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Abstract— Connectivity analysis methodology is suitable to find
representative symptoms of a disease. This methodology describes
connections between symptoms in particular way and then chooses
the group of symptoms that have the high level of connection, or
in other words, have strong interconnections between elements of a
group. In this paper we investigate the analogy between connectivity
analysis and cluster analysis based on fuzzy equivalence relations.
A comparison of two approaches, one of which has strong theoret-
ical background (cluster analysis based on fuzzy equivalence rela-
tions) and more practically oriented connectivity analysis assures
more convincing and accurate connectivity analysis from one side
and applicability of fuzzy equivalence relations for medical diag-
noses from another. Connectivity analysis, as shown in the paper,
is one of the clustering methods, can be used in many applications
where feature selection and extraction problem is considered, in par-
ticular, in pattern recognition and image processing. The results of
the comparison are demonstrated on the examples.

Keywords— connectivity, equivalence relations, fuzzy cluster
analysis.

1 Introduction
When speaking about the physician intuition one means the
ability of a doctor to establish a diagnosis for a patient. This
process can be separated into different stages. One of them,
considered in this paper, distinguishes an experienced doctor
from a beginner: the expert uses a small amount of obser-
vations to make a conclusion about a patient’s state. Call-
ing these observations representative symptoms one highlights
their high discrimination power between this and other dis-
eases, their best characterization for a disease. "The best char-
acterization" means: if a patient has this representative group
of symptoms, his diagnosis is almost sure. Fuzzy notations
such as "small amount", "almost sure" show - as was already
mentioned in many scientific papers devoted to applications
of fuzzy logic in medical domains - that definitions, reason-
ing and conclusions in medicine are usually done with uncer-
tainty. And a task - to find the representative symptoms - is
not an exception.

For reasons of simplification we use symptoms as a general
concept for clinical parameters, different manifestations (sig-
nal, clinical), meanwhile diseases include disorders, different
diagnostic hypotheses.

The problem of finding the representative symptoms can
be solved within a computer-assisted medical diagnosis sys-
tem. Ideally, an established set of representative symptoms
for a particular disease allows to only partly examine a pa-
tient suspected for this disease, that, in turn, reduces costs,
time, etc. Different groups of representative symptoms can

be useful at the different stages of a chronic disease. Repre-
sentative symptoms can help to establish an overall risk for a
patient attacked from a particular disaster. For example, in life
insurance medicine [16] the mortality of applicants within the
period of insurance is assessed on the basis of present risk fac-
tors. Another possible application of representative symptoms
is an optimization of questionaries, e.g., in screening [5].

There are at least two ways to get the representative symp-
toms: to ask an experienced physician or to use some methods
to extract this set from the available information.

As was already mentioned, symptoms cannot normally be
described in simple "black and white" terms with "yes/no" or
"present/not present" answers. An expert seeking to compre-
hensively describe the multiple influencing factors would very
quickly reach the limit of his capacity [7]. For example, if an
expert should estimate a group of three symptoms, each of
which has three values, he will face 27 possible states. If the
number of symptoms and the number of values rise to five,
the number of states increase to 3125. Moreover, some dis-
ease categories overlap. For example, no consensus exists on
clinical or epidemiologic measures that can be used to classify
patients based on asthma symptoms [17]. Due to the highly
variable nature of asthma, classification of patients into mild,
moderate and severe disease categories is necessarily imper-
fect. That categories may overlap means, that trying to find
the representative symptoms for three categories of a disease
(mild asthma, moderate asthma and severe asthma) we do not
have a unique description for each of them. The USA National
Asthma Education Program of guidelines suggest symptoms
(wheeze, dyspnoea, cough, sputum production, allergy char-
acteristics, etc.), the degree of airflow obstruction and fre-
quency of use of oral glucocorticoids (never, infrequently for
attacks, frequently for attacks, and daily use) to validate three
asthma categories. Due to the symptom-disease-patient ter-
minology proposed by us the representative group of symp-
toms could be chosen from symptoms (the medication use,
spirometry, current symptoms) for three diseases (indicators
of asthma severity) for this example. Therefore it is not an
easy task to get representative symptoms from an expert for
building a computer-assisted medical system. A specialist
uses his unconscious knowledge, due to the professional in-
tuition and acumen.

To rely on data from the patient records only (or other
sources containing information about patients), using statis-
tical methods, seems also to be not a doubtless way. Widely
recognized drawbacks of statistical estimations is the demand
on high amounts of data. In other situations, conclusions de-
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duced from records do not correspond to results from other
sources. For example, as was reported in [17], a severity of
asthma induced from oral glucocorticoids use and spirometry
does not correlate with current asthma symptoms from medi-
cal records.

A combination of approaches is a matter of investigations
since years [2]. Especially since the theory of fuzzy sets was
proven to be useful in modeling uncertainties, in particular,
in medicine. Expert knowledge is composed of the evalua-
tions of the observed symptoms (the influencing factors) and
the rules for the combinations of these evaluations. The ex-
pert formulates and describes his decision in a linguistic form
in order to render it comprehensible to a layperson [16, 20].
Often, he/she demonstrates only certain key values of the in-
fluencing factors, the representative symptoms.

The complexity of a method partially depends on the initial
information available. For example, if we have a collection
of rules, where all symptoms and combinations of symptoms
are already estimated by experts as was done in [18] for pul-
monary tuberculosis with some degree of confirmation and ex-
clusion, the task to find the representative symptoms may be
easily solved. Experts are asked to establish thresholds for an
exclusion and a confirmation of symptoms and this will allow
to classify the symptoms to the corresponding representative
groups.

The medical records is a point of departure for connectivity
analysis as well, but values in these records represent some
degree of expressiveness of a symptom, or the degree of com-
patibility between patients and symptoms. For example, for
"overweight" the expert may put a number between 0 and 1 to
reflect his opinion about this patient’s symptom. The expert
may know the exact weight of a patient or not, his estimation
0 shows that the patient has no overweight, 1 - the patient is
very thick, 0.2 -the patient is almost in norm. The "ruddy com-
plexion" is another example for the scale representation, e.g.,
0.2, 0.4, 0.8 would mean different degrees of a skin face color
estimated by an expert.

The connectivity analysis has been intensively applied, in
particular, in medicine, management, geology [4, 10, 11, 12,
13, 22]. In most cases its practical usefulness was proven by
examples. But in general, the connectivity analysis can be
considered as a part of pattern recognition problem, in partic-
ular, cluster analysis. Till now such relations were not estab-
lished. Our intention in this paper is to show that there exists
an analogy between the connectivity analysis and fuzzy clus-
ter analysis based on fuzzy equivalence relations. This com-
parison (or, in some sense, an interpretation of connectivity
analysis in terms of well-established cluster analysis) brings
more insights into the connectivity analysis which is practi-
cally used but has some weaknesses in the theoretical back-
ground from one side and applicability of fuzzy equivalence
relations for medical diagnoses from another.

To realize our intentions, the paper is organized as follows.
In the next section we describe what we understand under con-
nectivity analysis and how it is applied to the representative
symptoms mining problem. Section 3 describes elements of a
fuzzy cluster analysis based on fuzzy equivalence relations. In
Section 4 the analogy between two approaches are considered
and the paper is concluded by final remarks.

2 Connectivity between symptoms
Assume from the database of already diagnosed patients, suf-
fering from a particular disease, the table RSP = {rij},
i = 1 . . . n, j = 1 . . . m is obtained where only presence
or absence of symptoms are ticked. For example, in Table 1
information about 5 patients who have been suffering from a

Table 1: An initial table for a symptom-patient connection

p1 p2 p3 p4 p5

s1 1 0 1 0 0
s2 1 1 0 1 0
s3 1 1 1 1 1
s4 0 1 0 1 1

particular disease with 4 corresponding predefined symptoms
is presented. Compared with a real practical situation, the de-
scription of e.g., pulmonary tuberculosis (PT) [18] consists of
30 symptoms.

2.1 The positive level of connection

Assume, Table 1 defines the relation of connectivity between a
set of patients P = {p1, p2, p3, p4, p5} and a set of symptoms
S = {s1, s2, s3, s4}. rij = 1 denotes that person pj has the
symptom si and rik = 0 denotes that person pk does not have
it.

Dealing with these data, the intuitive proposal to get a group
of representative symptoms is to highlight those symptoms
that often meet under description of a patients’ condition. For
example, from Table 1 it can be seen that symptom s3 is
present by all patients, symptoms s1 and s2 have in common
only p1. Speaking language of connectivity, the representa-
tive symptoms can be naturally chosen based on the level of
connection among symptoms that is equal to the number of
common patients affected by those symptoms. For example,
symptoms s1 and s2 have in common only p1 and hence they
are connected at level 1, meanwhile symptoms s2 and s3 have
in common patients p1, p2 and p4 , i.e., they are connected at
level 3. Formula (1) describes pairwise connectivities between
symptoms.

Qs = RSP RT
SP (1)

In (1) ordinary multiplication of matrices is used.
The result of (1) is matrix (2). Clearly, Qs is diagonal sym-

metric and can be represented in upper triangular form: the
order of symptoms is not important.

Qs =




2 1 2 0
1 3 3 2
2 3 5 3
0 2 3 3


 (2)

Connectivity results can be represented as shown in Table
2.

0-connection is not considered. The symptom s3 can be
taken as the representative one, but the groups of symptoms
are of interest from the physician point of view: one symptom,
for instance, a cough, can be present due to many diseases, and
cannot be distinguishable for them.
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Table 2: Pairwise connections from matrix (2)

Levels of connectivity, q Groups of symptoms
5 {s3}
3 {s2}{s2, s3}{s3, s4}, {s4}
2 {s1}{s1, s3}{s2, s4}
1 {s1, s2}

Sets {s2, s3} or {s3, s4} can be considered as appropriate
ones. They have, however, in common one element, s3. A
fusion of these two sets into {s2, s3, s4} would mean, that the
same number of patients (i.e., 3) have in common subsets of
this set.

Therefore, let us transform Table 2 into Table 3 due to the
following observations:

1. if n patients have in common a symptom (or symptoms),
n−1 patients have this symptom(s), too. The same is for
n − 1, n − 2, etc. This property we call inheritance.

2. if the same symptoms belong to different groups at the
same level of connectivity, these groups can be fused.

Table 3: After fusion and inheritance in Table 2

Levels of connectivity, q Groups of symptoms
5 {s3}
4 {s3}
3 {s2, s3, s4}
2 {s1, s2, s3, s4}
1 {s1, s2, s3, s4}

Information from Table 3 can be interpreted. For instance,
symptoms {s2, s3, s4} are more representative for the consid-
ered disease, because they are at a high level of connectivity
i.e., have in common many patients and the cardinality of this
set is not small. This intuitive procedure can lead, for example,
to similar groups of representative symptoms, i.e., at the same
level, two groups and the same number of different symptoms
in each group. In this case both groups can be considered as
representative ones or a consultation with a physician is sup-
posed.

So far so good, but even in this example part of the infor-
mation used is lost: for instance, the absence of the symptoms
are not taken into account. In Table 4,

Table 4: s1 is more like s2 than s3

p1 p2 p3 p4

s1 1 0 1 1
s2 1 0 1 1
s3 1 1 1 1

s1 and s3 are connected (via p1, p3 and p4) at the same
level (q = 3) as s1 and s2 (via p1, p3 and p4). But obviously,
s1 is more like s2 than s3.

2.2 The negative level of connection

Due to the tradition of expert systems in medical diagnoses
[3, 6, 8, 18, 19, 21] it is important to consider not only an
occurrence of symptoms, but a non-occurrence as well.

Let us now get information from the non-occurrence of
symptoms in Table 1. For each pair of symptoms the num-
ber of patients, that do not have in common these symptoms
is calculated. Formally, formula (1) can be used here, where
matrix RSP is substituted by Ω − RSP , where Ω is a matrix
with all elements unity. The results of negative connectivity is
represented in Table 5, where q− are levels of connectivity.

Table 5: Pairwise connections of symptoms that patients have
no in common from Table 2

q− Groups of symptoms
3 {s1}
2 {s2}, {s4}
1 {s1, s2}{s2, s4}
0 {s3}, {s3, s4}, {s2, s3}, {s1, s3}, {s1, s4}

The results of this table can be interpreted. For example,
the lowest row shows, that there are no patients, that do not
have in common {s3}, or {s3, s4}, or {s2, s3}, or {s1, s3},
or {s1, s4}, i.e., all patients have at least one of these sets in
common. This leads to the assumption, that these groups of
symptoms can be considered as candidates to be representative
ones. {s1} does not occur by 3 patients, and therefore {s1}
can be considered as a representative non-occurrence symp-
tom for the particular disease (if we assume, of course, that
one symptom can be representative for non-disease; this case,
as a corresponding one from the positive connectivity should
be discussed with an expert).

Intuitively it is also clear that if {s1} does not occur by each
of three patients, it does not occur by two or one of them. The
procedures of inheritance and fusion are the same as in the
case of positive connectivities.

The final set of representative symptoms can be differently
established. A possible way is to combine representative
symptoms for a disease and for non this disease. For exam-
ple, if a patient has {s2, s3, s4} and does not have {s1} we
can conclude that the patient has this disease.

2.3 Some remarks, concerning connectivity analysis

We did not consider in the previous sections cases when the
elements of the matrices RSP take the values from [0, 1] or,
moreover, are represented by linguistic terms. In this paper
we restrict ourselves to the “crisp” cases to concentrate on the
explanation of the idea of the connectivity analysis to demon-
strate a way to find similarities between symptoms due to their
presence by patients. If, however, the elements of RSP are
numbers from [0, 1], they are interpreted as a strength of con-
nection (or compatibility) between a patient and a disease.Qs

is a composition of fuzzy relations. Elements of Qs can be
interpreted as a pairwise strength between symptoms for pa-
tients.

It is easy to see that absolute values of the connectivity lev-
els are not decisive for choice of the group of representative
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symptoms. A corresponding ordinal scale can bear the neces-
sary information for connectivity. It means that for particular
calculations we can simply linearly transform obtained con-
nectivity levels into corresponding numbers from [0, 1].

Above we have used a fairly fuzzy procedure to find the
representative symptoms from positive and negative connec-
tivities. The main demands are ”high level of connection” and
rather “wide” set of symptoms, connected at this level. In
some sense, more formal algorithm would be preferable.

In the next section we consider if it is possible to formu-
late the connectivity analysis by similarity relations and cor-
responding fuzzy cluster analysis to assure more convincing
and accurate connectivity analysis.

This idea appears by an intuitive analogy between levels of
connections and α-cuts of fuzzy relations. Let us first recall
several definitions used to build such analogy.

3 Cluster analysis based on fuzzy equivalence
relations

It is known that every fuzzy equivalence relation (sometime
called a similarity relation) induces a crisp partition of its α-
cuts. And therefore, fuzzy clustering problem can be viewed
as the problem of identifying the appropriate fuzzy equiva-
lence relation on given data.

Definition 3.1 Let R be a fuzzy relation, R : X×Y → [0, 1] ,
i.e., R = {((x, y), R(x, y))|(x, y) ∈ X×Y }, the α-cut matrix
αR is denoted by

αR = {(((x, y),α R(x, y))|αR(x, y) = 1 if R(x, y) ≥ α;
αR(x, y) = 0 if R(x, y) < α, (x, y) ∈ X × Y, α ∈ [0, 1]}
Definition 3.2 Binary fuzzy relation R : X × X → [0, 1] is a
fuzzy equivalence relation iff it is reflexive, i. e., R(x, x) = 1;
symmetric, i. e., R(x, y) = R(y, x), and max-min tran-
sitive: R(2) = R ◦ R ⊂ R or, more explicitly R(x, z) ≥
maxy

{
minx,z{R(x, y), R(y, z)}

}
, ∀x, y, z ∈ X

For practical tasks it is easier first to build a fuzzy compat-
ibility relation and then calculate a transitive closure of this
compatibility relation and this way to complete identification
of a fuzzy equivalence relation.

Definition 3.3 A fuzzy relation R on X × X is called a fuzzy
compatibility relation if it satisfies reflexive and symmetric
conditions.

Definition 3.4 The transitive closure RT of a fuzzy relation
R is defined as the relation that is transitive, contains R (
RT ⊃ R) and has the smallest possible membership grades.

Theorem 3.1 [14] Let R be a fuzzy compatibility relation on
a finite universal set X with |X| = n, then the max−min
transitive closure of R is the relation R(n−1).

4 Connectivity analysis in the frame of fuzzy
equivalence relations

Ideally, if Qs (see (1)) would be a similarity relation one can
easy see that levels of connections correspond to α-cuts. Thus,
the analogy between connectivity analysis and a fuzzy cluster-
ing based on fuzzy equivalence relations is established.

NormallyQs is symmetric, but its reflexivity and transitivity
are questionable. To reach these two properties one can do as
follows.

First, as was already told in the section 2.3, we can substi-
tute the elements of Qs by the corresponding ones from inter-
val [0, 1]. Due to the definition of ε-reflexivity, i.e. R(x, x) ≥
ε x ∈ X , 0 < ε < 1 [14], Qs is ε-reflexive. Thus, Qs is a
fuzzy compatibility relation.

Transitive closure of Qs can be find due to the following
procedure [15] based on the results of the Theorem 3.1: find
the transitive closure QT of fuzzy compatibility relation Qs.

Step 1: Calculate Q(2) if Q(2) = Qs or Q(2) ⊂ Qs, then
transitive closure QT = Qs and stop. Otherwise, k = 2,
go to step 2.

Step 2 : If 2k ≥ n − 1, then QT = Q(n−1) and
stop. Otherwise, calculate Q(2k) = Q(2k−1) ◦ Q(2k−1),
if Q(2k) = Q(2k−1), then transitive closure QT = Q(2k)

and stop. Otherwise, go to step 3.

Step 3: k = k + 1, go to step 2.

Due to this procedure a transitive closure of Qs is as follows
(mention a reverse transformation of the previous scale):

QT =




2 2 2 2
2 3 3 3
2 3 5 3
2 3 3 3


 (3)

Following Definition 3.1 the relation (3) induces the parti-
tions of its α-cuts represented in the Table 6:

Table 6:

α-cuts Groups of symptoms
5 {s3}
3 {s2, s3, s4}
2 {s1, s2, s3, s4}
1 {s1, s2, s3, s4}

It can be easy see, that these results coincide with results of
connectivity analysis represented in the Table 3. Relation (3)
represents a transitive closure of Qs, and the elements of this
relation differ from corresponding elements of Qs. A similar
procedure can be done for “negative connectivity” analogy.

Notice, that recently there exist other methods, that trans-
form the initial fuzzy binary relation into reflexive, symmetric
and T -transitive fuzzy binary relation, i.e., a similarity rela-
tion, that contains the initial relation [9].

Although results from Table 6 satisfy our initial intuition,
“the transitive closure method carries a number of major prob-
lems, such as the need of storage and computer time required;
. . . there is no way of controlling the distortion that this method
produce on the data sample”[23].

Several possibilities exist to find a more efficient way than
this transitive closure method does. For instance, an appli-
cation of the representation theorem [23] no longer requires
reflexive and symmetric fuzzy relation as initial data.
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Thus, to build a similarity relation from an initial fuzzy re-
lation, can be done differently. Our approach, based on the
ε-reflexivity, and transitive closure, return a similarity rela-
tion, which α-cuts coincides with group of symptoms from
the connectivity analysis. It was checked for data considered
in different applications [4, 12, 13, 22] and gives the same
results. This is the approach used thus far to establish the va-
lidity of the proposed analogy between connectivity analysis
and the fuzzy cluster analysis based on fuzzy equivalence rela-
tions. Notice that this analogy was found for low dimensional
data, large-scale data is a subject of future investigations.

5 Concluding remarks
Let us summarize what we have done. We have shown how
connectivity analysis can work in the frame of fuzzy equiva-
lence relation. This means, in particular, that due to the above
described analogy, levels of connection in the connectivity
analysis can be represented as α-cuts. In turn, the method-
ology to build clusters based on the α-cuts from fuzzy rela-
tions is already established. Therefore, the connectivity anal-
ysis can be considered as a fuzzy clustering problem based on
the fuzzy compatibility relations.

The question is how to obtain a compatibility relation from
initial table (see, for instance, Table 1). In our discussions
we used QS . As was already told, the connectivity analy-
sis belongs to the family of cluster methods, and particularly,
it can be considered as one of the hierarchical methods [1].
Therefore other dissimilarity measures between patterns and
features (patients and symptoms) can be used and the prob-
lem to find the representative symptoms becomes a problem
of the feature selection and feature extraction problem in the
cluster analysis. A fuzzy compatibility relation can be de-
fined in terms of an appropriate distance function of, e.g., the
Minkowski class [1]. The question is in interpretation of this
relation. Therefore the next investigation can be dedicated to
the construction of QS that allows to inherit useful informa-
tion from the initial table RSP to build representative symp-
toms.
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