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Abstract—In our previous work we proposed some extensions of 
the Levenberg-Marquardt algorithm; the Bacterial Memetic 
Algorithm and the Bacterial Memetic Algorithm with Modified 
Operator Execution Order for fuzzy rule base extraction from input-
output data. Furthermore, we have investigated fuzzy flip-flop based 
feedforward neural networks. In this paper we introduce the 
adaptation of the Bacterial Memetic Algorithm with Modified 
Operator Execution Order for training feedforward and fuzzy flip-
flop based neural networks. We found that training these types of 
neural networks with the adaptation of the method we had used to 
train fuzzy rule bases had advantages over the conventional earlier 
methods. 

Keywords— Bacterial Memetic Algorithm, Fuzzy Flip-Flop, 

Levenberg-Marquardt method, Neural Network.   

1 Introduction 
Bacterial type evolutionary algorithms are inspired by the 

biological bacterial cell model [1,2]. The Bacterial Memetic 
Algorithm (BMA) is a recent method for fuzzy rule base 

extraction from input-output data for a certain system [7]. 

We have investigated its properties intensely and found some 

points where its performance in the fuzzy rule base 

identification could be improved. The recent bacterial type 

algorithms we proposed were named Bacterial Memetic 
Algorithm with Modified Operator Execution Order
(BMAM), Improved Bacterial Memetic Algorithm (IBMA) 

and Modified Bacterial Memetic Algorithm (MBMA) [3,4]. 

They are both memetic algorithms and apply alternatively 

global and local search for identifying fuzzy rule bases from 

input-output data automatically when no human expert to 

define the rules is available. 

Neural Networks belong to the Soft Computing area like 

Fuzzy Systems and Evolutionary Computing. They can be 

used for modeling a certain system where input-output data 

pairs exist. The neural networks are inspired by biological 

phenomena: the brain itself and other parts of the neural 

system. 

Fuzzy Flip-Flops are extended forms of the binary flip-flops 

that are widely used in digital technics [5]. They use fuzzy 

logic operations instead of Boolean logic ones and require 

fuzzy inputs, furthermore they produce fuzzy outputs instead 

of digital values. 

Our previous works were developing the Bacterial Memetic 
Algorithm applied for fuzzy rule base identification (FRBI) 

and investigating various types of Fuzzy Flip-Flops (F
3
) used 

in feedforward neural networks (FFNN) as replacements of 

the neurons [6]. We trained the Fuzzy Flip-Flop based 
Neural Networks (FNN) with the Levenberg-Marquardt
(LM) based training method as it is a widely used and 

accepted one. However, we faced the same problems with 

the LM based feedforward neural network training as in the 

fuzzy rule base identification. Therefore we have adopted the 

Bacterial Memetic Algorithm with Modified Operator 
Execution Order (BMAM) for training Neural Networks. 

Our goal was to improve the learning capabilities of 

feedforward neural networks with a bacterial type 

evolutionary approach. 

In this paper we propose the adaptation of the BMAM for 

training feedforward neural networks, and we study and 

evaluate the respective results. From another aspect another 

paper was proposed here where we report on the findings of 

our investigations of the properties of different types of 

FNNs trained with BMAM [14]. 

2 Bacterial Memetic Algorithm with Modified 
Operator Execution Order (BMAM) 

2.1 Bacterial Memetic Algorithm (BMA) 
Bacterial Memetic Algorithm (BMA) is a very recent 

approach used for fuzzy rule base identification (FRBI) [7]. 

It combines global and local search. For the global search it 

uses bacterial type evolutionary approach and for the local 

search the Levenberg-Marquardt method is deployed. 

Previous work confirmed that the Pseudo-Bacterial Genetic 
Algorithm (PBGA) and the Bacterial Evolutionary 
Algorithm (BEA) were rather more successful in this area 

than the conventional genetic algorithms [1,2]. 

2.1.1 Bacterial mutation 
PBGA is a special kind of Genetic Algorithm (GA) [8], it 

introduces a new “genetic” operation called bacterial 
mutation. For the algorithm, the first step is to determine 

how the problem can be encoded in a bacterium
(chromosome). In case of modelling fuzzy systems the 
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parameters of the model – all the breakpoints of the rule base 

– have to be encoded in the chromosome. The next step is to 

generate initial bacteria randomly. Then an optimization 

process is started utilizing mainly the bacterial mutation, in 

order to refine the model parameters. 

The bacterial mutation operation tries to improve the parts 

of the chromosomes. Therefore each individual (bacterium)
is selected one by one and a number of copies of the selected 

individual (clones) are created. Then the same part or parts 

are randomly chosen from all clones and it (they) is (are) 

mutated (except one single clone that remains unchanged). 

Mutation means to replace the part with a random value in a 

specified range.  

After the mutations all the clones are evaluated (SSE, MSE, 

BIC) and the best clone is selected whose mutated part or 

parts are transferred to the other clones. Theoretically, this 

operation copies just a few parameters from one clone to the 

other clones (gene transfer), but in practice, the other clones 

will not differ from the best clone at the end at all. So, this 

operation can be done with discharging all the clones except 

the best one and then cloning further the best clone. 

After the selection of the best clone and transferring its 

mutated part or parts to the other clones the above procedure 

is repeated until all the parts are mutated exactly once. The 

final best clone is remaining in the population and all the 

other clones are destroyed. The bacterial mutation cycle is 

done on the other individuals in the population e.g. in a 

parallel processing way. 

At the end of the complete bacterial mutation cycle a new 

generation of bacteria is arisen. 

The Bacterial Evolutionary Algorithm (BEA) is based on the 

PBGA supported by a new genetic operation called gene 
transfer operation. This operation can play an important role 

in the FRBI process as it establishes relationships among the 

individuals of the population (useful in somewhat changing 

environment) and is able to increase or decrease the number 

of the rules in a fuzzy rule base (useful in determining the 

appropriate size of the fuzzy rule base). Because this 

behaviour is not exploited in our investigations when training 

neural networks this operation is not described in detail. 

2.1.2 The Levenberg-Marquardt method (LM) 
The Levenberg-Marquardt (LM) method [9] is a gradient 

based iterative procedure. It is used for least squares curve 

fitting for a given set of empirical data, minimizing the sum 
of squared error function (SSE). It can be used for fuzzy rule 

extraction alone, but it generates only locally optimal rule 

base in the neighbourhood of the initial rules. 

The Error Back Propagation algorithm (EBP or BP) was a 

great improvement in neural network research, but it has 

weak convergence rate. The LM algorithm is more complex 

and requires more computational effort than the BP, but it 

has much better convergence rate properties. Therefore the 

LM algorithm is one of the most popular training functions 

for feedforward back propagation networks.  

2.1.3 Bacterial Memetic Algorithm (BMA) 
Memetic algorithms combine evolutionary and local search 

methods [10]. The evolutionary part is able to find the global 

optimum region, but is not suitable to find the accurate 

minimum in practice. The gradient based part is able to reach 

the accurate optimum, but is very sensitive to the initial 

position in the search space and is unable to avoid the local 

optimum. Combining global and local search is expected to 

be beneficial. 

Bacterial Memetic Algorithm (BMA) combines the Bacterial 
Evolutionary Algorithm (BEA) and the Levenberg-
Marquardt (LM) method. In the past we used it for fuzzy 

rule base extraction, among others. 

The BMA integrates its two components, the BEA and the 

LM method in the following way: 

1. Bacterial Mutation operation for each individual, 

2. Levenberg-Marquardt method for each individual, 

3. Gene Transfer operation for a partial population. 

ith generation 

clones 

best clone 

copies its 

mutated parts 

mutated parts 

bacterium #1 bacterium #2 bacterium #3 bacterium #NInd 

… 

repeat until all the parts are mutated 

Figure 1: Bacterial mutation (one individual) 
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This way the LM method is nested into the BEA, so that 

local search is done for every global search cycle.

2.2 Bacterial Memetic Algorithm with Modified Operator 
Execution Order (BMAM) 

Although BMA provides a very good speed of convegrenve 

towards the optimal model parameters there are some points 

of the algorithm where the performance could be increased. 

We proposed new techniques to improve its performance. 

Some of them contain modifications that are not useful in 

training FFNNs (handling the knot order violation that can 

occur in applying LM for FRBI) (IBMA, MBMA) [3]. 

Another improvement to BMA is the Bacterial Memetic 
Algorithm with Modified Operator Execution Order [4] 

which exploits the Levenberg-Marquardt method more 

efficiently. 

Instead of applying the LM cycle after the bacterial mutation
as a separate step, the modified algorithm executes several 

LM cycles during the bacterial mutation after each 
mutational step. 

The bacterial mutation operation changes one or more 

parameters of the modeled system randomly, and then it 

checks whether the model obtained by this way performs 

better than the previous models or the models that have been 

changed concurrently this way in the other clones. The 

mutation test cycle is repeated until all the parameters of the 

model have gone through the bacterial mutation. 

In the mutational cycle it is possible to gain a temporary 

model that has an instantaneous fitness value that is worse 

than the one in the previous or the concurrent models. 

However, it is potentially better than those, because it is 

located in such a region of the search space that has a better 

local optimum than the other models do. In accordance to 

this, if some Levenberg-Marquardt iterations are executed 

after each bacterial mutational step, the test step is able to 

choose some potentially valued clones that could be lost 

otherwise. 

In the Bacterial Memetic Algorithm with Modified Operator 
Execution Order, after each mutational step of every single
bacterial mutation iteration several LM iterations are done. 

Several tests have shown it is enough to run just 3 to 5 of LM 

iterations per mutation to improve the performance of the 

whole algorithm. The usual test phase of the bacterial 
mutation operation follows after the LM iterations. After the 

complete modified bacterial mutation follows the LM 

method that is used in the original BMA, where more, e.g. 10 

iterational steps, are done with all the individuals of the 

population towards reaching the local optimum. After all this 

the gene transfer operation is executed if needed. 

3 Fuzzy flip-flops (F3) 
Fuzzy flip-flops are extended forms of binary flip-flops used 

in the conventional digital technics. We have dealt with the 

fuzzy extensions (complements) of the binary J-K and D flip-

flops. Various types of fuzzy flip-flops are implemented and 

tested (set, reset type and the general type using the unified 

equation; J-K, D and Choi type D; based on minmax, 

algebraic, Yager, Dombi, Hamacher and Frank t-norms and 

co-norms, resp.) [11]. Because of an interesting property 

some fuzzy flip-flops can be used for implementing a 

sigmoid like transfer function and so constructing Multilayer 

Perceptron Neural Networks. 

In our previous works we studied the behavior of various 

type fuzzy flip-flops, illustrating their characteristics by their 

respective graphs. We proposed also the concept of fuzzy 
flip-flop based neural networks and investigated their 

function approximation capabilities [6, 12]. 

4 Fuzzy flip-flop based feedforward neural 
networks (FNN) 

In our team extensive research was done with the leadership 

of R. Lovassy in the field of fuzzy flip-flops. As we 

mentioned it before, various fuzzy norms can be used for 

building fuzzy flip-flop based neural networks (FNNs). The 

basic idea was to substitute the fuzzy flip-flops with 

sigmoidal transfer function instead of traditional neurons. 

The flip-flops are based on various norms, consequently, 

their transfer functions have different slopes. Fixing the 

value of the present state Q (in the characteristical equation), 

often we obtained “good” enough sigmoidal transfer function 

character [6]. First of all, to train this kind of neural network 

with a usual training method BP or LM the derivatives of 

these transfer functions have to be also calculated. Then the 

FNN can be used and trained in the usual way. We found that 

the FNNs we created had good approximation properties. 

[12]. 

5 Training feedforward neural networks 
With an appropriate transfer function and its derivative the 

Error Back Propagation algorithm (BP) can be used for 

training feedforward neural networks (FFNN). However, it 

has weak convergence rates. 

The LM algorithm is more complex and requires more 

computational effort than the BP one, but it has much better 

convergence rates. The LM algorithm is one of the most 

popular training methods for feedforward neural networks 

despite of its higher memory requirements and higher 

complexity. 

The training of the FFNNs begins with the random 

generation of initial weights and biases. Then the training 

method selected is applied. An update vector is generated 

that has to be applied for the vector that contains the weights 

and biases. 

When using BP or LM based training methods one faces the 

drawback of these local searchers described in the next 

section. 

6 Using BMAM in training FFNNs 
Although the LM method based training of the neural 

networks works much more efficiently than the BP based one 

it has all drawbacks of the local search methods. The training 

is very sensitive to the (parameter’s) initial position of the 

search space. An inconveniently generated random parameter 

set with the initial weights and biases determines a hardly 

trainable neural network with a weak performance at the end 

of the LM method based training procedure. This is because 

the LM method is a local searcher and thus it is unable to 

avoid the local minima. 

We decided to apply bacterial type evolutionary algorithms 

because they proved to be rather successful in our previous 
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works, better than the other evolutionary approaches. We 

preferred the Bacterial Memetic Algorithm with Modified 
Operator Execution Order because it converged faster than 

the original BMA. (And contained not only FRBI related 

improvements, like IBMA and MBMA do.) 

We did not implement here the gene transfer operation 

because it was not useful with the neural network training we 

have done (in not changing environments, there was no need 

to change the structure of the NN or the number of the 

neurons).  

The detailed steps of the BMAM used for NN training are 

described below: 

1. Create the initial population – neural networks with 

two hidden layers – and initialize the neural 

network’s input, layer weights and biases randomly 

as before a usual LM training procedure. Each 

individual contains the weights and biases – the 

parameters of the model – encoded in the 

chromosome. In a 1-4-3-1 NN the number of the 

parameters to be encoded are 2*4+4*3+2*3+1 = 27 

parameters per individual. 

2. Apply the modified bacterial mutation for each 

individual. 

a. Each individual is selected one by one. 

b. NClones copies of the selected individual are 

created (“clones”). 

c. Choose the same part or parts randomly 

from the clones and mutate it (except one 

single clone that remains unchanged during 

this mutation cycle). 

d. Run some conventional LM method based 

NN training iterations (3-5 epochs). 

e. Select the best clone (simulate and 

evaluate the NNs) and transfer all of its 

parts to the other clones. 

f. Repeat the part selection-mutation-LM-

selection-transfer cycle until all the parts 

are mutated, improved and tested. 

g. The best individual is remaining in the 

population, all other clones are deleted. 

h. This process is repeated until all the 

individuals have gone through the modified 
bacterial mutation. 

3. Apply the LM method based NN training to each 

individual (e.g. 10 epochs per individual per 

generation) 

4. Repeat the procedure above from the modified 
bacterial mutation step until a certain termination 

criterion is satisfied (e.g. maximum number of 

generations = 20 generation). 

The experimental setup was: 

• General PC (2GHz), Windows XP, Matlab 

• Test function:
4

3

21 )sin()sin(
)( c

c
xcxcxf +⋅⋅⋅=

• 5.0,2,07.0,2.0 4321 ==== cccc
• Number of individuals in the population: 5 

• Number of clones: 5. 

We tested the new training algorithm in two ways.  

6.1 Test 1 
In the first test group we applied the new BMAM based NN 

training. We created a 1-4-3-1 feedforward neural network 

with the usual sigmoid transfer function and with selected 

fuzzy flip-flop based neurons. Our goal was to investigate the 

improvement of BMAM based training over the conventional 

LM based one so four transfer functions were selected: 

sigmoid (tansig), Dombi Fuzzy D Flip-Flop (Dombi DF
3
), 

Frank Fuzzy D Flip-Flop (Frank DF
3
) and Frank Choi-type 

Fuzzy D Flip-Flop (Frank CDF
3
).  

Our goal was here to train a NN that is hard to be trained 

[12]. The number of neurons (4 and 3 in the hidden layers) 

was relatively low. It makes possible to recognise the 

performance improvement (MSE) better, to see that the 

model complexity may be reduced with the better training, 

and to avoid overfitting.  

We ran 30-30 trainings for each case mentioned above. Then 

the maximum, minimum, median and mean MSE values 

calculated. 

In our previous work we chose the median to characterize the 

trainability of the FFF based NNs because in case of training 

with the LM based way there were several unsuccessful 

trainings where the final model was unusable and produced 

too high MSE. That is why we had to analyse 30-100 runs. 

The best value (minimum MSE) was more or less randomly 

good so it could not be used as a reliable value for indicate 

the trainability. In case of the mean value a single one 

unsuccessful training deteriorates many very successful 

training results. With using the median this random extreme 

values could be avoided. 

Table 1 and 2 contains the results of these tests. One can see 

that using BMAM result much more better quality models 

(lower MSE). Using BMAM results lover maximum MSE 

values than median or mean values of the LM based training 

respectively. Furthermore the median and mean MSE values 

of the BMAM based training are very close to the minimum 

values of the LM based training respectively. 

Table 1: MSE values of LM based training 

LM based Max Min Median Mean 

Tansig  0.06452 1.2x10-5 0.00712 0.01891 

Dombi DF3 0.11962 0.04263 0.05732 0.06045 

Frank DF3 0.06644 0.00459 0.04642 0.04159 

Frank CDF3 0.06645 0.00593 0.05486 0.04697 

Table 2: MSE values of BMAM based training 

BMAM Max Min Median Mean 

Tansig  0.00180 3.14x10-7 2.38x10-5 0.00034 

Dombi DF3 0.03994 0.02342 0.03362 0.03294 

Frank DF3 0.01091 0.00187 0.00680 0.00716 

Frank CDF3 0.02519  0.00460 0.00833 0.00933 

Figure 2 to 9 show MSE histograms of 30-30 runs with 

various transfer functions and training methods. One can see 

that if using BMAM there is no need to run 30 or 100 

complete training cycles to gain an excellent quality model 

because every BMAM trained model have very low MSE 

value. 
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Figure 2: LM – Tansig NN histogram 

Figure 3: BMAM – Tansig NN histogram 

Figure 4: LM – Dombi DF
3
 histogram 

Figure 5: BMAM – Dombi DF
3
 NN histogram 

Figure 6: LM – Frank DF
3
 NN histogram 

Figure 7: LM – Frank DF
3
 histogram 

Figure 8: LM – Frank CDF
3
 NN histogram 

Figure 9: BMAM – Frank CDF
3 
NN histogram 

MSE 

MSE 

MSE 

MSE 

MSE MSE 

MSE MSE 
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6.2 Test 2 
In the second group of tests we utilized the BMAM to 

identify quasi optimal parameter values of various types of 

fuzzy flip-flops used in FNNs. 1-8-8-1 neural networks were 

created because the good trainability was much more 

important than the lower complexity of the model here. This 

way the optimal parameter values are easier to identify. 

Therefore we enhanced the capability of the BMAM based 

training method in a manner that the parameter (internally 

fixed Q values) of the fuzzy flip-flop used in Fuzzy Flip-Flop 

Neural Networks (FNN) can be encoded into the 

chromosome. This way it participates in the bacterial 
mutation cycle so the quasi optimal value of this parameter 

can be identified at the end of the BMAM based training. 

Because this parameter is not affected by the LM training we 

applied two different versions of the bacterial mutation
especially for this parameter. The first one is the original 

bacterial mutation (generate random values in the range of 

[0, 1]), while the second one increments or decrements the 

current fixed Q value with a very fine random step.

Table 2 shows the expected ranges and the quasi-optimal 

internally fixed Q values of several FNNs identified by the 

BMAM training method. The expected ranges were derived 

from our previous work [12]. 

Table 2: Expected ranges and fixed Q values by BMAM

Type of FNN Expected range Fixed Q value 

identified by BMAM 

Algebraic JK FF 0 – 0.4 0.25 

Algebraic D FF ~0.1,~0.5, ~0.9 0.91 

Algebraic C D FF <0.15, 0.4 – 0.6, 

>0.85 

0.53 

Dombi D FF <0.1 or >0.9 0.924 

Frank D FF 0.25 – 0.45 0.31 

Further investigations will be focused on using BMAM 

based training method to identify of the other variable 

parameters of Yager, Dombi, Hamacher, Frank norms based 

FNNs.  

7 Conclusions 
In this paper we introduced the adaptation of the Bacterial 
Memetic Algorithm with Modified Operator Execution Order
for training feedforward neural networks, especially neural 
networks built from Fuzzy Flip-Fops (F3

s). 

We applied this new approach to training neural networks and 

fuzzy flip-flop based neural networks. Our goal was to get a 

quasi-optimal result with only a single one or a very low 

number of training sequences whose error does not exceed (or 

very rarely exceeds) an acceptable level. Despite the usual 

tradeoffs between the complexity and accuracy [13] this way 

there is no need to run a few hundred of training cycles to get 

an acceptable model. 

Our tests have shown that BMAM used for training FFNNs 

and fuzzy flip-flop based FFNNs is a very successful tool. 

Although it requires more computational effort than the 

conventional training methods it produces a higher quality 

model (so the complexity of the model can be reduced) with 

only one training cycle. 

Furthermore we enhanced the capability of the BMAM based 

training method in a manner that the parameter or parameters 

of the fuzzy flip-flop used in Fuzzy Flip-Flop based Neural 
Networks (FNN) can be encoded into the chromosome. This 

way it participates in the bacterial mutation cycle so the quasi 

optimal values of these parameters can be identified at the end 

of the BMAM based training. 
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