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Abstract— Group technology (GT) is a useful way to increase 
productivity with high quality in cellular manufacturing systems 
(CMSs), in which cell formation (CF) is a key step in the GT 
philosophy. When boundaries between groups are fuzzy, fuzzy 
clustering has been successfully adapted to solve the CF problem; 
however, it may result uneven distribution of parts/machines where 
the problem becomes larger. In this case, particle swarm 
optimization (PSO) can be used to tackle such a hard problem. This 
paper proposes a hybrid algorithm based on the fuzzy clustering 
and particle swarm optimization (FPSO) to solve the given CF 
problem. We experiment a number of examples to show the 
efficiency of the proposed algorithm and find that our proposed 
FPSO algorithm is able to obtain good results at reasonable time. 

Keywords— Cellular manufacturing systems, cell formation, 

fuzzy clustering, particle swarm optimization (PSO) 

1 Introduction
Cell formation (CF) is a key step in Group technology 

(GT) that is used to design a good cellular manufacturing 

system by using the similarities of parts related to machines 

so that it can identify part families and machine groups. The 

parts in the same machine group have similar requirement so 

that GT can reduce travel and setup time. In CF the 

part/machine matrix, which has m�p dimensions with binary 

components, is usually described and given. The m rows 

indicate machines and p columns represent p parts that need 

to be operated upon. In matrix m, ‘‘1’’ (‘‘0’’) represents that 

this part should be (not) worked on the machine. The matrix 

exhibits parts requirement relative to machines. Our 

objective is to group parts and machines just like a cell. 

 Cell formation problem (CFP) is shown to be NP-hard 

[1] in the strong sense, and obtaining an optimal solution for 

the large-sized problems in reasonable computational time is 

extremely difficult.  

 Clustering involves the task of dividing data points into 

homogeneous classes or clusters so that items in the same 

class are as similar as possible and items in different classes 

are as dissimilar as possible. In real applications there is very 

often no sharp boundary between clusters so that fuzzy 

clustering is often better studied for the data. Membership 

degrees between zero and one are used in fuzzy clustering 

instead of crisp assignments of the data to clusters. In fuzzy 

clustering, the data points can belong to more than one 

cluster, and associated with each of the points are 

membership grades which indicate the degree to which the 

data points belong to the different clusters. In deterministic 

CF methods assumed well- defined boundaries between 

part–machine cells. These crisp boundary assumptions may 

fail to fully describe the case where the part–machine cell 

boundaries are fuzzy. This is why fuzzy clustering 

algorithms were applied for CF. 

 There are many CF methods in the literature [2]. The CF 

models can also be categorized into those of crisp or fuzzy. 

Crisp models assume that there are well-defined boundaries 

between groups and therefore assign each part or machine to 

only one family. In reality, some parts may belong to one 

part family, but there may have parts whose linkages are 

much less evident. 

 Various Clustering methods have been proposed to 

solve the CF problem. The fuzzy c-means (FCM) algorithm 

was first used in part-family formation by Xu and Wang [3]. 

FCM algorithm performs well with small and well- 

structured data sets. However, when the data set becomes 

larger, the algorithm may result in clustering errors, 

infeasible solutions, and uneven distribution of 

parts/machines. Then, several researchers have proposed 

alternatives to remedy these weaknesses with mixed success. 

For example, Chu and Hayya [4] improved the study carried 

out by Xu and Wang [3]. 

 Al- Ahmari [5], Yang et al. [6] and Feng et al. [7] 

applied concepts of fuzzy clustering on the cell formation 

problem. Li et al. [8] improved fuzzy clustering algorithm to 

overcome the deficiencies of FCM. Since large instances are 

so difficult to optimally solve, approximate methods are 

needed. Perhaps, meta-heuristics are the most successful 

approximate methods that have been used so far. Thus, for 

example, Boctor [9] and Chen and Srivastava [10] used 

simulated annealing. Genetic algorithms have been used by 

Kazerooni et al. [11], Brown and Sumichrast [12], 

Ravichandran et al. [13]. Aljaber et al. [14] and Lozano et al. 

[15] applied tabu search. Attila [16] proposed an ant system 

algorithm. Zhao et al. [17] used swarm intelligence, and 

finally Andres and Lozano [18] presented particle swarm 

optimization (PSO) algorithm to solve the cell formation 

problem addressed in GT. 

 In the previous work, fuzzy clustering and PSO have 

been applied in the CF in separate. Our aim is to design a 

fuzzy particle swarm optimization (FPSO) clustering 

algorithm to solve the part–machine grouping problem, 
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which is known as a hard combinatorial problem. 

 The rest of this paper is given bellow. The fuzzy cell 

formation model is presented in Section 2. In Section 3, the 

PSO algorithm is presented. The proposed FPSO algorithm 

is presented in Section 4. Computational results with a 

number of test problems taken from the literature are shown 

in Section 5. Finally, Section 6 draws conclusions, suggests 

directions for future research and discusses the limitations of 

the research. 

2 Fuzzy clustering problem  
The fuzzy cell formation (FCF) problem described by Li 

et al. [8] as follows: Given the routing information of n parts 

and m machines, the goal of CF is to cluster the parts into c
part families and the corresponding machines into machine 

cells. The classification result can be expressed as a matrix 

U= [�ik] c�n , (k= 1, 2,…, n and i= 1, 2,…, c), and �ik is the 

membership degree of part k to group i, which satisfies: 
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The FCM clustering algorithm is based on the 

minimization of the following equation:  
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where, m>1 is a real number governing the influence of 

membership grades, Vi is the cluster center of the part family 

i, and xk is the vector of part k. The necessary conditions for 

minimizing J(p) are the following update equations: 

1

1

[ ]

[ ]

n
m

ij k
k

i n
m

ij
k

x
V

�

�

�

�

�
�

�
(5)

which, c= 1, 2, … , n.
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where, 2

ik Vx 	  represents the Euclidean distance between xk

and Vi , and �ik
(t+1) is the membership degree of part k in 

group i.
Many variations of FCM algorithms can be found in 

Bezdek [19]. The algorithm is based on the assumption that 

the desired number of clusters c, real number m, stopping 

criterion�, and a particular distance are given. 

Step 1: Let t=0 and select an initial fuzzy pseudo-partition 

p(0).

Step 2: Calculate c cluster centers, V1
(t), …, Vc

(t), by (5) for 

p(t) and the chosen value of m.

Step 3: Define �i
 (t+1) by (6) and update p(t+1)

Step 4: Compare p(t) and p(t=1). If ��	� )()1( tt pp , then stop 

the algorithm; otherwise, increase t by one and then return to 

Step 2. 

 Since the fuzzy clustering problem is a combinatorial 

optimization problem that is hard to solve [20]. Large 

instances are so difficult to optimally solve, approximate 

methods are then needed. 

3 Particle swarm optimization 
In particle swarm optimization (PSO) a number of simple 

entities—the particles—are placed in the search space of some 

problem or function, and each evaluates the objective function 

at its current location. Each particle then determines its 

movement through the search space by combining some aspect 

of the history of its own current and best (best-fitness) locations 

with those of one or more members of the swarm, with some 

random perturbations. The next iteration takes place after all 

particles have been moved. Eventually the swarm as a whole 

likes a flock of birds collectively foraging for food is likely to 

move close to an optimum of the fitness function.

 There are many variants of the PSO proposed in the 

literature so far, when Eberhart and Kennedy [21] first 

introduced this technique. A version of this algorithm is 

used for part-machine grouping by Andres and Lozano [18]. 

  For description of The PSO algorithm, first, let me 

define the notation adopted in this paper: the i-th particle of 

the swarm is represented by the D-dimensional vector 

xi=(xi1, xi2, …, xiD) and the best particle of the swarm (i.e., 

the particle with the smallest function value) is denoted by 

index pg. The best previous position (i.e., the position giving 

the best function value) of the i-th particle is recorded and 

represented pi=(�i1, �i2, …, �iD), and the position change 

(velocity) of the i-th particle is Veli =(Veli1, Veli2, …, VeliD).

The particles are then manipulated according to the 

following equations:  
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where, d=1, 2, …, D ; i=1, 2, …, n; and n is the size of the 

swarm; w is the inertia weight; c1 and c2 are two positive 

acceleration constants; �1 and �2 are two random values into 

the range [0, 1]; � is a constriction factor that is used in 

constrained optimization problems in order to control the 

magnitude of the velocity (in unconstrained optimization 

problems it is usually set to 1.0). 

4 Proposed FPSO algorithm 
In the fuzzy clustering, a single particle represents a 

cluster center vector and a swarm represents a number of 

candidates clustering for the current data vector. Here; each 

point or data vector belongs to every various cluster by 

different membership function, thus; assign a fuzzy 

membership to each point or data vector. Each cluster has a 

cluster center, and per iteration presents a solution that gives 
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a vector of cluster centers. We determine the position of 

each vector for every particle and update it, then change the 

position of cluster centers based of particles. For the purpose 

of our algorithm, we define the following notations: 

n   Number of part  

c   Number of cluster center 

Vl
(t)  Position of l-th particle’ cluster center in stage t

Vell
(t)  Velocity of l-th particle in stage t

xk   Vector of parts ( nk ,......,2,1� )

�l
(t)  Best position funded by l-th particle in stage t

�g
(t)  Best position funded by all particles in stage t

P(t)  Fuzzy pseudo partition in stage t
�ik

(t)  Membership function of k-th part in stage t into i-th
cluster

The fitness of particles is easily measured by (4). The c-
means algorithm tends to converge faster than the proposed 

FPSO algorithm with a less accurate clustering. In this 

section, the performance of the PSO clustering algorithm is 

improved by seeding the initial swarm with the result of the 

c-means algorithm. The FPSO algorithm first executes the c-
means algorithm once. In this case, the c-means clustering 

algorithm is terminated by one of two stopping criteria: I) 

the maximum number of iterations; or II) ��	� )()1( tt pp . The 

result of c-means algorithm is then used as one of the 

particles, while the rest of the swarms are initialized 

randomly. The following algorithm can use to finding 

cluster for each data vector or part: 

Step 1: Let t=0, select initial parameters such as number of 

cluster center c, initial position of particle by the FCM, 

initial velocity of particles, c1, c2, w, �, and a real number 

m�(1, �), and a small positive number � for stopping 

criterion. 

Step 2: Calculate �ik
(t) for all particles and all i=1, 2, …, c

and k=1, 2, …, n by (6) and update p(t+1).

Step 3: For each particle, calculate the fitness by using (4). 

Step 4: Update the global best and local best position. 

Step 5: Update Vell
(t) and Vl

(t) for all l=1, 2, …, n_particle by 

using (7) and (8). 

Step 6: Update p(t+1) by the Step 2. 

Step 7: Compare p(t) and p(t+1). If ��	� )()1( tt pp , then stop; 

otherwise, increase t by one and continue form Step 3. 

5 Numerical example 
In this section, examples from the literature are considered 

to illustrate the application of the proposed fuzzy algorithm 

in the cell formation problem. We compare the results of the 

FCM and FPSO algorithms on various problems taken from 

the literature. Their performances are measured by the 

objective function value given in (4) and CPU time. A 

general rule of thumb is that a clustering result with lower 

J(p) and lower CPU time is preferable. For a comparable 

assessment, we code these methods by using the fuzzy tools 

available in MATLAB 7 and the FPSO, respectively, with 

10 particles, w=0.72, and c1 = c2 = 1.49. For our 

experimental tests, we use a PC Pentium III, CPU 1133 

MHz and 256 MB of RAM for the same parameters for all 

algorithms implementations: m=2, the maximum number of 

iterations is 100 and �  = 0.00001. 

Table 1: Data from Chu and Hayya [4]
Parts 

Machines 1 2 3 4 5 6 7 8 9 

1 1 1 0 0 1 0 0 0 0 

2 1 1 0 0 0 1 0 0 1 

3 0 0 1 0 0 0 1 1 0 

4 0 1 1 1 0 0 0 1 0 

5 1 0 0 1 1 0 0 1 0 

6 0 1 0 0 0 1 0 0 1 

7 0 0 1 0 0 0 1 1 0 

8 0 0 1 1 1 0 1 1 0 

9 0 1 0 0 0 1 0 0 1 

Table 2: The membership matrix for cells for first example         
Memberships for cells 

Machines 
1 2 3 

1 .2239 .2755 .5006 

2 .0912 .7838 .1250 

3 .9335 .0249 .0417 

4 .4413 .1871 .3716 

5 .0712 .0392 .8895 

6 .0160 .9666 .0174 

7 .9335 .0249 .0417 

8 .5359 .0947 .3694 

9 .0160 .9666 .0174 

Table 3: The membership matrix for part families for first 

example 

Parts 
Memberships for part families 

 1 2 3 

1 .7110 .1656 .1234 

2 .2502 .6234 .1264 

3 .0698 .0441 .8861 

4 .5026 .1370 .3603 

5 . 7659 .0922 .1419 

6 .0437 .9346 .0216 

7 .2061 .1233 .6706 

8 .0751 .0330 .8919 

9 .0437 .9346 .0216 

Table 4: Comparison of Chu and Hayya’s approach and FPSO 

approach

Chu and Hayya’s 

approach

The FPSO 

 approach 

Machine 

cell

Part 

families 

Machine 

cell

Part 

families 

Cell 1 M1,M5 P1,P4,P5 M1,M5  P1,P4,P5 

Cell 2 M2,M6,M9 P2,P6,P9 M2,M6,M9 P2,P6,P9 

Cell 3 
M3,M4 

M7,M8 
P3,P7,P8 

M3,M4 

M7,M8 
P3,P7,P8 


 �pJ 3.729600 3.859139 3.729600 3.859139 
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The first example taken from Chu and Hayya [4] consists of 

nine machines and nine parts is illustrated in Table 1. Tables 

2 and 3 show the membership matrix values for cells and 

part families, respectively. The final membership matrix 

values indicates the degree of membership of each machine 

associated with the machine cell (MC) and can be 

configured as: MC (1) = {M1, M5}, MC (2) = {M2, M6, 

M9}, and MC (3) = {M3, M4, M7, M8}. Similarity, the part 

family (PF) can be configured as: PF (1) = {P1, P4, P5}, PF 

(2) = {P2, P6, P9}, and PF (3) = {P3, P7, P8}. Table 4 

compares Chu and Hayya’s approach with the FPSO 

approach results. As illustrated in the table, no changes are 

observed between machine cells and part families. 

Table 5: Data from Susanto et al. [22]
Parts 

Machine 
1 2 3 4 5 6 7 8 9 10 

1 1 1 1 1 0 0 0 0 0 0 

2 1 1 1 1 0 0 0 0 0 0 

3 1 1 1 0 0 0 0 0 0 0 

4 1 1 0 0 0 0 0 0 0 0 

5 0 0 0 0 1 1 1 0 0 0 

6 0 0 0 0 1 1 1 0 0 0 

7 0 0 0 1 1 1 0 0 0 0 

8 0 0 0 0 0 0 0 1 1 1 

9 0 0 0 0 0 0 0 1 1 1 

10 0 0 0 0 0 0 0 1 1 0 

11 1 1 0 0 1 1 0 0 0 0 

12 1 1 0 0 1 1 0 0 0 0 

The second example is taken from Susanto et al. [22] as 

shown in Table 5. The obtained results are illustrated in 

Tables 6 and 7 and can be configured as: MC (1) = {M5,  

M6, M7, M11, M12}, MC (2) = {M8, M9, M10}, and MC 

(3) = {M1, M2, M3, M4}, J(p) = 4.844414 . Part families are 

as follows: PF (1) = {P5, P6, P7}, PF (2) = {P8, P9, P10}, 

and PF (3) = {P1, P2, P3, P4}, J (p) = 5.020256.

Table 6: The membership matrix for cells for second example 
Degree of membership 

Machines 
1 2 3 

1 .0788 .0701 .8511 

2 .0788 .0701 .8511 

3 .0842 .0730 .8428 

4 .1233 .1082 .7685 

5 .9017 .0460 .0522 

6 .9017 .0460 .0522 

7 .6359 .1578 .2062 

8 .0541 .8940 .0519 

9 .0541 .8940 .0519 

10 .01159 .7661 .1180 

11 .4311 .1561 .4128 

12 .4311 .1561 .4128 

Table 7: The membership matrix for part families for second 

example
Degree of membership 

Parts 
1 2 3 

1 0.9265 0.0315 0.0420 

2 0.9265 0.0315 0.0420 

3 0.6430 0.1975 0.1595 

4 0.4342 0.2743 0.2916 

5 0.0238 0.0236 0.9525 

6 0.0238 0.0236 0.9525 

7 0.1765 0.2902 0.5333 

8 0.0218 0.9534 0.0248 

9 0.0218 0.9534 0.0248 

10 0.0702 0.8483 0.0815 

Table 8: Solution to Al-Ahmari

Cell Machine Cells 

 �pJ

 FCM 

CPU

Time  

FCM


 �pJ
FPSO

CPU Time

FPSO

2 {1,3,4,9,10,13,14,16,17,20,21,22},{2,5,6,7,8,11,12,15,18,19,23,24} 54.583351 0.300 54.583351 0.190 

3 {1,3,13,16,20,21,22},{6,7,9,10,14,17,23,24},{2,4,5,8,11,12,15,18,19} 36.388919 0.641 36.388919 0.170 

4 {2,3,4,6,9,10,11,12,15,16,17,18},{1,8,14,20,23,24},{7,13,21,22},{5,19} 22.515392 0.490 22.515392 0.431 

5 {1,13,21,22},{2,5,11,19},{3,4,7,14,16,20,23,24},{9,10,17},{6,8,12,15,18} 14.691166 0.852 14.691166 0.280 

6 {3,20},{1,13,21,22},{2,5,11,19},{7,14,23,24},{4,6,8,12,15,16,18},{9,10,17} 9.046538 0.571 9.046538 0.350 

7 {4,16},{9,10,17},{6,8,12,15,18},{3,20},{2,5,11,19},{1,13,21,22},{7,14,23,24} 6.172838 0.611 6.172838 0.581 

8 {1,13,21,22},{7,23,24},{4,16},{14},{9,10,17},{6,8,12,15,18},{3,20},{2,5,11,19} 4.139911 0.651 4.139911 0.591 

9 {9,10},{14},{17},{6,8,12,15,18},{3,20},{2,5,11,19},{1,13,21,22},{7,23,24},{4,16} 2.772339 0.671 2.772339 0.411 

10 {4,16},{6,7,23,24},{17},{8,12,15,18},{2,5,11,19},{1,14},{13,21,22},{6},{3,20},{9,10} 1.694722 0.551 1.694722 0.541 

Figure 1: CPU Time comparison between FPSO and FCM algorithms
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The proposed approach is also tested on a large-sized 

problem taken from Al-Ahmari [5]. In the example, the 

problem with 24 machines and 40 parts is considered. 

Different numbers of manufacturing cells are used (i.e., 2, 3, 

4, 5, 6, 7, 8, 9, and 10). The results summarized in table 8 

and Figure 1. This example demonstrates the possibility of 

using the approach for large-scale CF problems, and 

evaluates the obtained results using J (P).

6 Conclusion
Group technology (GT) is a useful way to increase 

productivity with high quality in flexible manufacturing 

systems; and CF is a key step in GT. It is used to design a 

good cellular manufacturing that uses the similarities of 

parts related to machines so that it can identify part families 

and machine groups. The cell formation problem is NP-

complete and different -heuristic methods have been used to 

solve it. Particle swarm optimization is one of them. On the 

other hand, the crisp models fail to fully reflect the complex 

nature of part features or routing data, where boundaries 

between groups are fuzzy. Fuzzy clustering has been 

successfully adapted to solve the cell formation problem, but 

when the problem becomes larger, the fuzzy clustering 

algorithms may result uneven distribution of parts/machines. 

In the previous works, fuzzy clustering and particle swarm 

optimization have been applied in CF individually. We have 

designed a fuzzy particle swarm optimization clustering 

algorithm (FPSO) to solve the part–machine grouping 

problem, which is a hard combinatorial problem. The 

presented numerical examples confirm the effectiveness of 

the proposed approach. It is found that this algorithm 

provides a good solution to CF problems at reasonable time 

and allows the user in formulating the required size of 

machine cells and part families. 
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