
Applying Bacterial Memetic Algorithm for Training Feedforward and
Fuzzy Flip-Flop based Neural Networks

László Gál
1,2

 János Botzheim
3,4

 László T. Kóczy
1,4

 Antonio E. Ruano
5

1 Institute of Information Technology and Electrical Engineering,

Széchenyi István University, Gy�r, Hungary

2 Department of Technology, Informatics and Economy,

University of West Hungary Szombathely, Hungary

3 Department of Automation Széchenyi István University Gy�r, Hungary

4 Department of Telecommunication and Media Informatics

Budapest University of Technology and Economics, Budapest, Hungary

5 Centre for Intelligent Systems, FCT, University of Algarve, Portugal

Email: gallaci@ttmk.nyme.hu, {botzheim, koczy}@{sze, tmit.bme}.hu, aruano@ualg.pt

Abstract—In our previous work we proposed some extensions of
the Levenberg-Marquardt algorithm; the Bacterial Memetic
Algorithm and the Bacterial Memetic Algorithm with Modified
Operator Execution Order for fuzzy rule base extraction from input-
output data. Furthermore, we have investigated fuzzy flip-flop based
feedforward neural networks. In this paper we introduce the
adaptation of the Bacterial Memetic Algorithm with Modified
Operator Execution Order for training feedforward and fuzzy flip-
flop based neural networks. We found that training these types of
neural networks with the adaptation of the method we had used to
train fuzzy rule bases had advantages over the conventional earlier
methods.

Keywords— Bacterial Memetic Algorithm, Fuzzy Flip-Flop,

Levenberg-Marquardt method, Neural Network.

1 Introduction
Bacterial type evolutionary algorithms are inspired by the

biological bacterial cell model [1,2]. The Bacterial Memetic
Algorithm (BMA) is a recent method for fuzzy rule base

extraction from input-output data for a certain system [7].

We have investigated its properties intensely and found some

points where its performance in the fuzzy rule base

identification could be improved. The recent bacterial type

algorithms we proposed were named Bacterial Memetic
Algorithm with Modified Operator Execution Order
(BMAM), Improved Bacterial Memetic Algorithm (IBMA)

and Modified Bacterial Memetic Algorithm (MBMA) [3,4].

They are both memetic algorithms and apply alternatively

global and local search for identifying fuzzy rule bases from

input-output data automatically when no human expert to

define the rules is available.

Neural Networks belong to the Soft Computing area like

Fuzzy Systems and Evolutionary Computing. They can be

used for modeling a certain system where input-output data

pairs exist. The neural networks are inspired by biological

phenomena: the brain itself and other parts of the neural

system.

Fuzzy Flip-Flops are extended forms of the binary flip-flops

that are widely used in digital technics [5]. They use fuzzy

logic operations instead of Boolean logic ones and require

fuzzy inputs, furthermore they produce fuzzy outputs instead

of digital values.

Our previous works were developing the Bacterial Memetic
Algorithm applied for fuzzy rule base identification (FRBI)

and investigating various types of Fuzzy Flip-Flops (F
3
) used

in feedforward neural networks (FFNN) as replacements of

the neurons [6]. We trained the Fuzzy Flip-Flop based
Neural Networks (FNN) with the Levenberg-Marquardt
(LM) based training method as it is a widely used and

accepted one. However, we faced the same problems with

the LM based feedforward neural network training as in the

fuzzy rule base identification. Therefore we have adopted the

Bacterial Memetic Algorithm with Modified Operator
Execution Order (BMAM) for training Neural Networks.

Our goal was to improve the learning capabilities of

feedforward neural networks with a bacterial type

evolutionary approach.

In this paper we propose the adaptation of the BMAM for

training feedforward neural networks, and we study and

evaluate the respective results. From another aspect another

paper was proposed here where we report on the findings of

our investigations of the properties of different types of

FNNs trained with BMAM [14].

2 Bacterial Memetic Algorithm with Modified
Operator Execution Order (BMAM)

2.1 Bacterial Memetic Algorithm (BMA)
Bacterial Memetic Algorithm (BMA) is a very recent

approach used for fuzzy rule base identification (FRBI) [7].

It combines global and local search. For the global search it

uses bacterial type evolutionary approach and for the local

search the Levenberg-Marquardt method is deployed.

Previous work confirmed that the Pseudo-Bacterial Genetic
Algorithm (PBGA) and the Bacterial Evolutionary
Algorithm (BEA) were rather more successful in this area

than the conventional genetic algorithms [1,2].

2.1.1 Bacterial mutation
PBGA is a special kind of Genetic Algorithm (GA) [8], it

introduces a new “genetic” operation called bacterial
mutation. For the algorithm, the first step is to determine

how the problem can be encoded in a bacterium
(chromosome). In case of modelling fuzzy systems the

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1833

parameters of the model – all the breakpoints of the rule base

– have to be encoded in the chromosome. The next step is to

generate initial bacteria randomly. Then an optimization

process is started utilizing mainly the bacterial mutation, in

order to refine the model parameters.

The bacterial mutation operation tries to improve the parts

of the chromosomes. Therefore each individual (bacterium)
is selected one by one and a number of copies of the selected

individual (clones) are created. Then the same part or parts

are randomly chosen from all clones and it (they) is (are)

mutated (except one single clone that remains unchanged).

Mutation means to replace the part with a random value in a

specified range.

After the mutations all the clones are evaluated (SSE, MSE,

BIC) and the best clone is selected whose mutated part or

parts are transferred to the other clones. Theoretically, this

operation copies just a few parameters from one clone to the

other clones (gene transfer), but in practice, the other clones

will not differ from the best clone at the end at all. So, this

operation can be done with discharging all the clones except

the best one and then cloning further the best clone.

After the selection of the best clone and transferring its

mutated part or parts to the other clones the above procedure

is repeated until all the parts are mutated exactly once. The

final best clone is remaining in the population and all the

other clones are destroyed. The bacterial mutation cycle is

done on the other individuals in the population e.g. in a

parallel processing way.

At the end of the complete bacterial mutation cycle a new

generation of bacteria is arisen.

The Bacterial Evolutionary Algorithm (BEA) is based on the

PBGA supported by a new genetic operation called gene
transfer operation. This operation can play an important role

in the FRBI process as it establishes relationships among the

individuals of the population (useful in somewhat changing

environment) and is able to increase or decrease the number

of the rules in a fuzzy rule base (useful in determining the

appropriate size of the fuzzy rule base). Because this

behaviour is not exploited in our investigations when training

neural networks this operation is not described in detail.

2.1.2 The Levenberg-Marquardt method (LM)
The Levenberg-Marquardt (LM) method [9] is a gradient

based iterative procedure. It is used for least squares curve

fitting for a given set of empirical data, minimizing the sum
of squared error function (SSE). It can be used for fuzzy rule

extraction alone, but it generates only locally optimal rule

base in the neighbourhood of the initial rules.

The Error Back Propagation algorithm (EBP or BP) was a

great improvement in neural network research, but it has

weak convergence rate. The LM algorithm is more complex

and requires more computational effort than the BP, but it

has much better convergence rate properties. Therefore the

LM algorithm is one of the most popular training functions

for feedforward back propagation networks.

2.1.3 Bacterial Memetic Algorithm (BMA)
Memetic algorithms combine evolutionary and local search

methods [10]. The evolutionary part is able to find the global

optimum region, but is not suitable to find the accurate

minimum in practice. The gradient based part is able to reach

the accurate optimum, but is very sensitive to the initial

position in the search space and is unable to avoid the local

optimum. Combining global and local search is expected to

be beneficial.

Bacterial Memetic Algorithm (BMA) combines the Bacterial
Evolutionary Algorithm (BEA) and the Levenberg-
Marquardt (LM) method. In the past we used it for fuzzy

rule base extraction, among others.

The BMA integrates its two components, the BEA and the

LM method in the following way:

1. Bacterial Mutation operation for each individual,

2. Levenberg-Marquardt method for each individual,

3. Gene Transfer operation for a partial population.

ith generation

clones

best clone

copies its

mutated parts

mutated parts

bacterium #1 bacterium #2 bacterium #3 bacterium #NInd

…

repeat until all the parts are mutated

Figure 1: Bacterial mutation (one individual)

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1834

This way the LM method is nested into the BEA, so that

local search is done for every global search cycle.

2.2 Bacterial Memetic Algorithm with Modified Operator
Execution Order (BMAM)

Although BMA provides a very good speed of convegrenve

towards the optimal model parameters there are some points

of the algorithm where the performance could be increased.

We proposed new techniques to improve its performance.

Some of them contain modifications that are not useful in

training FFNNs (handling the knot order violation that can

occur in applying LM for FRBI) (IBMA, MBMA) [3].

Another improvement to BMA is the Bacterial Memetic
Algorithm with Modified Operator Execution Order [4]

which exploits the Levenberg-Marquardt method more

efficiently.

Instead of applying the LM cycle after the bacterial mutation
as a separate step, the modified algorithm executes several

LM cycles during the bacterial mutation after each
mutational step.

The bacterial mutation operation changes one or more

parameters of the modeled system randomly, and then it

checks whether the model obtained by this way performs

better than the previous models or the models that have been

changed concurrently this way in the other clones. The

mutation test cycle is repeated until all the parameters of the

model have gone through the bacterial mutation.

In the mutational cycle it is possible to gain a temporary

model that has an instantaneous fitness value that is worse

than the one in the previous or the concurrent models.

However, it is potentially better than those, because it is

located in such a region of the search space that has a better

local optimum than the other models do. In accordance to

this, if some Levenberg-Marquardt iterations are executed

after each bacterial mutational step, the test step is able to

choose some potentially valued clones that could be lost

otherwise.

In the Bacterial Memetic Algorithm with Modified Operator
Execution Order, after each mutational step of every single
bacterial mutation iteration several LM iterations are done.

Several tests have shown it is enough to run just 3 to 5 of LM

iterations per mutation to improve the performance of the

whole algorithm. The usual test phase of the bacterial
mutation operation follows after the LM iterations. After the

complete modified bacterial mutation follows the LM

method that is used in the original BMA, where more, e.g. 10

iterational steps, are done with all the individuals of the

population towards reaching the local optimum. After all this

the gene transfer operation is executed if needed.

3 Fuzzy flip-flops (F3)
Fuzzy flip-flops are extended forms of binary flip-flops used

in the conventional digital technics. We have dealt with the

fuzzy extensions (complements) of the binary J-K and D flip-

flops. Various types of fuzzy flip-flops are implemented and

tested (set, reset type and the general type using the unified

equation; J-K, D and Choi type D; based on minmax,

algebraic, Yager, Dombi, Hamacher and Frank t-norms and

co-norms, resp.) [11]. Because of an interesting property

some fuzzy flip-flops can be used for implementing a

sigmoid like transfer function and so constructing Multilayer

Perceptron Neural Networks.

In our previous works we studied the behavior of various

type fuzzy flip-flops, illustrating their characteristics by their

respective graphs. We proposed also the concept of fuzzy
flip-flop based neural networks and investigated their

function approximation capabilities [6, 12].

4 Fuzzy flip-flop based feedforward neural
networks (FNN)

In our team extensive research was done with the leadership

of R. Lovassy in the field of fuzzy flip-flops. As we

mentioned it before, various fuzzy norms can be used for

building fuzzy flip-flop based neural networks (FNNs). The

basic idea was to substitute the fuzzy flip-flops with

sigmoidal transfer function instead of traditional neurons.

The flip-flops are based on various norms, consequently,

their transfer functions have different slopes. Fixing the

value of the present state Q (in the characteristical equation),

often we obtained “good” enough sigmoidal transfer function

character [6]. First of all, to train this kind of neural network

with a usual training method BP or LM the derivatives of

these transfer functions have to be also calculated. Then the

FNN can be used and trained in the usual way. We found that

the FNNs we created had good approximation properties.

[12].

5 Training feedforward neural networks
With an appropriate transfer function and its derivative the

Error Back Propagation algorithm (BP) can be used for

training feedforward neural networks (FFNN). However, it

has weak convergence rates.

The LM algorithm is more complex and requires more

computational effort than the BP one, but it has much better

convergence rates. The LM algorithm is one of the most

popular training methods for feedforward neural networks

despite of its higher memory requirements and higher

complexity.

The training of the FFNNs begins with the random

generation of initial weights and biases. Then the training

method selected is applied. An update vector is generated

that has to be applied for the vector that contains the weights

and biases.

When using BP or LM based training methods one faces the

drawback of these local searchers described in the next

section.

6 Using BMAM in training FFNNs
Although the LM method based training of the neural

networks works much more efficiently than the BP based one

it has all drawbacks of the local search methods. The training

is very sensitive to the (parameter’s) initial position of the

search space. An inconveniently generated random parameter

set with the initial weights and biases determines a hardly

trainable neural network with a weak performance at the end

of the LM method based training procedure. This is because

the LM method is a local searcher and thus it is unable to

avoid the local minima.

We decided to apply bacterial type evolutionary algorithms

because they proved to be rather successful in our previous

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1835

works, better than the other evolutionary approaches. We

preferred the Bacterial Memetic Algorithm with Modified
Operator Execution Order because it converged faster than

the original BMA. (And contained not only FRBI related

improvements, like IBMA and MBMA do.)

We did not implement here the gene transfer operation

because it was not useful with the neural network training we

have done (in not changing environments, there was no need

to change the structure of the NN or the number of the

neurons).

The detailed steps of the BMAM used for NN training are

described below:

1. Create the initial population – neural networks with

two hidden layers – and initialize the neural

network’s input, layer weights and biases randomly

as before a usual LM training procedure. Each

individual contains the weights and biases – the

parameters of the model – encoded in the

chromosome. In a 1-4-3-1 NN the number of the

parameters to be encoded are 2*4+4*3+2*3+1 = 27

parameters per individual.

2. Apply the modified bacterial mutation for each

individual.

a. Each individual is selected one by one.

b. NClones copies of the selected individual are

created (“clones”).

c. Choose the same part or parts randomly

from the clones and mutate it (except one

single clone that remains unchanged during

this mutation cycle).

d. Run some conventional LM method based

NN training iterations (3-5 epochs).

e. Select the best clone (simulate and

evaluate the NNs) and transfer all of its

parts to the other clones.

f. Repeat the part selection-mutation-LM-

selection-transfer cycle until all the parts

are mutated, improved and tested.

g. The best individual is remaining in the

population, all other clones are deleted.

h. This process is repeated until all the

individuals have gone through the modified
bacterial mutation.

3. Apply the LM method based NN training to each

individual (e.g. 10 epochs per individual per

generation)

4. Repeat the procedure above from the modified
bacterial mutation step until a certain termination

criterion is satisfied (e.g. maximum number of

generations = 20 generation).

The experimental setup was:

• General PC (2GHz), Windows XP, Matlab

• Test function:
4

3

21)sin()sin(
)(c

c
xcxcxf +⋅⋅⋅=

• 5.0,2,07.0,2.0 4321 ==== cccc
• Number of individuals in the population: 5

• Number of clones: 5.

We tested the new training algorithm in two ways.

6.1 Test 1
In the first test group we applied the new BMAM based NN

training. We created a 1-4-3-1 feedforward neural network

with the usual sigmoid transfer function and with selected

fuzzy flip-flop based neurons. Our goal was to investigate the

improvement of BMAM based training over the conventional

LM based one so four transfer functions were selected:

sigmoid (tansig), Dombi Fuzzy D Flip-Flop (Dombi DF
3
),

Frank Fuzzy D Flip-Flop (Frank DF
3
) and Frank Choi-type

Fuzzy D Flip-Flop (Frank CDF
3
).

Our goal was here to train a NN that is hard to be trained

[12]. The number of neurons (4 and 3 in the hidden layers)

was relatively low. It makes possible to recognise the

performance improvement (MSE) better, to see that the

model complexity may be reduced with the better training,

and to avoid overfitting.

We ran 30-30 trainings for each case mentioned above. Then

the maximum, minimum, median and mean MSE values

calculated.

In our previous work we chose the median to characterize the

trainability of the FFF based NNs because in case of training

with the LM based way there were several unsuccessful

trainings where the final model was unusable and produced

too high MSE. That is why we had to analyse 30-100 runs.

The best value (minimum MSE) was more or less randomly

good so it could not be used as a reliable value for indicate

the trainability. In case of the mean value a single one

unsuccessful training deteriorates many very successful

training results. With using the median this random extreme

values could be avoided.

Table 1 and 2 contains the results of these tests. One can see

that using BMAM result much more better quality models

(lower MSE). Using BMAM results lover maximum MSE

values than median or mean values of the LM based training

respectively. Furthermore the median and mean MSE values

of the BMAM based training are very close to the minimum

values of the LM based training respectively.

Table 1: MSE values of LM based training

LM based Max Min Median Mean

Tansig 0.06452 1.2x10-5 0.00712 0.01891

Dombi DF3 0.11962 0.04263 0.05732 0.06045

Frank DF3 0.06644 0.00459 0.04642 0.04159

Frank CDF3 0.06645 0.00593 0.05486 0.04697

Table 2: MSE values of BMAM based training

BMAM Max Min Median Mean

Tansig 0.00180 3.14x10-7 2.38x10-5 0.00034

Dombi DF3 0.03994 0.02342 0.03362 0.03294

Frank DF3 0.01091 0.00187 0.00680 0.00716

Frank CDF3 0.02519 0.00460 0.00833 0.00933

Figure 2 to 9 show MSE histograms of 30-30 runs with

various transfer functions and training methods. One can see

that if using BMAM there is no need to run 30 or 100

complete training cycles to gain an excellent quality model

because every BMAM trained model have very low MSE

value.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1836

Figure 2: LM – Tansig NN histogram

Figure 3: BMAM – Tansig NN histogram

Figure 4: LM – Dombi DF
3
 histogram

Figure 5: BMAM – Dombi DF
3
 NN histogram

Figure 6: LM – Frank DF
3
 NN histogram

Figure 7: LM – Frank DF
3
 histogram

Figure 8: LM – Frank CDF
3
 NN histogram

Figure 9: BMAM – Frank CDF
3
NN histogram

MSE

MSE

MSE

MSE

MSE MSE

MSE MSE

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1837

6.2 Test 2
In the second group of tests we utilized the BMAM to

identify quasi optimal parameter values of various types of

fuzzy flip-flops used in FNNs. 1-8-8-1 neural networks were

created because the good trainability was much more

important than the lower complexity of the model here. This

way the optimal parameter values are easier to identify.

Therefore we enhanced the capability of the BMAM based

training method in a manner that the parameter (internally

fixed Q values) of the fuzzy flip-flop used in Fuzzy Flip-Flop

Neural Networks (FNN) can be encoded into the

chromosome. This way it participates in the bacterial
mutation cycle so the quasi optimal value of this parameter

can be identified at the end of the BMAM based training.

Because this parameter is not affected by the LM training we

applied two different versions of the bacterial mutation
especially for this parameter. The first one is the original

bacterial mutation (generate random values in the range of

[0, 1]), while the second one increments or decrements the

current fixed Q value with a very fine random step.

Table 2 shows the expected ranges and the quasi-optimal

internally fixed Q values of several FNNs identified by the

BMAM training method. The expected ranges were derived

from our previous work [12].

Table 2: Expected ranges and fixed Q values by BMAM

Type of FNN Expected range Fixed Q value

identified by BMAM

Algebraic JK FF 0 – 0.4 0.25

Algebraic D FF ~0.1,~0.5, ~0.9 0.91

Algebraic C D FF <0.15, 0.4 – 0.6,

>0.85

0.53

Dombi D FF <0.1 or >0.9 0.924

Frank D FF 0.25 – 0.45 0.31

Further investigations will be focused on using BMAM

based training method to identify of the other variable

parameters of Yager, Dombi, Hamacher, Frank norms based

FNNs.

7 Conclusions
In this paper we introduced the adaptation of the Bacterial
Memetic Algorithm with Modified Operator Execution Order
for training feedforward neural networks, especially neural
networks built from Fuzzy Flip-Fops (F3

s).

We applied this new approach to training neural networks and

fuzzy flip-flop based neural networks. Our goal was to get a

quasi-optimal result with only a single one or a very low

number of training sequences whose error does not exceed (or

very rarely exceeds) an acceptable level. Despite the usual

tradeoffs between the complexity and accuracy [13] this way

there is no need to run a few hundred of training cycles to get

an acceptable model.

Our tests have shown that BMAM used for training FFNNs

and fuzzy flip-flop based FFNNs is a very successful tool.

Although it requires more computational effort than the

conventional training methods it produces a higher quality

model (so the complexity of the model can be reduced) with

only one training cycle.

Furthermore we enhanced the capability of the BMAM based

training method in a manner that the parameter or parameters

of the fuzzy flip-flop used in Fuzzy Flip-Flop based Neural
Networks (FNN) can be encoded into the chromosome. This

way it participates in the bacterial mutation cycle so the quasi

optimal values of these parameters can be identified at the end

of the BMAM based training.

Acknowledgment
This paper was supported by the Széchenyi University Main

Research Direction Grant 2009, National Scientific Research

Fund Grant OTKA T048832 and K75711, SEK Scientific

Grant 2009, and the National Office for Research and

Technology.

References
[1] Nawa, N. E., Hashiyama, T., Furuhashi, T. and Uchikawa, Y., A study

on fuzzy rules discovery using pseudo-bacterial genetic algorithm
with adaptive operator, Proceedings of IEEE Int. Conf. on

Evolutionary Computation, ICEC’97, 1997.

[2] Nawa, N. E. and Furuhashi, T., Fuzzy Systems Parameters Discovery
by Bacterial Evolutionary Algorithms, IEEE Transactions on Fuzzy

Systems 7, 1999, pp. 608-616.

[3] Gál, L., Botzheim, J. and Kóczy, L. T., Improvements to the Bacterial
Memetic Algorithm used for Fuzzy Rule Base Extraction,

Computational Intelligence for Measurement Systems and

Applications, CIMSA 2008, Istanbul, Turkey, 2008, pp. 38-43.

[4] Gál, L., Botzheim, J. and Kóczy, L. T., Modified Bacterial Memetic
Algorithm used for Fuzzy Rule Base Extraction, 5th International

Conference on Soft Computing as Transdisciplinary Science and

Technology, CSTST 2008, Paris, France, 2008.

[5] K. Ozawa, K. Hirota and L. T. Kóczy, Fuzzy flip-flop, In: M. J. Patyra,

D. M. Mlynek, eds., Fuzzy Logic. Implementation and Applications,

Wiley, Chichester, 1996, pp. 197-236.

[6] R. Lovassy, L. T. Kóczy and L. Gál, Multilayer Perceptron
Implemented by Fuzzy Flip-Flops, IEEE World Congress on

Computational Intelligence, WCCI 2008, Hong Kong, pp. 1683-1688.

[7] Botzheim, J., Cabrita, C., Kóczy, L. T. and Ruano, A. E. , Fuzzy rule
extraction by bacterial memetic algorithm, IFSA 2005, Beijing,

China, 2005, pp.1563-1568.

[8] Holland, J. H., Adaptation in Nature and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence, The MIT Press, Cambridge, MA, 1992.

[9] Marquardt, D., An Algorithm for Least-Squares Estimation of
Nonlinear Parameters, SIAM J. Appl. Math., 11, 1963, pp. 431-441.

[10] Moscato, P., On evolution, search, optimization, genetic algorithms
and martial arts: Towards memetic algorithms, Technical Report

Caltech Concurrent Computation Program, Report. 826, California

Institute of Technology, Pasadena, California, USA,1989.

[11] R. Lovassy, L. T. Kóczy and L. Gál, Analyzing Fuzzy Flip-Flops
Based on Various Fuzzy Operations, Acta Technica Jaurinensis Series

Intelligentia Computatorica vol. 1, no. 3, 2008, pp. 447-465.

[12] R. Lovassy, L. T. Kóczy and L. Gál, Function Approximation
Capability of a Novel Fuzzy Flip-Flop Based Neural Network, IJCNN

2009 Atlanta - accepted.

[13] L. T. Kóczy and A. Zorat, Fuzzy systems and approximation, Fuzzy

Sets and Systems, Vol.85, pp. 203-222, 1995.

[14] R. Lovassy, L. T. Kóczy and L. Gál, Optimizing Fuzzy Flip-Flop
Based Neural Networks by Bacterial Memetic Algorithm,

IFSA/EUSFLAT 2009, Lisbon, Portugal, 2009 - accepted

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1838

