, if some compensation is possible, then
λ(s1, . . . , sj , . . . , sk, . . . , sn) = λ(s1, . . . , sj − p, . . . , sk +
q, . . . , sn) and p < q. In other words, a suitability decrement
p of an attribute can be compensated by the suitability incre-
ment q of a less important attribute, but the increment q must
be greater than the decrement p. These properties are essential
in human reasoning and must be supported by MCDM.

2.5 Modelling of simultaneity requirements

Function λ : [0, 1]n → [0, 1] that aggregates all attribute suit-
ability degrees and computes the overall suitability degree is
essentially a logic function. In human decision making the ag-
gregation of suitability degrees is usually a stepwise process
where small groups of related suitability degrees are aggre-
gated and replaced by an aggregated suitability degree. The
process of stepwise aggregation terminates when the suitabil-
ity degrees of subsystems at the highest level are aggregated
yielding the overall suitability degree S as a compound func-
tion of attribute suitability degrees.

Let us investigate an aggregation step where DM aggre-
gates m suitability degrees using an aggregation function µ :
[0, 1]m → [0, 1]. In human decision making µ(s1, . . . , sm)
is most frequently a model of simultaneity. E.g., a home-
buyer regularly prefers locations that are both close to schools
for children and to jobs for parents. Such a simultane-
ity requirement can be modelled using some form of par-
tial conjunction [3], i.e., µ is expected to have an adjustable
degree of similarity with conjunction s1 ∧ · · · ∧ sm. A
normalized degree of proximity between µ(s1, . . . , sm) and
s1 ∧ · · · ∧ sm is called andness and it can be defined by:
α = (s1∨···∨sm)−µ(s1,...,sm)

(s1∨···∨sm)−(s1∧···∧sm) . Since (s1 ∧ · · · ∧ sm) ≤
µ(s1, . . . , sm) ≤ (s1 ∨ · · · ∨ sm) it follows that 0 ≤ α ≤ 1
and µ(s1, . . . , sm) is a model of simultaneity if 0.5 < α ≤ 1
and (s1 ∧ · · · ∧ sm) ≤ µ(s1, . . . , sm) < (s1 + · · · + sm)/m.
This form of andness depends on input degrees of suitability
and humans usually think globally using an average andness,
e.g., α =

∫
[0,1]m

α(s1, . . . , sm)ds1 . . . dsm, 0 ≤ α ≤ 1. If
DM needs a high simultaneity (e.g., α > 0.7), that usually
means that all inputs must be at least partially satisfied. In
other words, µ(s1, . . . , sm) = 0, si = 0, i ∈ {1, . . . ,m} and
it is mandatory to satisfy all inputs. This kind of simultaneity
is called a hard simultaneity. In other cases DM may need a
soft simultaneity, where the average andness is slightly above
0.5 and µ(s1, . . . , sm) > 0, si > 0, i ∈ {1, . . . , m}. Support-
ing models of simultaneity is an important requirement that
MCDM must satisfy.

2.6 Modelling of replaceability requirements

Replaceability requirements are symmetrical and complemen-
tary to simultaneity requirements. Replaceability means that a
high suitability in a group of attributes can be achieved using
any one of the attributes (i.e., they can replace each other).
E.g., a home location can be considered suitable for recre-
ational activities if it is close to lake, or close to ski terrains.
The intensity of replaceability can be determined using the or-
ness indicator that is a complement of andness: ω = 1−α. Re-
placeability aggregators satisfy conditions 0.5 < ω ≤ 1 and
(s1 + · · ·+ sm)/m < µ(s1, . . . , sm) ≤ (s1 ∨ · · · ∨ sm). High
orness means low andness and vice versa. Similarly to the case
of simultaneity, a high level of replaceability (e.g., ω > 0.7)
may be combined with the requirement for hard replaceabil-
ity where µ(s1, . . . , sm) = 1, si = 1, i ∈ {1, . . . , m}.
Soft replaceability is any form of replaceability that does not
satisfy the hard replaceability requirements. In the case of
soft replaceability we have µ(s1, . . . , sm) < 1, si < 1,
i ∈ {1, . . . , m}.

2.7 Modelling of balanced simultaneity/replaceability

If the simultaneity and replaceability are balanced then α =
ω = 0.5. In the case of two variables, from definition
α = (s1∨s2)−µ(s1,s2)

(s1∨s2)−(s1∧s2)
= 0.5 it follows that µ(s1, s2) =

((s1 ∨ s2)+ (s1 ∧ s2))/2 = (s1 + s2)/2. This result indicates
that the arithmetic mean is a soft computing logic function
that combines simultaneity and replaceability requirements in
a balanced way: DM would like that all attributes are simul-
taneously satisfied, but at the same time s/he accepts that any
attribute can compensate any other attribute. It is important to
understand that the arithmetic mean represents a model of this
specific logic condition and nothing more. MCDM that use
the arithmetic mean are acceptable only in cases where DM
can justify the use of this specific logic condition.

According to Malczewski [16], “GIS implementations of
the weighted summation procedures are often used without
full understanding of the assumptions underlying this ap-
proach.”

2.8 Modelling of mandatory, desired, and optional
requirements

Using models of simultaneity, replaceability and negation
(x �→ 1 − x) it is possible to create a variety of compound
soft computing logic functions that precisely reflect the needs
of DM. A compound aggregator that is most frequent in hu-
man reasoning is used to combine mandatory and nonmanda-
tory attributes. Most frequently there are one mandatory at-
tribute and one or two nonmandatory attributes. E.g., a DM
may reject home locations that do not have good ground
transportation, but accept locations that are far from an in-
ternational airport. In such cases the ground transportation
is a mandatory requirement, and the vicinity of an interna-
tional airport is desired, but not mandatory. Optional at-
tributes are also nonmandatory and have lower significance
than desired attributes. To model such requirements we
need aggregators µ(sman, sdes, sop) that satisfy the conditions
µ(sman, sdes, sop) = 0, sman = 0, sdes > 0, sop > 0 and
if the compensation between sdes and sop is possible, then
µ(sman, sdes, sop) = µ(sman, sdes − p, sop + q), sman > 0,
p < q. Optional attributes can be omitted, and in such cases
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we use only mandatory and desired inputs. An aggregator with
these properties is a partial absorption function introduced in
[2] and expanded in [19].

2.9 Modelling of sufficient, desired, and optional
requirements

Sufficient, desired and optional requirements are a disjunctive
counterpart of mandatory, desired and optional requirements.
If the sufficient input is completely satisfied then the desired
and optional inputs have no effect. If the sufficient attribute
has low or even zero suitability degree, this can be partially
compensated by the desired and optional attributes. The cor-
responding aggregator µ(ssuf , sdes, sop) satisfies conditions
µ(ssuf , sdes, sop) = 1, ssuf = 1, sdes < 1, sop < 1, and
if the compensation between sdes and sop is possible, then
µ(ssuf , sdes, sop) = µ(ssuf , sdes − p, sop + q), ssuf < 1,
p < q.

2.10 Ability to express suitability as an aggregate of
usefulness and inexpensiveness

Land-use is regularly related to a variety of costs (e.g., the cost
of land, the cost of building infrastructure and objects, the cost
of financing, etc.). The overall suitability depends on two si-
multaneous requirements: finding locations that are very use-
ful for specific purpose and at the same time inexpensive. A
convenient way to solve that problem is to define usefulness as
a non-financial part of the overall suitability, and inexpensive-
ness as an overall result of cost analysis (an aggregate of cost
components only). Then, the overall suitability can be conve-
niently expressed as an aggregate of usefulness and inexpen-
siveness. Separation of cost and usefulness attributes reflects
human reasoning where the overall cost is compared with the
corresponding overall satisfaction. Of course, there are cases
where the overall suitability does not depend on cost. In such
cases the overall suitability reduces to usefulness.

The presented list of properties is not proved to be necessary
and sufficient in all cases. However, the presented conditions
are relevant for many land use decision problems and show
that logic aggregation of attribute suitabilities is a frequently
needed property. For detailed analysis of mathematical condi-
tions see [4], and for sample applications see [4, 5].

The necessary properties of MCDM’s do not change if at-
tributes of a cell are functions of time, or functions of the val-
ues of attributes in other cells.

3 Properties of GIS related MCDM

Several GIS related MCDM approaches have been presented
in literature [15, 16]. Among the decision methods used in
these approaches we selected a representative set that consists
of the following techniques: simple additive scoring (SAS)
[8, 6], multiattribute value technique (MAVT) [22, 13, 14],
multiattribute utility technique (MAUT) [13, 10], analytic hi-
erarchy process (AHP) [18, 1], ordered weighted average
(OWA) [21, 17], outranking methods [12] and logic scoring
of preference (LSP) [4, 5].

The ten fundamental features presented in the previous sec-
tion can be used to investigate the selected decision methods
in view of their appropriateness for land-use evaluation and
suitability map construction.

3.1 Simple additive scoring

The SAS technique [8, 6] is based on the concept of a
weighted average in which weights are used to denote rela-
tive importance of suitability attributes. A DM directly as-
signs a weight wi to each suitability attribute ai, i = 1, . . . , n.
These assigned weights are rescaled to normalized weights
Wi, i = 1, . . . , n, such that

∑n
i=1 Wi = 1. The overall score

or overall degree of suitability S(x, y) of each cell x, y is then
computed by:

• Determining the n suitability components s1(x, y), . . . ,
sn(x, y) that are obtained from the evaluation of the n
attributes for the cell.

• Multiplying each suitability component si(x, y) with the
normalized weight Wi of its corresponding attribute.

• Summing the products over all attributes, i.e., S(x, y) =∑n
i=1 Wisi(x, y).

Therefore, SAS uses a simple linear weighted aggregation
model.

3.2 Multiattribute value technique

In MAVT [22, 13, 14] suitability attributes ai, i = 1, . . . , n
are evaluated using value functions that aim to mathemati-
cally represent human judgements. A single-attribute value
function translates the performance of the alternative attribute
values into a value score which represents the degree to which
a decision objective is achieved. As such, value function vi

associates a number (or ‘value’) vi(a) with each alternative
value a of attribute ai in such a way that a preference order
on the alternatives consistent with DM value judgements is
obtained.

For aggregation, more complex value functions are used.
The most commonly used function is the simple additive
weighting function S(x, y) =

∑n
i=1 Wivi(ai(x, y)) where

Wi is the weight of suitability attribute ai and vi(ai(x, y))
is the value of suitability attribute value ai(x, y) (of cell x, y).
This approach is valid if suitability attributes are preferentially
independent.

The weights Wi are scaling constants that have to be de-
rived with reference to the attribute ranges. These need to
be elicited through questions which capture acceptability of
trade-offs (e.g., ‘how many units of one suitability attribute
are worth how many of units of another suitability attribute?’).
Weights must sum up to 1, i.e.,

∑n
i=1 Wi = 1.

As such, the MAVT approach is similar to the ‘scoring
method’, except that the scores si(x, y) are replaced by val-
ues vi(ai(x, y)) that are obtained with the value function vi.

3.3 Multiattribute utility technique

MAUT [13, 10] is used and treated separately from MAVT
when ‘risks’ or ‘uncertainties’ have a significant role in the de-
finition and assessment of alternatives. The attitude of the DM
toward risk is incorporated into the assessment of a single-
attribute utility function ui, which is obtained through utility
analysis and translates the values of suitability attribute ai into
‘utility units’. A ‘utility unit’ is a relative value between 0 and
1 (where 0 and 1 resp. denote the worst and best values). The
concept of a utility function is inherently probabilistic in na-
ture.
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Aggregation is done by an overall utility function. A sim-
ple additive weighting function is most commonly used. In
such a case S(x, y) =

∑n
i=1 Wiui(ai(x, y)). Suitability at-

tributes must be preferentially independent. The weights Wi,
i = 1, . . . , n have to sum up to 1, i.e.,

∑n
i=1 Wi = 1.

From aggregation point of view, the MAUT approach is
similar to the MAVT and ‘scoring’ approaches.

3.4 Analytic hierarchy process

AHP [18, 1] uses a different approach. Cognitive psychology
has found that people are poor at assimilating large quantities
of information on problems. The subsequent steps in AHP can
be summarized as follows:

• Model the problem as a hierarchy containing the decision
goal, the alternatives for reaching it, and the suitability
attributes for evaluating the alternatives.

• Establish priorities (normalized weights) among the ele-
ments of the hierarchy by making a series of judgments
based on pairwise comparisons of the elements.

• Synthesize these judgments to yield a set of overall
weights for the hierarchy. This is done by means of a
sequence of multiplications of the matrices of relative
weights at each level of the hierarchy.

• Check the consistency of the judgments.

• Come to a final decision based on the results of this
process.

Suitability attributes are subdivided in subattributes and hi-
erarchically structured. Overall suitability s(x, y) for an
attribute a is computed by an additive weighting function
s(x, y) =

∑m
j=1 Wsj(x,y)sj(x, y) where sj(x, y), j =

1, . . . , m denote the suitability components of the subat-
tributes of a. All weights Wsj(x,y) must to sum up to 1, i.e.,∑n

i=j Wsj(x,y) = 1.

3.5 Ordered weighted averaging

In an OWA approach [17], the DM specifies the decision-
relevant suitability attributes to be used as evaluation criteria;
identifies preferred criteria values on a qualitative scale; and
defines the relative importance of each criterion by assigning
weights. The weighted criterion values are then combined us-
ing an OWA aggregation operator [21], resulting in an eval-
uation score for each cell. OWA allows the DM to specify a
decision strategy that reflects his decision-related preferences.

The OWA operators [21], provide a parameterized class of
mean type aggregation operators. Many notable mean opera-
tors such as the max, arithmetic average, median and min, are
members of this class. OWA operators allow to model linguis-
tically expressed aggregation instructions.

An OWA operator of dimension n is a mapping function
F : [0, 1]n → [0, 1] that has an associated collection of
weights W = [W1, . . . ,Wn] ∈ [0, 1]n, for which it holds that∑n

i=1 Wi = 1, and with F (s1, . . . , sn) =
∑n

i=1 Wis
′
i where

s′i is the ith largest value of the si.
By choosing different W, different aggregation operators

can be implemented. The OWA operator is a non-linear oper-
ator as a result of the process of determining the values s′i.

3.6 Outranking methods

Outranking methods, such as variants of ELECTRE and
PROMETHEE are used in the areas of GIS and environmen-
tal planning [12]. The basic idea of these methods is to use
strictly relative criteria that express a range from indifference
to strong preference of one alternative over another alternative
separately for all individual attributes. The attribute prefer-
ences are then averaged using the arithmetic mean to gener-
ate the credibility of the outranking relation of two alterna-
tives (PROMETHEE). In such a case no input is mandatory.
The overall degree of outranking of two alternatives can also
be computed using a product (ELECTRE III), making all at-
tributes mandatory.

3.7 Logic scoring of preference

With the LSP method [4, 5] suitability maps are created with
the following main steps:

1. Creation of an attribute tree. This tree contains and struc-
tures all parameters that affect the overall suitability and
is build by the DM.

2. Definition of elementary criteria. The DM has to provide
an elementary criterion for each attribute involved in the
decision process. These criteria will be evaluated dur-
ing suitability map construction. For each analyzed cell
x, y, the evaluation of each attribute ai, i = 1, . . . , n will
result in an elementary satisfaction degree si(x, y).

3. Creation of the aggregation structure. For each analyzed
cell, all associated elementary satisfaction degrees must
be aggregated. Therefore, the DM has to create an ag-
gregation structure, which adequately reflects his domain
knowledge and reasoning.

4. Computation of the overall suitability degree. Once the
attribute tree, the elementary criteria and the aggregation
structure are available, the suitability map construction
can start. The elementary criteria are evaluated and their
resulting elementary satisfaction degrees can be aggre-
gated in order to compute the overall satisfaction degree
of each analyzed cell.

Aggregation in LSP is done via the aggregation structure,
build by the DM. The basic building blocks of the aggregation
structure are the simple and compound LSP aggregators. The
DM can use them to construct an easily understandable aggre-
gation schema which is consistent with observable properties
of human reasoning in the area of evaluation.

The simple LSP aggregators are all graded preference logic
functions and based on a superposition of the fundamental
Generalized Conjunction/Disjunction (GCD) function. Most
frequently, GCD is implemented by the weighted power mean
function GCD(s1, . . . , sn) = (W1s

r
1+· · ·+Wnsr

n)1/r where
r ∈ [−∞, +∞] and 0 < Wi < 1 such that

∑n
i=1 Wi = 1 [5].

The parameter r determines the logical behavior of the func-
tion. As such a continuous variety of logical functions ranging
from full conjunction to full disjunction can be modelled. The
simple LSP aggregators can be used to construct more com-
plex, compound operators like the conjunctive partial absorp-
tion which can be used to aggregate a mandatory and a desired
criterion.

For suitability map construction, the overall suitability de-
gree of each analyzed cell x, y must be computed. This is
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done in two steps: First, the elementary satisfaction degrees
s1(x, y), . . . , sn(x, y) are aggregated using the logic aggrega-
tion structure. This results in the overall satisfaction degree
s(x, y) of the cell. Second, cost (if applicable) is taken into
account. Cost is dealt with separately. This better reflects hu-
man reasoning and allows for more efficient cost/satisfaction
studies. Cost is considered to be a function c of the analyzed
cells. For each cell x, y the cost function returns the associ-
ated cost c(x, y) of the cell. If the importance of high satisfac-
tion of criteria is the same as the importance of low cost, then
the overall suitability degree S(x, y) of the cell can be com-
puted by S(x, y) = s(x, y)/c(x, y). Alternative definitions of
S(x, y) are possible.

4 Conclusions
All multicriteria decision methods should be models of hu-
man decision making and the only way to prove their cred-
ibility is to show their proximity to human evaluation logic.
Our analysis shows that the majority of existing MCDM are
not derived with an explicit goal to model observable proper-
ties of human reasoning. Indeed, human reasoning is neither
restricted to the use of arithmetic mean nor restricted to rel-
ative criteria only. Humans use a spectrum of absolute and
relative elementary criteria and a spectrum of soft computing
logic aggregators, such as soft and hard simultaneity and re-
placeability with nonmandatory, mandatory and sufficient at-
tributes, conjunctive and disjunctive partial absorption, as well
as other compound aggregators.

Decision methods that are used in land-use evaluation prob-
lems cannot be randomly selected, without appropriate justifi-
cation. The justification for using a specific evaluation method
in a GIS environment should be based on investigating the
capability of the method to support features that are proved
to characterize human decision making. Many oversimplifi-
cations that are frequent in GIS literature [16] (particularly
those based on simple additive models) are based on the fact
that they are “easy-to-understand and intuitively appealing.”
Unfortunately, that is not enough. Before using mathematical
models it is first necessary to prove that they are appropriate.

LSP is a method developed with the goal to support logic
operators observed in human reasoning. Consequently, it is re-
alistic to expect that the LSP method can provide highly accu-
rate and justifiable models for GIS applications, such as land-
use evaluation, suitability maps, and natural resources plan-
ning.
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