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Abstract— In this paper, we propose to develop the supervised 
classification method Fuzzy Pattern Matching to be in addition a non 
supervised one. The goal is to monitor dynamic systems with a 
limited prior knowledge about their functioning. The detection of the 
occurrence of new states as well as the reinforcement of the 
estimation of their membership functions are performed online thanks 
to the combination of supervised and non supervised classification 
modes. No information in advance about the shape of classes or their 
number is required to achieve this detection and estimation 
reinforcement. 

Keywords— Classification, clustering, Sequential learning, Fuzzy 

Pattern Matching.   

1 Introduction 
Pattern Recognition (PR) [7] is the study of how machines 

can learn from experience to make sound decisions about the 

classes of patterns of interest. PR involves two stages: 

preprocessing and classification. The preprocessing includes 

feature extraction [1] and selection [12]. The classification 

stage is a mapping of a pattern from the feature space into 

the decision one. The latter is defined by a set of predefined 

classes. This mapping is done using a classifier. The latter is 

a method or algorithm which generates a class membership 

function in order to classify unlabelled incoming patterns 

into one of the predefined classes. Depending on the 

information available for classifier training, one can 

distinguish between supervised [10] and unsupervised [2] 

learning. In the first case, called also classification, there 

exists a set of patterns with their class assignment or label, 

called learning set. The goal of supervised learning is to 

learn a set of membership functions that allows the 

classification of new patterns into one of existing classes. 

The problem of unsupervised learning, also called clustering, 

arises if clusters’ memberships of available patterns, and 

perhaps even the number of clusters, are unknown. In such 

cases, a classifier is learned based on similar properties of 

patterns. Hence, the clustering aims to partition a given set of 

patterns into clusters based on their similarity. 

Semi supervised learning techniques use small or limited 

labelled patterns to estimate the classes’ membership 

functions and the unlabelled ones to detect the occurrence of 

new classes and refine their membership functions 

estimation. Examples of semi supervised methods can be 

found in [4, 9, 11, 13] and the references therein. These 

methods are based either on the use of the Expectation 

Maximisation algorithm for maximum likelihood based 

parameters estimation [9], on the integration of an 

incremental algorithm for the update of classifiers’ 

parameters [13], on the optimisation of an objective or 

learnable distance function [4] or on a classifier retraining to 

integrate new labelled points [11]. The popularity of these 

methods can be attributed to the fact that new information 

can be incorporated resulting better estimation of classes’ 

membership functions and thus more prediction accuracies 

thanks to the unlabelled patterns. However, the 

representativeness of the labelled data is of crucial 

importance especially for small ratios of labelled to 

unlabelled patterns [9]. This is due to the fact that the 

clustering is guided by the labelled patterns.  

One of the applications of PR methods is the monitoring of 

dynamic systems. System states, normal or faulty, are 

characterized by classes in the feature space. The 

performance of statistical PR methods depends on the prior 

knowledge, or learning set, about system behavior. The 

number of available learning patterns is often limited and 

small compared to the dimension of the feature space. Thus, 

it becomes hard to estimate the class membership function 

leading to a large variance in parameter estimates and thus 

higher classification error rates. Moreover, the behavior of a 

dynamic system can assume different operating states in the 

course of time. The learning set cannot contain patterns 

about all these states especially the faulty ones. Thus, the 

occurrence of these missing states must be anticipated online 

and integrated in the data base. In this paper, we propose a 

solution for these problems. This solution is based on the use 

of the supervised classification method Fuzzy Pattern 

Matching [3]. This method presents the advantage to process 

data with a low and constant classification time according to 

the size of data base. We propose to develop FPM as an 

unsupervised classification method. The goal is to combine 

the supervised and unsupervised learning strategies within a 

single algorithm leading to a semi supervised version of 

FPM.    

The paper is organized as follows. Firstly, the functioning of 

FPM is illustrated. In the next section, the proposed solution 

to perform supervised and unsupervised classification using 

FPM is detailed. The performance of semi supervised FPM 

is illustrated and tested using some simulated examples.   
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2 Supervised Fuzzy Pattern Matching 

2.1 Learning phase 
In the learning phase, the probability histograms are 

constructed for each class according to each attribute. The 

number of bins h for a histogram is experimentally 

determined. This number has an important influence on the 

performances of FPM [14]. The histogram upper and lower 

borders can be determined either as the maximal and 

minimal learning data coordinates or by experts. The height 

of each bin 
j

kb , { }hk ,..,2,1∈ , according to each attribute j is 

the number of learning patterns j
kibn  of the class Ci located 

in this bin. The probability distribution 

{ { } { }djhkyp j
kb

j
i ,..,2,1,,..,2,1,)( ∈∈ }, of the class Ci, 

{ }ci ,..,2,1∈ , according to the attribute j is obtained by 

dividing the height of each bin by the total number Ni of 

learning patterns belonging to the same class Ci. These 

probabilities are assigned to the bins’ 

centres { }hky j
k

b ,..,2,1, ∈ :  

i

ib
b

j
i N

n
yp

j
k

j
k

=)(                          (1) 

The Probability Density Function (PDF) is obtained by a 

linear linking between bins heights centres. 

In order to take into account the uncertainty and the 

imprecision contained in the data, the probability distribution 

is converted into possibility one 

{ } { }
2
3
4

5
6
7 ∈∈ djhky j

k
b

j
i ,..,2,1,,..,2,1,)(π . The conversion is 

performed using the transformation of Dubois and Prade [6] 

defined by: 

1

( ) min ( ( ), ( ))j j j
fk k

h
j j j

i i ib b b
f

y p y p yπ
=

= 8                          (2) 

A linear linking between bins heights centres converts the 

distribution of possibilities into density one 
j

iΠ . This 

operation is repeated for all the attributes of each class. 

2.2 Classification Phase 
The membership function for each class Ci according to each 

attribute j is considered to be numerically equivalent to the 

possibility distribution [15]. Thus, the classification of a new 

pattern x, whose values of the different attributes are x1
, .., xj

, 

.., xd
, is made in two steps :  

Determination of the possibility membership value )( jj
i xπ

of jx  to each class Ci according to the attribute j by a 

projection on the corresponding possibility density 
j

iΠ , 

 Merging all the possibility values 

)(),..,(),( 2211 dd
iii xxx πππ  concerning the class Ci, into a 

single one by the aggregation operator “minimum” : 
1 1 2 2( ) min( ( ), ( ),.., ( ))d d

i i i ix x x xπ π π π=              (3) 

The result iπ  of this fusion corresponds to the global 

possibility value that x belongs to the class Ci. Finally, x is 

assigned to the class for which it has the maximum 

membership value. 

3 Semi Supervised Fuzzy Pattern Matching 
The proposed semi supervised FPM has an agglomerative 

characteristic. Thus, it does not require any prior information 

about the number of classes. The classes’ membership 

functions are constructed sequentially with the patterns’ 

arrival. According to the ratio 
Lr

UL L
=

+
 of the number L

of labelled points to the one UL of unlabelled points, the 

proposed method can be totally supervised, r = 1, or totally 

unsupervised, r = 0. Let i
i

i i

L
r

UL L
=

+
be the ratio of labelled 

points Li belonging to the class Ci to the unlabelled ones ULi

which will be assigned to Ci. In the case that 0 1ir≤ < , the 

benefit of semi supervised FPM is to enhance the quality of 

class’s membership estimation thanks to the incorporation of 

the unlabelled points in this class. This enhancement is 

performed online thanks to the use of an incremental 

approach as we can see later. While if ri = 0, the benefit of 

semi supervised FPM is to detect this new class and to learn 

its membership function online. Thus, semi supervised FPM 

presents benefits in both classification and clustering.  

In the case of ri = 0, the first incoming unlabelled pattern is 

considered as the point prototype of a new class and its 

possibilistic membership function according to each attribute 

is computed as in supervised FPM based on this only pattern. 

The next unlabelled pattern is either classified in this created 

class, if it has a membership value according to this class, or 

considered as a point prototype of a new class. After the 

classification of each new pattern, the membership function 

of the corresponding class is updated online using an 

incremental algorithm. Due to the initialisation, created 

classes may need to be merged. This merging is performed 

using a similarity measure. The functioning of semi 

supervised FPM involves the following two steps. 

3.1 Classes detection and local adaptation step  

Let x = dd IRxxx ∈),..,,( 21  be a given pattern vector in a 

feature space constituted of d parameters or attributes. There 

is no learning set containing labelled patterns, nor a prior 

information about classes’ probability density shape or their 

number. Each attribute is divided into equal intervals 

defining the bins of the histogram according to this attribute. 

This histogram is used to estimate the conditional probability 

density for the class that x is driven from. Let 
jX min  and 

jX max  be respectively the lower and upper borders of the 

histogram according to the attribute j. These borders can be 

determined by expert as the minimal and maximal values that 

an attribute can reach. Let h be the number of histogram’s 

bins, then each bin according to the attribute j has the width : 
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h
XX

�
jj

j minmax −
= , { }dj ,..,2,1∈                       (4) 

Thus the limits of these bins are defined as follows : 

{ }
1 min min 2 min min

min max

[ , ], [ , 2 ],

.., [ ( 1) , ], 1,2,..,

j j j j j j j j j

j j j j
h

b X X b X X
b X h X j d

∆ ∆ ∆
∆

= + = + +

= + − ∈
        (5) 

The classes detection and local adaptation step involves two 

strategies : detection of new classes and local adaptation of 

their membership functions. The local adaptation strategy is 

based on an update of classes’ possibility densities after the 

classification of each new pattern so that classifier can follow 

online gradual temporal, or local, changes of classes’ 

membership functions. This online update requires a

recursive representation of classes’ possibility densities. 

However the incremental updating cannot detect abrupt 

changes as changes in the number of clusters. This abrupt 

change is followed up by the detection strategy which is 

based on the fact that each new rejected pattern by all the 

learned classes is considered as a point prototype of a new 

class. The detection strategy is a mechanism for adjusting the 

number of clusters online, which is incremented after the 

detection of each new cluster or class. 

A) Detection of new classes strategy 
The first rejected pattern x according to all the known c 
classes is considered as the point prototype of the first new 

class: , 1.cC x c c← ← + The PDF is obtained as in 

supervised FPM. If x is located in the bin { }hkb j
k ,..,2,1, ∈ , 

then the probability histogram of Cc according to the 

attribute j is : { }1 20, 0,.., 1,.., 0 .
j j j j j

c c c ck chp p p p p= = = = =

The possibility histogram will then be computed using (2). 

Since there is just one pattern, the possibility histogram is 

equal to the probability one. The possibility density of the 

class Cc is obtained by a linear linking between the centre of 

the bin 
j

kb  , which has the height 1, and the ones of its left 

j
kb 1−  and right 

j
kb 1+  neighbours, which have both at present 

the height 0. Generally, if C = {C1, C2, .., Cc} is the set of 

learned classes at present, x a new pattern which is rejected 

by all the learned classes. The detection strategy is defined as 

follows : 

{ }
{ } { }1

( ) 0, 1,2,.., 1,

, ,.., ,..,

i

j d
c c c c c

x i c c c

C x

π

π π π π

= ∀ ∈ 9 ← +

= =
                 (6) 

B) Local adaptation strategy 
For a next pattern x′ , the membership value to each class Ci, 

{ }1,2,..,i c∀ ∈ , will be obtained by a projection on its 

possibility density j
iΠ  according to each attribute j and then 

merging the values according to all the attributes using the 

aggregation operator “minimum” as in supervised FPM. If 

the membership value ( )i xπ ′ of x′  to the class Ci is different 

of zero, then this pattern will be assigned to the class Ci and 

the possibility densities of this class according to each 

attribute will be incrementally updated. To establish an 

incremental update of possibility densities, let 

{ }j
ih

j
ik

j
i

j
i

j
i ppppp ,..,,..,, 21=  and { }j

ih
j

ik
j

i
j

i
j

i πππππ ,..,,..,, 21=
define respectively the probability and possibility histograms 

of the class Ci according to the attribute j. 
Let { }j

ih
j

ik
j

i
j

i
j

i ppppp ′′′′=′ ,..,,..,, 21  and 

{ }j
ih

j
ik

j
i

j
i

j
i πππππ ′′′′=′ ,..,,..,, 21  define respectively the updated 

probability and possibility histograms of the class Ci

according to the attribute j after the assignment of x′ to the 

class Ci. Let suppose for the simplicity that : 
j

i
j
hi

j
ih ppp 1)1( .. <<< − , then these new probabilities can be 

computed incrementally by [14] : 

{ }

{ }

1
, 1,.., * ,

1 1

* , 1,.., ,
1

j j j j i
k ik ik

i i

j j i
iz iz

i

Nx b k h p p
N N

Np p z h z k
N

′ ′∈ ∀ ∈ 9 = +
+ +

′ = ∀ ∈ ≠
+

       (7) 

Then the new possibilities can be computed using Dubois 

and Prade transformation defined by (2). Thus, the local 

adaptation strategy is defined as follows : 

{ }
{ }

{ }
1,..,

1 2

( ) max ( ( )) , ,

, ,.., ,..,

i z i iz c

j d
i i i i i

x x C C xπ π

π π π π π
∈

′ ′ ′= 9 ←

′ ′ ′ ′ ′=
                 (8) 

3.2 Classes merging  step 
The occurrence order of incoming patterns influences the 

final constructed clusters. This entails the possibility to 

obtain several different partitions or number of clusters. 

Thus, several clusters can represent the same class. These 

clusters must be merged into one cluster to obtain one 

partition and one membership function. This fusion can be 

done either by expert or by a merging measure. The later 

measures the overlap or closeness between constructed 

clusters. There are different measures for merging clusters in 

the literature. Most of them are based on a similarity measure 

between clusters, which takes into account either the degree 

of overlapping of clusters or the distance between clusters’ 

centres. The clusters overlapping degree is based on the 

number of ambiguous patterns, belonging to several clusters, 

and their membership values to these clusters. If the number 

of these ambiguous patterns is large enough and their 

membership values to several clusters are high then these 

clusters cannot be considered as heterogeneous anymore and 

must be merged. An interesting similarity criterion which 

takes into account at the same time the number of ambiguous 

patterns as well as their membership values is defined by 

(Frigui el al. 1996) : 

8 8+

8 −

−=

∈ ∈

∈∈

i z

zi

Cx Cx
zi

CxorCx
zi

iz xx

xx

)()(

)()(

1
ππ

ππ
δ               (9) 

izδ  is the fuzzy similarity measure between the classes Ci

and Cz. More this measure is close to one, more the two 

clusters are overlapped. We adopt this measure for the 

merging step of semi supervised FPM.  
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 The merging criterion can be applied offline or online. In 

the first case, several iterations of clustering with a variable 

number of clusters start with a high over-specified number 

(an upper bound). Then, the clusters number is reduced 

gradually until an appropriate number is found. In each 

iteration, similar clusters are merged and this procedure is 

repeated until no more clusters can be merged and finished 

with the optimal number of clusters. In dynamic applications, 

the merging operation must be done online because the 

whole unlabelled patterns are not available a priori. Thus, 

the merging criterion can be tested either after the 

classification of each pattern or in each time window. The 

problem of the testing after each classification pattern is the 

calculation complexity which depends on the cardinality of 

clusters to be merged. However, the clusters are merged 

online when this measure reaches a predefined threshold. 

While in the other case, the merging can be delayed 

according to the size of the time window, but the calculation 

complexity is less than the one of the first case. We propose 

to update the fuzzy similarity measure within a time window. 

This update requires the calculation of the new membership 

values for all the patterns of all the classes inside which new 

patterns have been assigned. Indeed, if a new incoming 

pattern x is assigned to the cluster Ci, then the fuzzy 

similarity measure must be computed only between Ci and 

the other clusters Cz, { }1,.., , .z c z i∈ ≠
When two clusters are merged, their membership functions 

must also be merged. We propose to merge the membership 

functions online using an incremental approach. 

Let { }j
ih

j
ik

j
i

j
i

j
i ppppp ,..,,..,, 21= , { }j

zh
j
zk

j
z

j
z

j
z ppppp ,..,,..,, 21=   

be respectively the probability distributions of the two 

clusters Ci and Cz to be merged. Each bin probability is 

computed as (1) : 
i

bij
ik N

n
p

j
k= , { }hk

N

n
p

z

bzj
zk

j
k ,..,1, ∈∀= . The 

probability of the bin 
j
k

b  after the merging of the patterns of 

the two clusters Ci and Cz is equal to : 

zi

zbibj
izk NN

nn
p

j
k

j
k

+

+
=                       (10) 

Where j
k

ibn and j
k

zbn are respectively the number of patterns 

of the classes Ci and Cz located in the bin 
j
k

b  according to 

the attribute j. Ni and Nz are respectively the number of 

patterns of the classes Ci and Cz.  We can rewrite (10) as 

follows: 

* *

* *

j j
k k

ib zbj i z
izk

i i z z i z

j ji z
ik zk

i z i z

n nN Np
N N N N N N
N Np p

N N N N

= + =
+ +

+
+ +

            (11) 

 Using (11), the probability distribution of the class after 

merging is obtained incrementally according to each 

attribute. Based on (2), the corresponding possibility 

distributions defining the membership functions can be 

obtained. 

4 Experimental Results 
Figure 1 presents a simulated data base of two classes in a 

feature space of two attributes. The two classes are of 

different sizes, the first has 200 patterns and the second has 

100 patterns. The distribution of each class has two 

independent normal variables with different standard 

deviations and means. Anyway, the two classes are not 

overlapped. 

Figure 1: Example of two classes with different sizes, 

standard deviations and means. 

 We apply the proposed semi supervised FPM by selecting 

the patterns with a complete random order. The goal is to test 

the robustness of our algorithm against the initialisation 

problem. The experience is repeated several times with a 

different random pattern’s occurrences at each time. We start 

the experience with a time window which is equal to the size 

of the data set, i.e., the merging step is applied after the 

reception of all the available patterns in the data base. Semi 

supervised FPM detects between 2 to 5 clusters according to 

the initialisation. Figure 2 shows the result of our algorithm 

in the case of the detection of 5 clusters. 

Figure 2: Results of the detection and local adaptation step of 

semi supervised FPM for the example of Figure 1.  

The fuzzy similarity measures between the classes in this 

case are :  

12 13 14 15 23

24 34 35 45

0.23, 0, 0.69, 0, 0,

0.42, 0.04, 0.52, 0.04

� � � � �
� � � �

= = = = =
= = = =

The merging threshold 23.0min =λ  is sufficient to merge the 

classes C1, C2 and C4 into one cluster and C3 with C5 into one 

another cluster in order to obtain at the end the two necessary 

clusters.  Based on the experimentation of several time 

windows’ sizes, a time window of 30 patterns is sufficient to 
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well estimate the correct number of clusters. Anyway, the 

width of the time window depends of the application: its 

dynamic, and the initialisation. If this width is too large, then 

the clusters merging will be delayed, while if it is too small 

the fuzzy similarity measure value may not be enough to 

validate the merging.  

4.1 Classes of non convex shape 
Supervised FPM works well if the classes are separated by at 

least one attribute. This is due to the fact that the 

classification of a pattern by FPM is based on a selection of 

one attribute. Another consequence of the selection of one 

attribute is that FPM does not respect the shape of classes if 

this shape is not convex, which is the case of the majority of 

real applications. Indeed, FPM provides always rectangular 

membership level curves for all the classes. Figure 3 presents 

a case for which the classes are not separated by at least one 

attribute. In addition, the classes C1 and C3 are of non convex 

shape. Figure 4 presents the results of the application of semi 

supervised FPM on this data, with a histogram containing 8 

bins. Indeed, a higher number of histogram’s bins is 

necessary when the classes are not separated by at least one 

attribute. A threshold equal to 0.14 is the required one for the 

merging measure to obtain the three classes. 

Figure 5 shows the membership level curves obtained for this 

data set after the merging of clusters. Here the application of 

(11) leads to obtain one membership function for each class 

according to each attribute equivalent to the one resulting by 

the application of supervised FPM on each class after 

merging. We can see that these curves do not respect the 

shape non convex of classes C1 and C3. This, as we said 

before, is due to the classification decision based on the 

selection of one attribute. Inspired of the multi-prototypes 

approach [5] used in the literature to respect the shape of 

classes, we propose to merge the membership functions of 

the classes as follows : 

),1min( ziiz πππ +=                      (12) 

Where izπ  is the membership function after the fusion of 

classes Ci and Cz. 

Using (12) means that each class is composed of several 

subclasses. Each subclass keeps its membership function. 

The application of (12) provides the membership level 

curves of Figure 6. We can see that these curves respect the 

classes shape. In addition, no supplementary computation is 

required to obtain this fusion. When the number of bins h
increases, the number of subclasses increases also. This leads 

to obtain membership level curves which respect more 

precisely the classes’ shape. However, increasing too much h
entails the appearance of some membership peaks in the 

centre of classes.  

Figure 3: Classes which are not separated by at least one 

attribute and their shape is not convex (classes C1 and C3). 

Figure 4: Clusters obtained by the application of semi

supervised FPM on the data set of Figure 3. 

Figure 5: Membership level curves for the example of 

Figure 3. The membership functions of classes are obtained 

using (11). 

Figure 6: Membership level curves for the example of Figure 

3  using (12). 
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4.2 Overlapped classes 
In the case of overlapped classes, the similarity measure 

becomes useless since the classes are not well separated. In 

addition, some points can be misclassified according to the 

ratio of labelled points to the total number of points in data 

sets. To allow testing the performance of semi supervised 

FPM in the case of overlapped classes, we take the following 

artificial 2-dimensioal dataset (Figure 7) available at 

http://www.stats.ox.ac.uk/pub/PRNN/. It is a normal 

mixtures data set. The training data consists of two classes 

with 125 patterns in each class. Each of the two classes has 

bimodal distribution. The testing set is an independent set of 

1000 patterns drawn from the same distribution. The 

reported misclassification error is based on this testing set. 

The patterns were selected randomly which means that 

labelled patterns about some classes may not be presented at 

all. The experience is repeated 50 times to take into account 

the effect of initialisation. Table 1 presents the obtained 

results using semi supervised FPM. We can see that when r
increases the misclassification error decreases thanks to the 

existence in advances of labelled patterns about some 

classes.   

Figure 7: Normal mixtures data set. 

Table 1: Misclassification Rate (MR) and its STandard 

Deviation (STD) in % according to different values of r for 

the normal mixture data set.  

r % 0% 10% 20% 30% 40% 

MR % 

STD % 

13.49 

12.52 

11.89 

3.71 

9.91 

1.27 

9.39 

1.03 

9.19 

0.62 

50% 60% 70% 80% 90% 100% 

8.84 

0.39 

8.61 

0.32 

8.43 

0.30 

8.26 

0.27 

8.16 

0.2 

8.10 

0 

5 Conclusions 
In this paper, the supervised classification method Fuzzy 

Pattern Matching (FPM) is developed to be also an 

unsupervised classification one. The goal is to obtain a semi 

supervised classification method adapted to dynamic systems 

for which a limited prior knowledge is available. Since the 

unsupervised learning technique is not based on a distance 

measure, the proposed algorithm will not favour the smaller 

sized clusters. In addition, it can start with no prior 

information. Finally, the membership functions can be 

adapted to elongated and non convex clusters.       

We are developing FPM to be operant in the case of non 

stationary data. Indeed, in many practical situations, the 

environment changes. A learning data set used to construct 

the membership functions will be no more valid after a 

certain time. Thus, the classification method must be able to 

forget the information which is no more valid or 

representative of classes and adapt the membership functions 

based only on the recent and useful one.           
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