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1 Introduction and motivation
In 1968, that is only 3 years after L. Zadeh has published his
famous work ”Fuzzy Sets”, thus laying down the principles
of what can be called Mathematics of Fuzzy Sets, his student
C.L. Chang [3] introduced the concept of a fuzzy topological
space thus marking the beginning of Fuzzy Topology, the con-
terpart of General Topology in the context of fuzzy sets. Now
Fuzzy Topology is one of the most well developed fields of
Mathematics of Fuzzy Sets, and there are published dozens of
fundamental works on this subject.
In 1982 Z. Pawlak [14] has introduced the concept of a rough
set which can be viewed as a certain alternative for the con-
cept of a fuzzy set for the study of mathematical problems of
applied nature. Pawlak’s work was followed by many other
publications where rough sets and mathematical structures on
the basis of rough sets were introduced, studied, and applied.
Although at the first glance it may seem that the concepts of a
fuzzy set, of a (fuzzy) topological space and of a rough set are
of an essentially different nature and ”have nothing in com-
mon”, this is not the case. Probably, the first one to start study-
ing the intermediate relations between topologies, fuzzy sets
and rough sets was J. Kortelainen [11], see also [12], etc. Fur-
ther a detailed analysis of different relations between fuzzy
sets, rough sets and some other related concepts was done in a
series of papers by Y. Yao (e.g. [20]), and other researchers.
The aim of this work is to present an alternative view on the
relations between fuzzy sets, fuzzy topological spaces and
rough sets and to develop a framework allowing to generalize
these concepts and corresponding theories. In order to real-
ize this aim we introduce the concept of an M-approximative
system (cf [19]) and thus come to the category ASM of M-
approximative systems. Properties of this category are studied
and connections between ASM and its subcategories related
to fuzzy topology, fuzzy sets and rough sets are described.

2 The context
In our work two lattices will play the fundamental role. The
first one is a complete infinitely distributive lattice

L = (L,≤,∧,∨),

whose top and bottom elements are 1L and 0L respectively.
Besides sometimes we will assume that the lattice L is
equipped with one of the following operations: a monotone
mapping c : L → L or a binary operation ∗ : L × L → L.

A lattice L = (L,≤,∧,∨,c ) will be called adjunctive if the
pair (c,c ) is an adjunction

(c,c ) : L � L
op,

that is a ≤ bc ⇐⇒ b ≤ ac ∀ a, b ∈ L, cf e.g. [4]. A lattice
L = (L,≤,∧,∨,c ) will be called involutive if c : L → L is an
involution, that is if (ac)c = a ∀a ∈ L. One can easily see
that in an adjunctive involutive lattice involution c : L → L is
order reversing:

a ≤ b =⇒ bc ≤ ac ∀a, b ∈ L,

and conversely, if c : L → L is order reversing involution,
then (c,c ) : L � L

op is an adjunction.
Concerning the second, binary operation ∗ : L × L → L

(conjunction) it will be assumed that L = (L,≤,∧,∨, ∗) is a
commutative cl-monoid (see e.g. [2]), that is
∗ is commutative: a ∗ b = b ∗ a for all a, b ∈ L;
∗ distributes over arbitrary joins:
a ∗

(∨
i∈I bi

)
=

∨
i∈I(a ∗ bi) ∀ a ∈ L, ∀ {bi | i ∈ I} ⊆ L

and a ∗ 1L = a, a ∗ 0L = 0L.

It is well-known (see e.g. [2]) that in a cl-monoid a further
binary operation �→: L → L (residuation) is defined related to
conjunction ∗ by Galois connection:

a ∗ b ≤ c ⇐⇒ a ≤ b �→ c ∀a, b, c ∈ L.

One can easily see that residuation is nonincreasing by the first
argument and nondecreasing by the second argument, and that
b ∗ (b �→ a) ≤ a ∀a, b ∈ L. In particular b ∗ (b �→ 0) ≤ 0, and
hence

b ≤ (b �→ 0) �→ 0.

This allows to conclude, that by setting ac = a �→ 0 we obtain
an adjunction (c,c ) : L � L

op. Indeed, if a ≤ b �→ 0, then

b ≤ (b �→ 0) �→ 0 ≤ a �→ 0.

A cl-monoid is called a Girard monoid [10] if (a �→ 0) �→ 0 =
a ∀a ∈ L. Hence in case L is a Girard monoid, residuation �→
induces an order reversing involution c : L → L.

An important situation in our research will be the following.
Let L = (L,≤,∧,∨) be a a lattice and X be a set. Then the
L-powerset LX =: L becomes a lattice (L,≤,∧,∨) by point-
wise extending the lattice structure from L to L. Besides L is
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infinitely distributive whenever L was infinitely distributive.
Moreover, if L = (L,≤,∧,∨,c ) is an adjunctive (involutive)
lattice then by pointwise extending operation c from L to L,
an adjunctive (resp. involutive) lattice L = (L,≤,∧,∨,c ) is
obtained. In case L = (L,≤,∧,∨, ∗) is a cl-monoid, by point-
wise extension of ∗ : L× L → L to ∗ : L × L → L we obtain
a cl-monoid L = (L,≤,∧,∨, ∗)
The second lattice belonging to the context of our work is de-
noted by M. At the moment we assume only its completeness,
however sometimes it will be requested that M is completely
distributive. The bottom and the top elements of M are 0M

and 1M resp. As different from L we do not exclude the case
when M is a one-point lattice and hence in this case 0M = 1M.

3 Basic definitions
Definition 3.1 An upper M-approximative operator on L is a
mapping u : L × M → L such that

1. u(0, α) = 0 ∀α ∈ M;

2. a ≤ u(a, α) ∀a ∈ L, ∀α ∈ M;

3. u(a ∨ b, α) = u(a, α) ∨ u(b, α)

4. u(u(a, α), α) = u(a, α);

5. α ≤ β, α, β ∈ M =⇒ u(a, α) ≤ u(a, β).

Operator u is called (upper) semicontinuous (usc) if

• (usc) u(a,
∨

i∈I αi) =
∧

i∈I u(a, αi);

u is called (upper) weakly semicontinuous (uwsc) if

• (uwsc) If u(a, αi) = ā ∀αi, i ∈ I and α =
∧

i∈I αi,
then u(a, α) = ā

Definition 3.2 A lower M-approximative operator on L is a
mapping l : L × M → L such that

1. l(1, α) = 1 ∀α ∈ M;

2. a ≥ l(a, α) ∀a ∈ L, ∀α ∈ M;

3. l(a ∧ b, α) = l(a, α) ∧ l(b, α)

4. l(l(a, α), α) = l(a, α);

5. α ≤ β, α, β ∈ M =⇒ l(a, α) ≥ l(a, β).

Operator l is called (lower) semicontinuous (lsc) if

• (lsc) l(a,
∨

i∈I αi) =
∨

i∈I l(a, αi);

l is called (lower) weakly semicontinuous (lwsc) if

• (lwsc) If l(a, αi) = a0 ∀αi, i ∈ I and α =
∨

i∈I αi,
then l(a, α) = a0

Definition 3.3 A triple (L, u, l), where u : L×M → L and l :
L × M → L are upper and lower M-approximative oper-
ators on L, is called an M-approximative system. In case
when X is a set L is a lattice, L = LX and (L, u, l) is an
approximative system, the quadruple (X, L, u, l) is called an
M-approximative space.

Definition 3.4 An M-approximative system (L, u, l) is called
semicontinuous (s.c) if u is u.s.c. and l is l.s.c. An M-
approximative system (L, u, l) is called weakly semicontinu-
ous (w.s.c) if u is u.w.s.c. and l is l.w.s.c.

Definition 3.5 In case L is equipped with unary operation c :
L → L, an M-approximative system (L, u, l) is called self
dual if

u(ac, α) = (l(a, α))c and

l(ac, α) = (u(a, α))c ∀a ∈ L, ∀α ∈ M

Note that in case when (L,≤,∧,∨,c ) is involutive, the sys-
tem is self-dual iff (u(ac, α))c = l(a, α), and (l(ac, α))c =
u(a, α), ∀a ∈ L,∀α ∈ M;

Remark 3.6 Sometimes we consider M-approximative sys-
tems in case of a one-point lattice M = {·}. Obviously, in
this case the use of the second argument in the notation of ap-
proximative systems is redundant and we write just u(a) and
l(a) instead of u(a, ·) and l(a, ·) respectively. Besides, in this
case we use the terms upper and lower approximative opera-
tor, approximative system, etc., omitting the prefix M.

4 Lattice of M-approximative systems on a
lattice L

Let ASM(L) stand for the family of M-approximative systems
(L, u, l) where L and M are fixed. We introduce an order �
on ASM(L) by setting (L, u1, l1) � (L, u2, l2) iff u1 ≥ u2

and l1 ≤ l2.

Theorem 4.1 (ASM(L),�) is a complete lattice. Its top and
bottom elements are given respectively by

u�(a, α) = l�(a, α) = a ∀a ∈ L, ∀α ∈ M;

u⊥(a, α) =
{

1L if a �= 0L

0L, if a = 0L

l⊥(a, α) =
{

0L if a �= 1L

1L, if a = 1L

The infimum of a family {(L, ui, li) | i ∈ I} ⊆ ASM(L) is
given by (u0, l0) = (

∨
i ui,

∧
i li) and its supremum L is given

by (u0, l0) = (
∧

i ui,
∨

i li) .

Proof Let S = {(L, ui, li) | i ∈ I} ⊆ ASM(L). Let
∧

S := (L, u0, v0) where u0 =
∨
i

ui, l0 =
∧
i

li.

Since u0 ≥ ui and l0 ≤ li for all i ∈ I, to show the complete-
ness of ASM(L), it is sufficient to show that u0 and l0 are
respectively the upper and lower M-approximative operators
on L. However this can be established by the direct verifica-
tion of the conditions (1)-(5) in definitions 3.1, 3.2.

Further, let∨
S = (L, u0, l0) where u0 =

∧
i

ui, l
0 =

∨
i

li.

To show that (u0, l0) is the supremum of S it is sufficient
to notice that u0 and l0 are resp. the upper and lower M-
approximative operators. However the validity of properties
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(1),(2),(4),(5) in definitions 3.2, 3.1 is obvious while the va-
lidity of property (3) can be established referring to the dis-
tributivity of L.

One can easily establish also the following

Theorem 4.2 1. The family (SCASM(L),�) of semicon-
tinuous M-approximative systems is a complete sublat-
tice of ASM(L).

2. The family (WSCASM(L),�) of weakly semicontinu-
ous M-approximative systems is a complete sublattice of
ASM(L).

3. The family (SDASM(L),�) of self-dual M-approxi-
mative systems is a complete sublattice of ASM(L).

5 Category ASM of M-approximative systems
Let M be fixed and let ASM be the family of all M-
approximative systems (L, u, v). To consider ASM as a
category whose class of objects are all M-approximative
systems we have to specify its morphisms. Given
(L1, u1, l1), (L2, u2, l2) ∈ Ob(ASM) by a morphism

f : (L1, u1, l1) → (L2, u2, l2)

we call a mapping f : L2 → L1 such that

1. f : L1 → L2 is a morphism in the category LATop

where LAT is the category of complete infinitely dis-
tributive lattices;

2. u1(f(b), α) ≤ f(u2(b, α)) ∀b ∈ L2,∀α ∈ M;

3. f(l2(b, α)) ≤ l1(f(b), α) ∀b ∈ L2,∀α ∈ M

A morphsim f : (L1, u1, l1) → (L2, u2, l2) is aslo referred
to as a continuous mapping between the corresponding M-
approximative systems

Theorem 5.1 ASM thus obtain is indeed a category.

Proof Let f : (L1, u1, l1) → (L2, u2, l2) and g :
(L2, u2, l2) → (L3, u3, l3) be continuous mappings and let
g ◦ f : L1 → L3 be their composition in LATop. We have to
verify that g ◦ f satisfies conditions (2) and (3) above. Since
it is sufficient to verify these conditions for a fixed α ∈ M,
to simplify the reasonings we omit the second argument in the
notation of the approximative operators. Let c ∈ L3. Then

u1(f(g(c))) ≤ f(u2(g(c))) ≤ f(g(u3(c))),

In a similar way we can show that f(g(l3(c))) ≤ l1(g(f(c))).
Thus the composition g ◦ f : (L1, u1, l1) → (L3, u3, l3) is
continuous whenever f and g are continuous. We conclude
the proof noticing that the identity mapping f : (L, u, l) →
(L, u, l) is continuous.
�

In the sequel, when discussing categorical properties of ASM

and other categories we refer to the monograph [1].

Theorem 5.2 Every source fi : L1 → (Li, ui, li), i ∈ I has
a unique initial lift fi : (L1, u1, l1) → (L2, u2, l2).

Proof Taking into account Theorem 4.1 it is sufficient to
consider the case when the source contains only one morphism
f : L1 → (L2, u2, l2) in LATop.
Define upper approximative operator u1 : L1 × M → L1 by

u1(a, α) =
∧

{f(u2(b, α)) | f(b) ≥ a} ∀a ∈ L1, α ∈ M.

Note first that the condition

u1(f(b), α) ≤ f(u2(b, α)) ∀b ∈ L2 ∀α ∈ M

is obviously fulfilled. We verify that u1 thus defined is indeed
an upper approximative operator. As in the previous theorem
in our reasoning we fix α ∈ M and omit it in notation of
approximative operators when verifying the properties (1) -
(4).
The first two properties are obvious: u1(0L1) = 0L1 ; u1(a) ≥
a∀a ∈ L1.
To verify property (3) let a1, a2 ∈ L1, then

u1(a1 ∨ a2) =
∧
{f(u2(b)) | f(b) ≥ a1 ∨ a2} ≤∧

{f(u2(b1 ∨ b2))f(b) ≥ a1, f(b2) ≥ a2} =∧
{f(u2(b1)) ∨ f(u2(b2)) | f(b1) ≥ a1, f(b2) ≥ a2} =∨
i=1,2 (

∧{f(u2(bi)) | f(bi) ≥ ai}) = u1(a1) ∨ u1(a2).

The converse inequality is obvious.
To verify the fourth condition notice that u1(u1(a)) =
u1 (

∧{f(u2(b)) | f(b) ≥ a}) ≤ ∧{u1(f(u2(b))) | f(b) ≥
a} ≤ ∧{f(u2(u2(b))) | f(b) ≥ a} = u1(a). The converse
inequality is obvious
To verify property (5) for u1 note that

α ≤ β, α, β ∈ M =⇒ u1(a, α) ≤ u1(a, β)

is guaranted by the analogous property of the operator u2 :
L2 × M → L2 and the definition of u1.
Define lower M-approximative operator l1 : L1 × M → L1

by

l1(a, α) =
∨

{f(l2(b), α) | f(b) ≤ a} ∀a ∈ L1∀α ∈ M.

Notice first that

f(l2(b, α)) ≤ l1(f(b), α) ∀b ∈ L2, α ∈ M.

We show that l1 : L1 × M → L1 thus defined is an lower M-
approximative operator. Again, we omit in notation α when
it is fixed. The first two conditions from Definition 3.2 are
obvious. To verify the third condition let a1, a2 ∈ L1. Then
l1(a)∧l1(a2) =

∨{f(l1(b1))∧f(l1(b2)) | f(l1(bi)) ≤ ai, i =
1, 2} ≤ ∨{f(l1(b1 ∧ b2) | f(b1) ∧ f(b2) ≤ a1 ∧ a2} =∨{f(b) | f(b) ≤ a1 ∧ a2} = l1(a1 ∧ a2),
The converse inequality is obvious, The idempotence of the
operator l1 : L1 → L1 is establihed as follows:
l1(l1(a)) = l1 (

∨{f(l2(b)) | f(b) ≤ a}) ≥ ∨{l1f(l2(b)) |
f(b) ≤ a} ≥ ∨{f(l2(b)) | f(b) ≤ a} = l1(a).
The opposite inequality is obvious.
Finaly, the condition α ≤ β, α, β ∈ M =⇒ l1(a, α) ≥
l1(a, β) is guaranted by the analogous property of the oper-
ator l2 : L2 → L2 and the definition of l1.
Let g : (L3, u3, l3) → (L2, u2, l2) be a morphism in ASM and
h : L3 → L1 be a morphism in LATop such that f ◦ h = g.
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Then from the construction it is clear that h : (L3, u3, l3) →
(L1, u1, l1) is a morphism in ASM. Thus f : (L1, u1, l1) →
(L2, u2, l2) is indeed the initial lift of f : L1 → (L2, u2, l2).
The uniqueness of the lift is obvious.
Let AILAT denote the category of adjunctive involutive
complete infinitely distributive systems.

Theorem 5.3 Let L1, L2 be adjunctive involutive lattices and
f : L1 → L2 be a morphism in AILATop. If M-
approximative operators l2 : u2 : L2 × M → L2 are self-
dual, then M-approximative operators l1, u1 : L1 × M → L1

constructed above are self-dual as well.

Indeed, let a ∈ L. Then
l1(ac) =

∨
{f(l2(b)) | f(b) ≤ ac} = (

∧
{(f(l2(b)))c |

f(b) ≤ ac})c = (
∧
{f(u2(bc)) | f(b) ≤ ac})c =

(
∧
{f(u2(bc)) | f(bc) ≥ a})c =

(
∧
{f(u2(d)) | f(d) ≥ a})c = (u1(a))c.

Theorem 5.4 If approximative system (u2, l2) on L2 is semi-
continuous (weakly semicontinuous), then the approximation
system (u1, l1) constructed in the previous theorem is semi-
continuous (resp. weakly semicontinuous), too.

Indeed, if (u2, l2) is semicontinuous, then u1(a,
∨

i αi) =∧
f(u2(b,

∨
i αi) | f(b) ≥ a} =

∧
i

∧{f(u2(b, αi) | f(b) ≥
a} =

∧
i u1(a, αi), and l1(a,

∨
i αi) =

∨{f(l2(b,
∨

i αi) |
f(b) ≤ a} =

∨
i

∨{f(l2(b, αi) | f(b) ≤ a} =
∨

i l1(b, αi).
In a similar way one can establish weak semicontinuity of
(u1, l1) in case (u2, l2) was weakly semicontinuous.

Theorem 5.5 Every sink fi : (Li, ui, li) → L2, i ∈ I has a
unique final lift: fi : (Li, ui, li) → (L2, u2, l2) i ∈ I.

Proof . Taking into account Theorem 4.1 it is sufficient to
consider the case of the sink consisting of a single morphism
f : (L1, u1, l1) → L2. We define an upper M-approximative
operator u2 : L2 × M → L2 by:

u2(b, α) =
∧

{c ∈ L2 | c ≥ b, f(c) ≥ u1(f(b), α)}.

It is obvious that u1(f(b), α) ≤ f(u2(b, α)) ∀ b ∈ L2. We
show that u2 : L2 × M → L2 is an upper M-approximative
operator. We omit notation α when it can be fixed.
It is obvious that u2(0) = 0 and b ≤ u2(b) for every
b ∈ L2. Further, let b1, b2 ∈ L2. Then u2(b1) ∨ u2(b2) =
(
∧{c1 ∈ L2 | c1 ≥ b1, f(c1) ≥ u1(f(b1))}) ∨ (

∧{c2 ∈
L2 | c2 ≥ b2, f(c2) ≥ u1(f(b2))}) =

∧{c1 ∨ c2 | ci ≥
bi, f(ci) ≥ u1(f(bi)), i = 1, 2} ≥ ∧{c | c ≤ b1 ∨ b2, f(c) ≥
b1 ∨ b2, f(c) ≥ u1(f(b1)) ∨ u1(f(b2))} =

∧{c | c ≤
b1∨b2, f(c) ≥ b1∨b2, f(c) ≥ u1(f(b1∨b2))} = u2(b1∨b2).
The opposite inequality is obvious.
u2(u2(b)) =

∧{c | c ≥ u2(b), u1(f(u2(b))) ≤ f(c)}. Notic-
ing that u2(b) is among the elements c satisfying the above
conditions, we conclude that u2(u2(b)) ≤ u2(b). The oppo-
site inequality is obvious and hence u2(u2(b)) = u2(b).
Property (5) for u2 is guaranted by the analogous property of
the operator u1 : L1 × M → L1 and the definition of u2.
Define lower approximation operator l2 : L2 × M → L2 by

l2(b, α) =
∨

{c ∈ L2 | c ≤ b, l1(f(c), α) ≤ f(b)}.

The validity of the first two conditions for l2 : L2 × M → L2

is obvious. To verify the third property let b1, b2 ∈ L2. Then
l2(b1) ∧ l2(b2) =

∨
{c1 ∧ c2 | c1 ≤ b1, c2 ≤ b2, l1(f(c1) ≤

f(b1), l1(f(c2)) ≤ f(b2)} ≤
∨
{c1 ∧ c2 | c1 ∧ c2 ≤ b1 ∧

b2, l1(f(c1)) ∧ l1(f(c2)) ≤ f(b1) ∧ f(b2)} ≤
∨
{c | c ≤

b1 ∧ b2, l1(f(c)) ≤ f(b1 ∧ b2)} = l2(b1 ∧ b2).
The opposite inequality is obvious.
To show the fourth axiom note that

l2(l2(b)) =
∨

{c | c ≤ l2(b), l1(f(c)) ≤ f(l2(b))}

and since l2(b) is one of c appearing in the above formula, it
holds l2(l2(b)) ≥ l2(b). The converse inequality is obvious.
Property (5) for l2 is guaranted by the analogous property of
the operator l1 : L1 × M → L2 and the definition of l2.

Theorem 5.6 If approximation system (u1, l1) on L1 is self-
dual, and f : L1 → L2 is a morphism in the category of
adjunkctive involutive lattices, then the approximation system
(u2, l2) constructed in the previous theorem is self-dual.

Indeeed, given b ∈ L2, we have
(l2(b))c = (

∨{d | d ≤ b, l1(f(d)) ≤ f(b)})c =
∧{dc | d ≤

b, l1(f(d)) ≤ f(b)} =
∧{dc | dc ≥ bc, (l1(f(d)))c ≥

f(bc)} =
∧{dc | dc ≥ bc, u1((f(d))c) ≥ f(bc)} =

∧{dc |
dc ≥ bc, u1((f(dc))) ≥ f(bc)} =

∧{e | e ≥ bc, u1(f(e)) ≥
f(bc)} = u2(bc).
One can easily establish also the following

Theorem 5.7 If M-approximation system (u1, l1) on L1 is
semicontinuous (weakly semicontinuous), then the approxi-
mation system (u2, l2) constructed in the previous theorem is
semicontinuous (resp. weakly semicontinuous).

From theorems 5.2, 5.5, we obtain the following important

Corollary 5.8 Category ASM is topological over the cat-
egory LATop lattices with respect to the forgetful functor
F : ASM → LATop.

Besides, taking into account theorems 5.3, 5.6, 5.4, 5.7 we
have

Corollary 5.9 The category SDASM of self-dual M-
approximative systems is topological over the category
AILATop with respect to the forgetful functor F :
SDASM → AILATop.

Corollary 5.10 The categories SCASM and WSCASM of
semicontinuous and weakly semicontinuous M-approximative
systems are topological over the category LATop with respect
to the forgetful functor F : (W )SCASM → LATop.

6 Categories ASM(L) of M-approximative
L-spaces

An important subcategory of the category ASM is the category
whose ojects are L-powersets LX of arbitrary sets (where L is
a fixed lattice) and whose morphisms are induced by mappings
of the corresponding sets X . Here are the details:
Let L be a fixed complete infinitely distributive lattice and
let the objects of ASM(L) be approximation systems of the
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form (LX , u, l) where LX are L-powersets of arbitrary sets
X . Sometimes it is more convenient to interpret objects of
this category as the corresponding quadruples (X, L, u, l). To
define a morphism F : (LX1 , u1, l1) → (LX2 , u2, l2) consider
a mapping f : X1 → X2 and let f← : LX2 → LX1 be the
backward powerset operator induced by f [16]. Now as mor-
phisms in ASM(L) we take F := f←

op

: (LX1 , u1, l1) →
(LX2 , u2, l2) in case it is a morphism in the category ASM.
An important special case is a two point lattice L = 2: in this
case we come to the category of M-approximative structures
on ordinary sets (of course, for this one has to interpret a sub-
set A of a set X as the characteristic function χA : X → 2).
In particular, if M is a one-point lattice we come to the con-
cept of an approximation system as it was considered by some
authors, see e.g. [20].

7 Categories of fuzzy topologies as
subcategories of ASM

7.1 Category of (L, M)-fuzzy topological spaces

We start with interpreting the category FTOP(L, M) of
(L, M)-fuzzy topological spaces see, e.g. [17], [13], [18], [7]
as a subcategory of ASM. In this section M is assumed to be
completely distributive.

Definition 7.1 A mapping T : LX → M is an (L, M)-fuzzy
topology on X if

1. T (0X) = T (1X) = 1;

2. T (U ∧ V ) ≥ T (U) ∧ T (V )∀U, V ∈ LX ;

3. T
(∨

i∈I Ui

)
≥ ∧

i∈I T (Ui) ∀{Ui | i ∈ I} ⊆ LX

A pair (X, T ) is called an (L, M)-fuzzy topological space and
the value T (U), U ∈ LX is interpreted as the degree of ope-
ness of a fuzzy set U . A mapping f : (X, TX) → (Y, TY ) is
called continuous if TX

(
f−1(V )

)
≥ TY (V )) ∀V ∈ LY .

Let (X, T ) be an (L, M)-fuzzy topological space. By setting

intT (A,α) =
∨

{U ∈ LX | U ≤ A, T (U) ≥ α},

we define the s.c. interior operator intT : LX × M → LX .
The relations between (L,M)-fuzzy topologies and lower

M-approximative operators are described in the theorem;

Theorem 7.2 The interior operator int is a weakly s.c. lower
M-approximative operator on L = LX . Conversely, if l :
LX × M → LX is a weakly s.c. lower M-approximative op-
erator, then by setting

Tl(U) =
∨

{α | l(U,α) ≥ U}

we obtain a mapping Tl : LX → LX satisfying conditions (1)
and (3) of Definition 7.1. Besides TintT = T and lTl

= l.

Further, assume that L is an adjunctive involutive lattice and
let c : L → L be the corresponding involution. Then by setting

clT (A,α) =
∧

{B | B ≥ A, T (Bc) ≥ α}

a closure operator clT : LX × M → LX is defined. One can
easily show that clT is a weakly s.c. upper M-approximative

operator and prove a theorem establishing relations between
weakly s.c. upper M-approximative operators and (L, M)-
fuzzy topologies via closure operators, analogous to Theorem
7.2. Besides the M-approximation system (LX , clT , intT ) is
self-dual.

Thus in case of an involutive adjunctive lattice L an (L, M)-
fuzzy topological space (X, T ) can be interpreted as a weakly
s.c. M-approximative self-dual system (L, cl, int) where L =
LX .

This allows us to identify the category FTOP(L, M) with the
subcategory TopASM(L) of the category ASM whose ob-
jects are self dual weakly s.c. M-approximative systems of
the form (LX , int, cl) and the morphisms are F = f←

op

:
(LX , intX , clX) → (LY , intY , clY ), where f← : LY → LX

are powerset operators induced by (see e.g. [9]) by coninu-
ous mappings f : (X, TX) → (Y, TY ) (cf also the previous
section).

7.2 Category of Chang-Goguen L-topological space

To obtain characterization of L-topological spaces (see [3],
[5]) by means of approximative systems we can restrict the
theory developed in 7.1 by taking the two-point lattice 2 =
{0, 1} in the role of M. Then the category of Chang-
Goguen L-topological spaces can be identified with the sub-
category TopAS(L) of the category TopAS2(L). In par-
ticular TopAS2(2) can be identified with the classical cate-
gory TOP of ordinary topological spaces and continuous map-
pings.

7.3 Category of L-fuzzifying topological space

To obtain characterization of L-fuzzifying topological spaces,
originally defined by U.Hohle [6] and then independently dis-
covered by Mingsheng Ying [21], by means of approxima-
tive systems we restrict the theory developed in 7.1 by tak-
ing the two-point lattice 2 in the role of L (thus L = 2X )
and the lattice L in the role of M. Then the category of L-
fuzzifying topological spaces can be identified with the cate-
gory TopASL(2).

7.4 Category of Hutton fuzzy topological spaces

According to B. Hutton [8], a fuzzy topological space is a pair
(L, τ) where L is a completely distributive lattice and τ ⊆ L
such that 0, 1 ∈ τ ; a, b ∈ τ =⇒ a ∧ b ∈ τ : ai ∈ τ∀i ∈
I =⇒ ∨

i∈I ai ∈ τ. The morphisms f : (L1, τ1) → (L2, τ2)
in the category H-TOP of Hutton fuzzy topological spaces are
mappings f : L2 → L1 such that f(τ2) ⊆ τ1. One can show
that the category H-TOP can be identified with the subcate-
gory HAS of the category ASM. whose objects are self dual
approximative systems (L, l, u) where L is a completely dis-
tributive involutive adjunctive lattice and M = {·}

7.5 Category of variable basis fuzzy topological spaces

In [15] S.E. Rodabaugh has introduced the notion of a
variable-basis fuzzy topological space and defined the corre-
sponding category R-TOP. Further the theory of variable ba-
sis fuzzy topological spaces and some related categories was
developed in a series of papers by S.E. Rodabaugh, P. Eklund
and other authors. The category of variable-basis fuzzy topo-
logical spaces also can be obtained as a subcategory of the cat-
egory ASM. However to describe it in this way and to give an
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explicite characterization by means of M-approximative sys-
tems we need more space than it is allowed here.

8 Categories related to rough sets
8.1 Rough sets

Let ρ ⊆ X × X be a binary relation on a set X and let
R(x) = {x′ | xρx′} be the right ρ-class of x ∈ X . Given
A ∈ 2X let l(A) = A� = {x | R(x) ⊆ A}, u(A) =
A� = {x | R(x) ∩ A �= ∅}. In case ρ is reflexive and tran-
sitive u : 2X → 2X and l : 2X → 2X are, respectively,
upper and lower approximative operators on 2X = P(X) and
(X, 2,� ,� ) is an approximative space. Besides, one can eas-
ily see that the system (2X ,� ,� ) is self dual: Ac� = A�c)
for any A ⊆ X . Such operators and corresponding approxi-
mative spaces in case when ρ is an equivalence relation were
introduced by Pawlak [14] under the name ”rough set”. Fur-
ther approximative operators operators induced by binary re-
lations, either general or satisfying special properties, were
studied by different authors, see e.g. [11], [12], [20], etc. Note
however, that in case ρ is not reflexive or transitive, this oper-
ators may fail to be approximative operators in our sense.
In case when ρ is only reflexive, J. Järvinen and J. Kortelainen
[12] along with operators A� and A� consider also operators
u′(A) = A� = {x | R−1(x) ∩ A �= ∅}, l′(A) = A� =
{x | R−1(x) ⊆ A} and show that (u, l′) and (u′, l) form
Galois connection: u(a) ≤ b ⇐⇒ a ≤ l′(b); l(a) ≤ b ⇐⇒
a ≤ u′(b). Thus in case ρ is also transitive, we obtain ”Galoi-
connected” approximative systems (2X ,� ,� ) and (2X ,� ,� ).

8.2 L-rough sets

Generalizing the previous situation let L be a cl-monoid
(L,∧,∨, ∗), X be a set and ρ : X × X → L be an L-
relation on X . Further, assume that ρ is reflexive (that is
ρ(x, x) = 1 ∀x ∈ X) and transitive (that is ρ(x, y) ∗
ρ(y, z) ≤ ρ(x, z) ∀x, y, z ∈ X.) For every x ∈ X we
define R(x) : X → L by R(x)(x′) = ρ(x, x′) Fur-
ther, given A ∈ LX let lower and upper approximative
operators l(A) ∈ LX , and u(A) ∈ LX be defined by
l(A)(x) = infx′∈X(R(x)(x′) �→ A(x′)) and u(A)(x) =
supx′∈X(R(x)(x′) ∗ A(x′)) respectively. One can show that
(LX , u, l) is an L-approximative system. We refer to such
kind of an approximative system as an L-rough system in-
duced by the L-relation ρ. In case (L,∧,∨, ∗) is a Girard
monoid, the system (LX , u, l) is self dual. Further, if L = 2
is a two-point lattice we come to the situation described in the
previous subsection. In an natural way we define morphisms
for the category Rgh(L) of L- rough systems and characterize
it as a category of approximative systems.

9 Defuzzification approximation operators
Finally we sketch how the concept of an approximative sys-
tems can be applied for fuzzy sets themselves.
Let L = (L,∧,∨,≤) be a complete lattice, X be a set and
L = LX Define u : L×L → L and l : L×L → L as follows:
Given A ∈ LX let

u(A,α) = A ∨ 1Aα
, l(A,α) = α · 1Aα

∧ A,

where Aα = {x ∈ X | A(x) ≥ α} In this way we ob-
tain L-approximation operators on the L-powerset of a set

X which can be interpreted as resp. upper and lower level-
defuzzification operators .
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[19] A. Šostak, Approximative fuzzy systems and approximative
fuzzy spaces, In: 9th International Conference on Fuzzy Set
Theory and Applications: FSTA2008. Abstracts, p. 118.

[20] Y.Y. Yao, A comparative study of fuzzy sets and rough sets,
Inf. Sci., 109 (1998), 227 - 242.

[21] Ying Mingsheng, A new approach to fuzzy topology, Part I,
Fuzzy Sets and Syst., 39 (1991), 303-321.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1611


