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Abstract— The tuning of Fuzzy Rule Base-Systems is necessary
to improve their performance after the extraction of rules. This op-
timization problem can become a hard one when the size of the con-
sidered system in terms of the number of variables, rules and data
samples is big. To alleviate this growth in complexity, we propose a
distributed genetic algorithm which explotes the nowadays available
parallel hardware (multicore microprocessors and clusters). The em-
pirical performance in solution quality and computing time is as-
sessed by comparing its results with those from a highly effective
sequential tuning algorithm. Both methods are applied for the mod-
eling of four well-known regression problems.

Keywords— 2-tuples, Distributed Genetic Algorithms, Fuzzy
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1 Introduction
Fuzzy rule based-systems (FRBS) have become a wide choice
when addressing modeling and system identification prob-
lems. An essential component in these systems is the fuzzy
rule base, together with the data base compose the knowledge
base. The construction of this knowledge base is a key step
for obtaining a correct system.

It is very difficult for human beings to obtain appropiate
rules when dealing with real-world complex problems with
many variables and where the necessary number of rules is
high. When an expert determines the rule set for a determined
problem, generally it will not be the optimal set in terms of
performance. Performance is an important goal design for
whatever the system is intended to be used: either with ap-
proximation purposes or when searching for an interpretable
system. To cope with this problem a refining process that ad-
justs the system is required. This process is widely known as
tuning.

Classically, tuning processes involve changing the shape
of the Membership Functions (MFs) associated to the labels
in the database so that the best cooperation among rules is
reached. However as the number of variables and rules in-
creases, tuning methods show poor performance due to the
growing complexity of the search space. Moreover, the comp-
tuing time consumed by these approaches grows with the com-
plexity of the search space which would result in a procedures
that are not useful in practice.

Nowadays parallel hardware and software has become very
affordable. They are broadly available which makes them per-
fect to deal with complex search spaces in order to improve the
poor performance achieved with classical tuning approaches.
Clear examples in this line are multicore processors and linux
clusters.

In this paper, we address the tuning problem and present
a distributed method for lateral FRBS tuning. The paper is

structured as follows: in the second section of the paper the
lateral tuning of FRBSs problem is stated and an efficient se-
quential specialized algorithm is reviewed. The third section
describe our proposal for the distributed tuning for FRBS. An
empirical evaluation of the distributed algorithm is presented
in the fourth section. Finally some conclusions and future
work is commented in the last section.

2 Lateral Tuning of FRBSs
The tuning of FRBS is a problem long studied by researchers
in the community [1, 2]. A quite efficient procedure fuzzy
systems tuning was presented recently by Alcalá et al. [3]. We
choose that as a reference to compare the perfomance of our
proposal with. We describe this method briefly in this section.

2.1 Lateral Tuning: The Linguistic 2-Tuples Representation

In [3], a new procedure for FRBSs tuning was proposed. It
is based on the linguistic 2-tuples representation scheme in-
troduced in [4], which allows the lateral displacement of the
support of a label and maintains the interpretability at a good
level. This proposal introduces a new model for rule repre-
sentation based on the concept of symbolic translation [4].
The symbolic translation of a label is a number in [-0.5,
0.5), expressing this interval the domain of a label when it
is moving between its two adjacent lateral labels (see Fig-
ure 1.a). Let us consider a generic linguistic fuzzy partition
S = s0, . . . , sL−1} (with L representing the number of la-
bels). Formally, we represent the symbolic translation of a
label si in S by means of the 2-tuple notation,

(si, αi), si ∈ S, αi ∈ [−0.5, 0.5).

The symbolic translation of a label involves the lateral varia-
tion of its associated MF. Figure 1 shows the symbolic trans-
lation of a label represented by the 2-tuple (s2,−0.3) together
with the associated lateral variation.

In the context of FRBSs, the linguistic 2-tuples could be
used to represent the MFs comprising the linguistic rules. This
way to work, introduces a new model for rule representation
that allows the tuning of the MFs by learning their respec-
tive lateral displacements. With respect to the classic tuning,
usually considering three parameters in the case of triangular
MFs, this way to work involves a reduction of the search space
that eases a fast derivation of optimal models, improving the
convergence speed and avoiding the necessity of a large num-
ber of evaluations.

In [3], two different rule representation approaches have
been proposed, a global approach and a local approach. The
global approach tries to obtain more interpretable models,
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Figure 1: Symbolic Translation of a Label and Lateral Displacement of the associated MF

while the local approach tries to obtain more accurate ones. In
our case, tuning is applied at the level of linguistic partitions
(global approach). By considering this approach, the label sv

i

of a variable v is translated with the same αv
i value in all the

rules where it is considered, i.e., a global collection of 2-tuples
is used in all the fuzzy rules. Notice that from the parameters
αv

i applied to each label we could obtain the equivalent trian-
gular MFs. Thus, an FRBS based on linguistic 2-tuples can be
represented as a classic Mamdani FRBS [5]. Refer to [3] for
further details on this approach.

2.2 Sequential Algorithm for the Lateral Tuning of FRBSs

In [3], a sequential genetic algorithm was proposed to per-
form a lateral tuning of previously obtained FRBSs. A short
description of this algorithm is given in the next (see [3] for a
detailed description).

The used model was the genetic model of CHC [6]. CHC
makes use of a “Population-based Selection” approach. N
parents and their corresponding offsprings are combined to
select the best N individuals to take part of the next popu-
lation. The CHC approach makes use of an incest prevention
mechanism and a restarting process to provoke diversity in the
population, instead of the well known mutation operator.

This incest prevention mechanism is considered in order to
apply the crossover operator, i.e., two parents are crossed if
their hamming distance divided by 2 is over a predetermined
threshold, T . Since a real coding scheme is considered, each
gene is transformed by considering a Gray Code with a fixed
number of bits per gene (BITSGENE) determined by the
system expert. In our case, the threshold value is initialized
as:

T = (#GenesCT ∗BITSGENE)/4.0.

Following the original CHC scheme, T is decreased by one
when the population does not change in one generation. In
order to avoid very slow convergence, T is also decreased
by one when no improvement is achieved with respect to the
best chromosome of the previous generation. The algorithm
restarts when T is below zero.

In the following, the components used to design the evolu-
tionary tuning process are explained. They are: DB codifica-
tion, chromosome evaluation and genetic operators.

2.3 DB Codification

A real coding scheme is considered, i.e., the real parameters
are the GA representation units (genes). Let us consider n
system variables and a fixed number of labels per variable L.
Then, a chromosome has the following form (where each gene
is associated to the tuning value of the corresponding label),

(α1
1, . . . , α

L
1 , α1

2, . . . , α
L
2 , . . . , α1

n, . . . , αL
n)

To make use of the available information, the initial FRBS
obtained from an automatic fuzzy rule learning method is
included in the population as an initial solution. To do so,
the initial pool is obtained with the first individual having all
genes with value ‘0.0’, and the remaining individuals gener-
ated at random in [-0.5, 0.5).

2.4 Chromosome Evaluation

To evaluate a determined chromosome the well-known Mean
Square Error (MSE) is used:

MSE =
1

2 ·N
E∑

l=1

(F (xl)− yl)2,

with E being the data set size, F (xl) being the output obtained
from the FRBS decoded from the said chromosome when the
l-th example is considered and yl being the known desired
output.

2.5 Genetic Operators

The genetic operators considered in CHC are crossover and
restarting approach (no mutation is used). A short description
of these operators comes next:

• Crossover. The crossover operator is based on the the
concept of environments. These kinds of operators show
a good behavior in real coding. Particularly, the Parent
Centric BLX (PCBLX) operator [7] (an operator based
on BLX-α) is considered.

• Restarting. To get away from local optima, this algorithm
uses a restart approach [6]. In this case, the best chro-
mosome is maintained and the remaining are generated
at random within the corresponding variation intervals [-
0.5, 0.5). It follows the principles of CHC [6], perform-
ing the restart procedure when threshold L is below zero.
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3 A distributed genetic algorithm for FRBS
tuning

The availability of extremely fast and low cost parallel hard-
ware in the last few years benefits the investigation on new ap-
proaches to existing optimization algorithms. The key to these
new approaches is achieving not only gains in time, which is
somehow inherent to distributed algorithms, but gains in qual-
ity of the solutions found.

Distributed Genetic Algorithms (DGA) are excellent opti-
mization algorithms and have proven to be one of the best op-
tions when trying to cope with large scale problems and when
the classic approaches take too much time to give a proper
solution.

One procedure for the parallelization of GA comes from
the consideration of spatial separation of populates. Schemat-
ically:

1. Generate a random population, P.
2. Divide P into n subpopulations: SPi,

i = 1, ..., n.
3. Define a topology for SP1, ..., SPn.
4. For i = 1 to n do:
4.1. Apply in parallel during FM

generations the genetic operators.
4.2. Send in parallel NM chromosomes to

neighbour subpopulations.
4.3. Receive in parallel chromosomes

from neigbour subpopulations.
5. If stopping criteria is not meet then

go back to step 4.

In this section the DGA [8] used for Fuzzy Rule-based Sys-
tem tuning is described.

3.1 Gradual Distributed Real-Coded Genetic Algorithm
used

Gradual Distributed Real-Coded Genetic Algorithms (GDR-
CGAs) are a kind of heterogeneous DGAs based on real cod-
ing where subpopulations apply genetic operators in differ-
ent levels of exploitation/exploration. This heterogeneous ap-
plication of genetic operators produce a parallel multiresolu-
tion which allows a wide exploration of the search space and
effective local precision. Due to appropiate connections be-
tween subpopulations in order to gradually exploit multireso-
lution,these algorithms achieve refinement or expansion of the
best emerging zones of the search space.

The GDRCGA [8] used for FRBS tuning employs 8 sub-
populations in a hypercube topology as seen in Figure 2.

In this topology two important groups of subpopulations
can be clearly identified:

1. Front side: this side of the hypercube is oriented to ex-
plore the search space. In this side, four subpopulations,
E1, ..., E4, apply exploration tuned genetic operators in
a clockwise increasing degree.

2. Back side: subpopulations in the back side of the hyper-
cube, e1, ..., e4, apply exploitation oriented genetic oper-
ators in a clockwise increasing degree.

E1

E2E3

E4

e4 e1

e3 e2

Back side (Exploitation)

Front side (Exploration)

+

+ -

-

Figure 2: Hypercube topology for GDRCGA

One of the key elements of DGAs is the migration policy of
individuals between subpopulations. In this particular model,
a immigration process [9] is achieved when the best chromo-
some in every subpopulation abandons it and moves to an im-
mediate neighbour. Due to this immigration policy, three dif-
ferent immigration movements can be identified depending on
the subpopulations involved:

1. Refinement migrations: individuals in the back side
move clockwise to the immediate neighbor, i.e. from
e2 to e3. Chromosomes in the front side move counter-
clock from a more exploratory subpopulation to a less
exploratory oriented one.

2. Expansion migrations: individuals in the back side
move counterclock to the immediate neighbor and chro-
mosomes in the front side move clockwise from a less
exploratory subpopulation to a more exploratory oriented
one, i.e. from E4 to E1.

3. Mixed migrations: subpopulations from one side of the
hypercube exchange their best individual with the coun-
terpart subpopulation in the other side: interchange be-
tween Ei and ei, i = 1 . . . 4.

Figure 3 shows the three different migration movements de-
scribed above.

The genetic operators used in the distributed model are:

• Selection mechanism: linear ranking selection (LRS)
[10] with stochastic universal sampling [11]. Values of
LRS parameter is shown if Table 1.

• Crossover operator: BLX-α [12] operator using values
for α shown in Table 2.

• Mutation operator: non-uniform mutation operator ap-
plied with probability Pmut = 0, 125.

Table 1: LRS parameter values for each subpopulation

Exploitation Exploration
+ ← − − → +
e4 e3 e2 e1 E1 E2 E3 E4

0,9 0,7 0,5 0,1 0,9 0,7 0,5 0,1

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1742



E1

E2E3

E4

e4 e1

e3 e2

E1

E2E3

E4

e4 e1

e3 e2

E1

E2E3

E4

e4 e1

e3 e2

Refinement migrations Expansion migrations

Mixed migrations

Figure 3: Three different migration movements

Table 2: Values of α for each subpopulation

Exploitation Exploration
+ ← − − → +
e4 e3 e2 e1 E1 E2 E3 E4

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

As stated in [8], the frequency in which migration move-
ments occur is crucial to avoid the classic withdraws of DGAs:
the conquest and noneffect problems. In order to reduce the
negative effect of these problems, immigrants stay in the re-
ceiving subpopulations for a brief number of generations. Be-
sides, a restart operator is used to avoid stagnation of the
search process. This restart operator randomly reinitializes all
subpopulations if non-significant improvement of the best ele-
ment is achieved for a number of generations. Also an elitism
strategy is used in order to keep the best adapted individual of
every subpopulation.

4 Empirical evaluation
In this section we describe the empirical evaluation we per-
formed in order to assess the merits of our proposal.

We consider the tuning of FRBSs constructed for the mod-
eling of some well-known regression problems. We have com-
pared the quality of the tuning performed by the sequential al-
gorithm and our proposal. We have selected four problems,
some of their salient features are shown in Table 3 displayed
in increasing complexity order.

Table 3: Data sets used to evaluate the algorithm

Data set Variables Instances
Electrical Maintenance 5 1056

Trasury 16 1049
Weather-Izmir 10 1461

Abalone 8 4177

A five-fold cross-validation approach has been used. So five
runs with different independent test sets have been carried out
for each problem. The performance of a fuzzy rule is mea-
sured as mean squared error (MSE) over the test set.

Our proposed distributed algorithm is compared with a spe-
cialized sequential genetic algorithm (CHC) [3] in terms of
quality of the solutions achieved (MSE) as well as in time. As
a starting point we have used the results achieved by apply-
ing Wang & Mendel fuzzy rule learning method [13]. These
initial results are shown in Table 4.

Table 4: Initial results using Wang & Mendel fuzzy rule learn-
ing method

Dataset Training σtra Test σtest

Electrical M. 57605.83 2840.78 57934.25 4732.66
Treasury 1.636 0.121 1.632 0.182

Weather-Izmir 6.944 0.720 7.368 0.909
Abalone 3.341 0.130 3.474 0.247

Generally when comparing a distributed or parallel ap-
proach with some other sequential algorithm an interesting
measure is the execution time gain ratio. This ratio could be
defined as follows:

R =
Tseq

Tdist
(1)

where Tseq is the time spent by the sequential algorithm and
Tdist is the execution time of the distributed approach. The
higher the value of R, the better. Time gain ratio values ob-
tained in the empirical experimentation are shown in Table 5.

An interesting point to which to pay attention is the evolu-
tion of the mean squared error as the number of evaluations
increases. So, three different numbers of evaluations have
been choosen: 10000, 25000 and 50000 evaluations per run.
The results in terms of quality of the solutions attained are
shown in Table 6. An important fact to notice is that the mean
squared error achieved with the distributed method is lower
than the error obtained with the specialized genetic algorithm
in all data sets at 50000 evaluations. The distribuited also ob-
tains good results with fewer iterations in some cases (e.g.
Electrical Maintenance, 25000 it.), but clearly its real effec-
tiveness will be reached when the computation load is higher.
Actually, we are running further experiments with datasets of
higher complexity.

Table 5: Time gain ratio with 50000 evaluations

Data set Tseq Tdist R
Electrical Maintenance 187,3 391,6 0,479

Trasury 525,3 739,7 0,710
Weather-Izmir 849,8 867,1 0,980

Abalone 1980,9 942,5 2,101

As shown in Table 5, the time gain ratio, R, increases with
the problem complexity. In the less complex data sets the ra-
tio obtained is substantially low because the sequential spe-
cialized genetic algorithm is very fast and the time spent in
communications of the distributed approach slows it down in
comparision. As the complexity of the data set increases the
time gain ratio also increases, showing that the distributed ap-
proach in the most complex data set is more than two times
faster than the sequential specialized genetic algorithm.
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Table 6: Mean squared errors in training and test sets. The winner for each pair of training is in italics. The winner for each
pair of test is boldfaced

CHC GDRCGA
Data set Evaluations Training Test Training Test

Electrical Maintenance
10000 2.59363671E+04 2.92591821E+04 2.65539710E+04 2.89024830E+04
25000 2.48690100E+04 2.80510895E+04 2.39248797E+04 2.67720415E+04
50000 2.46214328E+04 2.78282761E+04 2.26682075E+04 2.54097540E+04

Abalone
10000 2.61355003E+00 2.79981355E+00 2.65916770E+00 2.79026550E+00
25000 2.60333453E+00 2.79298130E+00 2.59992700E+00 2.76143590E+00
50000 2.60303744E+00 2.79117626E+00 2.57035010E+00 2.75904570E+00

Weather-Izmir
10000 1.68875432E+00 1.89318352E+00 1.89195950E+00 1.95458830E+00
25000 1.64117336E+00 1.86996710E+00 1.66238700E+00 1.87669540E+00
50000 1.64010963E+00 1.86891124E+00 1.57019250E+00 1.86195430E+00

Treasury
10000 1.71238672E-01 1.86722425E-01 2.12486800E-01 2.16882700E-01
25000 1.33618274E-01 1.50895419E-01 1.42194200E-01 1.67407400E-01
50000 1.20604483E-01 1.37784224E-01 1.15845500E-01 1.31803000E-01

5 Conclusions and final remarks

We have developed and presented a very promising distributed
algorithm for FRBSs lateral tuning that achieves better results
than a specialized genetic algorithm. Due to its distributed na-
ture and consequently the spatial separation implied, it needs
more evaluations to converge than a classic sequential algo-
rithm. It always presents the same behaviour in comparision
to the specialized sequential algorithm: with a small number
of evaluations it offers a higher error than the sequential ap-
proach but when the evaluations are high it gives better quality
solutions.

Empirical results show that when the complexity of the
problem grows, our distributed method takes adventage of the
large computing times and converges to a better solution in
less time. This property makes the distributed tuning algo-
rithm very convenient when dealing with large scale data sets.

The distributed algorithm takes longer than the sequential
algorithm when dealing with small size data sets mainly due
to two reasons: interprocess communication in the distributed
approach implies additional execution time which can not
be paralelized and the specialized algorithm is optimized for
small size data sets where the search space is not too complex.

Since execution time and quality of the results are two prop-
erties always in conflict somehow, our approach is very con-
venient since it can be graduated in order to achieve faster
execution times with a small cost in quality and viceversa.

We expect to achieve great execution time gains when ap-
plying the distributed FRBSs tuning algorithm with large scale
data sets with a non significant loss of quality.
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