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Abstract— In this paper, we consider the problem of solving sys-
tems of fuzzy relation equations in a space with fuzzy preorder. Two
types of these systems with different compositions are considered.
New solvability criteria are proposed for systems of both types. The
new criteria are weaker than all the known ones that are based on the
assumption that fuzzy sets on the left-hand side of a system establish
a fuzzy partition of a respective universe.
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1 Preliminaries
Let throughout this contribution L = 〈L,∨,∧, ∗,→, 0, 1〉 be
an integral, residuated, commutative l-monoid (a residuated
lattice), X a non-empty set and LX a set of L-valued func-
tions on X . Fuzzy subsets of X are identified with L-valued
functions on X (membership functions).

Let X and Y be two universes, not necessary different,
Ai ∈ LX , Bi ∈ LY arbitrarily chosen fuzzy subsets of re-
spective universes, and R ∈ LX×Y a fuzzy subset of X × Y .
The latter is called a fuzzy relation. Lattice operations ∨ and
∧ induce respective union and intersection of fuzzy sets. Two
other binary operations ∗,→ of L are used for compositions
- binary operations on LX×Y . We will consider two of them:
sup-*-composition that is usually denoted by ◦, and inf-→-
composition that is denoted by �. The first one has been in-
troduced by L. Zadeh [16] and the second one by W. Bandler
and L. Kohout [1]. We will demonstrate definitions of both
compositions on particular examples of set-relation composi-
tions A ◦ R and A � R where A ∈ LX and R ∈ LX×Y :

(A ◦ R)(y) =
∨

x∈X

(A(x) ∗ R(x, y)),

(A � R)(y) =
∨

x∈X

(A(x) → R(x, y)).

Remark 1
Let us remark that both compositions can be considered as
set-set compositions where R is assumed to be replaced by a
fuzzy set. In this reduced form they are used in instances of
systems of fuzzy relation equations below.

By a system of fuzzy relation equations with sup-*-
composition (SFRE∗), we mean the following system of equa-
tions

Ai ◦ R = Bi, 1 ≤ i ≤ n, (1)

that is considered with respect to unknown fuzzy relation R ∈
LX×Y . Its counterpart is a system of fuzzy relation equations
with inf-→composition (SFRE→)

Ai � R = Bi, 1 ≤ i ≤ n, (2)

that is considered with respect to unknown R ∈ LX×Y also.
System (1) and its potential solutions are well investigated in
the literature (see e.g. [3, 2, 4, 5, 12, 8, 13, 15]). On the other
hand, investigation of solvability of (2) is not so intensive (see
[2, 10]).

Both systems of fuzzy relation equations arise when a sys-
tem of fuzzy IF-THEN rules is modeled by a fuzzy relation
(below in (3) it is denoted by R), and continuity of the model
[9] is requested. In order to explain this request, we recall
that in relation models, a computation of an output value (B)
which relates to a given input A ∈ LX is performed with the
help of sup-*, respectively inf-→ composition:

B = A ◦ R or B = A � R. (3)

(3) is a computational realization of the Generalized Modus
Ponens inference scheme in fuzzy logic (in a broader sense).
It is often welcome if thus constructed model is continuous in
the sense that when (input) fuzzy sets A′, A′′ ∈ LX are close
to each other (in some space) so do output fuzzy sets A′ ◦ R
and A′′ ◦R (respectively, A′ � R and A′′ � R). We proved in
[9] that this is possible if and only if R solves the respective
system (1) or (2) of fuzzy relation equations. This fact gives
additional importance to the problem of solvability of systems
of fuzzy relation equations.

In general, solutions of (1) or (2) may not exist. There-
fore, investigation of necessary and sufficient conditions for
solvability (or at least, sufficient conditions) is needed. This
problem has been widely studied in the literature, and some
nice theoretical results have been obtained in the cited above
papers.

If the universes of discourse X and Y are infinite then the
complexity of verification of necessary and sufficient condi-
tions is comparable with the direct checking of solvability.
Therefore, the problem of discovering easy-to-check solvabil-
ity conditions or criteria is still open (see [11, 14] for some re-
sults). Besides other, this paper is a contribution to this topic.

We recall basic facts concerning solvability of system (1)
of fuzzy relation equations (similar conditions are known for
system (2), so that we will not recall theme (see e.g. [2, 10])).

Theorem 1
(a) [13] If system (1) with respect to unknown fuzzy relation

R is solvable then relation

R̂(x, y) =
n∧

i=1

(Ai(x) → Bi(y)) (4)

is the greatest solution to (1).
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(b) [5] Let fuzzy sets Ai ∈ LX and Bi ∈ LY , 1 ≤ i ≤ n, be
normal. Then the fuzzy relation

Ř(x, y) =
n∨

i=1

(Ai(x) ∗ Bi(y)) (5)

is a solution to (1) if and only if
∨

x∈X

(Ai(x) ∗ Aj(x)) ≤
∧

y∈Y

(Bi(y) ↔ Bj(y)) (6)

holds for all i, j = 1, . . . , n.

(c) [7] Let fuzzy sets A1, . . . , An ∈ LX be normal and
x1, . . . , xn ∈ X be pairwise different elements such that
for all i = 1, . . . , n, Ai(xi) = 1. Let moreover, for all
i, j = 1, . . . , n,

∨

x∈X

(Aj(x) ∗ Ai(x)) ≤
∧

x∈X

(Aj(x) ↔ Ai(x)) (7)

holds true. Then (1) is solvable if and only if
∨

x∈X

(Aj(x) ∗ Ai(x)) ≤
∧

y∈Y

(Bi(y) ↔ Bj(y)).

In this contribution, we will prove weaker criteria of solv-
ability for systems (1) and (2) than those ones, consider above
in cases (b) and (c) (see Section 5 with the Discussion). More-
over, an algorithm of verifying solvability that is based on each
proposed here criterion has a polynomial complexity.

2 Fuzzy Preorders and Their Normal Upper
Sets

This section is auxiliary with respect to the problem of solv-
ability discussed above. In this section, we will first recall ba-
sic facts that relate to spaces with fuzzy preorder [6]. Then we
will prove new results that are used in Sections below where
we consider the problem of solvability.

We will fix L = 〈L,∨,∧, ∗,→, 0, 1〉 and a non-empty
universe X . Recall that a binary fuzzy relation is a ∗-fuzzy
preorder if it is reflexive and ∗-transitive. Fuzzy preorder
Q : X × X −→ L on X can be generated by an arbitrary
family of fuzzy subsets (Ai)i∈I of X:

Q(x, y) =
∧

i∈I

(Ai(x) → Ai(y)).

If Q is a fuzzy preorder on X then fuzzy set A ∈ LX is
called [6] an upper set of Q if

A(x) ∗ Q(x, y) ≤ A(y), x, y ∈ X.

A necessary and sufficient condition that a family of fuzzy
subsets of X constitutes a family of upper sets of Q has been
proved in [6]. A new result will be proved below in Theorem 2
for a family of normal fuzzy subsets of X . Let us remark that
our assumptions are different from those in [6].

Theorem 2
Let (Ai)i∈I ⊆ LX be a family of normal fuzzy subsets of X
and (xi)i∈I ⊆ X be a family of pairwise different elements
such that for all i ∈ I , Ai(xi) = 1. Then the following two
statements are equivalent:

(i) there exists fuzzy preorder Q on X such that for each
i ∈ I , Ai(x) = Q(xi, x), x ∈ X .

(ii) For all i, j ∈ I ,

Ai(xj) ≤
∧

x∈X

(Aj(x) → Ai(x)). (8)

PROOF: It is easy to see that (i) ⇒ (ii) so that we will
prove the reverse implication. Assume that (Ai)i∈I ⊆ LX

is a family of normal fuzzy subsets of X , and (8) holds true.
If Q(x, y) =

∧
i∈I(Ai(x) → Ai(y)) then by the assertion

above, Q is a fuzzy preorder on X . We will show that state-
ment (i) is valid for Q.

Let us choose and fix i, i ∈ I . For all x ∈ X , and arbitrary
j ∈ I , such that i = j, we have:

Q(xi, x) =
∧

j∈I

(Aj(xi) → Aj(x)) ≤

≤ Ai(xi) → Ai(x) = Ai(x).

On the other hand, by (8), Aj(xi) ≤ Ai(x) → Aj(x) or,
equivalently, Ai(x) ≤ Aj(xi) → Aj(x). Therefore,

Ai(x) ≤
∧

j∈I

(Aj(xi) → Aj(x)) = Q(xi, x).

Hence, for all x ∈ X , Ai(x) = Q(xi, x). �

Corollary 1
Let (Ai)i∈I ⊆ LX be a family of normal fuzzy subsets of
X and (xi)i∈I ⊆ X be a family of pairwise different ele-
ments such that for all i ∈ I , Ai(xi) = 1. Then Q(x, y) =∧

i∈I(Ai(x) → Ai(y)) is the coarsest fuzzy preorder on X
such that (8) holds true.

The following lemma gives another necessary and sufficient
condition that a family of normal fuzzy subsets of X consti-
tutes a family of upper sets of Q. We will use that condition
in our new criteria of solvability.

Lemma 1
Let Ai, i ∈ I , be a family of normal fuzzy subsets of LX , such
that Ai(xi) = 1 for the respective xi ∈ X , i ∈ I . Moreover,
let for all i, j ∈ I , inequality (8) hold true. Then inequality
(8) turns to the equality

Ai(xj) =
∧

x∈X

(Aj(x) → Ai(x)). (9)

PROOF: Assume that for all i, j ∈ I , (8) holds true, i.e.
Ai(xj) ≤

∧
x∈X(Aj(x) → Ai(x)). On the other hand,

∧

x∈X

(Aj(x) → Ai(x)) ≤ Aj(xj) → Ai(xj) = Ai(xj)

so that (9) follows.
Assume that for all i, j ∈ I , (9) holds true. Then (8) follows

immediately. �
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3 SFRE∗ in a Space with a Fuzzy Preorder
and Their Solvability

Assume that L , X , Y are as above, and we are given fuzzy
sets A1, . . . , An ∈ LX and B1, . . . , Bn ∈ LY . In this section
we will investigate the problem of solvability of system (1)
and propose a new criterion that is weaker than all criteria,
based on the assumption that fuzzy sets A1, . . . , An, establish
a fuzzy partition of X , i.e. that they are classes of a respective
similarity on X .

In order to simplify denotation we will choose and fix y ∈
Y and work with the following instance of the system:

Ai ◦ r = bi, 1 ≤ i ≤ n, (10)

where bi = Bi(y), 1 ≤ i ≤ n. In this particular case, system
(10) is considered with respect to unknown fuzzy set r ∈ LX .

Theorem 3
Let fuzzy sets A1, . . . , An ∈ LX be normal and x1, . . . , xn ∈
X be pairwise different elements such that for all i =
1, . . . , n, Ai(xi) = 1. Let moreover, for all i, j = 1, . . . , n,

Ai(xj) =
∧

x∈X

(Aj(x) → Ai(x)) (11)

holds true. Then system (10) is solvable if and only if

Ai(xj) ≤ (bj → bi). (12)

PROOF: By Lemma 1, (11) is equivalent to

(∀i, j)(∀x ∈ X) (Aj(x) ≤ (Ai(xj) → Ai(x))). (13)

Assume that system (10) is solvable. Then

r̂(x) =
n∧

j=1

(Aj(x) → bj)

is a solution so that

(∀j)
∨

x∈X

(Aj(x) ∗ r̂(x)) ≥ bj .

Let us fix j, j = 1, . . . , n. By (13),

(∀k)
∨

x∈X

((Ak(xj) → Ak(x)) ∗ r̂(x)) ≥ bj .

Then
∨

x∈X

((Ak(xj) → Ak(x)) ∗ (Ak(x) → bk)) ≥ bj

so that
Ak(xj) → bk ≥ bj .

The last inequality is equivalent to

Ak(xj) ≤ bj → bk,

and by arbitrariness of k, j, it is equivalent to (12).
On the other hand, assume that (12) holds true. We will

prove that r̂ is a solution of system (10). Let us fix i, i =

1, . . . , n and prove that r̂ solves the i-th equation of (10). In-
deed,

∨

x∈X

(Ai(x) ∗ r̂(x)) ≤
∨

x∈X

(Ai(x) ∗ (Ai(x) → bi)) ≤ bi.

Let us prove the opposite inequality.

∨

x∈X

(Ai(x) ∗ r̂(x)) ≥ Ai(xi) ∗ r̂(xi) =
n∧

j=1

(Aj(xi) → bj).

By (12), Aj(xi) → bj ≥ bi, so that the opposite inequality
easily follows:

∨

x∈X

(Ai(x) ∗ r̂(x)) ≥ bi.

Thus, r̂ is a solution of (10), and the system is solvable. �

4 SFRE→ in a Space with a Fuzzy Preorder
and Their Solvability

Assume that L , X , Y and fuzzy sets A1, . . . , An ∈ LX and
B1, . . . , Bn ∈ LY are as above. In this section we will in-
vestigate the problem of solvability of system (2) and propose
a new criterion. As above we will work with an instance of
system (2), i.e. with the following equation:

Ai � r = bi, 1 ≤ i ≤ n, (14)

where bi = Bi(y), 1 ≤ i ≤ n. System (14) will be considered
with respect to an unknown fuzzy set r ∈ LX .

Theorem 4
Let fuzzy sets A1, . . . , An ∈ LX be normal and x1, . . . , xn ∈
X be pairwise different elements such that for all i =
1, . . . , n, Ai(xi) = 1. Let moreover, for all i, j = 1, . . . , n,
(11) holds true. Then system (14) is solvable if and only if

(∀i, j) Ai(xj) ≤ (bi → bj). (15)

PROOF: By Lemma 1, (11) is equivalent to

(∀i, j)(∀x ∈ X) Aj(x) ≤ (Ai(xj) → Ai(x)),

and can be equivalently transformed to

(∀i, j)(∀x ∈ X) bi∗Aj(xj) ≤ (Aj(x) → bi∗Ai(x)). (16)

Assume that system (14) is solvable. Then

ř(x) =
n∨

j=1

(Aj(x) ∗ bj)

is a solution so that

(∀j)
∧

x∈X

(Aj(x) → ř(x)) ≤ bj ,

and hence

(∀j)
∧

x∈X

(Aj(x) → Ai(x) ∗ bi) ≤ bj ,
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where i = 1, . . . , n. By (16),

(∀i, j) bi ∗ Aj(xj) ≤ bj

that is equivalent to (15).
On the other hand, assume that (15) holds true. We will

prove that ř is a solution of system (14). Let us fix i, i =
1, . . . , n and prove that ř solves the i-th equation of (14). First
we observe that

∧

x∈X

(Ai(x) → ř(x)) ≥
∧

x∈X

(Ai(x) → Ai(x) ∗ bi) ≥ bi.

On the other hand,

∧

x∈X

(Ai(x) → ř(x)) ≤ Ai(xi) → ř(x) =
n∨

j=1

(Aj(xi) ∗ bj).

By (15), for all i, j, Aj(xi) ∗ bj ≤ bi, so that

∧

x∈X

(Ai(x) → ř(x)) ≤ bi.

Thus, ř is a solution of (14), and the system is solvable. �

5 Discussion
In this section, we will show how the discovered criteria relate
to those existed in literature. Moreover, we will justify our
claim in the Abstract that the new criteria are weaker than all
known ones that are based on the assumption that fuzzy sets
on the left-hand side of a system establish a fuzzy partition of
a respective universe. The following criterion is among those
to which we have referred to as known ones (it has been re-
called in Theorem 1). The formulation below is adapted to the
instance (10).

Let fuzzy sets A1, . . . , An ∈ LX be normal and
x1, . . . , xn ∈ X be pairwise different elements such that
for all i = 1, . . . , n, Ai(xi) = 1. Let moreover, for all
i, j = 1, . . . , n,

∨

x∈X

(Aj(x) ∗ Ai(x)) ≤
∧

x∈X

(Aj(x) ↔ Ai(x)) (17)

holds true. Then (10) is solvable if and only if
∧

x∈X

(Aj(x) → Ai(x)) ≤ (bi ↔ bj).

Let us examine condition (7) and compare it with (11). For
simplicity, assume that n = 2 and sets A1, A2 are ordinary
(not fuzzy). It is easy to see that in this case, membership
functions A1, A2 are characteristic functions of the respective
sets and A1(x) ∗ A2(x) is a characteristic function of the in-
tersection A1 ∩ A2. For this particular case, (7) is fulfilled if
and only if either A1 = A2 or A1 ∩ A2 = ∅. Assume that
A1 ⊆ A2 and A1 = A2. Then (7) fails while condition (11) is
valid provided that x2 ∈ A1.

Therefore, in Theorems 3, 4 we have obtained new crite-
ria of solvability that have weaker assumptions than all those
that explicitly or implicitly use the condition that fuzzy sets
A1, . . . , An ∈ LX establish a fuzzy partition of X .

Conclusion

The problem of solvability of systems of fuzzy relation equa-
tions with two different compositions has been considered.
We established new solvability criteria for systems of both
types. The new criteria are based on the assumption that fuzzy
sets on the left-hand side of a system are upper sets of a re-
spective ∗-fuzzy preorder. This assumption is weaker than the
assumption that fuzzy sets on the left-hand side of a system
establish a fuzzy partition of a respective universe.
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