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Abstract—This paper focuses on analyzing practical solution
approaches for Vehicle Routing Problems (VRP) with uncertain
information. Several variants of the basic problem and fuzzy
optimization problem formulations are described. The fuzzy VRP is
obtained when some of the elements in the formulation are fuzzy.
The main versions of Fuzzy VRP that have appeared in the
literature are reviewed and the standard approaches for solving the
corresponding models are analyzed.
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1 Introduction

Route planning problems are among the activities that have
the highest impact in logistical planning, transport and
distribution because of their effects on efficiency in resource
management, service levels, and client satisfaction. Route
distribution planning problems, also known as Vehicle
Routing Problems (VRP), have been thoroughly studied in a
variety of areas, such as Operations Research, Artificial
Intelligence, etc. The standard VRP was originally
introduced by Dantzig and Ramser (1959), and is NP-hard,
which is a complex combinatorial optimization problem [5].
Several variants of the basic problem have been put forward
and strong formulations have been proposed. Most of these
problems can be modeled as linear programming problems.
The most common solution techniques are exact methods
that guarantee finding an optimal solution if it exists. These
approaches have also been applied together with numerous
heuristics solution techniques developed with enough
flexibility in optimization systems and can be adapted to
various practical contexts.

Given that the complex, flexible, and dynamic nature of real
logistical planning produces a high degree of uncertainty
related to the decision making process, is not always
possible to have all of the necessary information available at
the onset of the problem. Consequently the most common
scenario provides incomplete or imprecise information of the
parameters and variables. The use of fuzzy sets to approach
these situations is very appropriate to build computing
systems for the solution of solving decision and optimization
problems. The modeling of these problems is complicated at
various levels: not only are they difficult to define accurately
and need to manage uncertainty, but there is also imprecision
in the available information and stated preferences,
restrictions and objectives by decision makers.

A frequent occurrence in real decision-making problems,
such as those found in VRP, is the lack of precision or
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uncertainty in the information available in them. This
characteristic complicates the process concerning the
definition of their objectives and parameters. Although this
type of uncertainty found in the nature of the data and their
settings has traditionally been handled by means of
probability theory, in most of the cases they cannot be
considered random phenomena and therefore probability
theory cannot be applied successfully.

The aim of this paper is to analyze how the relevance and the
variety of applications found in VRP can be considered
under the fuzzy context point of view. The organization of
the paper follows. Section 2 introduces the broad class of
optimization problems known as VRP. We also survey the
concept of fuzzy optimization where the objective function
and constraints have fuzzy parameters, and then we apply
these concepts to the simple and classical VRP. Finally, we
review the corresponding fuzzy versions, which are called
Fuzzy VRP.

2 Vehicle Routing Problems

The VRP are one of the most widely studied class of
problems in combinatorial optimization, and the literature
provides several exact and heuristic solution techniques of
general applicability. VRP are problems where several
vehicles that must serve points of demands and satisfy a
finite set of constraints while minimizing costs, distances or
times [20].

The standard VRP (usually called capacitated VRP; CVRP)
calls for the determination of a set of m routes whose total
travel length is minimized such that: (1) each customer is
visited exactly once by one route, (2) each route starts and
ends at a single depot, (3) the total demand of the customers
served by a route does not exceed a given vehicle capacity
Q, and (4) the length of each route does not exceed a preset
limit L. A constant speed is typically assumed so that to
minimize distances, travel times and travel costs are
considered equivalent. If each vehicle 7 is assigned to a route
R, , a feasible solution for the VRP is made up of a partition

from V into m routes R,R,,...,R

m

and the corresponding
permutations o, of R, w0 that specify client order along the
routes.

VRP allow us to consider several types of constraints,
depending on the specific characteristics of the problem and
decision-making process [4]. These possibilities lead to a

variety of problems, beginning with the standard or basic
VRP. Their descriptions follow:
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MFVRP- Mix Fleet VRP. This is a VRP in which the
vehicles have different capacities, in other words, fleet of
vehicles with a heterogeneous capacity. Each resource must
consider these capacities for each route.

MDVRP- Multi-depot VRP. A company can have several
depots or warehouses for use when supplying client demand.
If clients are grouped around the depots then the problem
can be viewed as a set of independent VRP problems.

However, if the clients and depots are spread apart, then this
scenario is known as a MDVRP.

PVRP - Period VRP. In the classical VRP the planning
period of the route is one day. The PVRP expands the
planning period to M days. During this period of M days,
each client should be visited a given number of days.

SDVRP - Split-up Delivery VRP. This problem is a VRP in
which a client is allowed to be serviced by several vehicles if
the total cost decreases. Order size is important since the
total size of the client orders must exceed the capacity of one
vehicle.

PDVRP - Pickup and Delivery VRP. This variation is a VRP
since it allows clients the possibility of returning certain
goods that have to be delivered to other clients. Therefore,
each vehicle that is fitted must consider client pickup and
delivery amounts as well as a planned order.

VRPB - VRP with Backhauls. This problem is VRP where
clients can order or return articles. Therefore the formulation
requires that returned goods from clients fit in the vehicle.
In addition, all deliveries must be completed before pickups
begin because vehicles are back-loaded and pickups in the
vehicles are considered uneconomical or unfeasible. Orders
and pickups must be known ahead of time.

VRPTW- VRP with Time Windows. This variation is a VRP
with the additional constraint that associates a time window
to each client which identifies the only interval of time when
the client is willing to receive goods or services. If a vehicle
arrives to the client early the vehicle has to wait. If it arrives
during the interval of the time window, the vehicle makes
the delivery at that moment. Finally, if it arrives late the
client is not serviced.

OVRP - Open VRP. This problem is a special class of VRP
within all open delivery routes, since vehicles are not
required to return to the depot.

Finally, other versions of VRP do exist. Some versions are
mixes or hybrids of the previously mentioned typologies,
such as the MDVRPTW or OPDVRP. Other problem types
introduce specific characteristics which require the
corresponding modifications in the model. For example, one
version of a particularly interesting (and increasingly
complex) problem is a dynamic version of the route problem
with or without time windows (DVRP, Dynamic VRP). In
this version the problem characteristics vary as time passes.

3 Fuzzy optimization problems

An optimization problem can be described as the search for
the value of specific decision variables so that identified
objective functions attain their optimum values. The value of
the variables is subject to stated comstraints. In these
problems the objective functions are defined on a set of
solutions that we will denote by X. The objective function is
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not subject to any condition or property nor is the definition
of the set X. Typically the number of elements of X is very
high, essentially eliminating the possibility of a complete
evaluation of all its solutions while determining the optimal
solution.

Optimization problems in their most general form involve
finding an optimal solution according to stated criteria. In
practice, however, many situations lack the exact
information that is needed in the problem, including its
constraints, or in other cases, where it is unreasonable to
access such specific constraints or clearly defined objective
functions. In these situations it is advantageous to model and
solve the problem using soft computing and fuzzy
techniques.

Among all the optimization problems, the models that have
received the most attention and have offered the most useful
applications in different areas are Linear Programming (LP)
models, which is the single objective linear case with linear
constraints. The classic problem of LP is to find the
maximum or minimum values of a linear function subject to
constraints that are represented by linear equations or
inequalities. The most general formulation of the LP

problem is:
max z=cx
subjectto  Ax<b (D
x>0

The vector x=(xl,x2,...,xn)eR" represents the decision

variables. The objective function is denoted by z, the
numbers ¢ are coefficients and the vector

c=(¢,¢y5nc,) €R"is known as the cost vector. The
matrix A:[a,.l.]e]R”x’” is called the constraint or

technological matrix and the vector b =(b,b,,...,b,)eR"

represents the independent terms or right-hand-side of the
constraints.

In many real situations not all the constraints and objective
functions can be valued in a precise way. In these situations
we are dealing with the general problem form of Fuzzy
Linear Programming (FLP). FLP is characterized as follows:
a;, b; and ¢; can be expressed as fuzzy numbers, x; as
variables whose states are fuzzy numbers, addition and
multiplication operates with fuzzy numbers, and the
inequalities are among fuzzy numbers.

Different FLP models can be considered according to the
elements that contain imprecise information that is taken as a
basis for the classification proposed in [22], [2]. Short
descriptions of these models follow.

Models with feasible fuzzy set (fuzzy constraints)

This is the case where constraints can be satisfied, and
consequently the feasible region can be defined as a fuzzy
set; it should be defined by means of a membership
function 2 : R" —[0,1]. In such a situation, for ecach
constraint, a desirable quantity b is considered, but the
possibility that it is greater is accepted until a maximum b+¢
(¢ is referred to as a violation tolerance level). This model is
represented by:

1548



IFSA-EUSFLAT 2009

max z=cx
subject to Ax<, b 2
xz0

where the symbol < indicates the imprecision of the
constraints and where each fuzzy constraintax <, b,is

specified by a membership function in the form:

1 if ax<b,
w(ax)=4 f(ax) if b <ax<b +1, (3)
0 if b+, <ax

which means that, for each constraint i, given the level of
tolerance #, to each point (n-dimensional vector) x is
associated a number ;(x)€[0,1] known as the degree of

fulfillment (or verification) of the constraint i. The functions
f; are assumed to be continuous and monotonous non-
decreasing functions. In particular, Verdegay [21], using the
representation theorem for fuzzy sets, proves that the
solutions for the case of linear functions f; can be obtained
from the auxiliary model:

max Z=Ccx

Ax<b+i(l-a)
x20,a€[0,1]

)

subject to

where 1 =(t,,t,,...,t,,) .

Models with fuzzy goals

A optimization problem with fuzzy goals allows the
objective function value to be slightly below the minimum
goal for a maximization problem, and similarly for a
minimization problem. The corresponding linear model is
expressed in the following way:

max z=cx
subject to Ax<b (5)
x>0

If 7, is the maximum quantity that the objective function
should be inferior to the minimum goal ¢y, then each vector x
is associated to a number p,(x), which represents the degree
that the decision maker considers to be an achieved goal. It
is defined according to the following function:

1 if cx > ¢,
o (x) =/ (cx) if ¢,—t,<cx<g¢, (6)
0 if ex<cy—t,

where f, is a continuous, monotonous non-decreasing
function. An operative model that provides satisfactory
solutions can be found in [27].

Models with fuzzy costs as objective function coefficients

These models are those whose costs are not fully known
(with imprecision). Therefore, they are represented by an

m-dimensional fuzzy Vectorcf:(clf,c-zf,...,cf), and the

following model:
,

max z=c'x
subject to Ax<b @)
Xz
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Evidently, z is also a fuzzy number, but x can be a vector of
fuzzy or non-fuzzy numbers, and each fuzzy cost is
described by its corresponding membership function p,(x).

Each coefficient ¢’

/of the objective function is a plane
fuzzy number of the L-R type with modal interval
[g j,Ej} and membership functions g; and 4; (which can be
linear, parabolic, etc.). Delgado et al. [7] prove that the
solution can be obtained with the multi-objective auxiliary

model:
max z:[clx,...,cznx}
subjectto  Ax<b

8
x<0,a€[0,1],c} e{g;l(l—a),h;l(l—a)} ®

k=1,..2",j=1,..n.

Models with fuzzy coefficients in the technological matrix
Consider a problem of this type:

max z=cx
subject to A’ x <, b’ 9)
x>0

where the values of the technological matrix and the
coefficients are fuzzy numbers. Fuzzy constraints can also
be included. Delgado et al. [6] also include imprecision in
the constraints. They propose considering fuzzy solutions
that are solved with the application of an ordered function g
for the constraints. This new formulation is expressed by the
auxiliary problem:

max Z=cCcXx
subjectto  a/x< b/ +t/(1-a), i=1,..m (10)
x>0,a €[0,1]

where the symbol <, stands for a comparison relation
between fuzzy numbers.

4 Fuzzy optimization Vehicle Routing
Problems

Although there are different stochastic approaches to
modeling and solving the VRP in the literature, this is not
the case with the proposed approaches from fuzzy set theory.
Furthermore, the literature offers very little in terms of
modeling VRP proposals, both from the standpoint of the
solutions modeled as Fuzzy Mathematical Programming,
and Fuzzy VRP (FVRP). However, as we will discuss later,
several proposals have been introduced in recent years, such
as the VRPTW and Dynamic VRP.

Specifically, if we look at the FVRP models in the literature,
the majority only assume vagueness for some of the
following elements that are described in the model: a) Fuzzy
demands (to be collected): customer demand is a imprecise
variable and 2) Fuzzy times: service time and travel time can
be imprecise variables.

The first problem deals with the demand vector of each
client's ordered goods. Planning the ordered quantity by the
clients is difficult to establish with sufficient notice and
precise form, therefore we do not have access to a specific
quantity. In other words, the information about vehicle
demand at some nodes is often not precise enough. Thus,
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there is often uncertainty regarding the amount of demand at
some nodes. This FVRP with fuzzy customer demand was
first instructed by Teodorovic and Kikuchi [18]. In this
paper, they treated the travel time and the transportation
costs between two nodes in a network as fuzzy numbers.
They modified the Clarke and Wright algorithm where travel
times in a network are treated as fuzzy numbers. Later,
Teodorovi¢ and Pavkovi¢ [19] solve a VRP when demand at
the nodes is uncertain and is represented by a triangular
fuzzy number. The model is based on the heuristic
"sweeping" algorithm, which uses fuzzy approximate
reasoning procedures to decide whether or not to include a
node in the route. It first uses the approximate reasoning
algorithm to calculate the preference index. Once the
membership function of the preference index has been
determined, defuzzification must take place. In recent years,
these same authors have proposed solutions to this problem
[15], [16], where actual demand value is known only after
the visit to the node. Their solution combines Bee and Ant
systems with rules based on fuzzy logic. A new paper [14]
has recently appeared which considers the VRP with
uncertain demand at node. It uses the approximate reasoning
algorithm to determine the preference strength to send the
vehicle to next node, and the improved sweeping algorithm
with vehicle coordinated strategy to determine a set of
vehicle routes that minimizes costs.

The second problem, (fuzzy times in both service and travel)
is characterized by other pieces of information that are
increasingly imprecise, given the daily circumstances found
in routing networks and traffic. In these cases service time,
time windows and travel time are expressed as fuzzy
numbers.

The traditional deterministic VRP is expanded to the
situation so that the VRP has fuzzy travel time features. In
[11] a simple description of the VRP with fuzzy traveling
time, that is, a mathematical model for the problem, is built.
It puts forward the concept of level effect function which can
quantify the location of fuzzy number intensively and
globally, and sets up the uncertain degree of measurement.
In this paper the solution to the problem is based on a
genetic algorithm.

In [17] the travel time based on the fuzzy mathematical
model of the VRP takes the time window as a fuzzy variable.
Information entropy and the path chosen by the use of
random disturbance control strategy to the Ant algorithm is
used to the vehicle routing problem with fuzzy travel time.

Reference [9] focuses on modeling and solution of the
dynamic VRP with time-dependent and fuzzy travel time. A
model of this problem is set up based on fuzzy service times
of the customer, its demand and its time windows, which is
regarded and ordering as a triangular fuzzy number. A
hybrid genetic algorithm, which is seasoned with the model
and combined with the ant colony algorithm, is presented.

In [10] the authors present a model of the real world vehicle
routing and dispatching problem. The time-dependent and
fuzzy travel speeds are introduced into the model. A
dispatching period is divided into some time slices and each
time slice is designated a triangular fuzzy speed. The method
of comparing two triangular fuzzy numbers is applied to
check whether or not customers’ time windows are satisfied.
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A hybrid intelligent approach combining a genetic algorithm
and an ant colony algorithm is proposed for solving the
dispatching model.

Results in both types of models with uncertainty in demand
or in time have been published based on fuzzy variables,
fuzzy random variables, stochastic programming and Chance
Constrained Programming (CCP). These concepts were
introduced by Charnes and Cooper and later by Liu, and
generally are applied with heuristics to find solutions to the
VRP [26], [24].

In [13] the author considers the VRP with time window
while assuming that the travel times cannot be precisely
known, but can be regarded as fuzzy variables. Since the
travel times are fuzzy variables, every customer will be
visited at a fuzzy time. Credibility is introduced as a measure
of confidence in the constraints so that it ensures that all
customers are visited within their time windows with a
confidence level, then following Chance Constraint
Programming and also a hybrid intelligent algorithm by
integrating fuzzy simulation and GA to solve the VRP.

To the best of our knowledge, there is little evidence in the
literature on the properties of mathematical programming
with random fuzzy coefficients and VRP with random fuzzy
demands. The only related study appears to be a paper [8]
which proposed a method to solve a class of model with
random fuzzy coefficients in both the objective functions
and constraint functions and applied it in the CVRP with
random fuzzy demands. Based on the concept of random
fuzzy variables introduced in [3], the objective is to provide
workable formulations and exact algorithms for a class of
uncertainty.

Reference [12] deals with a variation of uncertain VRP
where the customers' demands are random fuzzy variables
and the travel times between customers are random
variables. The travel times between customers follow given
probability  distributions. The authors develop a
programming model with random fuzzy and random
variables for VRP which consider capacity and arrival time
constraints and present a stochastic programming
formulation which includes probabilistic constraints and
apply a pure genetic algorithm (GA).

In [23] and [25] the authors considered a fuzzy multi-
objective modeling approach for capacitated VRP with fuzzy
random parameters. The first paper is based on the mixed
integer linear programming model, and suggested an
interactive heuristics approach using triangular fuzzy
number and crisp equivalent formulae to address the demand
solution. The authors in the second paper use travel time and
customer demand and treat them as fuzzy random variables
and chance-constrained programming is presented and
converted to a crisp equivalent model under some
assumptions. The authors present a hybrid multi-objective
particle swarm optimization that incorporates specific
heuristics to solve such a problem.

All of the above VRP can be formalized as problems of
combinatorial optimization. These problems in their most
general form, have integer LP formulations, based on the
proposal given by Bodin ef al. [1], and can be described,
assumed that the depot is the node 0, N is the number of
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customers to be served by K vehicles and the decision
variables are x; e{0,1}, ij = 1,2, .., N, k=1,2, .., K,
where x;‘. =1 if vehicle & travels from customer i to j and 0
otherwise.

In particular, objectives and constraints may be formulated
as follows.

Objectives
a. If ¢ is the cost of travelling from customer i to customer

j by vehicle k. The total travel cost is an objective
function to be minimized and is expressed by:

K N N .
manZZCMfJ

k=1 i=0 j=0

(11)

In general, this cost can be expressed as total time or
distance traveled by the vehicles.

b. If té denotes the time needed to go from customer i to

customer j and 8 is the required time by vehicle & to

unload the demand to the customer i. The objective
function is to minimize the total travel time.

K N K N N
mm[zz 1ix) +2225,kx§j (12)
k=1 i=0 j=0 k=1 i=0 j=0

c. Other possible objective function is to maximize the
number of customers served by the vehicles.

K N N
maxZZZx,’; (13)
k=1 i=0 j=0
Constraints
Constraints (14) and (15) ensure that each customer is

served exactly once.

K N .
D> x=1 j=12..N (14)
k=1 i=0
K N B
D> k=1, i=12,..,N (15)
k=1 j=0

Constraint (16) ensures route continuity.
N N
Doxy =Y xk=0, t=12,.,N;k=12,..K  (16)
i=0 j=0

Constraint (17) shows that the total length of each route &
has a limit D, with d} the distance from i to .

DM~

Ndixk <D, k=12,..K

7
1

(17

N
=0

=~
]

Constraint (18) ensures that the total demand of any route
must not exceed the capacity O, of the vehicle &, with the
demand of customer i, ¢;.

ﬁq}, (ﬁ:x;;jﬁ 0., k=12,.,K

=0 i=0

(18)

Constraints (19) and (20) ensure that each vehicle is used no
more than once.

N
Doxy <1, k=12,..K (19)
j=0
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N

Doxh <l k=12,..K (20)
i=0

This formalization assumes that the decision-maker has
access to specific information on the components that define
the problem; that is, on objective functions and constraints.
However in real world problems it is more common that the

information one has is actually imprecise or incomplete.

Real world situations reveal the difficulties of analyzing
different types of models and problems that are affected by
incomplete, imprecise or vague information or constraints.
These problems, however, can be modeled in terms of fuzzy
sets, leading to the field of fuzzy optimization. The solutions
to these problems are fuzzy solutions. Discussions
concerning solutions do not focus on their feasibility, nor if
they are optimal solutions or not. We, in turn, have chosen to
discuss the degree of feasibility and optimality of the
solution.

. . k
Thus, if we suppose that any of the parameters: cost ¢,

distance d*

i s times t,f and 5,." , and demand ¢; can be fuzzy,
the traditional model becomes a Fuzzy VRP. Intuitively,
when any of these quantities are fuzzy numbers, the
objective functions become fuzzy as well. If these

parameters are approximately known, they can be
represented by the fuzzy numbers E,.f , c;’;‘ , fljk , ci.k and ¢,
respectively, with  their corresponding membership

functions. Then, for instance, the objective function can be
expressed as:

mind 3> 2

1

K N N
2
k=1 i=0

j=0

Similar changes occur with other objective functions. In the
same way, constraints (17) would be expressed by:

(22)

with similar changes to the other constraints. However,
constraints (14) to (16) are the same as those found in the
crisp model.

Note that quantities O, and D, also must be considered as
fuzzy parameters. In addition, the summation symbol X in
the objective functions and constraints refers to an addition
of fuzzy numbers and < a fuzzy relation between fuzzy

numbers. The meaning of min operator min is also
ambiguous, because it depends on the fuzzy numbers
ranking index to be used. Hence there is a need to seek
appropriate procedures for its solution.

Following the pattern in general Fuzzy Optimization
described in a previous section, four different types of
problems can be considered. Two of these problems include
imprecision/uncertainty in the objective function(s), such as
the case with fuzzy goals and the case with fuzzy costs. The
remaining two problems consider fuzzy comparison in the
constraints and in the coefficients of the technological
matrix. In addition a fifth problem, the general fuzzy
problem could be studied in which all of the parameters will
be subject to fuzzy considerations.
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In practice, the search for optimal solutions to FVRP can be
done with the following approaches. The simplest approach
applies procedures for the fuzzification and defuzzification
of variables. It transforms the imprecise information in fuzzy
parameters and uses procedures that integrate fuzzy
arithmetic to obtain fuzzy solutions. The fuzzy solution is
then transformed into a crisp one using some known
formulation. This approach may also be used for the
introduction of sophisticated fuzzy rules in the decision-
making processes to improve their quality. Linguistic
variables could be used to facilitate the incorporation of
“intelligent” procedures as automatic reasoning, adaptive
control or automatic learning.

Another common approach consists in applying the Theory
of Possibility and Chance Constraint Programming. It treats
the fuzzy models, becoming the crisp equivalent, and by
adding Chance Constraints changes the model. It assumes
that the constraints will hold with at least a possibility o, and
the chance is represented by the possibility that the
constraints are satisfied.

The previous approaches combined with some
metaheuristics provide robust optimization methods to
obtain efficient solutions. Although in each planning
problem we can establish a set of constraints, many of which
can define different planning problems, this set which is
defined with parameters and imprecise variables can also be
considered the same if the constraints are not necessarily
strictly or exactly established. These parameters or imprecise
variables could include the times that cannot exceed a
specified bound, or the time windows required to visit
clients. In other words, it is possible to establish problems
with constraints where not all of the constraints need to be
satisfied and with the same degree of precision. In this
formulization constraints can be called hard, which represent
those constraints that must be satisfied exactly, or soft,
which are not subject to the same demanding criteria.

5. Conclusions

Fuzzy Vehicle Routing Problems have been analyzed.
Strong formulations are available but most algorithmic
development focuses on a limited number of prototype
problems. We analyze the use of sufficiently flexible and
comprehensive fuzzy approaches to address the various
imprecision required in practice.
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