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Presentación de CAEPIA 20/21

Este volumen contiene un conjunto de art́ıculos seleccionados y revisados por pares enviados a CAEPIA 20/21,
la XIX Conferencia de la Asociación Española de Inteligencia Artificial, celebrada en Málaga, España, del 22 al 24
de septiembre de 2021. CAEPIA es un evento bienal español bien establecido sobre Inteligencia Artificial (IA) que
comenzó en 1985. Ediciones anteriores tuvieron lugar en Alicante, Málaga, Murcia, Gijón, San Sebastián, Santiago
de Compostela, Sevilla, La Laguna, Madrid, Albacete, Salamanca y Granada.

CAEPIA es un foro nacional abierto a investigadores de todo el mundo para presentar y discutir sus últimos
avances cient́ıficos y tecnológicos en IA. Los autores pod́ıan optar por cinco tipos de contribuciones: trabajos
inéditos de investigación para un volumen en la serie Lecture Notes in Artificial Intelligence de Springer, trabajos
inéditos de investigación para estas actas, trabajos destacados ya publicados, proyectos de doctorado, desarrollos
de aplicaciones móviles y v́ıdeos divulgativos. La conferencia acogió tanto investigación teórica como metodológica,
técnica y aplicada.

Dentro de CAEPIA se organizaron varios talleres y congresos federados relacionados con los temas más re-
levantes de la IA: XX Congreso Español Sobre Tecnoloǵıas y Lógica Fuzzy (ESTYLF); XIV Congreso Español
de Metaheuŕısticas, Algoritmos Evolutivos y Bioinspirados (MAEB); X Simposio de Teoŕıa y Aplicaciones de la
Mineŕıa de Datos (TAMIDA); y seis talleres. También contamos con un Doctoral Consortium (DC). Este es un
foro para que los estudiantes de doctorado interactúen con otros investigadores discutiendo sus planes de trabajo y
avances en el doctorado. Como actividad adicional de IA, llevamos a cabo el 4o Concurso de Aplicaciones Móviles
con Técnicas de IA, junto con una nueva edición del Concurso de Vı́deos de Divulgación de IA.

Todas las actividades anteriores avalan la IA, y nos esforzamos por alcanzar una alta calidad en los art́ıculos
cient́ıficos, el DC y las competiciones. El programa cient́ıfico de CAEPIA 20/21 también ofreció una v́ıa para difundir
trabajos destacados (Key Works: KW) publicados recientemente en revistas y foros de alto impacto cient́ıfico.
CAEPIA siempre ha tenido como objetivo ser reconocida como una conferencia insignia en IA y, por lo tanto, los
art́ıculos fueron revisados por pares. El número total de env́ıos a CAEPIA 20/21 fue de 186 (en este número no
se incluyeron ni DC ni concursos ni presentaciones KW, que suman 83 contribuciones adicionales, y que pasaron
por un proceso de evaluación diferente). Los revisores evaluaron la calidad general de los manuscritos presentados,
junto con la calidad de la metodoloǵıa empleada, la solidez de las conclusiones, la importancia del tema, la claridad
de la redacción y su organización, entre otros criterios de evaluación. A partir de estas revisiones, los responsables
de área, presidentes de congresos y organizadores de talleres y sesiones especiales propusieron un número final de
art́ıculos que fueron analizados y aprobados por los editores de este volumen.

CAEPIA 20/21 invitó a dos investigadores de renombre internacional a impartir una charla plenaria. Nuestros
dos ponentes plenarios fueron Óscar Cordón (Inteligencia Artificial para Antropoloǵıa Forense e Identificación
Humana) y Yaochu Jin (Optimización Evolutiva Basada en Datos). Nuestra conferencia se celebró como un gran
evento dentro de uno aún mayor: la Conferencia Española de Informática (CEDI), que también contó con charlas
plenarias muy interesantes.

AEPIA y los organizadores de CAEPIA 20/21 reconocieron las mejores tesis doctorales y art́ıculos originales
en eventos federados escritos tanto por investigadores consolidados como por estudiantes. CAEPIA 20/21 también
tuvo como objetivo promover la presencia de mujeres en la investigación de IA. Como en ediciones anteriores, el
premio Frances Allen reconoció las dos mejores tesis doctorales defendidas por una mujer durante los dos últimos
años.

Los editores de este volumen quieren agradecer a las numerosas personas que contribuyeron al éxito de CAE-
PIA 20/21: autores, miembros de los comités cient́ıficos y los comités de programa, ponentes invitados, organizadores
de eventos, gestores de medios electrónicos, etc. También, agradecer el trabajo incansable del comité organizador,
nuestros patrocinadores (como VRAIN en Valencia), el equipo de Springer y AEPIA por su apoyo.

Por último, pero no menos importante, en nombre de los participantes de CAEPIA 20/21, Enrique Alba (presi-
dente) y Francisco Chicano (responsable de este volumen) dan las gracias a la organización de CEDI, la Universidad
de Málaga (sede local de la conferencia) y a toda la comunidad española que trabaja en IA (y sus numerosos cola-
boradores extranjeros) por hacer de este evento un verdadero éxito.

Enrique Alba
Presidente de CAEPIA 20/21
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Presentación de la Presidenta de la
Asociación Española para la Inteligencia Artificial

Es para mı́ un inmenso honor presentaros esta nueva edición en Málaga de la serie de conferencias CAEPIA,
en la que además se cierra una etapa en la que he tenido el inmenso privilegio de trabajar como Presidenta de la
Asociación Española para la Inteligencia Artificial (AEPIA).

Debemos el inicio de estas conferencias bienales en los años 80 a un pequeño, pero muy entusiasta, grupo de
investigadores españoles en Inteligencia Artificial (IA). A pesar de que en aquella época la IA estaba en un momento
álgido, la situación no era comparable al momento actual, en el que nuestra disciplina se ha convertido en una de
las más influyentes en la nueva revolución tecnológica que está teniendo lugar. Además, hay ciertas diferencias con
entonces que auguran que quizás, y aunque quede mucho camino aún por recorrer, esta vez la primavera puede ser
casi eterna. Hay algunos factores que han confluido para dar este estallido de vida a la IA, como son la disponibilidad
de enormes cantidades de datos (uno de los alimentos de los algoritmos actuales de IA), el abaratamiento de la
computación en nube o la existencia de plataformas distribuidas y paralelas, que permiten el procesado rápido
y económicamente viable de esas grandes cantidades de datos. Confluye también un imparable cambio social, ya
que todos interactuamos constantemente con nuestros múltiples dispositivos móviles, en un mundo en el que la
interconectividad es imprescindible, y aún lo es más desde la irrupción de la pandemia CoVid-19 en nuestras vidas.

Nuestra disciplina es la cabeza del cambio, y ello implica no sólo cambios tecnológicos y sociales, sino también
de poder económico y geopoĺıtico. Existe una cierta dinámica de confrontación entre EEUU y China, en la que esta
última ha explicitado que su meta es convertirse en la nación que domine el mundo en IA en el año 2030, mediante
una inversión masiva en I+D+I y en poĺıticas de fusión “militar-civil”, aunque por el momento son las empresas
americanas las que van en cabeza. Y en este contexto, la UE se ha decidido por una tercera v́ıa, la de intentar
fomentar y mantener su talento investigador en IA, además de atraer talento extranjero, y promover asimismo una
IA robusta, transparente, auditable, ética y al servicio de la humanidad, con las personas en el centro. Los diferentes
páıses de la UE, entre ellos España, han elaborado Estrategias de Inteligencia Artificial. Según estudios de varias
consultoras, y en palabras del Presidente del Gobierno en la presentación de la Estrategia Nacional de IA (ENIA)
recientemente este 2 de Diciembre, la IA ha contribuido en 2018 con unos 1700 millones de euros al PIB mundial,
y en 2030 se estima que aportará ocho veces más, alrededor de 14 mil millones de euros, una cifra cercana a todo el
PIB actual de la UE. Es indudable que la disciplina tiene una enorme capacidad de transformación en la economı́a.

Nuestra ENIA es más modesta que las estrategias de otros páıses europeos en inversión, aśı que es mandatorio
para hacer valer nuestras fortalezas como páıs. Y es en este esfuerzo colectivo donde contribuimos los cient́ıficos
que trabajamos en los diferentes campos de la IA. En esta conferencia estarán representados muchos de los grupos
españoles más relevantes, aportando nuestra investigación y nuestra capacidad de transferencia, parte de la cual
se plasma en los trabajos que se presentan tanto en las conferencias plenarias como en las diferentes sesiones, Key
notes, Workshops, etc. incluidos en esta XIX CAEPIA, que es co-ocurrente con las conferencias del XX Congreso
Español de Tecnoloǵıas y Lógica Difusa (ESTYLF), el XIV Congreso Español de Metaheuŕıstica y Algoritmos
evolutivos y bioinspirados (MAEB), y el X Simposium de Teoŕıa y Aplicaciones de Mineŕıa de Datos (TAMIDA),
todos ellos co-celebrándose además junto con el Congreso Español De Informática (CEDI). La conferencia también
se implica con el talento emergente, incluyendo programas para los estudiantes y los jóvenes investigadores, como
es el caso del Doctoral Consortium, los Premios a los Jóvenes investigadores autores de los mejores art́ıculos, o a
las mejores Apps y videos divulgativos de IA. En AEPIA también contribuimos con acciones de género positivas
mediante los premios Frances Allen a las mejores tesis doctorales realizadas por mujeres, en un intento de reducir
la significativa brecha de género e incorporar más talento a la disciplina, en esta ocasión agradecemos su patrocinio
en este Premio al Instituto Valenciano de Investigación en Inteligencia Artificial (VRAIN).

Tenemos un tejido investigador del que sentirnos orgullosos, debemos trabajar para mantener, retener y atraer
talento, una de las materias primas fundamentales para abrazar el futuro. En esta XIX CAEPIA aportamos una
muestra de nuestra contribución a esa apuesta de futuro.

Amparo Alonso Betanzos
Presidenta de AEPIA
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Ponentes Plenarios

Óscar Cordón
Instituto Andaluz Interuniversitario en Ciencia de Datos e Inteligencia
Computacional (Instituto DaSCI)

Oscar Cordón fue el Director Fundador del Centro de Enseñanzas Virtuales (2001-
05) y Delegado de la Rectora para la Universidad Digital (2015-19) de la Universidad de
Granada (UGR). Fue uno de los investigadores fundadores del European Centre for Soft
Computing (2006-11), siendo luego contratado como Investigador Afiliado Distinguido
hasta diciembre de 2015. En la actualidad es Catedrático de Universidad en la UGR.
Durante más de 25 años, ha impulsado programas de investigación y transferencia en
fundamentos y aplicaciones de inteligencia computacional con un gran reconocimiento
internacional. Ha publicado más de 380 contribuciones cient́ıficas, incluyendo un libro
de investigación sobre Genetic Fuzzy Systems (con más de 1400 citas en Google Scholar)
y 112 art́ıculos de revista JCR-SCI (68 en Q1 y 38 en D1), ha dirigido 19 tesis doctorales
y coordinado 37 proyectos y contratos de investigación (con un presupuesto global de más de 9Me). A fecha de
mayo de 2021, sus publicaciones han recibido 5422 citas (H-index=39), estando incluido en el 1 % de investigadores
más citados en el mundo (fuente: Web of Science); con 14687 citas y H-index=58 en Google Scholar. También tiene
una patente internacional en explotación sobre un sistema inteligente para identificación forense, comercializada en
México y Sudáfrica.

Ha recibido el Premio de Jóvenes Investigadores de la UGR (2004), el Premio IEEE CIS Outstanding Early
Career Award (en su primera edición, 2011), el Premio Nacional de Informática ARITMEL (2014) por la Sociedad
Cient́ıfica de España, el IEEE Fellow (2018) y el IFSA Fellow (2019). Fue miembro del Grupo de Expertos que
desarrolló la Estrategia Española de I+D+I en Inteligencia Artificial para el Ministerio de Ciencia, Innovación
y Universidades (2018-19). Es o ha sido Editor Asociado de 19 revistas internacionales, siendo reconocido como
Outstanding Associate Editor de IEEE Transactions on Fuzzy Systems (2008) y de IEEE Transactions on Evolu-
tionary Computation (2019). Desde 2004, ha ocupado distintos puestos de representación en EUSFLAT e IEEE
Computational Intelligence Society.

En la actualidad investiga en inteligencia artificial para identificación forense (en colaboración con el laboratorio
de Antropoloǵıa F́ısica de la UGR y varios laboratorios forenses y cuerpos y fuerzas de seguridad internacionales)
y en modelado basado en agentes y análisis de redes sociales para marketing (en colaboración con R0D Brand
Consultants en proyectos para CAPSA, Mercedes, Jaguar-Land Rover, El Corte Inglés, Telefónica, Samsung, Coca
Cola Europa, Cola Cao, WiZink,...).

Inteligencia Artificial para Antropoloǵıa Forense e Identificación Humana

Los métodos de identificación forense basados en el esqueleto empleados por antropólogos, odontólogos y patólo-
gos representan el primer paso en cualquier proceso de identificación humana (ID) y la última oportunidad de
identificación de la v́ıctima cuando no puede aplicarse el análisis de ADN o de huellas dactilares. Incluyen métodos
como la estimación del perfil biológico (BP), la radiograf́ıa comparativa (CR), la superposición craneofacial (CFS) y
la comparación de registros dentales. La BP implica el estudio de restos óseos para encontrar rasgos caracteŕısticos
(edad, sexo, estatura y ascendencia) que ayuden a determinar la identidad del individuo. Desempeña un papel
crucial en la reducción del rango de coincidencias potenciales durante el proceso de ID, antes de la confirmación
mediante una o más técnicas de ID. La CR considera la comparación ante-mortem (AM) y post-mortem (PM) de
diferentes huesos y cavidades (senos frontales del cráneo, clav́ıculas, rótulas,. . . ) que han demostrado ser útiles para
la identificación positiva por su individualidad y singularidad. La CFS tiene como objetivo superponer un cráneo
con algunas imágenes AM de un candidato para determinar si corresponden a la misma persona.

Sin embargo, los profesionales todav́ıa emplean un paradigma de observación utilizando métodos subjetivos
introducidos hace muchas décadas basados en la descripción oral y documentación escrita de los hallazgos obteni-
dos y la comparación manual y visual de los datos AM y PM. El diseño de métodos sistemáticos, automáticos y
confiables para apoyar al antropólogo forense en la aplicación de BP, CFS y CR, evitando el uso de procedimientos
manuales subjetivos, propensos a errores y que consumen mucho tiempo, es una necesidad para mejorar la iden-
tificación forense. El uso de inteligencia artificial, en particular inteligencia computacional (algoritmos evolutivos,
conjuntos difusos y aprendizaje profundo), visión por ordenador (registrado de imágenes 3D-2D y procesamiento de
imágenes) y aprendizaje automático explicable es una forma muy adecuada para lograr este objetivo. En esta charla
presentaremos tres sistemas inteligentes para CFS, CR y estimación de la edad de la muerte a partir del esqueleto,
desarrollados en colaboración con el Laboratorio de Antropoloǵıa F́ısica de la Universidad de Granada en el marco
de un proyecto de investigación desarrollado en los últimos quince años. Uno de estos sistemas está protegido por
una patente internacional explotada por Panacea Cooperative Research y está comercializado en diferentes páıses.
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Yaochu Jin
Universidad de Surrey, Reino Unido

Yaochu Jin se licenció, estudió y se doctoró en la Universidad de Zhejiang (Hangz-
hou, China) en 1988, 1991 y 1996, respectivamente, y obtuvo el t́ıtulo de ingeniero de
la Universidad del Ruhr (Bochum, Alemania) en 2001.

En la actualidad es profesor distinguido de Inteligencia Computacional en el Depar-
tamento de Informática de la Universidad de Surrey, Guildford, Reino Unido, donde
dirige el Grupo de Computación e Ingenieŕıa Inspirada en la Naturaleza. Ha sido “Fin-
land Distinguished Professor”de la Universidad de Jyvaskyla (Finlandia), “Changjiang
Distinguished Visiting Professor”de la Universidad de Northeastern (China) y “Distin-
guished Visiting Scholar”de la Universidad Tecnológica de Sydney (Australia). Recien-
temente, el Ministerio Federal de Educación e Investigación de Alemania le ha conce-
dido la “Cátedra Alexander von Humboldt de Inteligencia Artificial”. Sus principales
intereses de investigación son la optimización evolutiva asistida por datos, el aprendi-
zaje automático fiable, el aprendizaje evolutivo multiobjetivo, la robótica de enjambre y los sistemas evolutivos de
desarrollo.

El Dr. Jin es actualmente editor jefe de IEEE Transactions on Cognitive and Developmental Systems y de
Complex & Intelligent Systems. Fue conferenciante distinguido del IEEE y vicepresidente de la Sociedad de Inteli-
gencia Computacional del IEEE. Ha recibido el premio al mejor art́ıculo de 2018 y 2020 de IEEE Transactions on
Evolutionary Computation, el premio al mejor art́ıculo de 2014, 2016 y 2019 de IEEE Computational Intelligence
Magazine y el premio al mejor art́ıculo del Simposio de IEEE sobre Inteligencia Computacional en Bioinformática
y Bioloǵıa Computacional de 2010. Está reconocido como Investigador Altamente Citado en 2019 y 2020 por el
Grupo Web of Science. Es miembro de IEEE.

Optimización Evolutiva Basada en Datos

Muchos problemas de optimización del mundo real no tienen funciones objetivo anaĺıticas y las evaluaciones
de los objetivos deben basarse en costosos cálculos o experimentos f́ısicos. Estos problemas de optimización se
conocen como problemas de optimización basados en datos. Esta charla ofrece una visión general de la optimización
evolutiva asistida por datos de sistemas complejos. Comenzamos con una breve introducción a las ideas básicas de la
optimización evolutiva basada en datos, seguida de estrategias avanzadas de gestión de sustitutos que hacen uso de
técnicas avanzadas de aprendizaje automático como el aprendizaje semisupervisado, el aprendizaje de transferencia
y el aprendizaje de conjunto. Se expondrán ejemplos del mundo real, desde la optimización del diseño de ingenieŕıa
hasta la búsqueda de arquitecturas neuronales.
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José Antonio Iglesias Mart́ınez Universidad Carlos III de Madrid, España
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López, Victoria CUNEF Universidad, España
Mandow, Lawrence Universidad de Málaga, España
Manyà, Felip IIIA-CSIC, España
Martinez-Camara, Eugenio Universidad de Granada, España
Mart́ınez, Luis Universidad de Jaén, España
Massa, Jose Universidad de Buenos Aires, Argentina
Medina-Carnicer, Rafael Universidad de Córdoba, España
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Sobrino Cerdeiriña, Alejandro Universidad de Santiago de Compostela, España
Sánchez Solano, Santiago IMSE-CNM, España
Torra, Vicenc Universidad de Skövde, Suecia
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Romano, Carlos-Andrés Universidad Politécnica de Valencia, España
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Salcedo-Sanz, Sancho Universidad de Alcalá, España
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Juan José Guerrero, Javier Ferrer, Rubén Saborido, Enrique Alba

Sistema de Recomendación con Explicaciones Basadas en Texto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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Luis C. Jariego Pérez, Eduardo C. Garrido-Merchán
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Prometheus: Harnessing Fuzzy Logic and Natural Language for Human-centric Explainable Artificial
Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Ettore Mariotti, Jose M. Alonso-Moral, Albert Gatt

Modelando el comportamiento del consumidor con el modelo de 2-tuplas lingǘısticas y una heuŕıstica
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Detección de comunidades con un enfoque multi-objetivo utilizando VNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
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Reemplazo de la función de pooling de Redes Neuronales Convolucionales por combinaciones lineales de
funciones crecientes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
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Evaluation of the Transformer Architecture for Univariate Time Series Forecasting . . . . . . . . . . . . . . . . . . . . . . 658
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Uso de técnicas de Inteligencia Artificial en el ámbito de la Atención Temprana . . . . . . . . . . . . . . . . . . . . . . . . . 717
Ignacio Sierra, Norberto Dı́az-Dı́az, Carlos D. Barranco, Rocio Carrasco-Villalón

Un sistema de apoyo al experto en actividad f́ısica basado en Metaheuŕısticas . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
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Aplicación de técnicas de Aprendizaje Automático para el análisis de datos de acciones de juego en voleibol 775

Francisco Aragón Royón, Elia Mercado Palomino, Aurelio Ureña Espa, José M. Beńıtez
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Lućıa Prieto Santamaŕıa, Ernestina Menasalvas Ruiz, Alejandro Rodŕıguez-González
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Abstract—In this paper we take up the community detection
problem based on fuzzy measures. We focus on the existence of
a family of vectors which define some additional information
about the individuals of a network, from which we obtain
multiple fuzzy Sugeno λ-measures. We introduce a new knowl-
edge representation model, which combines the information of
those fuzzy measures with a crisp graph: the multi-dimensional
extended vector fuzzy graph. We suggest a particular application
of it, devoted to the community detection problem. To solve
it, we define a method, based on the consideration of the
multi-dimensional weighted graph associated with multiple fuzzy
measures.

Index Terms—Fuzzy measure, Sugeno λ-measure, Community
detection problem, Extended vector fuzzy graph, Weighted graph
associated with a fuzzy measure

I. INTRODUCTION

The community detection problem is one of the most important
topics in the field of Social Networks Analytics (SNA). Clas-
sical methods have their basis on the structure of the graph,
an assumption which has provided good results. Nevertheless,
in the last years, some authors have agreed on the impor-
tance of adding some additional information apart from the
graph when dealing with SNA problems, particularly, when
finding communities in a network. Different approaches can
be found. Particularly, Gutierrez et al. have been working in
the incorporation of some additional information modeled by
fuzzy measures to enrich the process [1]–[3].

We take up the idea introduced in [4] of finding com-
munities by considering the additional information modeled
by a vector, for example, the ratings of a film given by a
group of people connected among them. Several synergies

This research has been partially supported by the Government of Spain,
Grant Plan Nacional de I+D+i, MTM2015-70550-P, PGC2018096509-B-I00,
BDNS Identif.: 498817 EB25/20 and CT17/17 - CT18/17.

among individuals may appear from the ratings, modeled by a
fuzzy Sugeno λ−measure [5], [6], so the community structure
may be affected. Draw from this initial assumption, now we
suggest the management of multiple vectors. For example,
imagine each vector represents the interest of a group of people
regarding an activity, so that one vector is about sports, another
about music or literature, and so on. From these interests, there
may appear different synergies among the people, which will
be represented by a multi-dimensional family of fuzzy Sugeno
λ-measures, obtained from mentioned vectors. To handle these
fuzzy Sugeno λ-measures, it is defined the multi-dimensional
weighted graph associated with them (vector MAGW). It
represents the synergies among individuals regarding the infor-
mation given by the vectors. This tool has a many application
in any SNA problem. Particularly, we will use it to address a
community detection problem with additional information.

On the other hand, as a generalization of the extended vector
fuzzy graph [4], we define the multi-dimensional extended
vector fuzzy graph (MEVFG), which combines the knowledge
of a crisp graph with that of multiple fuzzy Sugeno λ-measures
obtained from vectors. On its basis, we approach a community
detection problem based on fuzzy measures. We define an
algorithm inspired by the Louvain method. It is based on
modularity optimization [7] and local moving [8]. We also
propose a specification of it to deal with 1-additive measures,
situation in which the proposed algorithm is polynomial-time
complexity.

The remainder of the paper is organized as follows. In
Section II we provide several useful definitions which will be
used later. Then, in Section III we address an scenario in which
there are multiple fuzzy measures defining some information
about a graph. The starting point is the existence of a family
of vectors, each of which defines an evidence about the
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individuals of the graph, i.e. the nodes. After that, we propose a
particular application of the multi-dimensional extended vector
fuzzy graph devoted to the community detection in Section IV.
We conclude the work in Section V with some conclusions and
future research lines.

II. PRELIMINARIES

In this section we show several definitions which set the
basis of this paper. We start with the definition of a graph
or network, a tool which set the basis of this work.

Definition 1. Graph / Network [9].

A graph or network is a pair G = (V,E) where V =
{1, 2, . . . , n} is a set of individuals named nodes or vertices,
and E = {{i, j} | i, j ∈ V } is a non ordered set of pairs of
nodes, named edges or arcs.

Another way to characterize a graph is by means of its ad-
jacency matrix. This matrix, usually denoted by A, represents
the direct connections between the nodes, in the sense that
Aij = 1 if {i, j} ∈ E, and Aij = 0, otherwise.

On the other hand, we will consider non-weighted graphs,
(and edge exists or not, so Aij = 1 or Aij = 0), and weighted
graphs. In this case, there is a weight function defined on the
set of edges, w : E → R, so there is a weight or value assigned
to each edge. In this scenario, Aij = wij , where wij is the
weight of the edge {i, j} ∈ E.

Besides the graphs, the cornerstone of this paper is the
use of fuzzy Sugeno λ-measures [4], functions to which we
force to be fuzzy measures [6] and Sugeno λ-measures [5].
Particularly, we focus on this type of functions when they are
obtained from a vector.

Definition 2. Fuzzy Sugeno λ-measure obtained from a
vector (µx,p) [4].

Let x = (x1, . . . , xn) denote a vector defining any evidence
about the elements of the n-set V , where xi ≥ 0 ∀i. Let p ∈
(0, 1] denote a parameter. The function µx,p is fuzzy Sugeno
λ-measure obtained from a vector, and it is characterized as
follows:

µx,p(i) = pxi∑n
k=1 xk

,∀i ∈ V
and

µx,p(A ∪B) = µx,p(A) + µx,p(B) + λµx,p(A)µx,p(B),
∀A,B ⊆ V, with A ∩B = ∅ and
λ+ 1 =

∏n
i=1(1 + λµx,p(i))

To simplify the visualization and understanding of the
relations defined by µx,p, we will suggest the definition of the
weighted graph associated with it. To characterize this graph,
we consider the Shapley value. It is an essential tool in the

frame of Game Theory which was also adapted to the fuzzy
measures background.

Definition 3. Shapley value [10].

Let µ : 2V → [0, 1] denote a fuzzy measure, where |V| = n.
For every i ∈ V its Shapley index is calculated as:

Shi (µ) =
∑

K⊆V \{i}

(n− |K| − 1)!|K|!
n!

(µ(K ∪ {i})− µ(K))

The Shapley value of the fuzzy measure µ : P(V )→ [0, 1]
is defined by the vector Sh (µ) = (Sh1 (µ) , . . . , Shn (µ)).

Hence, on the basis of the Shapely value and considering an
aggregation operator, we recall the concept of weighted graph
associated with a fuzzy measure [11], adapted for the scenario
in which the fuzzy measure is obtained from a vector [4]. This
graph is a tool which represents the synergies and relations
between every pair of elements of the set V , according to the
knowledge modeled by µx,p.

Definition 4. Weighted graph associated with µx,p, Gµx,p

(AWG of vector) [4].

Let V denote a n-set, and let x denote a n-vector defining
any evidence about the elements of V . Let µx,p denote the
fuzzy Sugeno λ-measure obtained from x. The weighted graph
associated with µx,p, Gµx,p

, (AWG of vector) is that whose
adjacency matrix is:

Xij = φ
(
Shi(µx,p)− Shji (µx,p), Shj(µx,p)− Shij(µx,p)

)

(1)
being φ : [−1, 1]2 → [0, 1] a bi-variate aggregation

operator [12]; Shi(µx,p) and Shji (µx,p) the Shapley values
of i on µx when it is in a coalition with all the elements of V
or V \{j}, respectively [10].

For every pair of elements of V , the AWG represents how
each individual is affected by the absence of the other in a
coalition regarding µx,p.

The calculation of the Shapely value may be hard for
general fuzzy measures; nevertheless it is much easier for
additive fuzzy measures. In [4] it was demonstrated that µx,p
is a fuzzy Sugeno λ-measure. Particularly, when p = 1, it is
1-additive [13] (denoted by µax). To facilitate the calculation of
the Shapley value when defining the weighted graph associated
with µx,p, we focus on this scenario.

To end this section, we present another tool which plays
an essential role to address the community detection problem
based on fuzzy measures is the extended fuzzy graph, firstly
introduced in [11] and then adapted to the particular case of
fuzzy Sugeno λ-measures in [4].
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Definition 5. Extended vector fuzzy graph (EVFG) [4].

Let G = (V,E) denote a crisp graph and let x denote a
vector, so that µx,p is the fuzzy Sugeno λ-measure obtained
from x. The triplet G̃x = (V,E, µx,p) is an extended vector
fuzzy graph, (EVFG).

III. MULTIPLE FUZZY SUGENO λ- MEASURES IN A GRAPH

In the framework of networks analysis, we assume the ex-
istence of several information sources about the nodes of the
graphs, given by a family of vectors,

(
x1, . . . , xr

)
, so that each

of them defines (independently) an evidence about the indi-
viduals of a set. From these family of vectors, we characterize
the fuzzy Sugeno λ-measures [4] µx1,p1 , . . . , µxr,pr .

For a proper understanding and visualization of these fuzzy
measures, we suggest the definition of the corresponding
multi-dimensional weighted graph associated with them. It is
a generalization to a multi-dimensional scale of the weighted
graph associated with a fuzzy Sugeno λ-measure obtained
from a vector (AWG of vector).

Definition 6. Multi-dimensional weighted graph associated
with a family of fuzzy Sugeno λ-measures (vector MAWG).

Let
(
x1, . . . , xr

)
denote a family of vectors; each one defines

an evidence about the elements of a set V with |V | = n.(
µx1,p1 , . . . , µxr,pr

)
denote the fuzzy Sugeno λ-measures ob-

tained from these vectors. The multi-dimensional weighted
graph associated with

(
µx1,p1 , . . . , µxr,pr

)
is that whose ad-

jacency matrices are
(
X1, . . . , Xr

)
, being X` the adjacency

matrix of the AWG of µx`,p` , where, ∀` = 1, . . . , r, ∀i, j ∈ V,

X`
ij = φ`

(
Shi(µx`,p` )− Sh

j
i (µx`,p` ), Shj(µx`,p` )− Shij(µx`,p` )

)

(2)
being φ : [−1, 1]2 → [0, 1] a bi-variate aggregation operator

[12]; Shi(µx,p) and Shji (µx,p) the Shapley indices of i on µx
when it is in a coalition with all the elements of V or V \{j},
respectively [10].

Then, we define a knowledge representation model which
combines the information provided by a crisp graph with some
additional information independent of its structure which is
modeled by some vectors.

Definition 7. Multi-dimensional extended vector fuzzy graph
(MEVFG).

Let G = (V,E) denote a crisp graph, and let
(
x1, . . . , xr

)

denote a family of vectors so that each of them defines any
evidence about the elements of V . Let

(
µx1,p1 , . . . , µxr,pr

)

denote the family of fuzzy Sugeno λ-measures obtained from
vectors

(
x1, . . . , xr

)
. Then, G̃ =

(
V,E

(
µx1,p1 , . . . , µxr,pr

))

is a multi-dimensional extended vector fuzzy graph, (MEVFG).

Let us note that the MEVFG goes further than other existent
tool: it allows the characterization of several synergies among
the individuals, regardless their connections in the crisp graph.
Furthermore, due to the properties of the fuzzy Sugeno λ-
measures, some relations between elements can be inferred
from the knowledge about some individual evidence.

IV. COMMUNITY DETECTION PROBLEM IN A
MULTI-DIMENSIONAL EXTENDED VECTOR FUZZY GRAPH

The MEVFG has numerous applications. In this paper we take
up the idea introduced in [4] related to community detection
in graphs according to the existence of a fuzzy Sugeno λ-
measure. Now we work with the multi-dimensional extended
vector fuzzy graph G̃ =

(
V,E,

(
µx1,p1 , . . . , µxr,pr

))
obtained

from the combination of a crisp graph G = (V,E) and a
family of vectors

(
x1, . . . , xr

)
defining additional information

about the elements of V , from which we define the fuzzy
Sugeno λ−measures

(
µx1,p1 , . . . , µxr,pr

)
. We agree that, the

more information is analyzed, the more cohesive and realistic
are the groups detected.

The proposed methodology, named Multi-dimensional
Sugeno Louvain, is based on the Louvain Algorithm [14]. The
main point of our algorithm is to summarize all the knowledge
of the MEVFG into two matrices: the adjacency matrix of the
crisp graph, A, represents the direct connections between the
nodes (edges), and X summarizes the additional information
given by the family of vectors

(
x1, . . . , xr

)
.

• Step 1: definition of the vector MAWG. Given the fuzzy
Sugeno λ-measures

(
µx1,p1 , . . . , µxr,pr

)
obtained from(

x1, . . . xr
)
, matrices

(
X1, . . . , Xr

)
have to be defined

according to equation (2).

• Step 2: information aggregation. Matrices X1, . . . , Xr

are aggregated to obtain the matrix X. The aggregation
function Φ : Πr → Π is used, being Π the set of
quadratic n-matrices. Particularly, we suggest the use
of a matrix aggregator based on the classical aggrega-
tion operators with “element to element” transformation:
X = Φ

(
X1, . . . , Xr

)
.

After this aggregation process, the method Duo Louvain,
summarized by its pseudo-code in the Algorithm 1, has to
be applied (see [15], [16] for more details), considering the
matrix M = θ (A,X), being θ : Π2 → Π an aggregation
function. That method can consider the information of two
matrices when finding communities in a graph (A is used to
find “feasible” communities, and any other matrix to calculate
the maximum of modularity). Note that the notion of group
and its size depend on the operator Φ considered [16]. The
new community detection method defined to find groups in a
multi-dimensional extended vector fuzzy graph is summarized
in the Algorithm 2 and it is named Multi-dimensional Sugeno-
Louvain.
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Algorithm 1 Duo Louvain
1: Input: (A, M);
2: Output: P ;
3: Preliminary
4: Ci ← {i}, ∀i ∈ V (ech node i is an isolated community);
5: P ← (1, 2, . . . , n) (initial partition);
6: end Preliminary
7: Phase 1
8: Take o =

(
o1, . . . , oi, . . . , on

)
∈ π(V );

9: stop← 0;
10: while (stop == 0) do
11: stop← 1
12: for (i = 1) to (n) do
13: (e1, . . . , eh)← H(oi) (find the neighbours of oi in

A);
14: for (j = 1) to (h) do
15: Calculate ∆Qoi(ej) in M ;
16: end for
17: j∗ ←

{
e` | ∆Qoi(j

∗) = max
`∈{1...,h}

{
∆Qoi(e`)

}}
;

18: if (∆Qoi(j
∗) > 0) then

19: CP (oi) ← CP (oi)\{oi};
20: CP (j∗) ← CP (j∗) ∪ {oi};
21: P

(
oi
)
← P (j∗);

22: stop← 0;
23: end if
24: end for
25: end while
26: end Phase 1
27: Phase 2
28: Calculate A∗ from A (nodes of A∗ are the communities

previously found in A);
29: Calculate M∗ from M (nodes of M∗ are the communities

previously found in M );
30: if (A∗ 6= A) then
31: A← A∗;
32: M ←M∗;
33: Apply Phase 1 and Phase 2;
34: end if
35: end Phase 2
36: return(P );

Algorithm 2 Multi-dimensional Sugeno-Louvain

1: Input:
(
A,
(
x1, . . . , xr

)
,
(
p1, . . . , pr

))
, A represents

G = (V,E);
2: Output: P ;
3: Preliminary
4: for (` = 1) to (r) do
5: Calculate µx`,p` (fuzzy Sugeno λ-measure from x`);
6: X`

ij ← φ`
(
Shi(µx`,p`

)− Shj
i (µx`,p`

)Shj(µx`,p`
)− Shi

j(µx`,p`
)
)

,

∀i, j ∈ V ;

7: end for
8: X← Φ

(
X1, . . . , Xr

)
;

9: M ← θ (A,X);
10: end Preliminary
11: P ← Duo Louvain(A,M);
12: return(P );

The exponential complexity concerning the Shapley value
may be avoid by considering additive fuzzy measure.
Then, we suggest a specific application of the Multi-
dimensional Sugeno-Louvain Algorithm, named 1-additive
Multi-dimensional Sugeno Louvain, which involves a par-
ticular 1-additive characterization of µx`,p` , denoted by
µax` . On this basis, the calculation of the Shapley in-
dex is immediate from vector x` as follows: Shi(µax`) =

x`
i∑n

k=1 x
`
k

and Shji (µ
a
x`) = x`

i∑n
k=1
k 6=j

x`
k

. Then, the complexity

of the method 1-additive Multi-dimensional Sugeno-Louvain
(its pseudo-code is showed in Algorithm 3), whose only
difference with respect to the Multidimensional-dimensional
Sugeno-Louvain is the calculation of X` (line 6) in pseudo-
code is equal to the Louvain Algorithm.

Algorithm 3 1-additive Multi-dimensional Sugeno Louvain

1: Input:
(
A,
(
x1, . . . , xr

))
, A is a representation of G =

(V,E);
2: Output: P ;
3: Preliminary
4: for (` = 1) to (r) do
5: X`

ij ← φ{| x`
i∑n

k=1
x`
k

− x`
i∑n

k=1
k 6=j

x`
k

|, |
x`
j∑n

k=1
x`
k

−
x`
j∑n

k=1
k 6=i

x`
k

|};

6: end for
7: X← Φ

(
X1, . . . , Xr

)
;

8: M ← θ (A,X);
9: end Preliminary

10: P ← Duo Louvain(A,M);
11: return(P );
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Example 1.

We consider graph G = (V,E) whose nodes are connected as
a chain of size 12, as it can be seen in matrix A.

A =




0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0




Fig. 1. Adjacency matrix of graph G = (V,E)

There exist 4 vectors of additional information, defining
some evidences about the elements of V ,

• x1 = (9,9.5,10, 1, 0.5, 1,9.5,8,10, 1, 1.5, 1)
• x2 = (10,9.5,9, 1, 0.5, 1,9,9,9.5, 1.5, 2, 0.5)
• x3 = (9.5,8.5,10, 1.5, 1, 1,10,9.5,9.5, 0.9, 1, 1)
• x4 = (9,9.5,10, 1, 1, 1,10,9.5,9, 0.5, 1, 1)

Each vector represents the opinion (ratings) of 12 people
about a films.

From vectors
(
x1, x2, x3, x4

)
, we define the family of

1−additive fuzzy Sugeno λ−measures
(
µax1 , µax2 , µax3 , µax4

)
.

The adjacency matrices of the corresponding vector MAWG
are (X1, X2, X3, X4), showed in the Figure 2.

We accept that there are more synergies between
those people who have similar preferences. Any
classical community detection algorithm based
on modularity optimization provides the partition
P = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}. Nevertheless,
if the additional information is considered, the partition
provided by the Multi-dimensional Sugeno-Louvain 1-additive
is P x = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}, which
respect the synergies between the elements (showed in
matrices X1, X2, X3, X4, whose highest values are bold),
as well as the structure of the crisp graph established by the
edges.

X1 = 1
10000




0 260 274 24 12 24 260 215 274 24 36 24
260 0 292 25 12 25 277 227 292 25 38 25
274 292 0 26 13 26 292 239 310 26 40 26
24 25 26 0 1 3 25 21 26 3 4 3
12 12 13 1 0 1 12 10 13 1 2 1
24 25 26 3 1 0 25 21 26 3 4 3

260 277 292 25 12 25 0 227 292 25 38 25
215 227 239 21 10 21 227 0 239 21 32 21
274 292 310 26 13 26 292 239 0 26 40 26
24 25 26 3 1 3 25 21 26 0 4 3
36 38 40 4 2 4 38 32 40 4 0 4
24 25 26 3 1 3 25 21 26 3 4 0




X2 = 1
10000




0 287 269 26 13 26 269 269 287 39 53 13
287 0 256 25 12 25 256 256 272 37 50 12
269 256 0 23 12 23 242 242 256 35 48 12
26 25 23 0 1 3 23 23 25 4 5 1
13 12 12 1 0 1 12 12 12 2 3 1
26 25 23 3 1 0 23 23 25 4 5 1

269 256 242 23 12 23 0 242 256 35 48 12
269 256 242 23 12 23 242 0 256 35 48 12
287 272 256 25 12 25 256 256 0 37 50 12
39 37 35 4 2 4 35 35 37 0 8 2
53 50 48 5 3 5 48 48 50 8 0 3
13 12 12 1 1 1 12 12 12 2 3 0




X3 = 1
10000




0 232 278 36 24 24 278 264 264 22 24 24
232 0 244 32 21 21 244 232 232 19 21 21
278 244 0 38 25 25 295 278 278 23 25 25
36 32 38 0 4 4 38 36 36 3 4 4
24 21 25 4 0 3 25 24 24 2 3 3
24 21 25 4 3 0 25 24 24 2 3 3

278 244 295 38 25 25 0 278 278 23 25 25
264 232 278 36 24 24 278 0 264 22 24 24
264 232 278 36 24 24 278 264 0 22 24 24
22 19 23 3 2 2 23 22 22 0 2 2
24 21 25 4 3 3 25 24 24 2 0 3
24 21 25 4 3 3 25 24 24 2 3 0




X4 = 1
10000




0 256 269 23 23 23 269 256 242 12 23 23
256 0 287 25 25 25 287 272 256 12 25 25
269 287 0 26 26 26 305 287 269 13 26 26
23 25 26 0 3 3 26 25 23 1 3 3
23 25 26 3 0 3 26 25 23 1 3 3
23 25 26 3 3 0 26 25 23 1 3 3

269 287 305 26 26 26 0 287 269 13 26 26
256 272 287 25 25 25 287 0 256 12 25 25
242 256 269 23 23 23 269 256 0 12 23 23
12 12 13 1 1 1 13 12 12 0 1 1
23 25 26 3 3 3 26 25 23 1 0 3
23 25 26 3 3 3 26 25 23 1 3 0




Fig. 2. Adjacency of the vector MAGW of (µa
x1 , µ

a
x2 , µ

a
x3 , µ

a
x4 )

V. CONCLUSIONS

In this paper we address a new perception of the community
detection problem in networks. In a multi-dimensional scale,
we suggest the inclusion of some additional information de-
fined by a family of vectors to the process of finding groups in
a crisp graph. We assert that, the more information is analyzed,
the more realistic the results obtained.

In the particular context of fuzzy Sugeno λ-measures, we
introduce two new tools which facilitates the handling of a
family of them. The first one is the multi-dimensional weighted
graph associated with multiple fuzzy Sugeno λ-measures, a
representation tool which shows the synergies between every
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pair of elements regarding the knowledge modeled by the
measures considered.

On the other hand, for an scenario modeled by a crisp
graph G = (V,E), about whose nodes there is some
additional information defined by vectors

(
x1, . . . , xr

)
, we

define the multi-dimensional extended vector fuzzy graph
G̃ =

(
V,E,

(
µx1,p1 , . . . , µxr,pr

))
, being

(
µx1,p1 , . . . , µxr,pr

)

the fuzzy Sugeno λ-measures obtained from those vectors [4].

On the basis of this tool, we approach the community
detection problem based on multiple fuzzy measures. We
define a new algorithm, Multi-dimensional Sugeno Louvain,
which has two main points: (1) an aggregation process to
summarize all the knowledge modeled by G̃ into two matrices;
(2) the application of the Duo Louvain Algorithm. We suggest
a particular application of that algorithm to use 1-additive
fuzzy measures, so that the calculation of the Shapley value
is immediate. So, we can affirm that the complexity of the
1-additive Multi-dimensional Sugeno Louvain Algorithm is
equal to the Louvain Algorithm.

At the moment, we are currently working on the evaluation
and testing of the proposed methodology. To carry on with it,
we will differentiate two different steps. The first one, will
be devoted to the consideration of synthetic networks. We
will apply our algorithm in several benchmark models [17],
then we will consider the Normalized Mutual Information
(NMI) [18] to evaluate the results obtained. After that, we
will work with some real cases. We are particularly interested
in analyzing the data obtained from Social Networks, such as
Twitter or Facebook.

The testing process is still in early stage, but the preliminary
results we have obtained are very promising on the goodness
of the proposed method.
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Resumen—Los algoritmos de clasificación actuales han alcan-
zado una gran popularidad debido a su eficiencia para generar
modelos capaces de resolver problemas de alta complejidad. En
particular, son los algoritmos denominados de caja negra los
que mejores resultados ofrecen, ya que se benefician de esta
enorme cantidad de datos para aprender modelos cada vez más
precisos. Sin embargo, su principal desventaja frente a otros
algoritmos más simples, p.e. un árbol de decisión, es la pérdida
de interpretación tanto del modelo como de las clasificaciones
individuales, lo que supone un grave inconveniente de cara a
muchas aplicaciones en las que proveer una explicación es hoy
dı́a recomendable, e incluso obligatorio. Una práctica habitual es
construir un modelo explicable que mimetice el comportamiento
del clasificador más complejo en la zona circundante a la
instancia a explicar.

Sin embargo, la generación de explicaciones en estos modelos
de caja blanca tampoco es trivial, lo que ha generado una intensa
investigación en torno a ellos. Es habitual generar dos tipos de
explicaciones, factuales y contrafactuales, que se complementan
para informar al decisor por qué se ha clasificado la instancia en
una determinada clase o categorı́a. En este trabajo proponemos la
definición de explicaciones factuales y contrafactuales en el marco
de los árboles de clasificación difusos, en los que al contrario
de su contraparte crisp una instancia puede disparar más de
una rama. Nuestra propuesta se centra en definir explicaciones
factuales que contienen más de una regla, en contraposición al
estándar habitual que se limita a incluir una única regla en la
explicación factual. Además, introducimos la idea de explicación
factual robusta y la generación de explicaciones contrafactuales
a partir de la clasificación realizada y la explicación factual
generada, que puede tener más de una regla.

Index Terms—Inteligencia artificial explicable (XAI); Lógica
difusa; Árboles de decisión difusos; Explicaciones factuales;
Explicaciones contrafactuales; Robustez.

I. INTRODUCCIÓN

La gran capacidad de decisión de los algoritmos modernos
de clasificación ha originado un enorme incremento en la
variedad de campos en los que se están aplicando dichos
algoritmos. Problemas que hasta recientemente necesitaban
obligatoriamente la intervención de un experto (o un sistema
experto, con la complejidad y especificidad que este requiere)
se están resolviendo mediante la aplicación de técnicas que se
aprovechan de la gran cantidad de datos que se pueden recoger
para aprender de manera automática un clasificador capaz de
resolver el problema.

Sin embargo, a pesar de que estos algoritmos están alcan-
zando cotas de precisión cada vez más altas, lo hacen a costa
de la interpretabilidad final para el usuario. El razonamiento

que realizan estos sistemas es cada vez más complejo, lo
que crea una necesidad de tener una creencia ciega en estos
sistemas. En ciertos ámbitos crı́ticos, esta creencia ciega no es
suficiente para motivar el uso de este tipo de clasificadores.
Este hecho se ve también refrendado por la legislación, p.e. el
derecho a la explicación, incluido en la Regulación General
de Protección de Datos aprobada por la Unión Europea [1],
que no solo afecta a humanos sino también a técnicas de
inteligencia artificial y sistemas informáticos.

Para atender las necesidades comentadas, surje la Inteli-
gencia Artifical Explicable (XAI), una lı́nea de investigación
en auge que se centra en explicar aquellos modelos y siste-
mas que por sus caracterı́sticas no resultan interpretables por
un usuario. Dado que normalmente este tipo de algoritmos,
denominados de caja negra, son los que mejores resultados
obtienen en los distintos problemas, es especialmente intere-
sante desarrollar sistemas capaces de explicar sus decisiones.
En este sentido, los métodos agnósticos [2]–[4] explican la
decisión realizada por un modelo complejo (habitualmente
de caja negra) mediante la construcción de un modelo más
sencillo de explicar que mimetiza al modelo complejo en la
vecindad de la instancia cuya clasificación debe ser explicada.

Sin embargo, incluso cuando se construyen modelos de caja
blanca, la generación de la explicación no es trivial, si no
que es habitual generar explicaciones de distinto tipo: que
indican por qué se ha clasificado en una determinada categorı́a
(explicaciones factuales) y que indican por qué no ha sido cla-
sificada en otra categorı́a (explicaciones contrafactuales) [5].
Existen distintas definiciones para este tipo de explicaciones
en función del formalismo utilizado: árboles de decisión [4],
[6], regresión [2], clasificadores probabilı́sticos [7], [8], etc.

En este trabajo nos centramos en el uso de clasificadores
basados en árboles de clasificación difusos [9], en los que al
contrario de sus homónimos crisp, una instancia puede dispa-
rar más de una regla. Parece razonable que si p.e. dos reglas
difusas (extraı́das del árbol) se disparan con similar grado
de importancia (activación), ambas puedan ser usadas para
explicar la clasificación, en lugar de seleccionar únicamente
una de ellas. Partiendo de esta premisa nuestra contribución
en este artı́culo se centra en la definición de explicaciones
factuales que puedan contener, en caso de necesidad, más de
una regla difusa. A partir de estas definiciones planteamos el
concepto de robustez de una explicación factual y la genera-
ción de explicaciones contrafactuales a partir de la instancia
a clasificar y la explicación factual (posiblemente no unitaria)
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generada.

II. DEFINICIÓN DEL PROBLEMA

Consideremos un problema de clasificación supervisada,
que consiste en asignar una clase ci perteneciente a un
conjunto predefinido C = {c1, . . . , cm} a una instancia x. Sea
esta instancia x = (x1, . . . , xn) una configuración de valores
sobre n variables predictoras, X1, . . . , Xn.

Asumamos que asociada a cada variable predictora Xi hay
una variable difusa (lingüı́stica) Fi = {vi,1 . . . , vi,ki} definida
mediante una partición de Ruspini de ki conjuntos difusos
ordenados. Utilizaremos vi,j para referirnos indistintamente
tanto al conjunto difuso como a la etiqueta lingüı́stica asociada
al mismo. Dado un valor δ ∈ dom(Xi), sea

µi(δ) = (µi,1(δ), . . . , µi,ki(δ))

el vector de grados de pertenencia de δ a los ki conjuntos
difusos de Fi. Nótese que

∑ki
j=1 µi,j(δ) = 1 (Figura 1).

Definimos

f(δ) = arg máx
1,...,ki

µi(δ),

como el ı́ndice correspondiente al conjunto difuso al que δ
tiene mayor grado de pertenencia. En concreto, µi,zi(δ) es el
grado de pertenencia del valor δ en Fi para el conjunto vi,zi .

Figura 1. Ejemplo de partición de Ruspini con 5 conjuntos difusos para
la variable i-ésima. Se muestran los conjuntos difusos vi,j y las etiquetas
lingüı́sticas.

Por último, sea T un árbol de decisión difuso aprendido
a partir de un conjunto de datos de entrenamiento TR =
{(xj1, . . . , xjn, cj)}Nj=1, donde N es el número de instancias
y cj ∈ C es la clasificación (categorı́a o clase) asociada a
cada instancia.

Nuestro objetivo es obtener una explicación e = 〈Rf , Rcf 〉
para la instancia x a partir de las reglas1 que se extraen del
árbol T , donde Rf es una explicación factual y Rcf es una
explicación contrafactual.

III. ESTADO DEL ARTE

III-A. Explicaciones factuales y contrafactuales para clasifi-
cadores difusos

En [6] se propone un método para generar explicaciones
factuales y contrafactuales a partir de árboles de decisión
tanto crisp como difusos. En ambos casos la explicación
factual contiene una única regla y se genera una explicación
contrafactural por cada categorı́a distinta a la predicha como
clasificación.

1De forma más general se podrı́a extender a un conjunto de reglas difusas.

A la hora de extraer los factuales, los autores consideran el
árbol como una serie de nodos unidos por aristas pesadas. En
un árbol crisp, la arista tendrá un peso binario, mientras que
en un árbol difuso tendrá un valor real entre 0 y 1 (según el
grado de activación de la instancia con el nodo). Estos nodos
y aristas generan caminos desde la raı́z hasta las hojas, cada
uno con un peso asociado según el valor de las aristas que
lo compongan. Finalmente, para obtener el factual los autores
utilizan un α-corte en los caminos generados, de tal manera
que todos los caminos con un peso menor que α se eliminen.
Ası́, garantizan que sólo existe un único factual en un árbol
difuso, de igual manera que en el caso crisp existe un único
camino desde la raı́z hasta la hoja que clasifica un ejemplo.

En cuanto a las explicaciones contrafactuales, existen m−1
explicaciones donde m es el número de clases. En particular,
una explicación contrafactual es un camino desde la raı́z del
árbol hasta una hoja que tenga una clase distinta a la de la
instancia a explicar.

III-B. Árboles de Decisión Difusos

En [9] se describe un método que primero genera de manera
automática los conjuntos difusos que se utilizarán y poste-
riormente el proceso de aprendizaje del árbol usando dichos
conjuntos. En este trabajo consideramos los árboles producidos
por este algoritmo como clasificadores cuya inferencia se
pretende explicar.

Dado un árbol T ya entrenado, cada rama tiene la forma

b : li1 [b] ∧ li2 [b] ∧ · · · ∧ lib [b] ∧ h[b]

donde
ib es el número de literales en el antecedente de la regla
que se deriva de b.
li[b] : (Fi, vi,zi) es un literal compuesto por la variable
difusa Fi y la etiqueta vi,zi , con 1 ≤ zi ≤ ki.
h[b] : {c1 = w1[b], c2 = w2[b], . . . , cm = wm[b]} es un
nodo hoja, donde se registra la importancia wi[b] para
cada clase en esta hoja, con

∑m
i=1 wi[b] = 1.

De cada rama b y cada clase ci con wi[b] > 0 obtenemos
una regla

ri[b] : li1 [b] ∧ li2 [b] ∧ · · · ∧ lib [b]→ ci,

con peso asociado w(ri[b]) = wi[b].
Denotaremos como R(ci) el conjunto de todas las reglas

que se pueden extraer del árbol con consecuente ci.
Llamamos regla de peso máximo para la rama b a

r[b] = arg máx
ri[b]

wi[b].

En caso de empate se elige una única regla de manera arbitraria
o aleatoria.

Al realizar la inferencia, una instancia x dispara p(x) ≥
1 reglas (posiblemente de distintas ramas). Denotemos por
R(x) = {r1(x), . . . , rp(x)(x)} el conjunto de reglas dispa-
radas.

Se define el grado de emparejamiento de una regla r(x) ∈
R(x) compuesta por ib literales li : (Fi, vi,zi) con la instancia
x = (x1, . . . , xn) como
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md(r(x)) = mı́n
i∈{i1,...,ib}

(µi,zi(xi))

Por otra parte, se define el grado de activación AD(r(x))
de una instancia x para la regla r(x) ∈ R(x) como

AD(r(x)) = md(r(x)) · w(r(x))

Dado un conjunto de reglas Γ(x) ⊆ R(x), obtenemos la
clase asociada a Γ(x) mediante el método weighted vote como

c(Γ(x)) = arg máx
ci

∑

r(x) ∈ Γ(x)
c(r(x)) = ci

AD(r(x)), (1)

con c(r(x)) la clase asociada a la regla r(x). En caso de empa-
te, este se rompe aleatoria o arbitrariamente. En particular, la
clase c(x) predicha por el conjunto de reglas R(x) se obtiene
como c(x) = c(R(x)).

IV. METODOLOGÍA

En este trabajo, proponemos una definición de explica-
ción factual que expande las encontradas hasta ahora en la
literatura. Si bien las explicaciones factuales contienen una
única regla y esto es razonable en entornos crisp, en el caso
difuso es posible disparar más de una regla con grados de
activación similares, por lo que elegir únicamente una de ellas
puede suponer una pérdida de información imporante en la
explicación facilitada. Proponemos una serie de definiciones
que contemplan la posible inclusión de más de una regla en
la explicación factual.

IV-A. Explicaciones factuales

Las reglas factuales son aquellas que nos ayudan a explicar
la clasificación de una instancia en una determinada categorı́a.
Dada una instancia x, y c(x) su clasificación, sea R′(c(x)) el
subconjunto de reglas de peso máximo en R(x) ∩ R(c(x)),
es decir, las reglas de peso máximo activadas por x con
consecuente c(x). Entonces, se define un factual Rf (x) de x
como un subconjunto de R′(c(x)) que explica la clasificación
para la instancia x. Como caso particular, cuando R′(c(x))
sólo tiene una regla, esta será el factual.

IV-A1. Definiciones de factual: Sea x una instancia, y
|R′(c(x))| = p′(x). Sean r1(x), r2(x), . . . , rp′(x)(x) los ele-
mentos de R′(c(x)) que suponemos ordenados de mayor a me-
nor grado de activación, es decir, AD(r1(x)) ≥ AD(r2(x)) ≥
· · · ≥ AD(rp′(x)(x)). A continuación proponemos tres formas
de obtener un factual de x:

Definimos el factual asociado a la media, m-fact(x),
como el subconjunto Rf (x) = {r1(x), . . . , rq(x)} for-
mado por las q reglas de R′(c(x)) para las que se cumple

AD(rj(x)) ≥
∑p′(x)
j=1 AD(rj(x))

p′(x)
,∀j ∈ {1, . . . , q} (2)

Dado λ ∈ (0, 1], definimos el factual asociado al λ-
cociente, c(λ)-fact(x), como el subconjunto Rf (x) =
{r1(x), . . . , rq(x)} formado por las primeras q reglas de
R′(c(x)) para las que se cumple

AD(rq(x))

AD(rq+1(x))
> 1 + λ ∧ AD(rj(x))

AD(rj+1(x))
≤ 1 + λ

∀j ∈ {1, . . . , q − 1}
(3)

Dados λ ∈ (0, 1] y β ∈ (0, 1], definimos el λ-cociente
de masa mı́nima β, c(λ, β)-fact(x), como una variante
de c(λ)-fact(x) en la que exigimos que el sumatorio de
todos los grados de activación de las reglas en el factual
sea mayor que un umbral β. Es decir, el subconjunto
Rf (x) = {r1(x), . . . , rq(x)} formado por las primeras q
reglas de R′(c(x)), para las que se cumple:

q∑

j=1

AD(rj(x)) ≥ β ∧ AD(rq(x))

AD(rq+1(x))
> 1 + λ (4)

IV-B. Robustez de una explicación factual

Sea

Rx(ci) = {r ∈ R(x) : c(r) = ci} = R(x) ∩R(ci),

el conjunto de reglas activadas por la instancia x con conse-
cuente ci. Definimos

R∗f (x) = Rf (x) ∪
⋃

i = 1, . . . ,m
ci 6= c(x)

Rx(ci)

como el conjunto de reglas del factual y las disparadas por la
instancia para el resto de las clases (independientemente de
que sean o no de peso máximo).

Consideramos que un factual Rf (x) es robusto cuando:

c(R∗f (x)) = c(Rf (x))

En la literatura, la mayorı́a de métodos consideran la expli-
cación factual para c(x) como una única regla. Sin embargo,
existen casos en los que esto podrı́a no resultar robusto si
el proceso de inferencia utiliza varias reglas para determinar
la clasificación de la instancia. Este es otro motivo para la
definición de explicaciones factuales que admitan múltiples
reglas, aumentando ası́ la robustez de la explicación.

IV-C. Explicaciones contrafactuales

Una explicación contrafactual para una instancia x es aque-
lla que nos muestra los cambios mı́nimos que habrı́a que
realizar a x para que cambie de clase. Se generará una explica-
ción contrafactual por cada clase alternativa. Proporcionamos
distintos métodos.

1. Contrafactual con respecto a la instancia x y una clase
c 6= c(x), Rcf (x, c). Dada una clase c ∈ C, denotaremos por
R′(c) el conjunto de todas las reglas del árbol de peso máximo
y consecuente c.

Definimos la distancia de r a la instancia x como

d(r, x) =
∑

Fi∈V (r)

[
(1− µi,zi(xi)) ·

|zi − f(xi))|
ki

]
(5)
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donde V (r) es el conjunto de variables difusas que aparecen
en la regla r y vi,zi el conjunto difuso asociado al literal de
la variable Fi en r.

El factor (1− µi,zi(xi)) considera el grado de pertenencia
de la instancia a cada uno de esos conjuntos difusos, de tal
manera que no solo se tiene en cuenta la distancia al conjunto
sino también si x pertenece al mismo.

En cuanto al cociente |zi−f(xi))|ki
, tiene en cuenta la distancia

entre el ı́ndice del conjunto vi,zi del literal y el ı́ndice del
conjunto al que la instancia x tiene mayor grado de pertenencia
para la variable Fi.

Definimos la explicación contrafactual Rcf (x, c) como

arg mı́n
r∈R′(c)

d(r, x)

2. Contrafactual con respecto al factual Rf (x) y una clase
c 6= c(x), Rcf (x,Rf (x), c). Nuestro objetivo ahora es generar
una explicación contrafactual que se diferencie lo mı́nimo
posible de la explicación factual, pero clasifique la instancia
x en c.

Comencemos definiendo la distancia entre una regla contra-
factual r y una regla ρ del factual Rf (x) con V (r) = V (ρ)
como

drule(r, ρ, x) =
∑

Fi∈V (r)

[
(1− µi,zri (xi)) ·

|zri − zρi |
ki

]
(6)

con vi,zri (resp. vi,zρi ) el conjunto difuso asociado al literal
de la variable Fi en r (resp. ρ).

Por otra parte, dado S ⊆ V (r), denotamos por r↓S la
simplificación de la regla r resultante de eliminar en el
antecedente los literales asociados a las variables que no
aparecen en el subconjunto S.

Definimos entonces la distancia entre r y Rf (x) =
{ρ1, . . . , ρq} como

d(r,Rf (x)) =
∑

ρj∈Rf (x)
[(1−md(ρj(x))) · cf dist(r, ρj , x)] (7)

con

cf dist(r, ρj , x) =|V (r) ∪ V (ρj)| − |V (r) ∩ V (ρj)|+
drule(r

↓V (r)∩V (ρj), r
↓V (r)∩V (ρj)
i , x)

(8)

donde |V (r) ∪ V (ρj)| − |V (r) ∩ V (ρj)| es el número de
variables difusas diferentes entre las reglas r y ρj

Es decir, d(r,Rf (x)) es la suma de la distancia contrafactual
cf dist (Ecuación 8) de r a cada ρj ∈ Rf (x), ponderadas
por el grado de emparejamiento md de estas reglas ρj a la
instancia x. De este modo tendrá más influencia una regla
contrafactual que esté muy cerca de la “mejor” regla del factual
que una que esté muy cerca de la “peor”).

Al calcular este tipo de distancias, se puede interpretar de
manera distinta qué significa “realizar el mı́nimo número de
cambios”. Hay dos tipos de cambios diferenciados entre dos
reglas: una modificación de una variable que ya existe; y una
adición o substracción de una variable que no existe. En este
trabajo, se le ha dado más importancia a añadir o eliminar
variables, haciendo que su contribución a la distancia sea
mayor. El razonamiento detrás de esta decisión es que dada
una regla, la modificación de una variable que ya existe en la

regla es una menor perturbación que considerar una variable
nueva, haciendo ası́ que la longitud de la regla se modifique.

Finalmente, definimos la explicación contrafactual
Rcf (x,Rf (x), c) como

arg mı́n
r∈R′(c)

d(r,Rf (x)).

V. EJEMPLO ILUSTRATIVO

V-A. Instancia a través del árbol difuso

Para ilustrar los conceptos introducidos se ha entrenado
un árbol de decisión difuso usando el método propuesto en
[9] para el conjunto de datos wine [10], definido median-
te 13 atributos numéricos y una clase con tres categorı́as
({type 0, type 1, type 2}. Para el ejemplo hemos seleccionado
una instancia que mostramos a continuación indicando el
grado de pertenencia a las variables difusas aprendidas para
la construcción del árbol (se le han asignado etiquetas del
conjunto (Muy Bajo, Bajo, Medio, Alto, Muy Alto)). Por
claridad, solo se muestran las variables que aparecen en las
reglas disparadas y explicaciones generadas. Se usa el formato:
Fi : {“vi,1”: µvi,1(xi), · · · , “vi,ki”: µvi,ki (xi)} para los ki
conjuntos difusos de cada variable, y se muestran sólo las
variables que aparecen en las reglas por claridad:

flavanoids : {“muy bajo” : 0.14, “bajo” : 0.86,

“alto” : 0, “muy alto” : 0},
color intensity : {“bajo” : 0.357, “medio” : 0.643,

“alto” : 0},
alcohol : {“muy bajo” : 0, “bajo” : 0.616,

“alto” : 0.384, “muy alto” : 0},
hue : {“bajo” : 0.45, “medio” : 0.55,

“alto” : 0},
proanthocyanins : {“bajo” : 0.64, “medio” : 0.36,

“alto” : 0}
od280/od315 : {“bajo” : 0.274, “medio” : 0.726,

“alto” : 0}
class : type 2

V-B. Factual

Utilizando la Ecuación 2 para obtener el factual Rf (x),
resultan cuatro reglas (consecuente = type 2):

r1 : (flavanoids bajo) ∧ (color intensity medio)∧
(alcohol bajo) ∧ (hue bajo), w(r1) = 1
AD(r1(x)) = 0.45

r2 : (flavanoids bajo) ∧ (color intensity medio)∧
(alcohol alto) ∧ (proanthocyanins bajo), w(r2) = 1
AD(r2(x)) = 0.38

r3 : (flavanoids bajo) ∧ (color intensity bajo)∧
(alcohol alto) ∧ (od280/od315 medio), w(r3) = 1
AD(r3(x)) = 0.36

r4 : (flavanoids bajo) ∧ (color intensity medio)∧
(alcohol alto) ∧ (proanthocyanins medio), w(r4) = 0.92
AD(r4(x)) = 0.33

Se muestra además el grado de activación (Sección III-B).
A modo de ejemplo, para r4 serı́a

AD(r4(x)) = md(r4(x)) · w(r4(x))
= min(0.86, 0.643, 0.384, 0.36) · 0.92 = 0.33
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Podemos ver que las cuatro reglas son ciertamente parecidas
y con un grado de activación similar. En función de una
ligera variación de alcohol y color intensity, la variable
que explicarı́a la clasificación de la instancia cambia (hue,
proanthocyanins u od280/od315).

Probablemente para el usuario sea más interesante tener esta
información más completa que únicamente la regla r1.

V-C. Robustez

Para comprobar la robustez del factual, el primer paso es
comprobar si existen reglas del árbol que se disparan para el
resto de clases (type 0 y/o type 1). En este caso, se disparan
suficientes reglas de la clase type 1 para alcanzar un grado de
activación acumulado igual a 1.22. Este hecho provocarı́a que
si únicamente incluyéramos r1 como explicación factual, dicho
factual no serı́a robusto. Sin embargo, el factual formado por
{r1, r2, r3, r4} sı́ lo es puesto que

∑4
i=1AD(ri(x)) = 1.52.

V-D. Contrafactual

Dado que el clasificador obtiene el valor type 2 para la
clase, pueden existir explicaciones contrafactuales para las
clases type 0 y type 1. Usaremos la segunda definición
propuesta en la Sección IV-C.

V-D1. Clase type 1: Consideramos todas las reglas de
peso máximo con consecuente type 1. Las dos más cercanas
al factual en función de la distancia definida son:

rc1 :(flavanoids bajo) ∧ (color intensity medio)∧
(alcohol alto) ∧ (proanthocyanins alto)

d(rc1, Rf (x)) = 12.98

rc2 :(flavanoids bajo) ∧ (color intensity medio)∧
(alcohol muy alto) ∧ (proanthocyanins alto)

d(rc2, Rf (x)) = 14.68

De estas dos reglas, serı́a rc1 el contrafactual para la clase
type 1.

V-D2. Clase type 0: Razonando igual, las dos reglas que
minimizan la distancia a la explicación factual son

rc1 :(flavanoids alto) ∧ (alcohol muy alto)

d(rc1, Rf (x)) = 24.18

rc2 :(flavanoids muy alto) ∧ (alcohol alto)

d(rc2, Rf (x)) = 24.72

Igual que antes, rc1 será el contrafactual para la clase type 0.

VI. EVALUACIÓN

VI-A. Conjuntos de datos

Los experimentos se han realizado con los conjuntos de
datos iris [10], [11], wine [10], [12] y beer [13]. Los dos
primeros conjuntos de datos se utilizan comúnmente en pro-
blemas de clasificación y el tercero se ha usado en XAI [?].

VI-B. Metodologı́a experimental

Para cada conjunto de datos se ha entrenado un árbol
de decisión difuso usando holdout como metodologı́a de
validación (70 % entrenamiento y 30 % test). Ası́, las instancias
cuya clasificación debe ser explicada son las del conjunto de
test.

VI-C. Recursos computacionales
Todos los algoritmos han sido programados en Python 3.8,

debido a la potencia de librerı́as como scikit-learn [14] que
ayudan con el tratamiento de datos y las estructuras necesarias.
Para el algoritmo de aprendizaje del árbol de clasifiación
y la definición de las variables difusas se ha seguido [9],
en particular, la implementación del árbol FMDT (Fuzzy
Multiway Decision Tree). Posteriormente, se han añadido los
métodos necesarios para calcular las explicaciones factuales
y contrafactuales propuestas en este artı́culo. Para garantizar
la reproducibilidad de las pruebas realizadas, tanto el código
como (el acceso a) los datos se publicará en un repositorio
abierto en Github.

VI-D. Explicaciones factuales y robustez.
En la Tabla I se muestra información sobre las explicaciones

factuales obtenidas y su robustez. En el caso de los criterios
que dependen de umbrales (λ, β) se han probado varios
valores. Las columnas de la tabla representan:

Config: Método para obtener la explicación factual (Sec-
ción IV-A1) y parámetros utilizados.
q > 1: Proporción de instancias (del conjunto de test)
para las que la explicación factual incluye más de una
regla.
NR-Fact: Proporción de instancias (del conjunto de test)
cuya explicación no es robusta.
Len: Longitud media de las explicaciones factuales (me-
dida en número de reglas).

Además, se calculan las siguientes constantes, que son inde-
pendientes del método considerado para generar la explicación
factual:

ExistCF: Proporción de instancias (del conjunto de test)
para las que R(x) contiene reglas con consecuente dis-
tinto a la clase predicha (c(x)).
NR-Rule: Proporción de instancias (del conjunto de test)
para las que la explicación factual únicamente por la regla
con mayor grado de activación no es robusto.

Tabla I
EXPERIMENTOS SOBRE LA ROBUSTEZ

Iris ExistCF: 0.6 NR-Rule: 0.13 Wine ExistCF: 0.677 NR-Rule: 0.1 Beer ExistCF: 0.625 NR-Rule: 0.1
Configuración q > 1 NR-Fact Len q > 1 NR-Fact Len q > 1 NR-Fact Len

m-fact(x) 0.2 0.06 1.22 0.559 0.025 2.05 0.475 0.1 1.58
c(λ)-fact(x)
λ : 0.1

0.06 0.06 1.1 0.0508 0.075 1.033 0.175 0.1 1.2

c(λ)-fact(x)
λ : 0.25

0.12 0.06 1.22 0.237 0.025 1.644 0.225 0.08 1.325

c(λ, β)-fact(x)
λ : 0.1 β : 0.5

0.06 0.06 1.1 0.0508 0.075 1.033 0.188 0.1 1.213

c(λ, β)-fact(x)
λ : 0.1 β : 0.7

0.28 0.03 1.34 0.13 0 1.305 0.3 0.04 1.4

c(λ, β)-fact(x)
λ : 0.25 β : 0.5

0.12 0.06 1.22 0.237 0.025 1.644 0.225 0.085 1.325

c(λ, β)-fact(x)
λ : 0.25 β : 0.7

0.34 0.03 1.64 0.254 0 1.711 0.325 0.04 1.475

En la Tabla I se puede observar que la media suele
ser el método que obtiene reglas más largas, sin que ello
necesariamente implique que sean más robustas. Los otros
dos métodos, que tienen en cuenta la similaridad entre las
reglas del factual, obtienen unas reglas algo más cortas y
además suelen ser más robustas. Además, en todas las bases
de datos se ve que existen más reglas que no son robustas
a factuales, independientemente de cómo estén construidos.
Ası́, se demuestra una necesidad de buscar esta robustez con
múltiples reglas en el factual.
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VI-E. Explicaciones contrafactuales

Evaluaremos los siguientes parámetros:
Número de contrafactuales (NumCF). El número de
posibles contrafactuales por clase. Un mayor número de
posibles contrafactuales representa un mayor factor de
ramificación del árbol.
Mejor distancia mı́nima (BestMinDist). La distancia
del mejor contrafactual a la explicación factual.
Longitud del Contrafactual (CFLength). Calculada
como el número medio de literales que contiene el
contrafactual.

En la Tabla II se muestran estos datos para los distintos
métodos propuestos para calcular la explicación contrafactual
(Configuración (Config)). Se empleará una única configura-
ción de parámetros.

Tabla II
EXPERIMENTOS SOBRE LOS CONTRAFACTUALES.

Iris NumCF: 3.73 Wine NumCF: 3.73 Beer NumCF: 9.37
Configuración CFLen BestMinDist CFLen BestMinDist CFLen BestMinDist

CF de x 1.69 2.42 3.86 8.97 2.62 0.95
CF de m-fact(x) 1.53 0.391 2.61 1.93 2.203 0.721
CF de c(λ)-fact(x)
λ : 0.1

1.53 0.339 2.79 0.767 2.191 0.477

CF de c(λ, β)-fact(x)
λ : 0.1 β : 0.7

1.53 0.72 2.56 2.11 2.2 0.93

De los resultados podemos observar que en general los
contrafactuales que se extraen con respecto a la instancia
tienen una longitud ligeramente superior que lo generados
con respecto a la explicación factual. Esto se debe a que al
estar la instancia definida sobre todos los atributos, no penaliza
necesariamente que la regla contrafactual tenga más literales,
sino que tenga menor distancia a sus valores (conjuntos
difusos). Por otro lado, la gran diferencia de distancia entre los
contrafactuales m-fact y los contrafactuales c-fact se debe a
que las explicaciones factuales c-fact contienen más reglas.
Al calcularse la distancia como la suma de la distancia a todas
las reglas del factual, cuanto mayor sea el factual (como se
observa en la Tabla I) mayor será la distancia.

VII. CONCLUSIONES Y TRABAJO FUTURO

Partiendo de la hipótesis de que en un entorno de ra-
zonamiento difuso generar explicaciones factuales con una
única regla puede suponer una pérdidad de información, se
han propuesto definiciones alternativas que permiten incluir
múltiples reglas. Como se ha comprobado en los experimen-
tos, en la mayorı́a de los casos esto no es necesario, pero
sı́ en un porcentaje nada despreciable. Se ha introducido
además el concepto de robustez para la explicación factual,
comprobándose en la evaluación realizada la mejorı́a que en
este sentido supone introducir más de una regla (en los casos
más inciertos). Finalmente se han propuesto definiciones de
explicación contrafactual ligadas a las proporcionadas para las
explicaciones factuales.

Por tratarse de un primer trabajo en esta lı́nea de investiga-
ción, es obvio que existen distintas vı́as de ampliación, como
es su experimentación/integración en métodos agnósticos de
explicación. Concretamente, pretendemos generalizar el estu-
dio presentado en [4] al caso de los árboles de clasifiación

difusos. Consideramos además de interés estudiar métodos
de simplificación de las explicaciones factuales generadas, de
forma que estas sean lo más compactas posible, mejorando ası́
su comprensión por parte de los usuarios.
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Resumen—Los conjuntos aleatorios son modelos de probabili-
dad destacados en Probabilidades Imprecisas. Un problema que
nos ocupa es el de establecer alguna decisión en un ambiente
de incertidumbre. Aquı́, los ordenes estocásticos juegan un
papel fundamental, ya que suponen técnicas de decisión en este
contexto. En esta contribución introducimos un nuevo orden
dispersivo para conjuntos aleatorios. Es decir, un método de
preferencia entre dos conjuntos aleatorios que está basado en la
variabilidad de los elementos aleatorios. Además, estudiaremos
brevemente las propiedades más destacadas que presenta este
orden.

Index Terms—conjunto aleatorio, orden dispersivo, decisión
bajo imprecisión

I. INTRODUCCIÓN

Los órdenes estocásticos son herramientas muy útiles en
Estadı́stica (véanse las referencias [4] y [6], por ejemplo).
Dentro de estos órdenes nos encontramos los órdenes disper-
sivos, que son aquellas herramientas que permiten comparar
dos elementos aleatorios en términos de sus variabilidades.

Ası́, encontramos en primer lugar al orden dispersivo usual.

Definición 1. [6, Sec. 3.B] Dadas dos variables univariantes
X e Y , el orden dispersivo usual elige X sobre Y si

F−1X (α)− F−1X (β) ≤ F−1Y (α)− F−1Y (β)

donde F−1X y F−1Y denotan las funciones inversas continuas
por la derecha de las funciones de distribución FX y FY de
X e Y , respectivamente.

El principal escollo que presenta esta técnica es su dificultad
para ser extendida a un punto aleatorio de un espacio métrico
arbitrario.

Por otro lado encontramos el orden dispersivo débil.

Definición 2. [2] Dados dos puntos aleatorios X e Y de un
espacio métrico (M, d), diremos que X es preferido a Y en
el orden dispersivo débil si se satisface

P {d(X,X ′) ≤ r} ≤ P {d(Y, Y ′) ≤ r}

Este trabajo ha sido parcialmente financiado por el proyecto PGC2018-
098623-B-I00 del Ministerio de Ciencia, Innovación y Universidades. Los
autores quieren agradecer dicha financiación.

para todo r ≥ 0, donde X ′ e Y ′ son puntos aleatorios
idénticamente distribuidos a X e Y , respectivamente y P
denota la medida de probabilidad subyacente.

Una dificultad que presenta esta otra técnica es que no
produce comparación en numerosas ocasiones.

Otros órdenes dispersivos se basan en contracciones. Sin
embargo, tales aplicaciones pueden no tener sentido para
algunas clases de espacios topológicos (véase [5]).

Finalmente nos encontramos con el orden dispersivo por
bolas.

Definición 3. [5] Dados dos puntos aleatorios X e Y de un
espacio métrico (M, d), se dice que X es preferido a Y en
el orden dispersivo por bolas si para todo punto p existe otro
punto q tal que

P {X ∈ Bq(r)} ≥ P {Y ∈ Bp(r)}

se satisface para todo r ≥ 0, donde Bx(r) denota la bola
(cerrada) de centro x y radio r.

Podemos interpretar este orden diciendo que, para todo
punto p, la distribución de d(Y, p) está más dispersa que
la distribución de d(X, q) para algún punto q. Es decir,
controlamos la variabilidad de los puntos aleatorios a través de
bolas geométricas. Esta última técnica tiene la gran ventaja de
ser lo suficientemente maleable como para poder extenderse a
otros esquemas de trabajo.

Por otro lado, conviene notar que en numerosas ocasiones la
información disponible es difusa, vaga o imprecisa en general.
Este es el punto de partida de lo que se ha convenido en
llamar teorı́a de Probabilidades Imprecisas (véase [7]). En
lı́neas generales, esta rama de la Estadı́stica estudia modelos
de probabilidad bajo imprecisión e incertidumbre. En este es-
quema de trabajo, los conjuntos aleatorios, en su interpretación
disyuntiva u óntica, son modelos destacados de probabilidades
imprecisas (véase [1]).

En este contexto, necesitamos alguna herramienta que nos
permita elegir como preferido un conjunto aleatorio frente a
otro en términos de sus variabilidades. En esta contribución
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presentaremos un orden dispersivo nuevo para conjuntos
aleatorios. Este orden dispersivo está basado en una com-
paración de las funciones de plausibilidad de los conjuntos
aleatorios, con lo que se puede entender como una extensión
del orden dispersivo por bolas anteriormente comentado.

Recuérdese que la función de plausibilidad caracteriza al
conjunto aleatorio, tal y como se recoge en el celebrado
teorema de Choquet (véase [3] y las referencias allı́ citadas).
En este sentido contemplamos la información estadı́stica que
poseen los conjuntos aleatorios a comparar.

II. UN NUEVO ORDEN DISPERSIVO PARA CONJUNTOS
ALEATORIOS

Recordamos en primer lugar la noción de conjunto aleatorio
cerrado. Para ello, comencemos fijando un espacio topológico
Hausdorff, segundo-contable y localmente compacto M, al
que le dotaremos de una distancia d. La distancia nos permite
considerar las bolas (geométricas); ası́, denotaremos por Bp(r)
a la bola de centro p y radio r. Al mismo tiempo denotemos
a la clase de conjuntos cerrados de M por F .

Definición 4. [3] Un conjunto aleatorio (cerrado) X̂ sobre
M es una aplicación X̂ : (Ω, σ,P)→ F tal que

{
w ∈ Ω : X̂(w) ∩K 6= ∅

}
∈ σ

donde K es un conjunto compacto de M y (Ω, σ,P) es un
espacio de probabilidad completo.

De la definición anterior se deduce inmediatamente
que está bien definida la aplicación PlX̂ que
asocia a cada compacto K de M la probabilidad
PlX̂ (K) = P

{
w ∈ Ω : X̂(w) ∩K 6= ∅

}
. Esta aplicación se

llama función de plausibilidad (del conjunto aleatorio).

El celebrado resultado de Choquet establece que todo
conjunto aleatorio queda caracterizado por su función de
plausibilidad (véase [3]).

En este trabajo estamos interesados en obtener una técnica
de comparación entre dos conjuntos aleatorios en términos
dispersivos. Para tal fin, extenderemos en este sentido el orden
dispersivo que se da en [5] para puntos aleatorios.

Definición 5. Sean X̂ e Ŷ dos conjuntos aleatorios de M.
Diremos que X̂ es preferido a Ŷ en el orden dispersivo de
plausibilidad si para todo punto p existe otro punto q tal que

PlX̂ (Bq(r)) ≥ PlŶ (Bp(r)) (1)

se satisface para todo r ≥ 0, donde PlX̂ y PlŶ denotan las
funciones de plausibilidad de X̂ e Ŷ , respectivamente.

Es claro observar que el orden introducido solo tiene en
cuenta el grado de dispersión de los conjuntos aleatorios.
De hecho, recoge la información acerca de cómo se aleja el

conjunto aleatorio respecto de puntos. Si un conjunto aleatorio
es preferido a otro, entonces podemos decir que, en algún
sentido, se acerca más a un punto el primero que el segundo.

Las propiedades más destacables de esta nueva técnica se
recogen a continuación. Antes de ello, recordemos el concepto
de isometrı́a, que generaliza a las traslaciones y rotaciones de
un espacio euclı́deo. Dado un espacio métrico (M, d), una
isometrı́a φ es una aplicación φ : M → M biyectiva que
conserva distancias, es decir, que para cualesquiera puntos
p y q, se tiene: d(p, q) = d(φ(p), φ(q)). Dado un conjunto
aleatorio X̂ definimos el conjunto aleatorio φ ◦ X̂ como:(
φ ◦ X̂

)
(w) = φ

(
X̂(w)

)
, para todo w del espacio de

probabilidad subyacente.

Proposición 1. El orden dispersivo de plausibilidad presenta
las siguientes propiedades:
(a) Es transitivo. De forma más precisa, sean X̂ , Ŷ y Ẑ tres

conjuntos aleatorios de M. Si X̂ es preferido a Ŷ e Ŷ
es preferido a Ẑ, entonces X̂ es preferido a Ẑ.

(b) Es reflexivo y, por tanto, un preorden, pero no es un
orden.

(c) Es compatible con isometrı́as. De forma más precisa,
sea φ una isometrı́a de (M, d). Entonces, el conjunto
aleatorio X̂ es preferido al conjunto aleatorio Ŷ si y
solo si φ◦ X̂ es preferido a Ŷ si y solo si X̂ es preferido
a φ ◦ Ŷ .

Idea de la demostración.- Para demostrar este resultado hay
que tener en cuenta:
(a) La propiedad de transitividad se obtiene a partir de la

transitividad que se hereda de la comparación de las
correspondientes funciones de plausibilidad, y haciendo
uso de las definiciones.

(b) Es trivial que es reflexivo, sin más que considerar como
q el valor de p. Sin embargo se pueden encontrar dos
conjuntos aleatorios distintos tales que cualquiera de los
dos sea preferido al otro.

(c) Se puede deducir a partir del siguiente hecho:

Plφ◦X̂ (Bp(r)) = P
{
w : φ ◦ X̂(w) ∩ Bp(r) 6= ∅

}
=

P
{
w : φ−1

(
φ ◦ X̂(w) ∩ Bp(r)

)
6= ∅
}

=

P
{
w : X̂(w) ∩ φ−1 ◦ Bp(r) 6= ∅

}
=

P
{
w : X̂(w) ∩ Bφ−1(p)(r) 6= ∅

}
=

Plφ◦X̂
(
Bφ−1(p)(r)

)
.

En este sentido, la isometrı́a φ conserva la función de
plausibilidad.

Por un lado, la propiedad de transitividad es una propiedad
muy importante que un buen orden debe presentar. Por otro
lado, que el orden sea compatible con las isometrı́as está
asociado a su carácter de ser un orden dispersivo, puesto
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que no tiene en cuenta “posiciones” del conjunto aleatorio,
sino cómo puede alejarse o acercarse a un punto dado. De
hecho, recuérdese que el concepto de isometrı́a generaliza
propiamente al grupo de traslaciones y rotaciones de un
espacio euclı́deo. En particular, esta propiedad indica que
el orden es invariante frente a estas transformaciones de un
espacio euclı́deo.

El orden que estamos introduciendo ha de proveer argu-
mentos lógicos y de peso para el/la decisor/a. A continuación
daremos un argumento para tal fin.

Dado que estamos trabajando en términos de probabilidades
imprecisas, el conjunto aleatorio se puede interpretar como un
modelo que engloba un conjunto de modelos de probabilidad
exacta. En concreto, una selección no es sino un modelo de
probabilidad exacto que es compatible con la información dada
por el conjunto aleatorio, tal como se deduce de la siguiente
definición.

Definición 6. [3] Una selección X de un conjunto aleatorio
X̂ sobre (M, d) es un punto aleatorio deM tal que X(w) ∈
X̂(w) casi seguro.

Podemos dar el siguiente resultado, que se particulariza para
conjuntos aleatorios discretos (en esta contribución, aquellos
cuyo espacio de probabilidad es discreto, por definición).

Teorema 1. Sean X̂ e Ŷ dos conjuntos aleatorios discretos
sobre (M, d). Si X̂ es preferido a Ŷ en el orden dispersivo
de plausibilidad, entonces para todo punto p y para toda
selección Y de Ŷ podemos encontrar un punto q y una
selección X de X̂ tal que

E[d2(Y, p)] ≥ E[d2(X, q)].

En particular, para toda selección de Ŷ se puede encontrar
una selección de X̂ con menor o igual varianza.

Idea de la demostración.- Por reducción al absurdo.
Asumamos que existe un punto p′ y una selección Y ′ de
Ŷ tales que E[d2(Y ′, p′)] ≥ E[d2(X, q)] se satisface para
todo punto q y selección X de X̂ . Esto implica que ex-
iste un real no-negativo r para el cual P {d(Y ′, p′) ≤ r} >
P {d(X, q)} se satisface para todo punto q y selección X
de X̂ . Nótese que la función de plausibilidad satisface
PlŶ (Bp′(r)) ≥ P {d(Y ′, p′) ≤ r}. El siguiente paso es usar
que X̂ es preferido a Ŷ para deducir que debe existir un punto
q′ tal que PlX̂(Bq′(r)) > P {d(X, q′) ≤ r} se satisface para
toda selección X de X̂ . La contradicción se encuentra con
el hecho de que se puede obtener una selección X de X̂
satisfaciendo PlX̂(Bp(r)) = P {X ∈ Bp(r)}, y para ello basta
definir X como sigue: X(w) ∈ arg min dH(X̂(w), p), donde
dH denota la distancia Hausdorff (que X es punto aleatorio
se deduce inmediatamente a partir de la propiedad de que X̂
es discreto).

La última afirmación de este teorema se deduce inmediata-
mente de la anterior.

El argumento entonces es claro: el/la decisor/a está
eligiendo el conjunto aleatorio con el que es posible extraer
un modelo exacto con menor varianza. Este es un argumento
de peso que soporta la técnica que hemos introducido.

Ejemplo 1. Consideremos R dotado de su distancia usual d.
Consideremos los conjuntos aleatorios X̂ = [X − r,X + r] e
Ŷ = [Y − s, Y + s], donde X está normalmente distribuida
con media µx y desviación tı́pica σx, Y también está nor-
malmente distribuida con media µy y desviación tı́pica σy y
r es una constante estrictamente mayor que cero. Podemos
interpretar estos conjuntos aleatorios como modelos exactos
de probabilidad a los que se les añade un error o incertidum-
bre de valor r. Es fácil probar que X̂ es preferido a Ŷ si
σx ≤ σy . Obsérvese que esta decisión está en consonancia con
el teorema anterior, dado que en este caso seremos capaces
de extraer una selección, un modelo exacto, de X̂ con menor
varianza que cualquier selección de Ŷ .

III. CONCLUSIONES

En general, un problema de decisión en un ambiente im-
preciso acarrea una dificultad extra respecto a los problemas
clásicos de teorı́a de la probabilidad. En esta contribución
hemos introducido un nuevo orden dispersivo para conjuntos
aleatorios. Este orden está basado en comparar las funciones
de plausibilidad sobre la familia de bolas centradas en un
punto.

Serı́a interesante seguir estudiando las propiedades que
presenta este nuevo orden, y cómo simplificar el proceso de
decisión. En este sentido, cabe estudiar qué particularidades
presenta el orden para los casos en los que el espacio métrico
sea bien finito o bien tiene la estructura de un espacio vectorial
o afı́n euclı́deo.

Por otro lado, también cabe extender este orden para otros
modelos destacados en Probabilidades Imprecisas, como las
variables aleatorias fuzzy.
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Abstract—In this paper we propose a fuzzy modal logic for
conditional probability that allows to represent and reason about
the probability of not only basic conditional expressions of the
form “ϕ given ψ”, written (ϕ | ψ), but also compound conditional
sentences such as “ϕ given ψ and γ given χ”, written (ϕ | ψ) ∧
(γ | χ), and more in general, any Boolean combination of basic
ones. In order to formalize compound conditional formulas we
will adopt the recently defined Logic for Boolean Conditionals
(LBC) and hence formalize conditional probability as a simple
(unconditional) probability of conditional sentences. In addition
to such basic fuzzy modal logic for the probability of compound
conditionals, we will also present some extensions and prove that
each of them is sound and complete w.r.t. to a suitable class of
probabilistic models. Furthermore, we will prove how to recover
the usual interpretation of conditional probability, showing that,
under minimal requirements, in these logics the probability of a
basic conditional (ϕ | ψ) can be safely taken as the conditional
probability of ϕ given ψ, i.e. as the ratio P (ϕ ∧ ψ)/P (ψ).

Index Terms—Conditional probability; Compound conditional;
Fuzzy logic; Fuzzy modal logic.

I. INTRODUCTION

Fuzzy sets-based models and numerical uncertainty models,
although sharing the feature of evaluating sentences in a totally
ordered scale, usually the real unit interval [0, 1], account for
radically different notions of gradualness. From a formal point
of view, these differences can be easily grasped if we consider
their corresponding logics: fuzzy logics and uncertainty logics
(in particular probability logics), respectively. In fact, while the
former are truth-functional, i.e. the truth-value of a compound
formula like ϕ ∨ ψ only depends on the truth-values of its
components ϕ and ψ, the latter are not, since, for instance,
the probability of ϕ ∨ ψ cannot be computed only from the
probability of ϕ and the probability of ψ (it is also needed to
know what is the probability of ϕ ∧ ψ).

Despite these differences, however, probability logics can
be properly handled in a fuzzy logical setting by expanding
the language of a fuzzy logic with a unary modality P (·) and
interpreting, for every classical formula ϕ, the modal formula
P (ϕ) as “ϕ is probable”. Clearly, P (ϕ) is a fuzzy proposition,
whose truth-degree can be taken as the probability of ϕ. More
precisely, the fuzzy modal logic FP(Ł), as firstly introduced
in [11] and improved in [10], extends the language of Łukasi-
ewicz logic Ł by the modal operator P (·) and uses the ground
logic Ł to express the basic properties of a probability function.

In particular, it is worth to recall that the finite additivity
of P can be expressed in FP(Ł) by using the Łukasiewicz
connective ⊕ whose standard interpretation is the truncated
sum: for all x, y ∈ [0, 1], x⊕y = min{1, x+y}. Very recently,
in [1] the authors have studied in depth the relationship of
this fuzzy logic-based approach to more traditional probability
logics after Halpern et al. see e.g. [13].

In addition to simple probability, the paper [8] presents the
logic FP(ŁΠ) to deal with conditional probability by consider-
ing, instead of Ł, the stronger logic ŁΠ. Such formalism can be
roughly regarded as the expansion of Łukasiewicz logic by the
connectives of product conjunction � and product implication
→Π. The standard semantics of � and→Π interprets them, re-
spectively, by the usual product · and the function x→Π y = 1
if x ≤ y and x→Π y = y/x otherwise. Thus, if P (ψ) is not
zero, the conditional probability P (ϕ | ψ) can be written in
FP(ŁΠ) as P (ψ) →Π P (ϕ ∧ ψ) and hence interpreted in its
semantics as P (ϕ∧ψ)/P (ψ). A related approach can be found
in [9], where Popper conditional probabilities are formalised
in a similar setting.

In this paper we propose a fuzzy modal logic FP(LBC,ŁΠ)
for conditional probability that extends FP(ŁΠ) in the expres-
sive power. In particular, FP(LBC,ŁΠ) formalizes conditional
events by the recently defined logic LBC (Logic of Boolean
Conditionals) for conditional events. The latter allows to
represent not only basic conditional expressions “ϕ given ψ”,
written (ϕ | ψ), but also compound conditional sentences such
as “ϕ given ψ and γ given χ”, written in LBC as (ϕ | ψ)∧(γ |
χ), or more in general, any Boolean combination of basic
ones [5]. For each of such (basic and compound) conditional
sentences, FP(LBC,ŁΠ) permits to represent and reason about
their probability. Thus, the conditional probability of “ϕ given
ψ” is treated in FP(LBC,ŁΠ) as the unconditional probability
of the basic conditional formula (ϕ | ψ).

In addition, we will present extensions of FP(LBC,ŁΠ)
that capture a more refined notion of probability functions. For
FP(LBC,ŁΠ) and each of its extensions, we prove soundness
and completeness results w.r.t. suitable classes of probability
models.

This paper is organized as follows. Section II gathers
extensive preliminaries: on the Logic for Boolean Conditionals
(LBC) in Subsection II-A; on the ground propositional logic
ŁΠ in Subsection II-B; and on the fuzzy modal logic for
conditional probability FP(ŁΠ) in Subsection II-C. In Section
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III we will define the probability logic for compound condi-
tionals FP(LBC,ŁΠ). In the same section we will consider the
class of separable models and prove completeness. Moreover,
we will show that, for every basic conditional (ϕ | ψ)
such that ψ has positive probability, the logic FP(LBC,ŁΠ)
proves that the modal formula P (ϕ | ψ) is equivalent to
P (ψ) →Π P (ϕ ∧ ψ) and hence, in every separable model,
P (ϕ | ψ) is interpreted as the ratio µ(ϕ ∧ ψ)/µ(ψ). A first
extension of FP(LBC,ŁΠ), namely the logic FP(LBC,ŁΠ)+,
will be defined in Section IV and there we will show it
to be complete w.r.t. to a subclass of separable models
called positive separable models. Section V deals with the
logic FP(LBC,ŁΠ)+

c , a further extension meant to capture
the behavior of the so-called canonical extensions to C(A)
of positive (unconditional) probabilities on A in [5]. For
FP(LBC,ŁΠ)+

c we prove soundness and completeness w.r.t.
to the proper subclass of positive separable models that will be
called canonical in that section. Conclusions and future work
on this subject will be discussed in the final Section VI.

II. PRELIMINARIES

A. The logic LBC

In this section we recall from [5] the Logic of Boolean
Conditionals (LBC). The idea is to consider basic conditional
formulas of the form (ϕ | ψ) as primitive objects that can be
freely combined with Boolean connectives. A difference with
the so-called measure-free conditionals is that the combination
of two basic conditionals need not be another basic condi-
tional, only in some special cases specified in the axioms of the
logic. Indeed, formulas of LBC correspond to Boolean combi-
nations of basic conditional formulas (ϕ | ψ), where ϕ,ψ are
classical propositions. In more detail, let L be a propositional
language built from a finite set of propositional variables
p1, p2, . . . , pk and classical logic connectives ∧,∨,¬,→,↔.
We will denote by `CPL derivability in Classical Propositional
Logic. Based on L, we define the language LBC of conditionals
by the following stipulations:

- Basic (or atomic) conditional formulas, expressions of the
form (ϕ | ψ) where ϕ,ψ ∈ L and such that 6`CPL ¬ψ,
are in LBC.

- Further, if Φ,Ψ ∈ LBC, then ¬Φ,Φ ∧ Ψ ∈ LBC.1 Other
connectives like ∨, → and ↔ are defined as usual.

Note that we do not allow the nesting of conditionals, as
usually done in the vast literature on the modal approaches
to Conditional Logics Actually, purely propositional formulas
from L can also be considered to be part of LBC since, as
a matter of fact, any proposition ϕ can be identified with
the conditional (ϕ | >), where > is an abbreviation for ψ∨¬ψ.

Definition 2.1: The Logic of Boolean conditionals (LBC for
short) has the following axioms:

1We use the same symbols for connectives in L and in LBC without danger
of confusion.

(CPL) For any tautology of CPL, the formula resulting from a
uniform replacement of the variables by basic condition-
als.

(A1) (ψ | ψ)
(A2) ¬(ϕ | ψ)↔ (¬ϕ | ψ)
(A3) (ϕ | ψ) ∧ (δ | ψ)↔ (ϕ ∧ δ | ψ)
(A4) (ϕ | ψ)↔ (ϕ ∧ ψ | ψ)
(A5) (ϕ | ψ) ↔ (ϕ | χ) ∧ (χ | ψ), if `CPL ϕ → χ and

`CPL χ→ ψ
(R1) from `CPL ϕ→ ψ derive (ϕ | χ)→ (ψ | χ)
(R2) from `CPL χ↔ ψ derive (ϕ | χ)↔ (ϕ | ψ)

(MP) Modus Ponens: from Φ and Φ→ Ψ derive Ψ

The notion of proof in LBC, `LBC , is defined as usual from
the above axioms and rules.

In [5] it is shown that the Lindenbaum algebra correspond-
ing to LBC, that is, the algebra of LBC-formulas modulo
logical equivalence, is a certain type of Boolean algebra,
called Boolean algebra of conditionals, which is finite if the
set propositional variables is so, that is our case. Then, the
algebra is atomic and its set of atoms are conjunctions of basic
conditionals of length n− 1, where n = 2m with m being the
number of propositional variables, of the following form:

(α1 | >) ∧ (α2 | ¬α1) ∧ . . . ∧ (αn1 | ∧i=1,n−2 αi),

where α1, . . . , αn−1 are propositional atoms of the Linden-
baum algebra of the underlying propositional language L.

The semantics of the LBC logic is based on sequences
w = 〈w1, . . . , wn〉 of pairwise different propositional inter-
pretations for the underlying language L, in such a way that
w satisfies a conditional (ϕ | ψ), written w |=LBC (ϕ | ψ), if
wi |=CPL ϕ for the lowest index i such that wi |= ψ.

B. The logic ŁΠ

The ŁΠ is a powerful fuzzy logic system that suitably
combines the connectives from Łukasiewicz logic with the
connectives of Product fuzzy logic [4]. The language of
the ŁΠ logic is built in the usual way from a countable
set of propositional variables, three binary connectives →L

(Łukasiewicz implication), � (Product conjunction) and →Π

(Product implication), and the truth constant 0̄. A truth-
evaluation is a mapping e that assigns to every propositional
variable a real number from the unit interval [0, 1] and extends
to all formulas as follows:

e(0̄) = 0, e(ϕ� ψ) = e(ϕ) · e(ψ)
e(ϕ→L ψ) = min(1− e(ϕ) + e(ψ), 1),

e(ϕ→Π ψ) =
{

1, if e(ϕ) ≤ e(ψ)
e(ψ)/e(ϕ), otherwise

.

The truth constant 1 is defined as ϕ →L ϕ. In this way we
have e(1) = 1 for any truth-evaluation e. Moreover, many
other connectives can be defined from those introduced above:

¬Lϕ is ϕ→L 0̄
¬Πϕ is ϕ→Π 0̄,
ϕ ∧ ψ is ϕ&(ϕ→L ψ),
ϕ ∨ ψ is ¬L(¬Lϕ ∧ ¬Lψ),
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ϕ⊕ ψ is ¬Lϕ→L ψ,
ϕ⊗ ψ is ¬L(¬Lϕ⊕ ¬Lψ),
ϕ	 ψ is ϕ&¬Lψ,

ϕ↔L ψ is (ϕ→L ψ)&(ψ →L ϕ),
∆ϕ is ¬Π¬Lϕ,
∇ϕ is ¬Π¬Πϕ,

with the following interpretations:
e(¬Lϕ) = 1− e(ϕ),

e(¬Πϕ) =
{

1, if e(ϕ) = 0
0, otherwise

,

e(ϕ ∧ ψ) = min(e(ϕ), e(ψ)),
e(ϕ ∨ ψ) = max(e(ϕ), e(ψ)),
e(ϕ⊕ ψ) = min(1, e(ϕ) + e(ψ)),
e(ϕ⊗ ψ) = max(0, e(ϕ) + e(ψ)− 1),
e(ϕ	 ψ) = max(0, e(ϕ)− e(ψ)),

e(ϕ↔L ψ) = 1− |e(ϕ)− e(ψ)|,
e(∆ϕ) =

{
1, if e(ϕ) = 1
0, otherwise

,

e(∇ϕ) =
{

1, if e(ϕ) > 0
0, otherwise

.

The logic ŁΠ is defined Hilbert-style as the logical
system whose axioms and rules are the following:2

(i) Axioms of Łukasiewicz Logic:
(ii) Axioms of Product Logic

(iii) The following additional axioms relating Łukasiewicz
and Product logic connectives:

(¬) ¬Πϕ→L ¬Lϕ
(∆) ∆(ϕ→L ψ) ≡ ∆(ϕ→Π ψ)
(LΠ) ϕ� (ψ 	 χ) ≡ (ϕ� ψ)	 (ϕ� χ)

(iv) Deduction rules of ŁΠ are modus ponens for→L (modus
ponens for →Π is derivable), and necessitation for ∆:
from ϕ derive ∆ϕ.

C. The probability logic FP(ŁΠ)

This final section on preliminaries is on the probability
logic FP(ŁΠ) (FP for Fuzzy Probability), introduced in [8] and
defined as a sort of modal extension with a unary operator P (·)
over the fuzzy logic ŁΠ described in the previous section. This
logic allows for reasoning about the probability of classical
propositions.

Actually, the propositional language L is extended by a
fuzzy unary modal operator P . If ϕ is a proposition of L,
then Pϕ is a modal proposition whose intended reading is
that “ϕ is probable”, and whose truth-degree will be taken as
the probability of ϕ.

The language of FP(ŁΠ) is defined as follows. Formulas of
FP(ŁΠ) are of two types:
• Non-modal: they are exactly the (classical) formulas of L,

i.e. those built from a set V ar of propositional variables
{p1, p2, . . . pn, . . . } using the classical binary connectives
∧ and ¬. Other connectives like ∨ and → are defined
from ∧ and ¬ in the usual way. We shall denote them by
lower case Greek letters ϕ, ψ, etc.

2This definition, proposed in [3], is actually a simplified version of the
original definition of LΠ given in [4].

• Modal: they are built from elementary modal formulas of
the form Pϕ, where ϕ is a non-modal formula, using the
connectives of ŁΠ (→L, �, →Π). We shall denote them
by upper case Greek letters Φ, Ψ, etc.

These are all the formulas of FP(ŁΠ). Notice that nested
modalities, among other things, are not allowed.

Axioms and rules of FP(LBC,ŁΠ) are as follows:
(CPL) All axioms and rules of classical propositional logic

restricted to classical, non-modal, formulas;
(ŁΠ) All axioms and rules of ŁΠ for modal formulas;
(P) The following axioms and rules for the modality P :

for all propositions ϕ,ψ ∈ L,
(P1) P (ϕ→ ψ)→L (P (ϕ)→L P (ψ))
(P2) P (¬ϕ)↔L ¬P (ϕ)
(P3) P (ϕ ∨ ψ)↔L [P (ϕ)⊕ (P (ψ)	 P (ϕ ∧ ψ))]

(Nec) if `CPL ϕ, derive P (ϕ).
Models of FP(ŁΠ) are probability Kripke structures K =
〈W, e, µ〉, where:
• W is a non-empty set of possible worlds;
• e : V ×W → {0, 1} provides for each world a Boolean

(two-valued) evaluation of the proposition variables, that
is, e(p, w) ∈ {0, 1} for each propositional variable p ∈
V ar and each world w ∈W ; and

• µ : 2W → [0, 1] is a finitely additive probability measure
on a Boolean algebra of subsets of W such that for each
p, the set {w | e(p, w) = 1} is measurable (cf. [10] 8.4.1).

A truth evaluation e is extended to non-modal formulas in the
classical way, to elementary modal formulas as follows:

e(Pϕ,w) = µ({w ∈W | e(ϕ,w) = 1}),

and to compound modal formulas by using the truth-functions
of the ŁΠ logic.

Soundness and completeness of the logic FP(ŁΠ) w.r.t. to
the class of probability Kripke models is proved in [8]: if
T ∪ {Φ} is a finite set of FP(ŁΠ)-formulas, then T proves Φ
in FP(ŁΠ) iff for any probability Kripke model K = (W, e, µ)
and any world w ∈ W , e(Φ, w) = 1 whenever e(Ψ, w) = 1
for all Ψ ∈ T .

III. PROBABILITY LOGIC OVER CONDITIONALS

In this section we define a logic to reason about the
probability of basic and compound conditionals over the fuzzy
logic ŁΠ. In the same line as with the logic FP(ŁΠ) described
in Section II-C, we extend the language of LBC with a fuzzy
(unary) modal operator P , so that, for every basic conditional
(ϕ | ψ), the intended meaning of a formula P (ϕ | ψ) is that the
conditional “ϕ given ψ” is probable, and that the truth-degree
of P (ϕ | ψ) is the probability of the conditional “(ϕ | ψ)”. The
relation of this probability to the usual notion of conditional
probability of ϕ given ψ will become clear later.

The logic FP(LBC,ŁΠ) is obtained by replacing, in the
definition of FP(ŁΠ), classical logic for events by the con-
ditional logic LBC defined as in Section II-A. Formulas of
FP(LBC,ŁΠ) are of two types:
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- Conditional formulas are formulas of the logic LBC,
that is, basic conditionals of the form (ϕ | ψ) for all
classical formulas ϕ and ψ such that ψ is not a classical
logic contradiction (in other words, 6`CPL ¬ψ) and compound
conditional formulas obtained as Boolean combinations of
basic ones. Compound conditional formulas will be denoted
as Φ,Ψ, . . .;

- Modal formulas: for every (basic or compound) condi-
tional formula Φ, P (Φ) is an atomic modal formula. Com-
pound modal formulas are combinations of atomic ones by
means of the ŁΠ connectives.

Thus, for instance, P (ϕ | ψ), P ((ϕ | ψ) ∧ (γ | δ)) and
P ((ϕ | ψ) ∧ (γ | δ)) →L P (χ | τ) are compound modal
formulas for all classical formulas ϕ,ψ, γ, δ, χ, τ such that
6` ¬ψ, 6` ¬δ, 6` ¬τ . However, neither (ϕ | ψ) →L P (γ | δ)
nor P ((ϕ | ψ) ⊕ P (χ | τ)) are well formed formulas in this
language.

Axioms and rules of FP(LBC,ŁΠ) are as follows:
(LBC) All axioms and rules of LBC restricted to conditional

formulas;
(ŁΠ) All axioms and rules of ŁΠ for modal formulas;
(P) The axioms and rules for the modality P are those for

FP(ŁΠ), but now for all conditional formulas Φ,Ψ ∈
LBC, plus a new rule (Sep):

(P1) P (Φ→ Ψ)→L (P (Φ)→L P (Ψ));
(P2) P (¬Φ)↔L ¬P (Φ);
(P3) P (Φ ∨Ψ)↔L [P (Φ)⊕ (P (Ψ)	 P (Φ ∧Ψ))];

(Nec) if `LBC Φ, derive P (Φ);
(Sep) if `CPL (ϕ→ χ) ∧ (χ→ ψ), derive

P ((ϕ | χ) ∧ (χ | ψ))↔L P (ϕ | χ)� P (χ | ψ).
The notion of proof according to these axioms and rules will
be denoted `FP . The axioms and rules of FP(LBC,ŁΠ) are
meant to capture the behavior of an unconditional, separable
probability measure on the Lindenbaum algebra of the logic
LBC. In fact, let us recall from [5] that, in particular, a
probability µ on a Boolean algebra of conditionals C(A) is
separable if for all a, b, c ∈ A\{⊥} such that a ≤ b ≤ c, then
µ((a | b)∧ (b | c)) = µ(a | b) ·µ(b | c). As we will show later
on, separability is captured by the rule (Sep) above.

In what follows Ω will denote the set of Boolean interpre-
tations for the variables V ar, and Seqn(Ω) will denote the set
of sequences of n pairwise different interpretations from Ω.

Definition 3.1: A probability LBC-Kripke model is a struc-
ture C = 〈W, e, µ〉 where
• W is a set of worlds;
• e : W → Seqn(Ω) maps every world w ∈W to a LBC-

evaluation e(w) = w ∈ Seqn(Ω);
• µ is a probability on 2e[W ], where e[W ] = {e(w) | w ∈
W} ⊆ 2Seqn(Ω).

Each LBC-Kripke model C = 〈W, e, µ〉 induces a probabil-
ity on LBC formulas in the natural way, in particular for each
basic conditional (ϕ | ψ) we define:

µ(“(ϕ | ψ)”) = µ({w ∈ Seqn(Ω) | w ∈W,w |= (ϕ | ψ)}, 3

3Without danger of confusion, we will write µ(ϕ | ψ) for µ(“(ϕ | ψ)”)).

and similarly for every compound conditional. Notice that,
when e[W ] = Seqn(Ω), the Boolean algebra 2e[W ] on which
µ is defined, actually is the Lindenbaum algebra of LBC. It
was proved in [5, Theorem 7.3] that such Lindenbaum algebra
is isomorphic to C(L), that is, the conditional algebra gener-
ated by L, the Lindenbaum algebra of classical propositional
logic. Thus, every LBC-Kripke model determines a probability
measure µ on C(L).

Definition 3.2: A probability LBC-Kripke model C =
〈W, e, µ〉 is called separable when

µ((ϕ | ψ) ∧ (ψ | χ)) = µ(ϕ | ψ) · µ(ψ | χ) (1)

for every ϕ,ψ, χ such that `CPL (ϕ → ψ) ∧ (ψ → χ) and
6`CPL ¬ψ.

An immediate consequence of the definition above is that
every µ of a separable model, satisfies µ(ϕ | >) = µ((ϕ |
ψ) ∧ (ψ | >)) = µ(ϕ | ψ) · µ(ψ | >) for all ϕ,ψ such that
`CPL ϕ→ ψ and 6` ¬ψ. Note that the first equality is due to
Axiom (A5) of LBC.

Given a formula F of FP(LBC,ŁΠ) and a separable model
S = 〈W, e, µ〉, the evaluation of F in S at w ∈ W is
inductively defined by the following stipulations:
• If F is a conditional formula Φ, then ‖Φ‖S,w = w1(Φ) ∈
{0, 1}, where e(w) = 〈w1, w2, . . .〉;

• If F = P (Φ) is atomic modal, then ‖P (Φ)‖S,w = µ(Φ);
• If F is compound modal, then ‖F‖S,w is computed

by evaluating its atomic components and then by using
the truth-functionality of the connectives of ŁΠ in the
standard algebra [0, 1].

Notice that if F is modal, then ‖F‖S,w does not depend on
the world w. Finally, the truth-degree of F in C is defined as
‖F‖S = infw∈W ‖F‖S,w.

Definition 3.3: If T ∪ Φ is a set of modal formulas, Φ
logically follows from T , written T |=SFP Φ, when for all
separable probability LBC-Kripke model S, if ‖F‖S = 1 for
every F ∈ T , then ‖Φ‖S = 1 as well.

Next, we prove that FP(LBC,ŁΠ) is sound and complete
with respect to the class of separable models. Its proof, a main
part of which will follow from a general result we will recall
below, is based on the fact that the logic for events, LBC is
locally finite. This means that the Lindenbaum algebra CL
over a finite set of variables is finite. Indeed, as proved in
[5, Theorem 7.3], CL is isomorphic to C(L) to the Boolean
algebra of conditionals of the Lindenbaum algebra of classical
logic, on the same set of variables.

Theorem 3.1: The logic FP(LBC,ŁΠ) is sound and com-
plete for deductions from probabilistic modal formulas w.r.t.
to the class of separable models.

Proof: Soundness of (P1), (P2), (P3) and (Nec) follows
directly from [10, Lemma 8.4.5.]. Thus, let us show that (Sep)
holds in every separable model. If (ϕ → χ) ∧ (χ → ψ) is a
theorem of classical logic and ψ is not a contradiction, then
‖P ((ϕ | χ)∧ (χ | ψ))‖S = ‖P (ϕ | χ)‖S · ‖P (χ | ψ)‖S in any
separable model S = 〈W, e, µ〉, because µ satisfies Equation
(1) above, and hence S satisfies P ((ϕ | χ) ∧ (χ | ψ)) ↔L

P (ϕ | χ)� P (χ | ψ).
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As for completeness, we will show that 6`FP F implies
6|=SFP F , for any modal formula F . By either adapting the
completeness proofs in [8], [11] or adapting the general result
proved in [6, Theorem 20 (1)], together with the fact that LBC
is locally finite and ŁΠ is finitely strong standard complete, we
can show that deductions in FP(LBC,ŁΠ) can be translated to
deductions in ŁΠ by considering atomic modal formulas PΦ
as new ŁΠ propositional variables pΦ. Indeed, it holds that,
for any modal formula G, `FP G iff T `ŁΠ G∗, where G∗ is
the translation of G with the new variables, and T consists of
the following three sets of formulas:
(i) T0 = {H∗ : H is an instance of axioms (P1), (P2), (P3)}

(i)i T1 = {pΨ : ψ is an LBC-theorem}, that translates the
rule (Nec), and

(iii) T2 = {p(ϕ|χ)∧(χ|ψ) ↔L pϕ|χ � pχ|ψ : `CPL (ϕ → χ) ∧
(χ→ ψ) and 6`CPL ¬χ}, that translates the rule (Sep).

Then by the finite-strong completeness of ŁΠ,4 if F is not a
theorem of FP(LBC,ŁΠ), there is a ŁΠ-evaluation v, model
of the sets T0, T1, T2 and v(F ) < 1. Then one can define
the probability Kripke model S = (W, e, µ), where W =
Seqn(Ω), e(w, p) = w1(p) for any propositional variable p,
and µ(Φ) = v(Φ) for any conditional formula Φ, and show
that ‖F‖S = v(F ) < 1, that is, S is a countermodel of F .
Thus, it is left to prove that µ is separable. Indeed, in particular
v is a model of T2, that means v(pϕ|χ � pχ|ψ) = v(pϕ|χ) ·
v(pχ|ψ) = µ(ϕ | χ) · µ(χ | ψ), for all those conditionals
(ϕ | χ), (χ | ψ) such that `CPL (ϕ → χ) ∧ (χ → ψ) and
6`CPL ¬χ. Thus, µ is separable and the claim is settled.

We end this section by noticing that in a separable LBC-
Kripke model, a formula P (ϕ | ψ) is evaluated by its
corresponding conditional probability.

Corollary 3.1: For every basic conditional (ϕ | ψ), the
following deduction holds in FP(LBC,ŁΠ):5

∇P (ψ | >) `FP P (ϕ | ψ)↔L (P (ψ | >)→Π P (ϕ∧ψ | >))

IV. POSITIVE SEPARABLE MODELS

In this section we will consider a first extension of the logic
FP(LBC,ŁΠ) that allows to deal with positive probabilities on
basic conditionals of the form (ϕ | >).

Definition 4.1: The logic FP(LBC,ŁΠ)+ is the schematic
extension of FP(LBC,ŁΠ) obtained by adding the rule

(Pos) if 6`CPL ¬ϕ, derive ∇P (ϕ | >).
The effect of axiom (Pos) is to force the probability of

non-contradictory classical propositions ϕ (once identified as
conditionals (ϕ | >)) to be strictly positive. Therefore, it is
relatively easy to see that the following holds.

Theorem 4.1: The logic FP(LBC,ŁΠ)+ is sound and com-
plete w.r.t. the class of positive separable LBC-Kripke models,
i.e. models S = 〈W, e, µ〉 in which µ is a positive probability

4For our purposes, T can be considered to be finite, because the Linden-
baum Boolean algebra of LBC is finite, that is, there are only finitely-many
non-logically equivalent basic conditionals (ϕ | ψ), and hence only finitely-
many non-logically equivalent formulas in T .

5Recall from Section II-B that the interpretation of the connective ∇ is
∇(x) = 1 if x > 0, and ∇(x) = 0 otherwise.

measure, that is to say, such that µ(Φ) > 0 for all conditional
formula Φ 6= ⊥.

Let us call basic modal formulas any combination of atomic
modal formulas of the form P (ϕi | ψi) with ŁΠ connectives.
If we restrict ourselves to this sublanguage of FP(LBC,ŁΠ),
we can in fact consider simpler probabilistic models.

Definition 4.2: A positive simple model is a pair P = 〈Ω, σ〉
where Ω is the set of Boolean interpretations for the base
language L, and σ is a positive probability measure on 2Ω.

Given a basic modal formula B and a positive model P =
〈Ω, σ〉, we interpret B in P as follows:
• If B = P (ϕ | ψ), then ‖P (ϕ | ψ)‖P = σ(ϕ∧ψ)

σ(ψ) ;
• If B is compound use again the truth functionality of ŁΠ

connectives interpreted in [0, 1].
Theorem 4.2: (1) For every positive separable LBC-Kripke

model S there exists a positive simple model P such that
‖B‖S = ‖B‖P for every basic modal formula B.
(2) Vice-versa, for every positive simple model P there exists
a positive separable LBC-Kripke model S such that ‖B‖P =
‖B‖S for every basic modal formula B.

Proof: As for (1), let us prove the clam for B = (ϕ | ψ).
The case of compound conditional formulas, indeed, follows
by truth-functionality of the connectives of ŁΠ. Given a
positive separable LBC-Kripke model S = 〈W, e, µ〉, define
σ(ϕ) = µ(ϕ | >) = µ({w ∈ W | w |= (ϕ | >)}. This is
a probability on Boolean formulas that can be identified as a
probability on 2Ω. Since µ is positive and separable, we have

µ(ϕ | ψ) =
µ(ϕ ∧ ψ | >)

µ(ψ | >)
=
σ(ϕ ∧ ψ)

σ(ψ)
.

On the other hand, (2) follows by adapting to our logical
setting a main result in [5, Theorem 6.13] stated in algebraic
terms. Indeed, in that theorem it is proved that, for any positive
probability P on an algebra of events A, there is a (plain)
probability µP on the algebra of conditional events C(A) such
that µP (a | b) = µ(a∧b)

µ(b) whenever b 6= ⊥. The proof is rather
involved and we refer the reader to [5] for full details.

V. A LOGIC FOR (CONDITIONAL) CANONICAL EXTENSIONS

As proved in [5] the atoms of a Boolean algebra of
conditionals C(A) can be fully characterized by the atoms
of the original algebra A and, in particular, if α1, . . . , αn are
the atoms of A, those of C(A) are conditional expressions of
the form

ωi = (αi1 | >) ∧ (αi2 | ¬αi1) ∧ . . . ∧ (αin−1 |
∧

j≤n−2

¬αij ).

Since the atoms of the Lindenbaum algebra of classical logic
(with, say, k variables x1, . . . , xk) are writable as minterms
αj =

∧
x∗i , for x∗i ∈ {xi,¬xi}, the atoms of C(L) are

expressible as above. To ease the reading, we will denote them
by ω1, ω2, . . .. Recall form [5] that, if classical logic is defined
on k propositional variables, there are (2k)! atoms of C(L).

Although not every probability measure on C(A) satisfies
all the axioms of a conditional probability, every positive
probability σ on the original algebra A, has an extension to
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a positive probability µσ on C(A). These measures, called
canonical in [5] are such that, for every atom ωi of C(L),

µσ(ωi) = σ(αi1 | >)·σ(αi2 | ¬αi1)·. . .·σ(αin−1
|
∧

j≤n−2

¬αij ).

In this section we will show how to further extend the logic
FP(LBC,ŁΠ)+ in order for its models to be defined by
canonical extensions µσ of this kind. In order to do that, let
us consider the following FP(LBC,ŁΠ)+-formulas:

(Cani) P (ωi)↔L P (αi1 | >)�. . .�P (αin−1
|
∧

j≤n−2

¬αij ),

where ωi = (αi1 | >) ∧ . . . ∧ (αin−1 |
∧
j≤n−2 ¬αij ), with

αi1 , . . . , αin being minterms of the propositional language L.
Definition 5.1: Let L be a propositional language with k

variables. Then, the logic FP(LBC,ŁΠ)+
c is the schematic

extension of FP(LBC,ŁΠ)+ obtained by adding the axioms
(Cani) for all i = 1, . . . , (2k)!

A separable model S = 〈W, e, µ〉 is canonical if there exists
a positive probability σ on Ω such that µ = µσ , i.e., µ is the
canonical extension of some positive σ on Ω.

Finally, we can prove that FP(LBC,ŁΠ)+
c is sound and

complete w.r.t. to canonical models.
Theorem 5.1: The logic FP(LBC,ŁΠ)+

c is sound and com-
plete with respect to the class of canonical models.

Proof: Following the lines we sketched in the proof of
Theorem 3.1, it is enough to show that a positive separable
model satisfies all the axioms (Cani) iff the model is canonical.

(Left-to-Right). Let S = 〈W, e, µ〉 be positive separable and
satisfying (Cani) for all i. Thus, ‖P (ωi)‖S =
‖P (αi1 | >)� . . .� P (αin−1 |

∧
j≤in−2

¬αj)‖S =
‖P (αi1 | >)‖S · . . . · ‖P (αin−1

| ∧j≤in−2
¬αj)‖S =

µ(αi1 | >) · ldots · µ(αin−1
| ∧j≤in−2

¬αj).
Since S is positive and separable, by Theorem 4.2 there

is a positive simple model P = (Ω, σ) such that, for every
basic conditional (ϕ | ψ), µ(ϕ | ψ) = σ(ϕ∧ψ)

σ(ψ) . In particular,

µ(αi1 | >) · . . . ·µ(αin−1
| ∧j≤in−2

¬αj) =
αi1

1 ·
σ(αi2

∧¬αi1
)

σ(¬αi1
) ·

. . . ·
σ(αin−1

∧∧j≤in−2
¬αj)

σ(
∧

j≤n−2 ¬αij
) . Thus, µ = µσ and S is canonical.

(Right-to-Left). Conversely, if S is canonical, then (Cani)
holds in S by the very definition of canonical model and the
way formulas are interpreted in separable models.

In the light of the above argument, we can hence slightly
improve the result of Corollary 3.1 as follows.

Corollary 5.1: The following formulas are theorems of
FP(LBC,ŁΠ)+

c :
1) P (ϕ | ψ)↔L (P (ψ | >)→Π P (ϕ ∧ ψ | >));
2) P (ω)↔L [P (>)→Π P (αi1)� P (¬αi1)→Π P (αi2)

� . . . � P (
∧
j≤in−2

αj) →Π P (αin−1
)], for ω = (αi1 | >) ∧

(αi2 | ¬αi1)∧ . . .∧ (αin−1 |
∧
j≤n−2 αij ), where the αij ’s are

pairwise different minterms of the propositional language L.

VI. CONCLUSIONS

In this paper we have introduced fuzzy modal logics for
reasoning about the probability of compound conditionals,
the latter being Boolean combinations of basic conditionals

(ϕ | ψ) and formalized within the recently introduced Logic
for Boolean Conditionals LBC [5]. For each of the logics we
define, we have proved completeness w.r.t. suitable classes of
probability models, where a formula of the kind P (ϕ | ψ) is
evaluated by a (plain) probability µ(“(ϕ | ψ)”) of the condi-
tional formula (ϕ | ψ). We have shown that, if ψ 6`CPL ⊥,
this probability is in fact a conditional probability, and thus
evaluated by the ratio µ(“(ϕ ∧ ψ | >)”)/µ(“(ψ | >)”).

There are a number of issues on this subject left for future
work. Among them, we plan to investigate the relationship
of our probability logics for compound conditionals with
the approach developed by Sanfilippo et al. to probabilistic
inference with conjoined and iterated conditionals based on
a different notion of conditional, see e.g. [14], [15]. Another
topic of interest is the application of these logics to reason with
(semi-) fuzzy quantifiers [2]. In addition, we plan to investigate
complexity bounds for the SAT problem for FP(LBC,ŁΠ).
Although it seems reasonable to conjecture that logic to be
decidable, while the logics ŁΠ and FP(ŁΠ) are known to be
in PSPACE [12], the complexity of the logic LBC is not known
yet, and this latter non-trivial fact needs to be solved first.
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Resumen—El objetivo principal de este trabajo es utilizar
los contextos L-fuzzy para mejorar la eficiencia del diseño
de materiales biodegradables de origen renovable fabricados
mediante la valorización de residuos con buenas propiedades para
su utilización en el sector de los envases alimentarios. El uso de
los contextos L-fuzzy permitirá mejorar la eficacia en el proceso
de diseño mejorando la eficiencia en la utilización de recursos.
Además, mediante la utilización de los mencionados contextos
L-fuzzy se pretende optimizar las propiedades de los materiales
desarrollados y estimar la composición de los materiales para los
requisitos que cumplir en servicio.

Palabras Clave—Contextos L-fuzzy, extracción de conocimien-
to, materiales renovables, diseño de materiales

I. INTRODUCCIÓN

Cuando se diseña un nuevo material, la selección de la
formulación es uno de los principales factores que afecta
a las propiedades funcionales del material. En el proceso
usual del diseño de nuevos materiales, se varı́a la cantidad
de los componentes de la formulación y se estudia la in-
fluencia de esas variaciones en las propiedades del material.
Dicho proceso implica un elevado coste de materias primas,
energı́a y recursos humanos. Cuando un/a ingeniero/a diseña
un nuevo material, los requerimientos del material en servicio
dependiendo de su aplicación determinan las propiedades
funcionales que el material debe poseer. Habitualmente, existe
un conocimiento existente por parte del equipo investigador
que ayuda a establecer unos rangos iniciales de los valores
de la formulación con el objetivo de obtener las propiedades
deseadas. Muchas veces, el investigador no busca un valor
exacto para una propiedad concreta, sino que desea que esté
dentro de un intervalo determinado o entorno a un valor
exacto. Los valores de esas propiedades pasan a ser difusas, lo
que posibilita el estudio mediante variables borrosas [1], [2].

La inexistencia a priori de reglas de asociación que re-
lacionen la composición con las diversas propiedades del

Trabajo parcialmente subvencionado por el Gobierno Vasco (Proyecto KK-
2019/00006)

material hace que el uso de herramientas difusas basadas en
reglas de asociación no parezca la mejor opción, siendo el
empleo de contextos borrosos para la extracción de informa-
ción una herramienta prometedora para la estimación de la
composición del material para unas propiedades determinadas.
Las propiedades requeridas van cambiando en función de las
aplicaciones. Es decir, según el alimento que se quiera envasar,
los requerimientos en servicio del material de envasado varı́an.
El deseo de obtener una modificación en alguna de las
propiedades obtenidas o en alguna variable de la formulación
conlleva un coste inmenso de recursos debido al proceso
de prueba y error que se utiliza actualmente. El empleo de
contextos borrosos con información incompleta puede ayudar
en la fase de diseño del material agilizando el proceso y
ahorrando recursos de todo tipo que dicho diseño conlleva.

II. DESCRIPCIÓN DEL PROBLEMA

II-A. Descripción de las condiciones de diseño de materiales

En el diseño de nuevos materiales, la formulación y las
condiciones de procesamiento desempeñan un papel funda-
mental en el comportamiento en servicio de dichos materiales.
Estas propiedades están relacionadas con distintas magnitudes
(quı́micas, fı́sicas, mecánicas, térmicas, ópticas. . . ). Para cada
aplicación, sabemos qué valores de salida de estas magnitudes
deberı́a tener el material para un desempeño óptimo, y la
cuestión es encontrar la formulación que lo permita.

Con vistas a alcanzar este objetivo, no sólo se debe iden-
tificar las especies quı́micas que optimizan las propiedades,
sino también sus cantidades. Estas cantidades serán los valores
de entrada que se han de determinar en la optimización.
Usualmente, existe un conocimiento previo que permite al/la
diseñador/a fijar los rangos aproximados en donde es probable
que estén los valores de entrada ideales, para obtener los
valores de salida asociados al comportamiento que son los
deseados.
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A la hora de encontrar esos valores de entrada ideales, la
aproximación tradicional de prueba y error puede requerir
un gran coste de energı́a, tiempo y materias primas. Hay
tantas combinaciones y variaciones a estudiar que éste es
un procedimiento ineficiente para analizar la influencia de
cada parámetro en el comportamiento del material diseñado.
Además de esto, normalmente el análisis se realiza con una
variable de cada vez, que no considera las interacciones cru-
zadas entre distintas variables de entrada en la formulación. A
menudo, estas entradas y salidas son borrosas: el/la diseñador/a
aceptarı́a valores de entrada alrededor de ciertos valores de
entrada, porque estarı́a dispuesto/a a admitir valores salida
cerca de ciertos valores de salida.

En este caso, les podemos asociar valores borrosos de
deseabilidad, y realizar un estudio basado en los conceptos
de la teorı́a borrosa. Dentro de esta aproximación, y con un
análisis estricto de las variables implicadas, se puede lograr
un conjunto de variables de entrada adecuadas, de una manera
eficiente y reduciendo el consumo de tiempo y recursos. Ası́,
se evita un procedimiento ineficiente y sus costos añadidos.

II-B. Propiedades requeridas para aplicaciones del material

Los films basados en gelatina muestran caracterı́sticas que
los hacen indicados para ser aplicados en envasado [3]–
[5]. Las propiedades barrera, el comportamiento mecánico y
las propiedades ópticas son de vital importancia al diseñar
materiales para envasado de alimentos [6].

Teniendo esto en mente, se proponen las siguientes propie-
dades de salida para un análisis posterior:

Ángulo de contacto (CA)
Tasa de transmisión de vapor de agua (WVTR)
L* y b* (en lo que respecta a propiedades de color)
Tensión a tracción (TS)
Elongación a rotura (EB)
Brillo

Considerando la experiencia en el campo del grupo de in-
vestigación BIOMAT - biopolymeric materials del que forman
parte varios de los autores del presente trabajo, se propuso un
conjunto de propiedades salida objetivo para esta aplicación.
Este set tiene en cuenta las especificidades de los films basados
en gelatina. Este es el punto de partida para lanzar el análisis
de conceptos L-fuzzy [7]–[9]. Estas propiedades objetivo están
listadas en la Tabla I.

Tabla I
REQUERIMIENTOS PARA MATERIALES DE ENVASADO DE ALIMENTOS

GRASOS

CA (°) L* b* TS (MPa) EB ( %) Brillo60◦
(Unidad de brillo)

90 95 40 60 5 50

En el caso de la tasa de transmisión de vapor de agua, no
se seleccionaron valores objetivo por no ser una propiedad
clave para la aplicación de envasado de comida grasa. Puede
ser que las propiedades objetivo no se puedan alcanzar si-
multáneamente para un material dado, debido a la interacción

entre ellos. En este caso, el método de estimación propuesto
proporciona una solución de compromiso en el que las pro-
piedades estimadas están cerca de las propiedades objetivo.

En la siguiente sección se discuten los conceptos básicos
de la teorı́a de contextos L-fuzzy y la forma de aplicarlos a
la selección de formulaciones de materiales.

III. MODELADO DE LOS EXPERIMENTOS UTILIZANDO
CONTEXTOS L-FUZZY

III-A. Análisis de contextos L-fuzzy
El análisis formal de conceptos es una herramienta ma-

temática desarrollada por R. Wille en 1982 [10], [11] con el
objetivo de procesar datos conceptuales y representarlos de
una manera formal. Con el objetivo de reconocer diferentes
grados de pertenencia entre objetos y atributos Burusco y
Fuentes-González extendieron los conceptos formales de Wille
al caso difuso con la definición de contextos L-fuzzy [7]–[9].
Un contexto L-fuzzy se define como una tupla (L,X, Y,R)
donde L es un retı́culo completo, X e Y son respectivamente
el conjunto de objetos y atributos, y la relación R ∈ LX×Y
toma valores en el retı́culos (L,≤).

Para extraer información de estos contextos L-fuzzy, el
operador derivación se define para todos los conjuntos A ∈ LX
y B ∈ LY mediante las siguientes expresiones [9]:

A1(y) = inf
x∈X
{I(A(x), R(x, y))},∀y ∈ Y,

B2(x) = inf
y∈Y
{I(B(y), R(x, y))},∀x ∈ X.

Siendo I un operador implicación difuso definido en L.
Los conceptos L-fuzzy constituyen una herramienta que

permite visualizar la información almacenada en el contexto.
Estos conceptos son pares (M,M1) donde el conjunto M ∈
LX es un punto fijo del operador constructor ϕ, que se define
usando los operadores de derivación ϕ(A) = (A1)2 = A12

para todo A ∈ LX .
De manera equivalente, los conceptos L-fuzzy se pueden

definir desde el punto de vista de los atributos como pares
(N2, N) siendo N ∈ LY un punto fijo del operador construc-
tor φ que se define como φ(B) = (B2)1 = B21 para todo
B ∈ LY .

Dado un subconjunto de objetos A ∈ LX (o, un subconjunto
de atributos B ∈ LY ), es posible calcular el concepto L-fuzzy
asociado aplicando repetidamente el operador constructor ϕ
(o, equivalentemente, el operador φ) hasta que un punto fijo
es obtenido. Podemos obtener un punto fijo simplemente
aplicando el operador derivación dos veces si el operador
de implicación usado es residuado [12], [13]. Ası́, si I es
residuado, entonces el par (A12, A1) es el concepto L-fuzzy
asociado a A. De manera similar, el concepto L-fuzzy asociado
a B ∈ LY será el par (B2, B21).

El concepto L-fuzzy asociado a un subconjunto de objetos
A (o atributos B) proporciona la situación “estable” en el
contexto que sea más cercana a las condiciones iniciales fijadas
por A (o B). En este trabajo, y con el fin de simplificar los
cálculos, el operador de implicación elegido para obtener los
conjuntos derivados fue la implicación de Lukasiewicz.
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III-B. Metodologı́a propuesta para extraer información de
los datos experimentales

La metodologı́a propuesta en este trabajo aprovecha el
potencial que tiene el análisis de contextos L-fuzzy para
extraer información de tablas de relaciones con doble entrada,
y se puede describir en los siguientes pasos:

1. Determinar los conjuntos de objetos y atributos que for-
man parte del problema. La relación entre ellos vendrá
dada por los datos experimentales.

2. Normalizando los valores experimentales, construir el
contexto L-fuzzy relacionado con las propiedades del
material a analizar.

3. Establecer el conjunto de atributos que representa la
situación que queremos estudiar. Para las propiedades
para las que no tenemos requerimientos iniciales se
tomará el valor de 0.

4. Calcular el concepto L-fuzzy más cercano a la situación
de partida, que vendrá dada por el punto fijo del operador
constructor.

5. Interpretar los valores obtenidos para extraer la informa-
ción requerida.

El Algoritmo 1 describe los cálculos a realizar para obtener
los valores estimados de las propiedades de los materiales.

IV. DETERMINACIÓN DE LA FORMULACIÓN DEL
FILM BASADO EN GELATINA

IV-A. Diseño experimental para la optimización de la for-
mulación

Los valores de entrada de la formulación a ajustar elegidos
fueron el contenido de glicerol, pH y contenido de ácido
gálico. Los datos para poder aplicar la metodologı́a difusa
propuesta, fueron distintas muestras donde los valores de
contenido de glicerol analizados fueron 0 %, 5 % y 10 %, los
valores de pH seleccionados 4.5, 7.25 y 10, mientras que
los valores de contenido de ácido gálico fueron 5 %, 10 %
y 15 %. Los valores experimentales de las propiedades de
salida obtenidas para alimentar los cálculos se muestran en
la Tabla II.

IV-B. Construcción del contexto L-fuzzy que representa los
valores experimentales

Con el objetivo de modelar el proceso de diseño de ma-
teriales construimos un contexto L-fuzzy (L,X, Y,R) en el
retı́culo (L = [0, 1]100,≤), considerando el conjunto de
objetos X = {x1, x2, . . . , x13}, donde xi representa la i-ésima
formulación. El conjunto de atributos Y = {y1, y2, . . . , y10}
estuvo formado por las diferentes propiedades que se analiza-
ron en cada formulación:

y1: Contenido en glicerol
y2: Contenido en ácido gálico
y3: pH de la solución
y4: Ángulo de contacto de agua
y5: Tasa de transmisión de vapor de agua
y6: Valor de color L*
y7: Valor de color b*

Algoritmo 1 Estimación de las propiedades de los materiales
Entradas:

1: {x1, x2, . . . , xn}: conjunto de objetos X .
2: {y1, y2, . . . , ym}: conjunto de atributos Y .
3: E(xi, yj) para todo (xi, yj) ∈ X×Y : valores experimen-

tales.
4: {r1, r2, . . . , rk}: requerimientos para los atributos
{yj1 , yj2 , . . . , yjk}.

Salida:
{e1, e2, . . . , em}: valores estimados para los atributos.

Pasos:
I Construcción de la relación del contexto.

1: for i = 1 to n do
2: for j = 1 to m do

3: R(xi, yj)←
E(xi, yj)− min

1≤h≤n
{E(xh, yj)}

max
1≤h≤n

{E(xh, yj)} − min
1≤h≤n

{E(xh, yj)}
4: end for
5: end for
I Construcción del conjunto inicial de atributos para represen-

tar la información requerida.
6: for j = 1 to m do
7: if j ∈ {j1, j2, . . . , jk} then

8: B(yj)←
rj − min

1≤h≤n
{E(xh, yj)}

max
1≤h≤n

{E(xh, yj)} − min
1≤h≤n

{E(xh, yj)}
9: else

10: B(yj)← 0
11: end if
12: end for
I Cálculo del concepto asociado.

13: while B 6= φ(B) do
14: B ← φ(B)
15: end while
I Obtención de los valores estimados para las propiedades.

16: for j = 1 to m do
17: ej ← min

1≤h≤n
{E(xh, yj)}+

+B(yj) ·
(
max
1≤h≤n

{E(xh, yj)} − min
1≤h≤n

{E(xh, yj)}
)

18: end for

y8: Tensión a tracción.
y9: Elongación a rotura
y10: Valor de brillo a un ángulo de incidencia de 60◦

La relación entre objetos y atributos R ∈ LX×Y se calculó
normalizando los elementos de la matriz E formada por
los valores experimentales promedio que se muestran en la
Tabla II de la siguiente manera:

R(xi, yj) =

E(i, j)− min
1≤h≤13

{E(h, j)}

max
1≤h≤13

{E(h, j)} − min
1≤h≤13

{E(h, j)}

La relación obtenida se muestra en la Tabla III.
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Tabla II
VALORES EXPERIMENTALES DE LAS PROPIEDADES FUNCIONALES PARA DIFERENTES FORMULACIONES DE MATERIALES DE ORIGEN RENOVABLE

Formulación Propiedades de los materiales
GLY ( %) GA ( %) pH CA (°) WVTR L* b* TS (MPa) EB ( %) Brillo60◦(

g
m2·dı́a

)
(Unidades de brillo)

0 10 4.50 74.8 ± 4.2 1057.7 ± 11.5 95.3 ± 0.5 5.4 ± 0.4 78.7 ±12.5 3.8 ± 1.5 125.4 ± 3.2
5 15 4.50 74.6 ± 7.8 1147.3 ± 16.5 95.5 ± 0.2 5.4 ± 0.8 83.4 ± 8.4 2.7 ± 0.6 155.4 ± 10.3
5 10 7.25 52.8 ± 2.3 1272.1 ± 13.4 50.2 ± 6.6 44.6 ± 6.9 79.8 ± 3.7 3.1 ± 0.4 101.6 ± 8.5
5 5 4.50 58.9 ± 2.2 1097.3 ± 8.0 95.7 ± 0.4 4.8 ± 0.5 80.5 ± 2.1 3.9 ± 0.4 148.0 ± 9.9
0 10 10.00 38.3 ± 2.5 1256.3 ± 10.2 32.5 ± 1.3 20.7 ± 1.8 56.3 ± 5.4 2.7± 0.4 50.1 ± 5.6

10 10 10.00 44.6 ± 1.9 1198.0 ± 22.3 26.6 ± 0.5 8.8 ± 0.5 57.9 ± 1.2 2.6 ± 0.2 29.6 ± 3.7
5 5 10.00 44.7 ± 4.6 1227.0 ± 10.6 69.6 ± 5.7 59.1 ± 3.2 70.8 ± 5.6 3.1 ± 0.4 23.5 ± 2.6
0 5 7.25 56.7 ± 1.8 1206.0 ± 8.5 47.2 ± 0.7 38.6 ± 0.7 77.9 ± 10.4 3.5 ± 0.5 28.6 ± 2.5

10 15 7.25 99.3 ± 2.5 1310.3 ± 19.4 46.6 ± 1.8 42.8 ± 1.5 72.1 ± 6.2 2.7 ± 0.4 100.0 ± 6.4
5 15 10.00 40.8 ± 2.5 1001.7 ± 15.3 23.8 ± 0.9 4.0 ± 0.8 62.3 ± 4.0 2.6 ± 0.3 70.9 ± 3.2

10 10 4.50 101.0 ± 3.7 960.3 ± 22.5 95.2 ± 0.2 6.5 ± 0.9 81.8 ± 8.0 3.1 ± 0.6 148.4 ± 6.1
10 5 7.25 68.2 ± 4.7 1220.0 ± 20.7 52.8 ± 3.9 48.6 ± 1.3 77.5 ± 4.1 3.6 ± 0.4 97.6 ± 1.6
0 15 7.25 67.7 ± 4.2 1304.3 ± 9.3 54.1 ± 1.0 49.8 ± 1.5 86.4 ± 7.9 3.2 ± 0.6 100.0 ± 7.0

Tabla III
RELACIÓN DEL CONTEXTO L-FUZZY

R y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
x1 0.00 0.50 0.00 0.58 0.28 0.99 0.03 0.66 0.52 0.77
x2 0.50 1.00 0.00 0.58 0.53 1.00 0.02 0.80 0.02 1.00
x3 0.50 0.50 0.50 0.23 0.89 0.37 0.74 0.70 0.21 0.59
x4 0.50 0.00 0.00 0.33 0.39 1.00 0.01 0.72 0.56 0.94
x5 0.00 0.50 1.00 0.00 0.85 0.12 0.30 0.00 0.02 0.20
x6 1.00 0.50 1.00 0.10 0.68 0.04 0.09 0.04 0.00 0.05
x7 0.50 0.00 1.00 0.10 0.76 0.64 1.00 0.43 0.21 0.00
x8 0.00 0.00 0.50 0.29 0.70 0.32 0.63 0.64 0.35 0.04
x9 1.00 1.00 0.50 0.97 1.00 0.32 0.70 0.47 0.02 0.58
x10 0.50 1.00 1.00 0.04 0.12 0.00 0.00 0.18 0.00 0.36
x11 1.00 0.50 0.00 1.00 0.00 0.99 0.04 0.76 0.19 0.95
x12 1.00 0.00 0.50 0.48 0.74 0.40 0.81 0.63 0.40 0.56
x13 0.00 1.00 0.50 0.47 0.98 0.42 0.83 0.89 0.24 0.58

IV-C. Conceptos L-fuzzy asociados a los requerimientos
iniciales

Una vez definido el contexto L-fuzzy (L,X, Y,R), se esti-
maron las caracterı́sticas del material a partir de los conceptos
L-fuzzy asociados con el conjunto de atributos que representan
los requisitos deseados que se muestran en la Tabla I.

Los valores requeridos para las propiedades se normalizaron
para obtener valores en L, y se supuso inicialmente que los
valores de pertenencia de los atributos que representan las
propiedades desconocidas eran 0.

Por lo tanto, las propiedades del material para la aplicación
de envases de alimentos grasos fueron representadas por el
siguiente conjunto difuso de atributos:

B ={y1/0, y2/0, y3/0, y4/0.82, y5/0, y6/0.99,
y7/0.65, y8/0.11, y9/1, y10/0.20}

Y, después calcular el concepto L-fuzzy asociado, nos centra-
mos en su intensión:

B21 ={y1/0.63, y2/0.60, y3/0.63, y4/0.89, y5/0.81,
y6/0.99, y7/0.65, y8/0.98, y9/1, y10/0.70}

La intensión de un concepto se puede interpretar como un
conjunto de atributos que siempre se encuentran juntos en el
contexto. Por lo tanto, el conjunto de atributos B21 obtenido se

puede interpretar como el conjunto de atributos más cercano
al conjunto requerido B que se dan al mismo tiempo.

A partir de los valores de pertenencia de la intensión de
los conceptos L-fuzzy obtenidos, invirtiendo el proceso de
normalización, se estimó que, para el envasado de alimentos
grasos, las propiedades del material deberı́an ser las que se
muestran en la Tabla IV.

V. RESULTADOS Y DISCUSIÓN

Teniendo en cuenta los datos experimentales para el análisis
de contexto L-fuzzy, las formulaciones estimadas para un
rendimiento óptimo son las dadas en la Tabla IV. Para la
aplicación de envasado de alimento graso, la metodologı́a
sugiere valores alrededor del 6.3 % de contenido en glicerol,
11 % de contenido en ácido gálico, y un pH de 8.

Con estos valores se realizaron medidas experimentales de
las propiedades funcionales en el laboratorio, obteniéndose los
valores presentados en la Tabla V.

Como puede observarse en la Tabla V, los valores estimados
fueron muy similares a los valores objetivo de las propiedades
funcionales, excepto para los valores de brillo y tensión a trac-
ción, y los valores propuestos por el análisis de conceptos L-
fuzzy fueron mayores que los valores objetivo seleccionados.
En lo que respecta a valores de brillo, no es posible obtener
valores cercanos a 50 teniendo en cuenta las restricciones
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Tabla IV
FORMULACIÓN Y PROPIEDADES ESTIMADAS PARA LOS MATERIALES DE ENVASADO DE ALIMENTOS GRASOS

GLY ( %) GA ( %) pH CA (°) WVTR L* b* TS (MPa) EB ( %) Brillo60◦(
g

m2·dı́a

)
(Unidades de brillo)

6.28 10.96 7.95 93.94 1243.66 95.00 40.00 89.38 5.00 116.27

Tabla V
VALORES REQUERIDOS PARA EL MATERIAL, ESTIMACIÓN, VALORES EXPERIMENTALES Y ERROR OBTENIDO.

Formulación Propiedades de los materiales
GLY ( %) GA ( %) pH CA (°) WVTR L* b* TS (MPa) EB ( %) Brillo60◦(

g
m2·dı́a

)
(Unidades de brillo)

Valores requeridos 90 95 40 60 5 50
Valores estimados 6.3 11 8 93.9 1243.7 95 40 89.4 5 116.3
Valores experimentales 74.3 1370.3 60.9 42.1 83.3 4.8 95.3
Error( %) 20.9 10.2 35.9 5.3 6.7 4.9 18

en el resto de propiedades; esto indica que los valores de
brillo deben ser mayores. Como los valores de brillo están
relacionados inversamente con la rugosidad de la superficie
del film [14], valores mayores de brillo indican superficies
más lisas. Algo similar sucedió con los valores de tensión a
tracción: los valores estimados fueron mayores que el objetivo.
Es interesante señalar que el comportamiento mecánico del
material propuesto por el método de estimación es incluso
mejor que el de la especificación, pues tiene mayor tensión a
tracción, sin disminuir los valores de la elongación a rotura.
Para envasado de alimentos grasos, la tasa de transmisión de
vapor de agua no es una propiedad crucial, y es por ello que
no se seleccionó ningún valor objetivo; pero el concepto L-
fuzzy estima un valor de 1243 g

m2·dı́a para esta propiedad.
Para verificar el método de estimación empleado, se desarrolló
un material con la formulación propuesta, y se midieron
las propiedades funcionales respuesta del mismo. Como se
muestra en la Tabla V, para la mayorı́a de propiedades, los
valores propuestos por el contexto L-fuzzy son razonable-
mente similares a los valores experimentales. Los errores
obtenidos son menores al 21 % en todos los casos, excepto
para el valor de color L*, para el que el error es mayor y
el valor experimental obtenido es menor que la estimación.
Esto produce una luminosidad mayor para el film, mayor que
la requerida en la especificación, lo cual es adecuado para
la aplicación de envasado de alimentos. Además, se puede
confirmar, tal y como predijo el contexto L-fuzzy, que los
valores de brillo fueron mayores que los valores objetivo y el
comportamiento mecánico del material es incluso mejor que
el requerido para la formulación estimada.

VI. CONCLUSIONES

En el presente trabajo, se empleó el análisis de conceptos
L-fuzzy como una herramienta de toma de decisiones para
obtener una formulación del material con las propiedades
funcionales requeridas en envasado de alimentos grasos. Los
resultados obtenidos después de implementar la metodologı́a
propuesta revelaron que los valores predichos por los con-
ceptos L-fuzzy fueron muy similares a los valores objetivo

en la mayorı́a de propiedades. Además, después de analizar el
comportamiento de las formulaciones estimadas, los resultados
experimentales resultaron ser muy cercanos a los valores
aproximados propuestos. El error entre valores estimados por
los conceptos L-fuzzy y los valores experimentales de las
formulaciones propuestas fue inferior al 20 % en la mayorı́a
de propiedades funcionales. Por otro lado, en los casos en que
la diferencia entre valor predicho y valor experimental fue
mayor del 20 %, la predicción proporciona una mejora de las
propiedades requeridas, obteniendo un mejor comportamiento
del material.

Definitivamente, las formulaciones propuestas por el análisis
de conceptos L-fuzzy son el mejor punto de partida para
estudiar el efecto de cada parámetro en las propiedades
funcionales del material. En vez de tener una enorme ma-
triz de formulaciones que estudiar, utilizar este método de
estimación ayuda a identificar aproximadamente los valores
de los parámetros de la formulación que llevan a obtener las
propiedades deseadas, y permite saber si es posible conseguir
las propiedades funcionales para un sistema especı́fico.
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Resumen—Los sistemas de clasificación basados en reglas
difusas permiten en muchos casos obtener un conocimiento fácil
de interpretar, pero esto no siempre ocurre. El objetivo de
este trabajo consiste en mejorar la interpretabilidad de estos
sistemas, utilizando procesos de minimización de conjuntos de
reglas difusas basados en una modificación del método de Quine
McCluskey, que permite trabajar con valores ternarios. De este
modo, se pretende mejorar la capacidad de eliminación de
variables irrelevantes en los antecedentes de las reglas y por
lo tanto, mejorar la interpretabilidad del modelo sin alterar en
gran medida la precisión.

Palabras Clave—Reglas difusas, Clasificación, Interpretabili-
dad, Simplicidad, Minimización.

I. INTRODUCCION

Tradicionalmente la gran ventaja de los sistemas de clasifi-
cación basados en reglas difusas es que son capaces de obtener
un conocimiento interpretable a la vez que consiguen buenos
niveles de precisión. Sin embargo, esto no es siempre ası́, y
en algunos casos el conocimiento obtenido no es tan fácil
de interpretar. Este punto es importante ya que un algoritmo
que obtenga conocimiento interpretable permite al usuario
entender el proceso seguido en la toma de decisiones. La
interpretabilidad es un tema de discusión frecuente [1] y existe
una gran cantidad de estudios y métricas que nos permiten
comparar modelos. Uno de los parámetros frecuentemente
utilizado para estudiar la interpretabilidad de un sistema es
el número de reglas, de forma que cuanto mayor sea menor
es la interpretabilidad.

Existen estudios que buscan mejorar la interpretabilidad de
la base de reglas como el CFM-BD [2] que utiliza técnicas de
probabilidad e inducción de reglas, creando ası́ una base de
reglas más compacta. También tenemos los que buscan reducir

Trabajo cofinanciado por el Programa Nacional de Becas de Postgrado en el
Extranjero ”Don Carlos Antonio López, BECAL”, otorgado por el Gobierno
de la República del Paraguay y por el proyecto de investigación RTI2018-
098460-B-I00 financiado a su vez con fondos FEDER (Unión Europea).

el número de reglas difusas utilizando los mapas de Karnaugh
[3]. El mapa de Karnaugh es un método gráfico que se
utiliza para simplificación de funciones algebraicas de forma
canónica. El principal inconveniente con esta técnica radica
en que solo puede usar un máximo de 6 variables binarias,
las cuales solo pueden representar dos variables difusas con 3
etiquetas lingüı́sticas, lo que limita bastante su uso.

Este problema también lo encontramos en uno de los
algoritmos de clasificación de reglas difusas basados en el
algoritmo de Wang y Mendel para clasificación [4], conocido
como el algoritmo de CHI [5]. Este algoritmo tiene como
ventaja el ser muy eficiente en el proceso aprendizaje a la
vez que obtiene niveles de precisión aceptables, pero como
inconveniente genera un gran número de reglas difusas [6], lo
que dificultad la interpretabilidad del modelo obtenido.

Debido a estos inconvenientes se propuso un nuevo método
para minimizar la base de reglas difusas [7], basado en el
algoritmo de Quine McCluskey [8], en donde se consiguieron
buenos resultados, pero sus principales inconvenientes se en-
contraban en la adaptación de las etiquetas lingüı́sticas a una
codificación binaria, lo que creaba tablas de la verdad muy
extensas y no lograba eliminar variables.

Quine McCluskey es un método de minimización de funcio-
nes booleanas ampliamente utilizado para la minimización de
circuitos lógicos, debido a que obtiene el mı́nimo valor de una
función booleana con un método tabular. La lógica binaria es
eficiente y potente, pero es uno de los inconveniente para cierto
tipo de problemas como el propuesto en este trabajo donde
queremos trabajar con un numero de tres etiquetas lingüı́sticas.

En este trabajo proponemos el uso de una lógica ternaria
[9] que reemplaza los valores de 0 y 1 de la lógica binaria por
valores 0, 1 y 2, lo que nos permitirá realizar una reducción
más eficiente del conjunto de reglas y poder mejorar por tanto
la interpretabilidad del sistema.

Este documento los dividimos de la siguiente forma, en
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la siguiente sección describimos las herramientas prelimina-
res del trabajo, en la sección III se explicará en detalle el
funcionamiento del algoritmo. La sección IV muestra los
resultados obtenidos con el método de minimización ternario
comparándolo con el modelo de minimización binario, y por
último en la sección V se realiza un análisis de la experimen-
tación realizada.

II. PRELIMINARES

Describimos en esta sección las herramientas básicas que
se requieren en la realización de nuestra propuesta.

II-A. Modelo de regla

La propuesta de minimización que realizamos en este traba-
jo parte de un conjunto de reglas difusas básicas que podrı́an
obtenerse de múltiples formas, sin embargo, con la idea de
poder realizar una experimentación completa del modelo,
asumiremos que el conjunto de reglas inicial se ha obtenido a
partir del algoritmo Chi.

La estructura habitual de un conjunto de reglas difusas
utilizando el algoritmo Chi es [10]:

Rule Rj : If x1 is Aj1 and ... and xn is Ajn then
Class = Cj with RWj

(1)

Donde Rj es la etiqueta j-ésima de la regla, x = (x1, ..., xn)
es un vector n dimensional que representa un ejemplo, Aji es
conjunto difuso representado por una función de pertenencia
triangular, Cj es la etiqueta de la clase y RWj es el peso de la
regla. El peso de la regla utilizado en este trabajo es el factor
de certeza penalizado [11] PCF:

RWj = PCF =∑
xp∈ClassCj

µAj
(xp)−

∑
xp /∈ClassCj

µAj
(xp)∑p

p=1 µAj
(xp)

(2)

Donde µAj(xp) es el grado de pertenencia del ejemplo xp
con la parte del antecedente de la regla difusa Rj y se calcula
como sigue.

µ
Aj

(Xp) =

n∏

i=1

µ
Aji

(Xpi) (3)

En donde µAji(Xpi) es el grado de pertenencia del valor
Xpi del conjunto difuso Aji de la regla Rj .

Denominaremos modelo de reglas difusas extendido [12]
al modelo de regla difusa que permite que el valor asignado
a una variable sea un subconjunto de las etiquetas difusas
de su dominio. Este modelo de regla es interesante, ya que
cuando una variable toma todas las etiquetas de su dominio,
la variable se puede considerar irrelevante y puede eliminarse
del antecedente de la regla. En la propuesta realizada en este
trabajo, las reglas resultantes de la simplificación serán de este
tipo.

II-B. Método de Quine McCluskey

En esta sección presentamos las definiciones básicas y los
pasos para aplicar el método Quine McCluskey [6].

Definiciones

Literal: Es una variable lógica o su negación (q or q̄).
Minterm: es una expresión algebraica booleana de n
variables booleanas, que solamente se evalúa como ver-
dadera para una única combinación de esas variables.
Implicante Primo: es el producto que no se puede com-
binar con otro término para eliminar una variable y una
mayor simplificación.
Implicante Primo esencial: es un implicante primo que
es capaz de cubrir una salida de la función que no está
cubierta por ninguna combinación de implicantes primos.

El método de Quine McCluskey (QM) utiliza las siguientes
tres leyes básicas de simplificación.

q + q̄ = 1 (Complemento)

q + q = q (Idempotente)

q(w + z) = qw + qz (Distributiva)

Donde q, w y z son literales.
El método QM tiene los siguientes pasos:

Encontrar el implicante primo: En este paso, se sustituye
el literal en forma de 0 y 1 y generamos una tabla. Inicial-
mente el número de filas de la tabla es igual al número
total de minterms de la función original no simplificada.
Si dos términos sólo se diferencian en un bit, una variable
aparece en ambas formas (variable y negación), entonces
se podrá utilizar la ley del complemento. Iterativamente,
se comparan todos los términos y se genera el implicante
primo.
Encontrar el implicante primo esencial: Usando los impli-
cantes primos del paso anterior, se genera una tabla para
encontrar los implicantes primos esenciales. Algunos
implicantes primos pueden ser redundantes y pueden ser
omitidos, pero si aparecen sólo una vez, no pueden ser
omitidos y proporcionan implicantes primos esenciales.
Encontrar otro implicante primo: No es necesario que el
implicante primo esencial cubra todos los términos mı́ni-
mos. En ese caso, se considerara otros implicantes primos
para asegurarnos de que todos los términos menores han
sido cubiertos.
Cuando no podemos obtener ni un implicante primo
esencial estamos ante un problema de cobertura cı́clica,
que puede ser resuelto analı́ticamente por el método de
Petrick’s [13].

En general, el método QM proporciona un método mejor
para la simplificación de una función booleana que el mapa
de Karnaugh, pero sigue siendo un problema NP-Duro, por lo
que la complejidad de vuelve exponencial.
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III. MÉTODO PROPUESTO PARA LA
MINIMIZACIÓN DE REGLAS

En [7] se propone una técnica que toma como base el
modelo de minimización de circuitos digitales de Quine Mc-
Cluskey para la simplificación y reducción de bases de reglas
difusas para clasificación. Dicha técnica considera que los
antecedentes de todas las reglas que describen una clase se
pueden considerar como un único circuito y la idea es aplicar
los criterios de reducción que se describen en el modelo de
Quine McCluskey. En las conclusiones del trabajo, los autores
describen que el uso de la base binaria produce unos resultados
de reducción aceptables, pero que el sistema tiene problemas
para eliminar variables completas en el antecedente de la regla
y eso limita la capacidad de simplificación y por tanto la
mejora en la interpretabilidad del modelo resultante.

En este trabajo proponemos un método de minimización de
conjuntos de reglas difusas extendiendo el algoritmo Quine
McCluskey de minimización de funciones booleanas para
trabajar con lógica ternaria. El algoritmo se extiende para
trabajar con tablas de verdad ternarias. Al trabajar con lógica
ternaria y con conjuntos de reglas difusas que codifican sus
variables difusas usando 3 etiquetas, se mejora la capacidad
de eliminación de variables completas en el antecedente de la
reglas.

El proceso que se sigue es el siguiente: (A) partimos de un
conjunto de reglas difusas. En general, entenderemos que las
reglas siguen el modelo conocido como ”Mamdani”, como se
describe en la ecuación (1). Además, vamos a suponer que el
dominio asociado a cada variable difusa está compuesto por
3 etiquetas uniformemente distribuidas sobre el universo de
discurso de la variable. (B) Se transforma el antecedente de
cada una de las reglas en un vector con codificación ternaria y
a cada uno de estos vectores se le asocia la clase de la regla.
(C) Se toma una de las posibles clases Cj y todos los vectores
transformados asociados a esa clase y se aplica sobre ellos
el algoritmo de minimización de Quine McCluskey ternario.
(D) El nuevo conjunto de vectores obtenidos, asociados a la
clase Cj , son transformados en reglas y sustituyen a las reglas
originales para esa clase. (E) El proceso vuelve al paso 3 hasta
que el método se aplica a todas las clases.

Cada variable lingüı́stica tiene un dominio difuso asociado
y el algoritmo de CHI utiliza 3 etiquetas lingüı́sticas impares,
en este caso usaremos las siguientes, small, medium y large
que se observan en la Figura 1.

III-A. Codificación de la base de reglas.

Como dijimos anteriormente, para utilizar el método de
Quine McCluskey es necesario transformar la base de reglas
en un formato compatible con el método de Quine McCluskey,
donde se utilizan tablas de la verdad binarias. En este trabajo,
adaptamos el método utilizando una codificación ternaria
y trabajaremos con conjuntos de reglas que usan variables
difusas que tienen asociados dominios difusos con 3 etiquetas.

Teniendo como referencia general las tres etiquetas difusas
small, medium, large, se usará la codificación que se observa
en la Figura 2.

Figura 1. Dominio difuso de una variable lingüı́stica x1, ..., xn.

Figura 2. Codificacion ternaria

III-B. Método de minimización Quine McCluskey ternario

En esta sección describimos la extensión a base ternaria
del método de Quine McCluskey. Dicha extensión se puede
describir con los siguientes pasos:

1. Convertimos el antecedente de cada regla de la base
de reglas a una fila de una tabla de verdad de valores
ternarios tomando el sistema de codificación de la Figura
2. Se construye una tabla distinta para cada clase.

2. Sumamos los valores de todas las variables correspon-
dientes a cada fila de esa tabla (cada fila representa el
antecedente de cada una de las reglas) y se reordenan
las filas en orden ascendente.

3. Creamos una columna con los minterms asociados al
número de fila a la que pertenece cada regla.

4. Comparamos reglas cuya suma solo difiera en una
unidad para buscar elementos redundantes. Si tres reglas
difieren en una unidad entre sı́ y tienen la misma variable
con distintas etiquetas difusas, marcaremos esta variable
con el sı́mbolo “*” que significa que dicha variable es
redundante. Asociamos la nueva regla con los minterms
pertenecientes a las reglas combinadas.

5. Los términos que no se pueden combinar con tres reglas
donde solo una variable tiene las tres etiquetas difusas,
se analizan en pares. Comparamos reglas cuya suma
difiera en una unidad para buscar elementos redundantes.
En caso de que 2 reglas cuya suma difiera en una
unidad y tengan una misma variable con distinta etiqueta
lingüı́stica, marcaremos esta variable como la unión de
las etiquetas difusas. Asociamos la nueva regla con los
minterms pertenecientes a las reglas combinadas. Los
nuevos valores codificados se muestran en la Figura 3.

6. Los términos que no se pueden combinar, los apartamos
en otra tabla como implicantes primos con su respectivo
minterm asociado.
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7. Eliminamos los duplicados en la columna del minterm.
8. Repetimos el proceso 4,5,6 y 7, agregando las nuevas

variables correspondientes a la redundancia “*” del paso
4 y la unión de las etiquetas difusas correspondiente
al paso 5, hasta que ninguna fila se puede combinar.
Creando ası́ una tabla con los implicantes primos.

9. Para encontrar los implicantes esenciales creamos una
tabla de cobertura. Donde las filas corresponden a los
minterm de las reglas combinadas denominadas impli-
cantes primos del paso 8 y las columnas corresponden a
los valores individuales de cada minterm. Los minterms
correspondientes a las reglas redundantes son omitidos
en este paso, no se colocan en las columnas. En la tabla
de cobertura los minterms cubren los implicantes pri-
mos. Un implicante primo esencial es aquel implicante
primo que cubre un minterm y ningún otro implicante
primo cubre el mismo minterm.

10. Si los implicantes primos no esenciales no tienen un
minterm en común con los implicantes primos esencia-
les, se vuelve a crear la tabla de cobertura del paso 9 de
modo a extraer los nuevos implicantes primos esenciales,
Esto se repite hasta no obtener más implicantes primos
esenciales.

11. En el caso de que no exista ningún implicante primo
esencial se aplica el método de Petrick’s.

Figura 3. Codificacion ternaria ampliada.

Veamos un ejemplo para aclarar como funciona el método.
Supongamos el siguiente conjunto de reglas difusas, todas de
la clase C0,

R1: If x1 is SMALL and x2 is SMALL and x3 is MEDIUM
and x4 is LARGE then Class = C0

R2: If x1 is SMALL and x2 is MEDIUM and x3 is MEDIUM
and x4 is LARGE then Class = C0

R3: If x1 is SMALL and x2 is LARGE and x3 is MEDIUM
and x4 is LARGE then Class = C0

R4: If x1 is SMALL and x2 is SMALL and x3 is SMALL
and x4 is LARGE then Class = C0

R5: If x1 is MEDIUM and x2 is SMALL and x3 is SMALL
and x4 is LARGE then Class = C0

R6: If x1 is MEDIUM and x2 is SMALL and x3 is SMALL
and x4 is MEDIUM then Class = C0

Convertimos la base de reglas en una tabla de codificación
ternaria.

Podemos apreciar que las reglas correspondientes a los
minterm 2, 5 y 6 tienen todas las etiquetas difusas posibles en
la variable 2, por lo que podemos simplificar las reglas 2,5 y
6. Al igual que las reglas 1 y 3 que tienen 2 etiquetas difusas
en la variable 1.

En la tabla ya no se pueden realizar agrupaciones, a esta
tabla la denominamos implicantes primos. Completamos la
tabla de cobertura con la idea de encontrar los implicantes
primos esenciales.

Podemos apreciar que cada implicante primo tiene un único
valor en alguna columna correspondiente a los minterms. Por
esto todos los implicantes primos son esenciales y la base de
reglas simplificada queda de la siguiente forma.

IF x1 is SMALL and x3 is MEDIUM and x4 is LARGE
then Class = C0

IF x1 is SMALL or MEDIUM and x2 is SMALL and x3 is
SMALL and x4 is MEDIUM then Class = C0

IF x1 is LARGE and x2 is SMALL and x3 is SMALL and
x4 is MEDIUM then Class = C0

donde en la primera regla eliminamos la variable x2 y en la
segunda regla usamos el modelo de reglas difusas extendidas
en la variable x1.

IV. ESTUDIO EXPERIMENTAL

En esta sección queremos comprobar si el método propuesto
permite reducir el número de reglas difusas, manteniendo el
nivel de precisión, con respecto a los resultados obtenidos por
el algoritmo de CHI original, y a la vez si permite obtener
reglas más simples que las obtenidas con la propuesta descrita
en [7]. Para ello utilizamos las bases de datos descritas en la
Tabla I obtenidas del repositorio de la UCI [14]. Usaremos
el algoritmo de CHI [5] para generar los conjuntos de reglas.
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Serán esos conjuntos de reglas los que usaremos para evaluar
el comportamiento de la propuesta y serán comparados con
los obtenidos por el método usando codificación binaria [7].

La implementación del código se ha hecho en Python y se
han utilizamos dominios difusos compuestos por 3 etiquetas
difusas con función de pertenencia triangular simétrica.

El estudio se centra en la comparación de tres parámetros:
capacidad de predicción P, número de reglas #R y la simplici-
dad de cada base de conocimiento Simp en el caso binario BIN
y en el caso ternario TER. En este trabajo se ha considerado
la simplicidad como la reducción en las condiciones en los
antecedentes de las reglas. Los resultados que se muestran
son los obtenidos tras realizar una validación cruzada de 10.

Tabla I
BASES DE DATOS UTILIZADAS EN EL ESTUDIO

Base de datos Ejemplos Atributos Número de Clases
Shuttle 57999 9 9
abalone 3756 8 28

iris 150 4 3
newthyroid 215 5 3

banana 5300 2 2
heart 270 13 2

saheart 462 9 2
bupa 345 6 2

led7digit 500 7 10
page-blocks 5472 10 5

mammographic 830 5 2
flare 1066 11 6
pima 768 8 2

phoneme 5404 5 2
australian 690 14 2

crx 653 15 2
balance 625 4 3
german 1000 20 2
thyroid 7200 21 3
magic 19020 10 2
wine 178 13 13

cleveland 297 13 5
automobile 159 25 6

bands 365 19 2
ionosphere 351 33 2
spectfheart 267 44 2

sonar 208 60 2
movement-libras 360 90 15

penbased 10992 16 10
vehicle 846 18 4
vowel 990 11 11

segment 2310 19 7
winequality-white 4898 11 11

spambase 4597 57 2
ring 7400 20 2

La Tabla II muestra una comparativa de las bases de reglas
obtenidas por el algoritmo de aprendizaje (CHI) y los dos
métodos de simplificación estudiados, la minimización de la
base de reglas utilizando el método de Quine McCluskey
Binario (CHI + BIN) y la minimización de la base de reglas
utilizando el método de Quine McCluskey Ternario (CHI +
TER). Donde P representa la precisión y R la cantidad de
reglas generadas por el algoritmo.

En esta tabla podemos observar que ambos métodos pro-
porcionan una reducción importante en el número de reglas

final (quedándose aproximadamente en un 58 % del tamaño
del conjunto de reglas original). Comparando los métodos
binario y ternario en su capacidad de reducción de reglas,
se puede observar que no aparecen diferencias significativas
entre ambos métodos. Ambos métodos reducen en valores muy
parecidos los conjuntos de reglas como se puede observar por
los valores medios obtenidos sobre este parámetro. En cuanto
a la capacidad de predicción, podemos observar en la Tabla II
que los valores medios de P en CHI con respecto a (CHI +
BIN) y (CHI + TER), presentan una mı́nima variabilidad.

Tabla II
RESULTADOS OBTENIDOS

CHI CHI + BIN CHI + TER
Base de Datos P #R P #R P #R

Shuttle 0,801 28,7 0,802 17,5 0,802 16,7
abalone 0,231 69,4 0,230 42,5 0,228 41,5

iris 0,926 14,7 0,940 7,9 0,940 7,9
newthyroid 0,846 20,4 0,810 7,9 0,833 9,5

banana 0,602 7,9 0,580 4 0,558 4
heart 0,515 217,2 0,493 165,3 0,504 156,9

saheart 0,727 168,7 0,721 78,5 0,721 74,6
bupa 0,578 43,3 0,573 21,8 0,570 20,9

led7digit 0,670 93,9 0,618 92,9 0,676 50,2
page-blocks 0,918 49,7 0,918 26,7 0,916 24,5

mammographic 0,808 45,5 0,812 19 0,816 17
flare 0,567 127,6 0,580 81 0,492 62,2
pima 0,725 101 0,695 43,9 0,697 41,8

phoneme 0,718 50,1 0,712 17,5 0,709 17,5
australian 0,798 313,9 0,783 179 0,783 139,6

crx 0,813 258,2 0,808 154,6 0,805 113,8
balance 0,893 82 0,840 23,6 0,851 24,1
german 0,196 885,2 0,196 836,1 0,196 824,8
thyroid 0,920 463,6 0,910 268,8 0,919 190,8
magic 0,764 313,1 0,744 103,7 0,744 95,4
wine 0,926 124,3 0,921 86 0,926 81,8

cleveland 0,380 239,2 0,354 194,2 0,374 186,7
automobile 0,611 109,7 0,602 86,4 0,577 81,4

bands 0,686 258,2 0,683 194 0,680 197,9
ionosphere 0,652 228,8 0,655 215,6 0,655 213,3
spectfheart 0,663 235,2 0,663 235,2 0,663 235,2

sonar 0,595 187,2 0,596 185,6 0,596 185,6
movement libras 0,733 260,6 0,731 257,3 0,731 257,3

penbased 0,975 3281 0,973 1352,7 0,972 1427,5
vehicle 0,630 378,6 0,617 211,8 0,618 218,4
vowel 0,639 285,9 0,628 193,9 0,622 189,3

segment 0,843 318,5 0,849 139,3 0,852 136,8
winequality-white 0,495 294 0,494 133,4 0,481 132

spambase 0,728 357 0,693 210,2 0,688 211,1
ring 0,552 573 0,545 428,1 0,536 423,9

Media 0,689 299,580 0,679 180,454 0,678 174,626

En la Tabla III podemos observar una comparación de los
métodos de minimización binario y ternario, donde la columna
eliminadas corresponde a la cantidad media de variables irrele-
vantes que fueron detectadas por el algoritmo de minimización
ternario y las columnas Simp BIN y Simp TER muestran la
medida de simplicidad de cada base de datos para los métodos
binario y ternario respectivamente de acuerdo a la ecuación
(4).

S =
(variables.reglas(BIN,TER))− eliminadas

variables.reglas(CHI)
(4)

272 XIX Conferencia de la Asociación Española para la Inteligencia Artificial CAEPIA 20/21



Tabla III
ESTUDIO DE INTERPRETABILIDAD

Base de datos Eliminadas Simp BIN Simp TER
Shuttle 1,0 0,610 0,578
abalone 0,9 0,612 0,596

iris 0,0 0,537 0,537
newthyroid 1,8 0,387 0,448

banana 1,0 0,506 0,443
heart 0,7 0,761 0,722

saheart 7,1 0,465 0,438
bupa 2,3 0,503 0,474

led7digit 0,0 0,989 0,535
page-blocks 3,1 0,537 0,487

mammographic 6,5 0,418 0,345
flare 8,0 0,635 0,482
pima 8,7 0,435 0,403

phoneme 7,6 0,349 0,319
australian 8,4 0,570 0,443

crx 10,3 0,599 0,438
balance 25,0 0,288 0,218
german 0,7 0,945 0,932
thyroid 13,1 0,580 0,410
magic 16,1 0,331 0,300
wine 1,6 0,692 0,657

cleveland 0,0 0,812 0,781
automobile 0,1 0,788 0,742

bands 2,8 0,751 0,766
ionosphere 1,6 0,942 0,932
spectfheart 0,0 1,000 1,000

sonar 0,0 0,991 0,991
movement libras 0,0 0,987 0,987

penbased 29,2 0,412 0,435
vehicle 6,4 0,559 0,576
vowel 0,5 0,678 0,662

segment 10,6 0,437 0,428
winequality-white 14,2 0,454 0,445

spambase 19,6 0,589 0,590
ring 23,4 0,747 0,738

Media 6,6 0,626 0,579

En esta última tabla se observa que el método ternario
efectivamente es capaz de detectar variables irrelevantes en
los antecedentes de las reglas, aunque esa detección no es
homogénea. En bases de datos como iris o cleveland o sonar
no es capaz de encontrar ninguna variable irrelevante. La razón
de esto puede deberse a que el método prioriza la reducción
en el número de reglas que la eliminación de variables a
la hora de realizar las agrupaciones. Por otro lado, podemos
observar que la simplicidad medida como número medio de
condiciones, es mejor la aportada por el método ternario. Se
han comparado ambos modelos usando el test de Wilcoxon
para probar que le simplicidad del modelo (CHI + TER) es
mayor que (CHI + BIN), obteniéndose un p-value de 0.9999
y por tanto aceptándose la hipótesis. Este resultado pone de
manifiesto que el método ternario permite detectar con más
facilidad variables irrelevantes.

V. CONCLUSIONES

En este trabajo se ha presentado una extensión de una
técnica para la minimización de conjuntos de reglas difusas
basado en la técnica de simplificación de circuitos digitales
de Quine McCluskey. Tomando como base una versión previa
que trabaja con circuitos binarios. Dicha versión ofrece un
buen resultado en cuanto a la reducción del número de reglas,

pero no permite, de forma fácil, la detección de variables
irrelevantes en los antecedentes de las reglas. Este problema se
debe al uso de la codificación binaria. Cambiado a codificación
ternaria y tomando los dominios con tres etiquetas lingüı́sticas,
la técnica no sólo reduce las reglas, sino que adquiere mayor
capacidad para reducir las condiciones en el antecedente de la
regla.

Se ha realizado un estudio experimental, usando el algorit-
mo de CHI como método para extraer las reglas y comparando
la versión binaria con la ternaria que se ha propuesto en este
trabajo. Los resultados muestran que la nueva propuesta reduce
el número de reglas a niveles semejantes a como lo hacı́a
la binaria. Además, frente a la binaria, las bases de reglas
obtenidas usando la minimización ternaria presentan un mayor
grado de simplicidad cuando se combina la reducción de las
reglas y el número de condiciones en el antecedente de las
reglas.
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Abstract—Prometheus is an interpretable model which is
suitable for the generation of visual and textual explanations
grounded in common sense knowledge. This model can be seen
as a special case of generalized additive models, which can be
also interpreted as a list of (fuzzy) rules. The goodness of the
model is illustrated with one benchmark dataset from the medical
domain. Reported results are encouraging. They suggest that
Prometheus exhibits a good balance between understandability
and classification performance in comparison with other well-
known models (e.g., linear models, decision trees or fuzzy rule-
based classifiers) which are deemed as interpretable.

Index Terms—Explainable Artificial Intelligence, Interpretable
Machine Learning, Shapley Values, Generalized Additive Models,
Fuzzy Rule-based Classifiers

I. INTRODUCTION

In Greek mythology, Prometheus was a semi-god who
stole a spark of fire from the gods and created humanity
from clay [1]. Moreover, he is said to have brought fire
(intelligence) to humankind. In this paper, we introduce a
new Artificial Intelligence (AI) modelling method whose name
takes inspiration from this myth, in that it constitutes a step
ahead towards the creation of self-explaining AI models in
real-world applications.

Given a classification or regression task, the objective
of machine learning has been to mathematically formalise
algorithms for maximising some accuracy measure for the
given data. A wide variety of models have been created, some
of them achieving impressive performance on benchmarking
datasets. However, there is a class of problems for which
having good performance metrics is not enough. In particu-
lar, a system that supports decision-making for fault-critical
situations, or where someone has to take responsibility for the
action, has limited utility if it does not provide any meaningful
insight into its reasoning process. For example, if an advanced
AI in a hospital suggests a diagnosis and a cure, the well-
being of the patient is ultimately the responsibility of the
doctor in charge and he/she is the person who in the end will
have the final word about the diagnosis and treatment. Thus a
doctor is going to use such an AI-based diagnostic system only
if its recommendations are transparently explained, allowing

the professional to evaluate their soundness and possibly
communicate them to the patient.

It is within this frame of responsibility, trust, fairness,
accountability and liability that eXplainable AI (XAI) plays
a key role [2]. An AI system that can explain its reasoning
is more likely to inspire trust in decision-makers. Recently,
XAI has received lots of attention, with proposals for different
approaches and tools aimed to answer different questions.
In this context, if we want to lower the barrier to access
to these tools, then the use of the verbal modality and
textual generation can sparkle an interactive communication
between humans and AI that will help understandability and
the transfer of knowledge [3]–[5]. This is because humans tend
to vastly favour the modality of language when explaining their
decisions and the reason behind them.

In this paper, we introduce Prometheus, an interpretable-
by-design AI model that supports both visual explanations
and textual descriptions of its reasoning. We have evaluated
Prometheus with the Breast Cancer benchmark dataset [6].
Moreover, we have shown how Prometheus works in com-
parison with alternative methods in an illustrative example.
The rest of the manuscript is organized as follows. Section II
introduces related work. Section III describes how to build
and interpret Prometheus XAI models. Section IV presents our
experimental settings and reports achieved results. Section V
concludes the paper and points out future work.

II. RELATED WORK

One important feature that distinguishes between different
XAI approaches [7] is whether an explanation is generated
after the prediction is done (post-hoc), or whether one tries to
design an interpretable model in the first place.

A. Interpretable by design models

In the literature we find three broad classes of interpretable
models; several variations exist within each class.
• Rule-based Systems (RBSs): a list of rules in the form

IF X THEN Y. The more rules there are, the harder it
becomes to understand the model.
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• Decision Trees (DTs): a list of rules nested into a tree
structure. At each step of the reasoning process, the model
is looking at just one “test” at a time and based on the
result decides which branch to descend along the tree
until it reaches a leaf that corresponds to the prediction.

• Generalized Additive Models (GAMs): a class of mod-
els that are only concerned with first-order interactions
between the features and the target. This allows the study
of the effect of each feature one at a time.

Both RBSs and DTs are relatively easy to interpret and
describe in natural language [8], [9]. However, as far as
we know, it is rare to find linguistic explanations associated
with GAMs (see e.g., [10]). GAMs are models of the form
g(y) =

∑
i fi(xi) where xi represents the i-th feature of x and

g(·) is the link function (e.g., logistic sigmoid for classification
tasks). Each fi is called a shape function [11]. GAMs are
interpretable due to the additive nature of the modelling,
allowing a user to focus on the contribution of each feature
without accounting for interaction effects. In other words, they
are a class of models for which partial dependency plots and
their generalisation, Individual Conditional Expectations [12],
can be computed exactly, they let users follow the process of
computation in a sequential manner, and they are not subject
to variation effects (because interactions are restricted to first-
order, by design, but see below for details on GA2Ms which
incorporate interaction terms). The main types of GAM are:
• Linear Models (LMs): where fi(x) = βi and βi is a

static coefficient.
• Scoring Systems: similar to LMs, but where β coeffi-

cients are discrete and small [13].
• Spline Systems: each partial fi is estimated with a spline.
• GA2M: introduces additional terms that explicitly deal

with second-order interactions fi(xj , xk) which are de-
scribed by heatmaps [14].

• Explainable Boosting Machine (EBM)1: combines
small trees and also deals with second-order interactions.

• GAMs with Neural Networks: each fi is estimated with
a neural network. They were first proposed by [15].

B. Post-hoc explanations
With black-box models, it is possible to some extent to

generate post-hoc explanations of their behaviour, using dif-
ferent techniques. For example, LIME [16] makes a linear
approximation to the black-box so that it is locally equivalent.
On the other hand, SHAP [17] is inspired by the game-
theoretic Shapley Values that assign to the feature xj a
contribution φj(xj) such that

f(x)− E∀x[f(x)] =
∑

i

φi(xi)

SHAP is in general NP-hard to compute, but for some
models (like tree ensembles [18]) can be computed efficiently.
Moreover, it is accessible and usable thanks to its open-source
implementation.2

1Available at https://github.com/interpretml/interpret
2Available at https://github.com/slundberg/shap

The interpretation of these methods must nonetheless be
conducted carefully as they have been shown to be potentially
vulnerable to some adversarial attacks [19].

III. DESCRIPTION OF THE PROMETHEUS XAI MODEL

The architecture of Prometheus is depicted in Fig. 1. This
is another step toward a human-centric approach to knowl-
edge discovery and human-machine interaction. The user can
benefit from flexibility in the customisation of the processing
of data according to common-sense expert knowledge. Also,
he/she can exploit the insights learnt from the model commu-
nicated with visualisations and textual explanations.

The first component of Prometheus is a discretiser that
discretises continuous variables into k-bins (using a k-means
or quantiles strategy) transforming the original instance into
a wider vector of 0s and 1s (this can be interpreted as a way
of building rules IF xi IS IN BIN j). Each bin has a semantic
meaning that can be linguistically refined by an expert, just
by tuning the associated strong fuzzy partition. As an example
let’s imagine the task of recommending a certain movie to
someone given that we have a feature that represents their
age: the discretiser would produce a tuple of features stating
whether age is low, medium or high. This initial partition can
be semantically refined later by the user with personalized
labels like young, mid-age or old.

The output of the discretiser is then combined linearly by
an LM with zero bias (regularised by an L1 penalty as it
incentives a sparse representation)3. In this way, a partial
score is attributed to each partition and the final prediction
(in log-odds space) will be the global aggregation (sum) of
the fired partial scores. Going back to our example, a young
person could contribute with a score of +1.2 (thus representing
evidence of the class “Do recommend”) while an old one could
contribute with -1.1 (thus being counter-evidence for the class,
thus “Do not recommend”). If the mid-age contributes with 0,
then it can be omitted for the sake of reducing the cognitive
load to the user.

The generated model can be seen both as a GAM where
each fi is piece-wise constant, and as a fuzzy rule list
aggregated by the sum operator (e.g., “Ri: IF featurei is
label3 THEN output1 with w = s”). This means that we
can use the visualisations typically used for GAMs but also
the linguistic explanations associated with fuzzy rule-based
systems. In particular, the interpretation of the model as
a rule list can support the generation of simple linguistic
explanations. This can be achieved for example by ad-hoc
mapping rules to templates of the form “Instance i has a high
value of feature f and this contributes s to the total log-odd
score of class C.” Naturally, the language generated could also
be tailored to the user, or made more or less precise depending
on the context. Thus, we can produce a textual description of
the process that leads to the final prediction.

We adopt a relatively simple generation strategy for textual
descriptions in the present work, noting that more sophisticated

3The number of bins and the coefficient for regularisation are automatically
chosen with cross-validation on the training data.

CAEPIA 20/21 XIX Conferencia de la Asociación Española para la Inteligencia Artificial 275



Fig. 1. A pictorial description of the proposed architecture.

methods have been developed in the field of Natural Language
Generation [20]. Here, the textual generation process follows
a template-based approach. Contributions are first divided into
evidence and counter-evidence for the target class. They are
then presented in an ordered way sorted by the absolute
magnitude of their partial score so that more important features
are presented first (see an illustrative example in Fig. 4, which
will be described in depth in the next section). Then, the
discretiser component gives us the option of using semantic
labels to give a qualitative description of the magnitude of
the feature. For example, if a feature had three bins (like in
Fig. 1) we could establish that for that particular feature we
assign one semantic label out of [low, medium, high]; with
the meaning of this semantic label tied to the distribution of
data. However, a given explanation can be excessively long due
to many features contributing very little to the overall score.
Accordingly, to keep the explanation shorter and relevant for
the user, we have implemented a compression algorithm that
groups small partial scores into a score called “other reasons”.
The values are sorted by absolute value and then are progres-
sively accumulated, until a threshold is met (while ensuring
that the absolute magnitude of the resulting aggregation is
smaller than the smallest remained partial score). The rate of

compression can be set by the user, allowing the user to focus
first on what is most relevant and then giving him/her the
option of delving into the details if needed.

It is important to note that even though the additive nature
of the Prometheus model might qualitatively resemble SHAP,
it is significantly different from it. This is because additive
coefficients in Prometheus constitute in themselves the inter-
pretable model. By contrast, SHAP provides these coefficients
as a post-hoc explanation. Moreover Shapley values describe
f(x)−E∀x[f(x)] while for Prometheus they describe precisely
f(x). It is nonetheless possible to make use of the visualisation
toolbox provided by the SHAP package (while keeping in
mind that we are visualising something radically different).

IV. EXPERIMENTS

We have empirically assessed both the accuracy and com-
plexity (as a proxy for explainability) of the Prometheus XAI
model. As humans we have a limited cognitive capacity, thus
between two systems of equal performances we would tend
to find more interpretable a simple one. We considered the
Breast Cancer dataset (taken from the UCI machine learning
data repository [21]). This is a relatively small dataset (569
instances, 30 features) where explainability, as is expected in
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medical diagnosis, is an important concern. All features are
numerical and there are no missing values. The task consists
of predicting if a given cancer is benign (357 instances) or
malign (212 instances) [6].

For comparison purposes, in addition to Prometheus, the
following models are generated4: (i) EBMs; (ii) LM-L1 (with
L1 regularisation chosen with 4-fold cross-validation); (iii)
J48 decision tree; (iv) REPTree; (v) RandomTree; (vi) Fuzzy
Hoeffding Decision Tree (FHDT) (vii) Fuzzy Unordered Rule
Induction Algorithm (FURIA); and (viii) Random Forest (RF).

Figures 2 and 3 show the interpretability-accuracy trade-off
of models which are deemed as interpretable5. Every measure
is estimated with stratified 10-fold cross-validation. Classifi-
cation performance is measured in terms of the area under the
receiver operating characteristic curve (ROC AUC) in Fig. 2.
Classification performance is measured in terms of F1 Score
in Fig. 3. In both cases, the structural complexity of models
is computed as the total rule length (TRL)6. In these figures,
Prometheus emerges as the most accurate model, at the cost of
higher structural complexity. Moreover, it performs reasonably
well (ROC AUC = 0.988; F1 Score = 0.949) compared to
the black-box model RF (ROC AUC = 0.991; F1 Score =
0.968). However, EBM (ROC AUC = 0.992; F1 Score = 0.971)
achieves even better performance, which can be attributed to
its higher flexibility due to the high number of shallow trees,
which allow the modelling of a more complex shape function,
and to the capability of modelling higher-order interactions. In
addition, this high performance comes at the cost of increased
model complexity (TRL=7680), i.e., the user has to deal with
a more complex shape function representation for inspecting
the model, what in practice jeopardizes intelligibility.

Regarding explainability, the prediction of a single instance
consists of the summation of partial scores activated when a
feature lies in a certain bin. This can be displayed in different
ways (see Fig. 4). For example, the list of activated rules is
given on top, a waterfall plot is given in the centre, and a
linguistic explanation is given at the bottom. In addition, Fig. 5
shows the same example with a higher compression rate, i.e.,
with a less detailed and rougher explanation.

On the other hand, Figs. 6, 7, and 8 show the Shapely values
associated with models LM-L1, RF, and EBM, respectively.
These graphs provide similar information to that given by
Prometheus: the final output is laid down as a sum of terms.
The main difference is that this sum of terms amounts to the
difference between the expected value of the function and the
specific value of the instance in SHAP, while the sum directly

4We use the implementation of EBMs and LM-L1 in Python InterpretML
and scikit-learn packages, respectively. We use the implementation of J48,
REPTree, RandomTree, FHDT, FURIA and RF in ExpliClas [8], [9].

5EBM is not included in the figures because it uses a discretiser with
128 bins what yields huge structural complexity (TRL=7680) and makes
impossible any linguistic interpretation of the model.

6TRL counts the number of premises and conclusions in a rule list like
the one provided by FURIA or FHDT; TRL counts the number of nodes in
a tree (like J48, REPTree or RandomTree); TRL counts the number of non-
zero coefficients multiplied by 2 in an LM; TRL equals 2 x number of bins
x number of features in Prometheus and EBM.

Fig. 2. The trade-off between classification performance (ROC AUC) and
complexity (TRL); computed using stratified 10-fold cross-validation.

Fig. 3. The trade-off between classification performance (F1 Score) and
complexity (TRL); computed using stratified 10-fold cross-validation.

explains the f(x) in Prometheus. Moreover, it is important
to notice how SHAP is a post-hoc method, thus it does not
directly reflect the underlying computation. The explanation
of Prometheus is instead exactly the description of its internal
rationale. The explanations given by these different models
show some inconsistencies, and this can be misleading and
jeopardise user confidence. For example, worst perimeter is
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Fig. 4. A full local factual explanation provided by Prometheus.

Fig. 5. Illustrative example of compressed explanation.

evidence for benign in case of LM-L1 but it is for malign in
case of RF and EBM. Moreover, this feature is not highlighted
among the most relevant ones by Prometheus.

In addition, the linguistic explanations provided by
Prometheus can be compared to those given by ExpliClas:
• J48: Diagnosis is malign because mean concavity and

worst area are medium.
• REPTree: Diagnosis is malign because worst perimeter

is medium.
• RandomTree: Diagnosis is malign because mean area,

mean smoothness, area error and worst concavity are
medium.

• FHDT: We have a high confidence in the classification
result. It is very likely that diagnosis is malign. There
is also a medium chance that it is benign. On balance
malign is more likely, because in accordance with rule 7
concavity error is low and worst concave points is high.

• FURIA: We have a high confidence in the classification

Fig. 6. Local explanation given by SHAP for LM-L1 model.

Fig. 7. Local explanation given by SHAP for RF model.

result. It is very likely that diagnosis is malign because
worst concave points is high and worst radius is medium.

As we can see above, different models are supported
by different rationale and provide consistent but different
complementary explanations. In the case of fuzzy classifiers
(FHDT and FURIA), ExpliClas begins explanations with a
sentence related to the confidence in the classification result
which emerges from the rule firing degree associated with the
winner rule. This is similar to how Prometheus begins each
textual explanation (see Fig. 5) with a sentence verbalising the
probability associated with the given classification.

ExpliClas also provides users with factual explanations
of the inferred class but nothing is said about alternative
classes. This is because explanations verbalise the information
contained in the activated branch of a tree or the winner rule in
a fuzzy classifier. On the contrary, Prometheus provides users
with contrastive explanations, which verbalise which features
are evidence for and against the inferred class.

Another commonality shared by ExpliClas and Prometheus
is that they provide users with a graphical output along with
the list of related rules. In the case of the illustrative example
under consideration, FURIA fires rules:
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Fig. 8. Local explanation given by SHAP for EBM model.

• R1: IF worst radius in [16.25, 16.82, inf, inf] and
worst concave points in [0.1452, 0.1456, inf, inf] THEN
Diagnosis is malign with CF = 0.99

• R2: IF worst area in [947.9, 967, inf, inf] and worst
fractal dimension in [0.06469, 0.06515, inf, inf] THEN
Diagnosis is malign with CF = 0.99

However, FURIA rules are not easily verbalised, so they
need to be linguistically approximated by ExpliClas as:
• R1: IF worst radius is medium and worst concave points

is high THEN Diagnosis is malign
• R2: IF worst area is medium and worst fractal dimension

is medium THEN Diagnosis is malign
In the case of ExpliClas, explanations only pay attention to

the winner rule (R1 in this example; because the two rules
are activated with the same degree and then the first rule is
selected). On the contrary, all listed rules contribute to the
explanation elaborated by Prometheus.

V. CONCLUSIONS

In this paper, we have introduced Prometheus, an inter-
pretable model that can produce both textual and visual
explanations related to tabular data. This model can be seen as
a weighted RBS with sum aggregation at inference level. We
measured reasonable performances on classification metrics,
beating LMs and DTs. In addition, the model compares
favourably to RFs and EBMs, though its accuracy is slightly
lower. Prometheus was designed for supporting linguistic
explanations with different degrees of details. As future work,
we plan exhaustive experimentation with more benchmark
datasets. In addition, we plan to explore more sophisticated
natural language generation techniques, multiclass classifica-
tion and measuring the impact of explainability with intrinsic
and extrinsic human evaluation. For the sake of reproducibility,
Prometheus (as well as other related XAI tools) is available
at https://gitlab.citius.usc.es/jose.alonso/xai.
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Resumen—Los modelos basados en agentes (ABM) son un
paradigma de simulación para modelar sistemas complejos me-
diante la definición del comportamiento heterogéneo de cada
uno de sus individuos en una aproximación bottom-up. En este
trabajo, se presenta un ABM para marketing donde las per-
cepciones de los consumidores son modeladas usando el modelo
lingüı́stico 2-tuplas. Estas variables representan las opiniones que
los consumidores tienen sobre las diferentes caracterı́sticas de
cada producto, las cuales guı́an sus decisiones (p. ej., precio
o calidad). Al contrario que los valores exactos, las variables
lingüı́sticas difusas son una representación realista de estos aspec-
tos cualitativos. En nuestro ABM, los agentes usan una heurı́stica
de toma de decisiones para seleccionar un producto, la cual está
basada en estas percepciones y en una regla probabilı́stica de
maximización de utilidad. Este proceso requiere una agregación
difusa de las percepciones de cada producto, guiada por una
serie de pesos asociados a los drivers del agente consumidor e
implementada mediante el operador promedio ponderado de 2-
tuplas. Adicionalmente, hay productos en el mercado que no
son conocidos por algunos consumidores. En nuestro ABM, esta
información se modela aplicando un filtro de conocimiento de
marca en la heurı́stica de toma de decisiones. De esta manera, los
agentes consumidores sólo pueden elegir aquellos productos que
les son conocidos. Los resultados de nuestro análisis experimental
muestran que nuestra representación realista de las percepciones
del consumidor es más precisa que otros métodos existentes.

Index Terms—comportamiento del consumidor, marketing,
heurı́sticas de compra, reconocimiento de marca, información y
toma de decisiones lingüı́stica difusa, 2-tuplas, modelos basados
en agentes.

I. INTRODUCCIÓN

El principal objetivo cuando se modela un mercado es enten-
der las reglas que lo gobiernan, para analizar posteriormente el
resultado de posibles escenarios. Por tanto, es crucial entender
y predecir las compras de los consumidores. En los enfoques
clásicos, estas decisiones se infieren comúnmente de variables
globales en un esquema top-down. El principal inconveniente
de este paradigma es la incapacidad de representar compor-
tamientos heterogéneos de los consumidores, y los eventos
emergentes de éstos. Por esta razón, estos enfoques clásicos
normalmente resultan en representaciones imprecisas de la
realidad del mercado [1], [2].

Un enfoque alternativo a estos enfoques clásicos consiste
en estudiar el comportamiento complejo del mercado como
resultado de una agregación bottom-up de las decisiones de
cada uno de sus consumidores [2], [3]. Para ello, los modelos
basados en agentes (ABM) [4], [5] proveen una infraestructura
adecuada. ABM es una técnica de modelado descriptivo (una
agregación de muchas decisiones individuales de cada agente)
que ayuda al diseñador y al profesional de marketing a en-
tender mejor el mercado y su comportamiento. En la mayorı́a
de los casos, modelar comportamientos individuales es más
simple y más preciso que modelar el comportamiento del
sistema completo por reglas globales. Los ABM se han apli-
cado con éxito en otras áreas tan diversas como economı́a [6],
polı́tica [7] y sistemas de confianza social [8].

La mayorı́a de los ABM para marketing existentes repre-
sentan las opiniones del consumidor usando valores numéri-
cos [9]. Ésta es una representación poco realista de este tipo de
información cualitativa. Además, las opiniones del consumidor
se definen normalmente usando datos de cuestionarios disponi-
bles para la compañı́a, los cuales son comúnmente respondidos
en términos lingüı́sticos. Por tanto, manejar valores numéricos
requiere el preproceso adicional para transformar las respues-
tas lingüı́sticas de los cuestionarios en datos exactos, con lo
que el diseño del modelo es más complejo y suele provocar
una pérdida de información en la representación.

En este trabajo, se desarrolla un ABM para modelar mer-
cados virtuales con una representación realista de las per-
cepciones del consumidor, la cual está basada en variables
lingüı́sticas difusas [10]–[12]. Esta información permite dar
valores difusos (p.ej., a cada una de las caracterı́sticas de los
productos (p.ej., precio, calidad o gusto) [13]. En concreto,
representamos estas percepciones usando el modelo lingüı́stico
2-tuplas [14], que consisten en un par formado por una
etiqueta lingüı́stica y un desplazamiento simbólico. Como se
explica en [13], esta representación solventa los inconvenientes
de otros enfoques lingüı́sticos difusos ordinales [15] ya que
permite asignar valores diferentes a dos variables que tengan
la misma etiqueta lingüı́stica (teniendo dos valores diferentes
en el desplazamiento simbólico). Además, esta representación
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es sustancialmente más realista que otras representaciones
existentes y estándares como los valores numéricos u otro tipo
de valores exactos.

Dado que cada agente tiene una percepción sobre cada
caracterı́stica de los productos del mercado, se propone una
heurı́stica de toma de decisiones difusa que agrega dichas
percepciones lingüı́sticas difusas para calcular una valoración
global de cada producto para el consumidor y elegir uno de
ellos, lo cual simula el proceso de compra de los consumido-
res. Dado que las percepciones del consumidor se representan
con variables lingüı́sticas difusas y tienen un vector de pesos
asociado a cada variable (driver), su agregación se puede rea-
lizar con el operador promedio ponderado para 2-tuplas [14].

De este modo, el ABM para el análisis de comportamiento
de consumidor con representación lingüı́stica difusa presenta-
do en [13] representa adecuadamente varias caracterı́sticas del
comportamiento real del consumidor, pero no considera meca-
nismos más complejos como procesos de boca a boca en redes
sociales u otro tipo de interacciones complejas entre agentes.
Para avanzar en el diseño de un ABM realista para marketing,
en este trabajo se introducen dos importantes modificaciones
con respecto a dicho modelo. Primero, las decisiones del
consumidor raramente son completamente deterministas. En
nuestro sistema, este comportamiento se modela por medio
de una función probabilı́stica de maximización de la utilidad
proporcional a las valoraciones agregadas de los productos,
a diferencia de la estrategia plenamente determinista usada
en [13]. Segundo, los consumidores no siempre conocen todas
las marcas en el mercado. En el ABM propuesto en este
trabajo, se incluye esta información definiendo las marcas de
las que cada agente tiene conocimiento. Este tipo de infor-
mación está disponible normalmente en datos de encuestas
sobre el consumidor facilitado por agencias de marketing.
Nuestra heurı́stica de toma de decisiones implementa un
filtro de conocimiento de marca, de forma que los agentes
consumidores sólo pueden comprar productos que conocen.

El modelo propuesto se evalúa nuestro sistema en un caso
de estudio de marketing real, comparando su rendimiento con
el de otras representaciones tradicionales de las percepciones
del consumidor, analizando su precisión con respecto a datos
reales que representan las ventas en este mercado. El análisis
experimental muestra que nuestro modelo es más preciso.

El resto de este trabajo se organiza ası́: en la Sec. II
se describen conceptos preliminares; el ABM propuesto se
presenta en Sec. III; en la Sec. IV se presenta una evaluación
experimental del modelo; y finalmente se concluye en la
Sec. V.

II. CONTEXTO

II-A. Representación numérica de las preferencias del con-
sumidor usando datos de encuestas

Los sistemas ABM para marketing normalmente requieren
de una definición de las percepciones del consumidor para
cada marca del mercado, con el fin de simular un mercado
virtual realista. Estas percepciones se obtienen de datos de
encuestas y estudios de salud de marca de consumidores

reales, facilitados por renombradas consultoras de marketing
como Kantar Millward-Brown [16]. Estos datos se estructuran
en forma de encuestas incluyendo conjuntos de respuestas a
una seria de preguntas sobre las marcas [17].

En algunos casos, las respuestas de las encuestas se recogen
directamente en la misma escala requerida por el ABM, un
valor real en el intervalo [0, 10], representando 0 la percepción
más negativa, 5 una percepción neutral, y 10 la percepción
más positiva. Sin embargo, la situación más habitual es
que las respuestas de las encuestas muestren una naturaleza
lingüı́stica. En estos casos, se requiere un preprocesado manual
de las respuestas para traducirlas a la escala [0,10], con la
consecuente pérdida de información. Por tanto, este problema
se aborda mejor trabajando directamente con las valoraciones
lingüı́sticas siguiendo un enfoque lingüı́stico difuso en lugar
de transformarlas a valores numéricos.

II-B. Variables lingüı́sticas

Las variables lingüı́sticas [10]–[12] toman como valores
palabras o frases en el lenguaje natural. Se usan en enfoques
lingüı́sticos difusos, donde el problema requiere manejar as-
pectos cualitativos [15]. Éste es un requerimiento tı́pico en
muchos contextos, donde la representación de la información
más directa y realista es claramente el lenguaje natural.

En el enfoque lingüı́stico difuso ordinal, un caso especial de
enfoques lingüı́sticos difusos, las variables lingüı́sticas toman
valores de un conjunto predefinido y totalmente ordenado de
etiquetas lingüı́sticas S = {s0, . . . , sg} de tamaño finito |S| =
g + 1. Se considera la definición convencional de conjunto
ordenado donde ∀si, sj ∈ S . si ≤ sj ⇔ i ≤ j.

En este trabajo, consideramos funciones de pertenencia
triangulares para las variables lingüı́sticas. En la Figura 1 se
representa un ejemplo de esta pertenencia difusa. En concreto,
se usa una función de pertenencia triangular definida en el
intervalo [0, 1] para un conjunto de 5 etiquetas lingüı́sticas
{muyMala,mala, neutra, buena,muyBuena} de la varia-
ble lingüı́stica.

El manejo de variables lingüı́sticas difusas normalmente
requiere agregar su información, es decir, los valores de
estas variables. Un enfoque común es aproximar estos va-
lores lingüı́sticos con valores numéricos correspondientes a
su ı́ndice en el conjunto ordenado de etiquetas {0, 1, . . . , g},
agregarlos con métodos comunes, obteniendo un valor real
intermedio β ∈ [0, g], y finalmente aproximar este valor
intermedio a una etiqueta lingüı́stica del conjunto original [18].
Para ello, se definen dos operadores para aproximar variables
lingüı́sticas a números y vice versa:

Definición 1 (Aproximaciones Numérico-Lingüı́sticas del mo-
delo simbólico lingüı́stico computacional ordinal). Dado un
número real β ∈ [0, g] y una etiqueta lingüı́stica sk, siendo
k la posición de la etiqueta sk en el conjunto ordenado
de etiquetas lingüı́sticas S = {s0, . . . , sg} del que la va-
riable lingüı́stica v toma valores, se definen las siguientes
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Figura 1. Función de pertenencia triangular para variables lingüı́sticas en el intervalo [0, 1] para el conjunto de etiquetas lingüı́sticas
{muyMala,mala, neutra, buena,muyBuena}. Se incluye también la 2-tupla correspondiente a la aproximación ∆(2,56) = 〈buena,−0,44〉.

aproximaciones numérico-lingüı́sticas ∆′ : S → {0, ..., g} y
∆ : [0, g]→ S como:

∆′(sk) = k

∆(β) = sk s.t. ∀si∈S∧i 6=k |∆′(sk)− β| < |∆′(si)− β| ∨
∃si∈S∧i=k+1 |∆′(sk)− β| = |∆′(si)− β|

En resumen, el valor numérico asociado a una etiqueta
lingüı́stica sk corresponde con su posición en el orden del
conjunto y la etiqueta asociada al valor numérico β es la más
cercana de acuerdo a los valores numéricos de las etiquetas en
la escala [0, g]. En el caso de que β quede justo en el punto
medio entre dos etiquetas, por convenio se asigna a la menor
en el orden.

II-C. El operador de agregación promedio ponderado para
variables lingüı́sticas

Existe una amplia variedad de operadores de agregación
en la literatura que han sido adaptados para trabajar con
variables lingüı́sticas [18], destacando el operador OWA [19]
debido a su gran versatilidad. En nuestro caso, cada agente
consumidor tiene un peso asociado a cada driver, previamente
especificado, que representa sus preferencias de compra, por
lo que emplearemos el operador promedio ponderado.

Definición 2 (Promedio ponderado para variables lingüı́sti-
cas [18]). Sean (a1, . . . , am) una serie de etiquetas lingüı́sti-
cas a agregar, con ai ∈ S, y sea W = {w1, . . . , wm} el
conjunto de pesos asociado. El operador promedio ponderado
de variables lingüı́sticas se define como:

φ(A,W ) = ∆(

∑m
i=1 ∆′(ai) · wi∑m

i=1 wi
)

donde las funciones ∆ y ∆′ son las aproximaciones numérico-
lingüı́sticas definidas anteriormente.

En nuestro caso el vector de pesos W cumple que wi ∈
[0, 1] y

∑
i wi = 1, por lo que tenemos una combinación

lineal y el denominador vale 1.

II-D. El modelo de representación de 2-tuplas lingüı́sticas

Un inconveniente del enfoque anterior es la pérdida de in-
formación causada por la agregación de etiquetas lingüı́sticas.
Para resolver este problema, en [14] se propuso la represen-
tación de 2-tuplas lingüı́sticas.

Definición 3 (2-tupla lingüı́stica [14]). Una 2-tupla lingüı́stica
es un par 〈sk, α〉, en el que sk ∈ S es una etiqueta lingüı́stica
y α ∈ [−0,5, 0,5) es un desplazamiento simbólico que especi-
fica la traslación de la función de pertenencia que representa
la etiqueta lingüı́stica sk más cercana si la información
lingüı́stica resultante de un cálculo simbólico no corresponde
exactamente con una etiqueta del conjunto. El conjunto de 2-
tuplas asociado con S se define como S̄ = S × [−0,5, 0,5).

Definición 4 (Aproximaciones Numérico-Lingüı́sticas de 2-tu-
plas lingüı́sticas [14]). Dado un número real β ∈ [0, g] y
una etiqueta lingüı́stica sk ∈ S, se definen las siguientes
aproximaciones numérico-lingüı́sticas ∆′ : S → {0, ..., g} y
∆ : [0, g]→ S̄ como:

∆′(〈sk, α〉) = k + α

∆(β) = 〈sk, α〉, donde k = round(β) y α = β − k
La función round devuelve el entero k ∈ {0, ..., g} más
cercano a β.

De este modo, una 2-tupla lingüı́stica se vincula a un valor
numérico equivalente β en el intervalo de granularidad de S,
[0, g], y ese valor se obtiene a partir del valor numérico de
la etiqueta y el del desplazamiento. Por otro lado, un valor
numérico β se asocia a una 2-tupla compuesta por la etiqueta
lingüı́stica más cercana según los valores numéricos de las
etiquetas en la escala [0, g] y al desplazamiento necesario para
hacer coincidir el valor de dicha etiqueta con el de β.

Por tanto, el operador de agregación promedio ponderado
de la Definición 2 se puede aplicar directamente a 2-tuplas
lingüı́sticas usando las aproximaciones numérico-lingüı́sticas
de la Definición 4 [14]. Un ejemplo de estas aproximaciones
se muestra en la Figura 1, donde se ve como ∆(2,56) =
〈buena,−0,44〉.
III. MODELO BASADO EN AGENTES CON INFORMACIÓN

LINGÜÍSTICA DIFUSA Y CONOCIMIENTO DE MARCA

En esta sección se define el ABM que simula el compor-
tamiento de un mercado con percepciones del consumidor
lingüı́sticas y una heurı́sticas de toma de decisión lingüı́sti-
ca. En nuestro modelo, usamos variables lingüı́sticas difusas
para representar los diferentes aspectos de cada marca o
producto (p.ej., precio, calidad, confort, . . . ). A estos aspectos
se les llama drivers dado que guı́an las elecciones de los

282 XIX Conferencia de la Asociación Española para la Inteligencia Artificial CAEPIA 20/21



consumidores. En concreto, usamos 2-tuplas lingüı́sticas para
almacenar las percepciones sobre los drivers que gobiernan el
comportamiento del mercado.

En nuestro modelo, los agentes representan consumidores
que llevan a cabo un proceso de toma de decisiones para
seleccionar un producto entre las marcas disponibles. Este
proceso se lleva a cabo según sus propias percepciones y la
valoración que le dan a cada marca. La población de agentes
se organiza en segmentos, grupos de agentes muy similares en
términos de comportamiento. Todo ello nos permite simular
el comportamiento del mercado y realizar predicciones en él.

III-A. Marcas

En nuestro ABM, las estrategias de toma de decisión
de los consumidores únicamente se llevan a cabo entre un
conjunto finito B = {b1, . . . , bn} de n marcas disponibles
en el mercado. Para modelar los atributos de cada marca,
se considera también un conjunto D = {d1, . . . , dm} de m
drivers. Estos drivers son fijos para todas las marcas en el
mercados.

III-B. Percepciones del consumidor

Todo consumidor está representado por un agente en el
sistema. Cada agente tiene sus propias percepciones (positiva,
neutra o negativa) sobre cada driver de cada marca. Para
representar las preferencias de los drivers, se define para cada
agente x un vector de pesos W x = [wx1 , . . . , w

x
m], tal que

todos los pesos deben estar en el intervalo [0, 1] y su suma
debe ser igual a 1. Estos pesos representan la importancia
de cada driver cuando un agente consumidor x realiza una
decisión de compra.

Las percepciones del consumidor se modelan definiendo,
para cada agente x del ABM, una matriz de percepciones
P x de dimensiones n ×m, donde cada elemento pxi,j ∈ P x
representa la percepción del agente x sobre el driver dj ∈ D
de la marca bi ∈ B. En nuestro modelo, estas percepciones se
representan usando 2-tuplas lingüı́sticas, todas ellas tomando
valores de un conjunto ordenado de etiquetas lingüı́sticas
común (ver la Definición 3). Esto nos permite representa la
visión cualitativa del consumidor sobre cada marca.

III-C. El conocimiento de marca del consumidor

En un mercado real, cada consumidor puede no tener cono-
cimiento de ciertas marcas. Para modelar esta información, se
define en nuestro modelo el conocimiento de marca de cada
agente. En concreto, para cada agente x, se define un vector
Ax de n variables Booleanas, donde axi ∈ Ax representa si el
agente x tiene conocimiento de la marca bi ∈ B.

III-D. Agentes consumidores

Basados en la caracterización de las marcas y de los consu-
midores presentada anteriormente, ahora pasamos a definir los
agentes consumidores. Nótese que esta definición representa el
estado mental de los consumidores, es decir, su conocimiento
sobre el mercado y sus percepciones sobre los productos
disponibles.

Definición 5 (Agente consumidor). Un agente consumidor x
se define como la tupla 〈Ax,W x, P x〉, donde Ax, W x y P x

son respectivamente el vector de conocimiento de marca, el
vector de pesos de drivers y la matriz de percepciones en
2-tuplas lingüı́sticas descritos anteriormente.

III-E. Heurı́stica de toma de decisión

El proceso de toma de decisión difusa de cada agente
consiste en seleccionar una de las marcas disponibles en el
ABM en función de sus percepciones sobre los drivers. Estas
decisiones simulan decisiones de compras de los consumido-
res en el mercado. El proceso se divide en dos pasos: (i)
la agregación de las valoraciones de cada marca, y (ii) la
selección de una marca. En el primer paso, el agente necesita
agregar las percepciones de todos los drivers de cada marca.
Esta agregación se calcula usando el operador de agregación
promedio para 2-tuplas de la forma:

Definición 6 (Valoración de marca). Dados un agente con-
sumidor x y una marca bi, se define la valoración de marca
as(x, bi) como la agregación de sus percepciones para este
marca calculadas con el operador de agregación promedio φ:

as(x, bi) = φ(P xi ,W
x) = ∆(W x ·∆′((P xi )T ))

donde P xi = [pxi,1, . . . , p
x
i,m] es la fila i-ésima de la matriz

P x, W x es el vector de pesos de drivers del agente x, y ∆ y
∆′ son las funciones de aproximación numérico-lingüı́sticas
para 2-tuplas de la Definición 4 1.

El segundo es la selección de una marca en función de
la valoración que el agente hace sobre cada marca. En este
trabajo se usa una función de maximización de la utilidad
probabilı́stica maxUtilP , que asigna a cada marca una proba-
bilidad proporcional a su valoración y elige aleatoriamente una
marca utilizando una ruleta probabilı́stica. Se usa esta función
no determinista inspirada por trabajos previos en análisis de
marketing y comportamiento del consumidor [20]–[22].

Definición 7 (Maximización de la utilidad probabilı́stica).
Para un agente consumidor x, la función de maximización de
utilidad probabilı́stica maxUtilP es la función probabilı́stica
de selección de marca que elige aleatoriamente una marca
usando una ruleta probabilı́stica con las siguiente probabili-
dades px para cada marca bi ∈ B:

px(bi) = e∆′(as(x,bi)) = eW
x·∆′((Px

i )T )

Sin pérdida de generalidad, estas probabilidades no norma-
lizadas se pueden normalizar simplemente como px(bi) =
px(bi)/

∑
bj∈B px(bj).

IV. EVALUACIÓN EXPERIMENTAL DEL MODELO

En esta sección se presenta una evaluación experimental
del ABM para marketing con representación lingüı́stica difusa
en un caso de estudio real. En concreto, se presenta una
comparativa entre nuestro ABM y otros dos modelos que

1Por simplicidad, se han sobrecargado las funciones ∆ y ∆′ para vectores
de la forma: ∆(B) = [∆(bi)]1≤i≤n y ∆′(A) = [∆′(ai)]1≤i≤n.
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únicamente difieren en la representación de las percepciones
(el resto del modelo se mantiene sin ningún otro cambio).

Por una parte, se compara nuestro ABM frente a un modelo
con representación numérica de las percepciones, en el inter-
valo [0, 10]. Por otra, se compara nuestro ABM frente a un
modelo simbólico lingüı́stico ordinal donde las percepciones
se representan usando etiquetas lingüı́sticas (usando el mismo
conjunto de etiquetas que en las 2-tuplas).

Los resultados de estos tres modelos se validan usando datos
reales que representan las ventas en un mercado concreto y
se analiza el rendimiento de los tres modelos midiendo su
precisión en términos de predicción en ventas (agregadas para
todos los agentes consumidores en el ABM).

IV-A. Descripción de las condiciones de simulación del ABM

Para la inicialización de los agentes se usan segmentos
de consumidores, es decir, grupos de consumidores con un
comportamiento similar. En nuestro ABM, todos los agentes
del mismo segmento se caracterizan por los mismos pesos
W x y similares percepciones P x, generadas aleatoriamente si-
guiendo una distribución normal con media igual al promedio
del segmento y pequeña desviación estándar.2 Los segmentos
no introducen ningún cambio en el ABM, únicamente afectan
a las percepciones de los agentes.

Para reducir la influencia de valores atı́picos producidos por
la inicialización aleatoria de las percepciones, cada ejecución
del ABM está compuesta por un número de simulaciones
Monte Carlo (MC). 3

IV-B. Validación en un caso de estudio real para marketing

En esta subsección se presentan los resultados de la eje-
cución del ABM. Los resultados representan el número de
elecciones en los que cada marca es elegida, considerando
que cada agente únicamente lleva a cabo un único proceso de
toma de decisión.

En este caso de estudio, se ejecuta nuestro ABM con 1000
agentes, inicializando sus pesos de drivers y sus percepciones
usando estudios de marketing existentes. En los dos enfoques
lingüı́sticos difusos, se usan como etiquetas lingüı́sticas el
conjunto S = {mala, neutra, buena}. Este caso de estudio
contiene 5 marcas y 6 drivers.4

En nuestro estudio, se realizan dos experimentos diferentes,
uno usando el filtro de conocimiento de marca en la heurı́stica
de toma de decisiones y el otro sin usarlo. Cuando este
filtro está activo, un agente sólo es capaz de elegir aquellas
marcas sobre las que tiene conocimiento. Para desactivarlo,
sencillamente se establece al 100 % el conocimiento de marca
para todos los agentes y todas las marcas.

La Figura 2 muestra la comparativa de los tres modelos sin
usar el filtro de conocimiento de marca (izquierda) y usándolo
(derecha). Para ello, se presentan los diagramas de caja don-
de se representan los valores máximo, mı́nimo, mediana, y

2En nuestros experimentos, se usa una desviación estándar de 1,5.
3Cada ejecución del ABM está compuesta de 100 simulaciones MC.
4Los nombres de las marcas se han omitido por razones de anonimato.

cuartiles primero y tercero del número de elecciones de cada
marca.

Se observa que los resultados en ambos experimentos son
diferentes, para cualquier representación de las percepciones
del consumidor. Se puede ver, por ejemplo, el número de
ventas de la marca2 usando la representación lingüı́stica 2-
tuplas. Cuando no se considera el conocimiento de marca,
este número es mucho mayor que el número de ventas cuando
este filtro de conocimiento de marca está activo. Además, se
pueden observar diferencias en los resultados de los tres mode-
los. Son especialmente significativas las diferencias de nuestro
ABM con respecto al modelo con etiquetas lingüı́sticas. Por
ejemplo, el número de consumidores que eligen la marca5 es
mucho menor en el ABM que modela las percepciones con
etiquetas lingüı́sticas (con y sin conocimiento de marca).

Para medir la precisión de cada modelo, se calcula como
estimadores del error el Error Absoluto Medio (MAE, Mean
Absolute Error) y la Raı́z del Error Cuadrático Medio (RMSE,
Root Mean Squared Error) con respecto a datos reales (es
decir, ventas reales).

Cuadro I
MAE Y RMSE DE LOS TRES MODELOS CON RESPECTO A DATOS REALES,
CON Y SIN CONOCIMIENTO DE MARCA. MEJOR RESULTADO EN NEGRITA.

Estimador Conocimiento Representación de las percepciones
del error de marca Numérica 2-tuplas Et. ling.

MAE No 2.83 2.95 5.25
Sı́ 1.78 1.60 2.46

RMSE No 3.08 3.20 6.23
Sı́ 2.14 1.95 2.98

Los valores de los estimadores MAE y RMSE para los
tres modelos se reportan en el Cuadro I. Se puede observar
que los modelos con representaciones de las percepciones
del consumidor en formatos numéricos y 2-tuplas son mucho
más precisos que el modelo con etiquetas lingüı́sticas. Esto
es consecuencia de la representación menos expresiva usada
en el modelo lingüı́stico difuso ordinal. Se hace énfasis en
que este problema no aparece en nuestro ABM basado en la
representación lingüı́stica 2-tuplas. Además, se puede observar
que el rendimiento de cada modelo es mucho peor cuando el
filtro de conocimiento de marca no está activo. Esto sugiere
que el concomiendo de marca es otra componente fundamental
para simular un mercado con precisión. De hecho, el modelo
más preciso para ambos estimadores del error (MAE y RMSE)
es aquel que representa las percepciones del consumidor
usando 2-tuplas lingüı́sticas y usando el filtro de conocimiento
de marca, es decir, el modelo presentado en este trabajo.

V. CONCLUSIONES Y TRABAJO FUTURO

En este trabajo se ha presentado un modelo lingüı́stico
difuso para representar las percepciones de los consumidores,
ası́ como una heurı́stica de toma de decisiones que las maneja
y que se usa para simular las compras de los consumidores.
Todo ello se integra en un ABM para el análisis en marketing,
donde los agentes representan a los consumidores del mercado.
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Figura 2. Comparación de las representaciones de percepciones sin usar el filtro de conocimiento de marca (izquierda) y usándolo (derecha).

Las percepciones de los consumidores son normalmente
aspectos cualitativos. En nuestro modelo, se usan 2-tuplas
lingüı́sticas, las cuales no sufren ninguna pérdida de informa-
ción, incluso en el proceso de agregación de la información.
En la vida real, los consumidores tienen un conocimiento
de marca limitado, por lo que hemos incorporado también
esta información en nuestro sistema para hacerlo más rea-
lista. Hemos definido una heurı́stica no determinista basada
en las valoraciones que cada consumidor realiza sobre cada
producto para simular el proceso de toma de decisiones de
compra. Se han analizado experimentalmente los resultados
de nuestro ABM en un caso de estudio de marketing real a
gran escala, mostrando diferencias notables en los diferentes
escenarios donde únicamente se modifica la representación de
las percepciones del consumidor (sin alterar sus valores), y
además se ha estudiado la influencia de incluir información
sobre el conocimiento de marca del consumidor en el modelo.

Como trabajo futuro, se planea extender este ABM para
marketing basado en 2-tuplas lingüı́sticas en dos direcciones.
Por una parte, se planea investigar otras heurı́sticas de tomas
de decisión en nuestro sistema [20]–[22], adaptándolas para
manejar información lingüı́stica difusa. Por otra, se planea
extender nuestro ABM para marketing incorporando compor-
tamiento temporal para construir simulaciones con eventos
discretos [3]–[5]. De esta forma, las percepciones de cada
consumidor pueden cambiar a lo largo del tiempo, y por tanto,
se puede analizar como esto afecta a los resultados de la toma
de decisiones.
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Abstract—Uno de los mayores problemas que preocupan a la
sociedad actual es la contaminación, distinguiéndose diferentes
tipos, por ejemplo, acústica, ambiental, térmica, etc. Entre
ellas, la contaminación acústica causa serios problemas a los
ciudadanos porque es continua durante gran parte del dı́a, debido
a que en su mayorı́a es causada por el tráfico. Por otro lado, las
grandes ciudades aportan una gran cantidad de datos obtenidos
diariamente gracias a la sensorización derivada del concepto de
“ciudades inteligentes”, lo que permite visualizar la información
de las zonas sensorizadas y alertar a las instituciones de los
problemas y, a los ciudadanos, conocer la situación de la contam-
inación acústica en base a datos para poder realizar las quejas
y denuncias pertinentes a las instituciones. Una forma univer-
salmente comprensible de mostrar la información contenida en
los datos capturados es la generación de descripciones lingüı́sticas
que sinteticen la información que reside en los datos. Este trabajo
presenta un método para generar descripciones lingüı́sticas a
partir de los datos de contaminación acústica capturados por
las estaciones de medición de ruido. Se presentará un método
de generación de descripciones de un dı́a que considera los
periodos diarios en los que se estructuran los datos tomados de las
estaciones (diurno, vespertino, nocturno y diurno completo). Para
probar el método propuesto, se han utilizado los datos disponibles
de la ciudad de Madrid para generar descripciones que permitan
analizar la influencia de Covid-19 en la contaminación acústica.

Index Terms—descripción lingüı́stica, lógica difusa, contami-
nación acústica, Covid-19

I. INTRODUCCIÓN

Hoy en dı́a existe una gran concienciación sobre los proble-
mas medioambientales y esto hace que las instituciones lleven
a cabo iniciativas para mejorar la situación. La contaminación
es uno de los problemas ambientales que más atención recibe
debido a su impacto en la salud de las personas y otros seres
vivos. Entre ellos se encuentra la contaminación acústica, que
llamaremos ruido, y que puede definirse como el exceso de
sonido que altera las condiciones ambientales de una zona
determinada. El ruido tiene graves consecuencias de todo tipo
para quienes lo padecen, siendo los problemas más destacados:
los problemas auditivos por estar sometidos de forma habitual
a un exceso de ruido en el ambiente, los problemas de
sueño (alteración del ciclo del sueño, insomnio, somnolencia

Este trabajo ha sido financiado por el Departamento de Tecnologı́as y
Sistemas de Información de la Universidad de Castilla-La Mancha, por la
Escuela de Ingenierı́a Industrial y Aeroespacial de Toledo y por la Escuela
Superior de Informática de Ciudad Real.

durante el dı́a, cansancio, etc.), los problemas psicológicos
(irritabilidad, estrés, ansiedad, etc.) y los fisiológicos (aumento
del ritmo cardı́aco y respiratorio o de la presión arterial). En
las grandes ciudades, las fuentes de ruido son muy diversas,
siendo las más importantes el tráfico y la construcción, aunque
también se debe a la actividad de las personas en la ciudad.
La Organización Mundial de la Salud (OMS) recomienda no
superar los 65 decibelios durante el dı́a y los 55 durante la
noche.

Además, las ciudades están aplicando el concepto de
”ciudades inteligentes” para lograr una mayor sostenibilidad
económica, social y medioambiental mediante el uso de las
tecnologı́as de la información y la comunicación (TIC). La
aplicación de las TIC crea infraestructuras que pretenden
garantizar un desarrollo sostenible, un aumento de la calidad
de vida de los ciudadanos, una mayor eficiencia de los recursos
disponibles y una participación ciudadana activa. Por ello,
las ciudades disponen de datos diarios procedentes de muy
diversas fuentes, entre las que se encuentran las estaciones
de medición de ruido, que pueden utilizarse para lograr la
sostenibilidad deseada. A partir de ellos, se puede obtener
información sobre el ruido de las zonas sensorizadas, lo que
permite alertar a las instituciones para que tomen las medidas
oportunas, y se puede informar a los ciudadanos de la situación
de la contaminación acústica en base a los datos para que
puedan realizar protestas ante las instituciones en base a
información contrastada.

Para que la información contenida en los datos sea com-
prensible para cualquiera, se utilizan descripciones lingüı́sticas
generadas automáticamente. La lógica difusa se puede utilizar
para el tratamiento de los datos de ruido, encontrando en
la literatura trabajos que evalúan el riesgo [1], [2], realizan
un análisis del ruido [3], [4], predicen el ruido [5], crean
diseños tratando de evitar el ruido [6], etc. Este trabajo
presenta un método para generar descripciones lingüı́sticas
diarias a partir de los datos de ruido captados por las estaciones
de medición que considera los cuatro periodos diarios para
los que se dispone de información (dı́a, tarde, noche y dı́a
completo). Para probar el método propuesto, se han utilizado
los datos disponibles de la ciudad de Madrid para generar
descripciones que permitan analizar la influencia de Covid-19
en la contaminación acústica.
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El resto del documento está organizado como sigue: la
Sección II describe algunos conceptos relevantes en relación
con el sonido y el ruido. La Sección III presenta el proceso
llevado a cabo para representar y clasificar el ruido utilizando
conjuntos difusos. La Sección IV muestra nuestra propuesta
para generar descripciones lingüı́sticas de un dı́a. La Sección
V presenta algunas pruebas realizadas con datos de ruido en
cinco zonas de Madrid para realizar una primera aproximación
a la detección del efecto del encierro domiciliario debido a
Covid-19. Finalmente, las conclusiones y los trabajos futuros
se detallarán en la Sección VI.

II. CONTAMINACIÓN ACÚSTICA

Las definiciones de sonido, acústica y ruido [7] que se dan
a continuación son necesarias para la correcta comprensión de
este trabajo. El sonido se define como la variación de presión
producida en un medio (sólido, lı́quido o gaseoso) por un
elemento vibrante que puede ser detectado por el oı́do humano.
La acústica puede definirse como la ciencia que se ocupa
de la producción, control, transmisión, recepción y efectos
del sonido. El ruido se define como un conjunto de sonidos
inarmónicos o desafinados que resultan desagradables para el
oı́do humano, es decir, un sonido molesto.

La medición del ruido está influida por la distancia a la
fuente de ruido, que puede ser una fuente puntual, una fuente
espacial o una fuente lineal. En las ciudades, la principal fuente
de ruido es el tráfico, por ejemplo, en España es la causa del
99% del ruido urbano. El estudio del ruido utiliza las mismas
magnitudes que para el sonido, que en su expresión más simple
produce la formación de una onda sinusoidal con las siguientes
magnitudes: velocidad, longitud de onda, periodo y amplitud.

Dos conceptos importantes en la medición del ruido que a
veces se confunden, probablemente porque ambos se miden
en decibelios (dB), son el “nivel de potencia sonora” y el
“nivel de presión sonora”. El nivel de potencia sonora emitido
por una fuente sonora determina la cantidad de ruido que
produce, mientras que el nivel de presión sonora determina
la cantidad de sonido que llega a un punto determinado. El
nivel de presión sonora depende de factores como la distancia
de la fuente al foco, la dirección o la existencia de otros ruidos
en el entorno (ruido de fondo).

Las estaciones de medición de ruido, conocidas como esta-
ciones NMT, suelen utilizar el nivel de presión sonora ponder-
ado A (dBA) para medir el ruido en una zona. En este trabajo
hemos utilizado datos de ruido extraı́dos de la página web del
“Portal de datos abiertos del Ayuntamiento de Madrid”1. Los
conjuntos de datos proporcionan seis mediciones de presión
sonora para cada uno de los cuatro periodos de tiempo en los
que se puede dividir un dı́a. El primer periodo corresponde al
dı́a completo (T ) mientras que los otros tres periodos dividen
el dı́a en el periodo diurno (D) de 7:00 a 19:00, el periodo
vespertino (E) de 19:00 a 23:00 y el periodo nocturno (N )
de 23:00 a 7:00. Para cada periodo, la medida LAeq es el
nivel de presión sonora continuo equivalente ponderado A

1https://cutt.ly/Lj6O0xP

determinado a lo largo de todo el dı́a (periodo T ). Además,
se proporcionan otras cinco medidas de presión sonora con
ponderación de frecuencia A y ponderación de tiempo lento
para indicar el nivel que se supera durante un tiempo de
observación. Estas medidas son LAS01, LAS10, LAS50, LAS90
y LAS99 para indicar el ruido superado durante 1%, 10%,
50%, 90% y 99% respectivamente. Los valores de LAS01 y
LAS99 se aproximan al ruido mı́nimo y máximo alcanzado
durante el periodo estudiado respectivamente. En la Tabla I
se detalla una muestra correspondiente al 9 de abril de 2020
de la estación situada en la Plaza del Emperador Carlos V de
Madrid, donde se muestran los cuatro periodos en las filas y
las seis mediciones para cada uno de estos periodos en las
columnas.

TABLA I
MUESTRAS DE UN DÍA EN LA ESTACIÓN NMT CARLOS V DE MADRID

Periodo LAeq LAS01 LAS10 LAS50 LAS90 LAS99

D 62.1 69.5 64.8 58.4 52.6 48.7
E 63.5 71.2 66.8 60.2 54.3 50.6
N 59.5 68.0 61.7 54.1 46.4 43.0
T 61.7 69.8 64.8 57.5 50.2 44.0

III. DESCRIPCIÓN LINGÜÍSTICA DEL RUIDO

En esta sección se muestra cómo se pueden representar los
datos de ruido para ser utilizados en la generación de de-
scripciones, también se detallan algunos conceptos utilizados
por el método presentado para generar las descripciones. En
concreto, se utiliza la lógica difusa, ya que permite representar
lingüı́sticamente valores numéricos interrelacionados, como es
el caso de las mediciones de presión sonora. Para representar
los valores de un periodo se utiliza un conjunto difuso con
una función de pertenencia gaussiana (Sección III-A). Para
categorizar estos conjuntos difusos, hemos creado un con-
junto de etiquetas lingüı́sticas con una función de pertenencia
gaussiana que representa las clases en las que se clasifica el
ruido (Sección III-B). Finalmente, para clasificar el ruido de
un periodo, se compara el conjunto difuso gaussiano con las
etiquetas del conjunto de etiquetas (las clases) seleccionando
la clase que ofrece la mayor intersección con el conjunto
(Sección III-C).

A. Obtención de un conjunto difuso con función de pertenen-
cia gaussiana a partir de datos con ruido

Las medidas LAS01, LAS10, LAS50, LAS90 y LAS99 se
utilizarán para generar un conjunto difuso que represente
una muestra de un periodo. La información obtenida de las
estaciones permite conocer la distribución de los valores que
superan un umbral durante un 1%, 10%, 50%, 90% y 99%
que pueden ser representados por un conjunto difuso con una
función de pertenencia gaussiana. La función gaussiana está
definida por la Ecuación 1.

a ∗ e−
(x−b)2

2∗c2 (1)
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donde a, b y c son constantes reales y c > 1. a es el
valor máximo que toma la función, b es la posición
central de la función y c la desviación tı́pica que rige
la amplitud de la función.

En este trabajo se han utilizado los siguientes valores para
estos tres parámetros: a = 1 (una función de pertenencia
da valores de salida en el intervalo [0, 1]), b = ρ (media
aritmética) y c = σ (desviación estándar). Como puede verse,
la función gaussiana está determinada por la media y la
desviación estándar. Por tanto, para obtener el conjunto difuso
que la representa, hay que calcular estos dos valores para
LAS01, LAS10, LAS50, LAS90 y LAS99. Por ejemplo, para el
dı́a completo que se muestra en la última fila de la Tabla I (pe-
riodo T ) se utiliza como entrada [69.8, 64.8, 57.5, 50.2, 44.0],
entonces ρ = 57.26 y σ = 9.38, aplicando la ecuación se
obtiene el conjunto difuso mostrado en la Figura 1. Como se
puede observar, establece el centro en 57.26 y para x = 44 y
x = 69.8 tiene valores muy bajos.

Fig. 1. Conjunto obtenido para el periodo T mostrado en la última fila de la
Tabla I.

B. Clasificación de la contaminación ambiental mediante con-
juntos difusos

Para clasificar los conjuntos difusos obtenidos en el apartado
anterior, se necesita un conjunto de etiquetas lingüı́sticas
que definan las clases a considerar, que se denominarán
CLASSES. El proceso para obtener las etiquetas que rep-
resentan las clases es el mismo que el utilizado para calcular
los conjuntos difusos. Con la ayuda de un experto, se han
definido los valores LAS01, LAS10, LAS50, LAS90 y LAS99
para cada etiqueta del conjunto que definen la clase (Tabla II),
generando posteriormente la etiqueta con función de pertenen-
cia gaussiana mediante el método mostrado anteriormente. Se
han seguido las directrices de la OMS, definiendo el “ruido
molesto” en un valor cercano a 60 dBA y clasificando el “ruido
perjudicial” en 70 dBA o superior, mientras que las otras tres
etiquetas dividen el ruido no molesto para el oı́do humano
en tres clases (nulo, imperceptible y aceptable). La Figura 2

muestra gráficamente las etiquetas obtenidas para cada clase.
Obsérvese que las etiquetas podrı́an hacer uso de cualquier
otro tipo de función de pertenencia, por ejemplo, trapezoidal,
triangular, etc.

TABLA II
VALORES DE LAS01 , LAS10 , LAS50 , LAS90 Y LAS99 UTILIZADOS PARA

DETERMINAR LAS CLASES

Periodo LAS01 LAS10 LAS50 LAS90 LAS99

nulo 20.0 25.0 30.0 35.0 40.0
imperceptible 30.0 35.0 40.0 45.0 50.0

aceptable 40.0 45.0 50.0 55.0 60.0
molesto 50.0 55.0 60.0 65.0 70.0

perjudicial 60.0 65.0 70.0 75.0 80.0

Fig. 2. Conjunto de etiquetas lingüı́sticas para clasificar el ruido
(CLASSES).

C. Clasificación de un conjunto difuso mediante el conjunto
de etiquetas que clasifica el ruido

Una vez que la información de entrada se puede repre-
sentar como un conjunto difuso y se dispone del conjunto
CLASSES para su clasificación, queda detallar la forma
en que se realiza el proceso de clasificación, que se basa
en el concepto de intersección entre conjuntos difusos. La
intersección entre dos conjuntos difusos A y B se define
como otro conjunto difuso C cuya función de pertenencia es
µC(x) = µA(x)∩µB(x). La Figura 3 muestra varios ejemplos
de la intersección de un conjunto difuso y una etiqueta con
el conjunto de intersección resultante entre los dos conjuntos
resaltados en verde.

Para clasificar un conjunto difuso se realiza la intersección
de las etiquetas CLASSES con el conjunto difuso, seleccio-
nando la clase que ofrece la mayor intersección de todas, es
decir, se asigna la clase de CLASSES cuya intersección con
el conjunto difuso cubre el mayor porcentaje de la función
de pertenencia del conjunto difuso a comparar. Por ejemplo,
en la Figura 3 se muestra la comparación del conjunto difuso
T con las etiquetas de clase aceptable, molesto y perjudicial.
Dado que la intersección cubre 58%, 73% y 38% del área
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de la función de pertenencia de T para estas tres clases se
determina que la clase del conjunto difuso T es molesto. De
este modo, la clase de un ruido puede obtenerse mediante un
conjunto de etiquetas.

(a) y perjudicial T y aceptable (58%)

(b) Intersección entre T y molesto (73%)

(c) Intersección entre T y perjudicial (38%)

Fig. 3. Ejemplos de selección de clases de un conjunto difuso T

IV. GENERACIÓN DE DESCRIPCIONES LINGÜÍSTICAS

A continuación se presenta el método propuesto para
generar una descripción de los datos diarios que hace uso de
los conceptos mostrados en el apartado anterior. Para generar
las descripciones diarias se utilizarán los cuatro periodos diar-
ios (D, E, N , T ) y las cinco medidas LAS01, LAS10, LAS50,
LAS90 y LAS99 de cada periodo. El Algoritmo 1 muestra los
pasos seguidos para la generación de la descripción. Necesita
como entrada un vector que contenga las medidas del dı́a para
cada periodo, llamado DATA. Las sentencias que componen
el algoritmo son las siguientes:
• Lı́nea 1: calcula el conjunto de etiquetas que representan

las clases como se muestra en la sección III-B y genera

Algorithm 1 Descripción del comportamiento de un dı́a
1: CLASSES ← ObteniendoClases() {Sección III-B. }
{El siguiente bucle calcula las gaussianas (Sección
III-A).}

2: for period(p) in [T,D,E,N ] do
3: GAUSS[p] ←CalcularGaussiana(DATA[p]) {DATA

es un vector que contiene los datos de entrada. GAUSS
es un vector que contiene las gaussianas de cada peri-
odo.}

4: end for
{El siguiente bucle calcula los vectores LABEL y
PERC.}

5: for period(p) in [T,D,E,N ] do
6: LABEL[p] ← SelecClass(GAUSS[p], CLASSES)

{Sección III-C}
7: PERC[LABEL[p]] ← Intersección(GAUSS[p],

CLASSES[LABEL[p]])
8: end for
{description es la descripción generada utilizando
MAXIMA.}

9: description← GenerarPlantilla(MAXIMA)

el conjunto de etiquetas CLASSES que contiene las
etiquetas de las clases (Figura 2).

• Lı́neas 2-4: Este bucle obtiene los conjuntos difusos con
función de pertenencia gaussiana que representan los
datos para cada uno de los perı́odos de las mediciones del
nivel de presión sonora (DATA) y almacena el resultado
en el vector GAUSS. El método para completar este paso
se describió en la Sección III-A.

• Lı́neas 5-8: Este bucle calcula la clase que representa
cada uno de los periodos junto con el porcentaje de
área que cubre la función de pertenencia del conjunto
difuso de entrada por esa clase. Esto se hace realizando
la intersección entre cada conjunto difuso en GAUSS
con las etiquetas en CLASSES. Se selecciona la clase
que cubre el mayor porcentaje del área de la función de
membresı́a del conjunto difuso (Sección III-C).

• Lı́nea 6: obtiene la clase asignada al conjunto difuso
para ese periodo (GAUSS[class]) almacenándola en
LABEL.

• Lı́nea 7: calcula el porcentaje del conjunto
GAUSS[class] que cubre la intersección
con la etiqueta seleccionada de CLASSES
(CLASSES[LABEL[period]]) y lo almacena en
el vector PERC.

• Lı́nea 9: genera la descripción lingüı́stica utilizando
LABEL y PERC para completar la siguiente plantilla:

En general, fue un dı́a con ruido LABEL[T ]
durante el PERC[T ]% del tiempo. Durante el
dı́a hubo un ruido LABEL[D] que ocupó el
PERC[D]% del tiempo. Por la noche, durante
el PERC[E]% del tiempo, se produjo un ruido
LABEL[E]. Por último, fue una noche con un ruido
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LABEL[N ] durante PERC[N ]% de su tiempo

Fig. 4. Ubicación de las zonas de medición utilizadas en las pruebas.

V. TESTS

Para probar el método presentado se han generado descrip-
ciones para cinco áreas de Madrid situadas en zonas con
diferentes caracterı́sticas identificadas en la Figura 4. Situadas
en el centro de Madrid se encuentran las estaciones de Plaza
del Carmen (cı́rculo verde) y Carlos V (cı́rculo azul), que
son zonas con bastante vida urbana y tráfico, especialmente la
Plaza del Emperador Carlos V, cercana al nudo de comunica-
ciones de Atocha. Algo alejadas del centro están las estaciones
de El Barrio del Pilar (cı́rculo rojo), situada en la Avenida de
Monforte Lemos junto al Parque de la Vaguada, y Campo de
las Naciones (cı́rculo granate), con la estación situada en la
rotonda del monumento a Don Juan de Borbón, que tiene un
tráfico constante. Lejos del centro está la estación de El Pardo
(cı́rculo naranja), un barrio situado en un bosque, una zona
muy tranquila. Se han elegido dos miércoles para generar las
descripciones, concretamente el 5 de febrero de 2020 y el 1
de abril de 2020. El dı́a 5-2-2020 corresponde a una fecha
anterior a la del encierro domiciliario de España por Covid-
19 (15 de marzo de 2020), es decir, representa la actividad
normal, mientras que el dı́a 1-4-2020 es un dı́a de encierro
domiciliario. De este modo, las descripciones nos permitirán
evaluar el efecto del confinamiento domiciliario en la contam-
inación acústica, aunque en el futuro se deberá realizar un
estudio más amplio para poder extraer conclusiones válidas.
En el apartado de bibliografı́a, existen algunos estudios sobre

el efecto del Covid-19 en la contaminación acústica en grandes
ciudades, como Dublı́n [8], Roma [9] o Madrid [10].

TABLA III
DESCRIPCIÓN LINGÜÍSTICA DE LA ESTACIÓN DE MEDIDA CARLOS V

Carlos 5 (1-02-2020)
En general, fue un dı́a con ruido perjudicial durante el 71,0% del
tiempo. Durante el dı́a hubo ruido perjudicial el 98,0% del tiempo. Por
la tarde, durante el 99,0% del tiempo, se alcanzó un ruido perjudicial.
Por último, por la noche hubo ruido molesto durante el 84,0% del
tiempo.
Carlos 5 (5-04-2020) - confinamiendo domiciliario
En general, fue un dı́a con ruido molesto durante el 80,0% del tiempo.
Durante el dı́a hubo ruidos molestos que ocuparon el 84,0% del
tiempo. Por la tarde, durante el 94,0% del tiempo, se alcanzó un ruido
molesto. Por último, por la noche hubo ruido molesto durante el 75,0%
del tiempo.

Tabla III muestra las descripciones obtenidas para la
estación situada en Carlos V. Como se puede observar, se trata
de una zona muy ruidosa en dı́a laborable, obteniendo una
clasificación de “ruido perjudicial” durante todos los periodos
y persistiendo durante la mayor parte del tiempo. Se observa
que durante el encierro recibe una clasificación de ruido
menor, aunque se siguen manteniendo valores superiores a las
recomendaciones de la OMS durante casi todos los periodos
completos. Esto puede deberse a la concentración de tráfico
continuo e intenso en la zona.

TABLA IV
DESCRIPCIÓN LINGÜÍSTICA DE LA ESTACIÓN DE MEDIDA DE LA PLAZA

DEL CARMEN

Plaza del Carmen (1-02-2020)
En general, fue un dı́a con ruido molesto durante el 76,0% del tiempo.
Durante el dı́a hubo ruido molesto el 91,0% del tiempo. Por la tarde,
durante el 95,0% del tiempo hubo ruido molesto. Por último, por la
noche hubo ruido molesto durante el 68,0% del tiempo.
Plaza del Carmen (5-04-2020) - confinamiento domiciliario
En general, fue un dı́a con un ruido aceptable durante el 73,0% del
tiempo. Durante el dı́a hubo un ruido aceptable durante el 60,0% del
tiempo. Por la tarde, durante el 75,0% del tiempo, se obtuvo un ruido
aceptable. Por último, por la noche hubo un ruido aceptable durante
el 76,0% del tiempo.

En la Tabla IV se detallan las descripciones obtenidas
para la estación situada en la Plaza del Carmen. Durante
un dı́a laborable es una zona con ruido molesto durante
todo el dı́a, aunque se observa que por la noche el ruido
molesto se mantiene durante menos tiempo que el resto del
dı́a. El confinamiento causó un efecto positivo en esta zona
obteniendo un ruido aceptable durante más del 60% del tiempo
de todos los periodos.

La Tabla V muestra las descripciones de la estación situada
en el Barrio del Pilar. En un dı́a laborable es un barrio ruidoso
todo el tiempo en los periodos diurnos y vespertinos, pero por
la noche se consigue un ruido aceptable. En confinamiento
la calidad de vida mejoró con respecto a la contaminación
acústica, convirtiéndose en un barrio con un ruido aceptable
durante todo el dı́a. En este caso, esto se debe al fuerte des-
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TABLA V
DESCRIPCIÓN LINGÜÍSTICA DE LA ESTACIÓN DE MEDIDA DEL BARRIO

PILAR

Barrio Pilar (1-02-2020)
En general, fue un dı́a con ruido molesto durante el 66,0% del tiempo.
Durante el dı́a hubo ruido molesto el 100,0% del tiempo. Por la tarde,
durante el 100,0% del tiempo, hubo ruido molesto. Por último, durante
la noche hubo un ruido aceptable durante el 93,0% del tiempo.
Barrio Pilar (5-04-2020) - confinamiento domiciliario
En general, fue un dı́a con un ruido aceptable durante el 63,0% del
tiempo. Por la mañana hubo un ruido aceptable durante el 74,0% del
tiempo. Por la tarde, el ruido fue aceptable el 67,0% del tiempo. Por
último, fue una noche con un ruido aceptable durante el 66,0% de su
tiempo.

censo del tráfico en la zona provocado por el confinamiento,
ya que los residentes no pueden circular libremente.

TABLA VI
DESCRIPCIÓN LINGÜÍSTICA DE LA ESTACIÓN DE MEDIDA DE CAMPO DE

LAS NACIONES

Campo de las Naciones (1-02-2020)
En general, fue un dı́a con un ruido aceptable durante el 63,0% del
tiempo. Durante el dı́a hubo un ruido molesto que ocupó el 100,0%
del tiempo. Por la tarde, durante el 91,0% del tiempo, hubo ruido
molesto. Por último, por la noche hubo un ruido aceptable durante el
70,0% del tiempo.
Campo de las Naciones (5-04-2020) - confinamiento domiciliario
En general, fue un dı́a con un ruido aceptable durante el 76,0% del
tiempo. Durante el dı́a hubo un ruido aceptable durante el 76,0% del
tiempo. Por la tarde, durante el 77,0% del tiempo, se obtuvo un ruido
aceptable. Por último, por la noche hubo un ruido aceptable durante
el 80,0% del tiempo.

La estación de Campo de las Naciones está situada en una
rotonda con tráfico, lo que provoca un nivel de ruido molesto
durante el dı́a y la tarde, con un nivel de ruido aceptable por
la noche (Tabla VI). Cuando se produjo el confinamiento, se
alcanzó un nivel de ruido aceptable durante más del 75% de
las veces.

TABLA VII
DESCRIPCIÓN LINGÜÍSTICA DE LA ESTACIÓN DE MEDICIÓN DE EL PARDO

El Pardo (1-02-2020)
En general, fue un dı́a con un ruido aceptable durante el 54,0% del
tiempo. Durante el dı́a hubo un ruido molesto que ocupó el 76,0%
del tiempo. Por la tarde, durante el 72,0% del tiempo, hubo un
ruido aceptable. Por último, por la noche hubo un ruido imperceptible
durante el 58,0% del tiempo.
El Pardo (5-04-2020) - confinamiento domiciliario
En general, fue un dı́a con un ruido aceptable durante el 56,0% de
su tiempo. Durante el dı́a hubo un ruido aceptable durante el 64,0%
del tiempo. Por la tarde, durante el 63,0% del tiempo, se obtuvo un
ruido aceptable. Por último, por la noche hubo un ruido imperceptible
durante el 64,0% del tiempo.

Por último, se ha comprobado que en general El Pardo es
una zona con un nivel de ruido aceptable, destacando que el
confinamiento ha modificado a mejor los niveles de ruido de
la mañana, manteniendo el descanso. Se puede concluir que
es una zona sin mucho ruido de forma habitual, por lo que el

confinamiento no ha tenido tanto impacto como en las otras
zonas estudiadas.

VI. CONCLUSIONES

En este trabajo se ha presentado un método para generar
descripciones lingüı́sticas de la contaminación acústica, más
concretamente, se ha detallado un método para generar de-
scripciones de un dı́a que considera cuatro periodos diarios
(dı́a, tarde, noche y dı́a completo). Para probar el método
propuesto, se han utilizado los datos disponibles de la ciudad
de Madrid, seleccionando cinco zonas con diferentes carac-
terı́sticas y considerando dos dı́as, uno con actividad normal
y otro con confinamiento domiciliario debido a la Covid-
19. De las descripciones obtenidas se puede concluir que el
confinamiento ha reducido la contaminación acústica, excepto
en un lugar donde ya era aceptable (El Pardo). También se
ha comprobado que estas descripciones son válidas para el
estudio de la contaminación acústica, ya que son más fáciles
de analizar que los datos brutos.

Como trabajo futuro estamos considerando el uso de otros
tipos de funciones de pertenencia, tanto para el conjunto
de etiquetas lingüı́sticas como para los conjuntos difusos
utilizados para representar los datos tomados de las estaciones.
También pretendemos investigar la descripción de intervalos
de tiempo más largos, como semanas, meses o años.
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Resumen—En este trabajo presentamos un modelo basado en
la generación de lenguaje natural y en la lógica borrosa para
la generación automática de descripciones lingüı́sticas a partir
de datos numéricos y su aplicación real en el ámbito de la
información ambiental. Basado en dicho modelo, describimos
el sistema ICA2Text, que genera automáticamente descripciones
en lenguaje natural sobre el ı́ndice de calidad del aire (ICA),
que es un indicador estándar utilizado por todas las agencias
meteorológicas a nivel mundial. ICA2Text es una aplicación real
que opera sobre los datos del ICA proporcionados por la Red
de Calidad del Aire de la Agencia de Meteorologı́a de Galicia
(MeteoGalicia). Siguiendo la metodologı́a estándar de evaluación
en el campo de la generación de lenguaje natural, presentamos
los resultados de evaluación manual del sistema por parte de
tres expertos meteorólogos. Los resultados de dicha evaluación
fueron muy satisfactorios, confirmando empı́ricamente que las
descripciones en lenguaje natural que se generan a partir de
los datos resultaron muy adecuadas, tanto en su contenido como
en su calidad lingüı́stica. Por ello, el sistema estará operativo
en breve como servicio público para los usuarios de la web de
MeteoGalicia.

Index Terms—descripciones lingüı́sticas de datos, sistemas
data-to-text, generación de lenguaje natural.

I. INTRODUCCIÓN

Obtener información relevante a partir de grandes cantida-
des de datos plantea varios retos que no pueden abordarse úni-
camente con las técnicas tradicionales basadas en la estadı́stica
y las visualizaciones gráficas. En general, estos enfoques son
muy útiles para obtener información básica de los datos, pero
para que los usuarios comprendan la información realmente
relevante que hay detrás de los datos, es necesario emplear
técnicas que se adapten mejor a las necesidades especı́ficas
de cada dominio y que puedan escalar a medida que aumenta
la cantidad de datos. En este sentido, la Inteligencia Artifi-
cial proporciona a los usuarios herramientas de análisis de
conjuntos de datos para extraer información útil, ası́ como
herramientas de procesamiento del lenguaje que permiten una
comunicación más fluida entre humanos y máquinas.

Una técnica prometedora para este propósito es la Gene-
ración de Lenguaje Natural (NLG, por sus siglas en inglés),
que permite generar texto a partir de varias fuentes de datos
(principalmente numéricos y textuales).

Dentro de este campo, la arquitectura [1] más empleada en
la literatura es la siguiente (Figura 1):

Determinación de contenido: esta fase se centra en deci-
dir qué información será comunicada en el texto.
Planificación del discurso: en esta etapa se decide el
conjunto de mensajes que serán verbalizados y se les
asigna un orden y una estructura.
Planificación de la sentencia: en esta fase se agrupan los
mensajes según sea necesario y se eligen las palabras y
expresiones que deben ser utilizadas.
Realización lingüı́stica: en esta etapa se lleva a cabo
el proceso de generar el texto resultante, que debe ser
morfológica y ortográficamente correcto.

Figura 1. Arquitectura NLG propuesta en [1]. Los rectángulos muestran las
fases más importantes mientras que las elipses muestran la salida de cada una
de ellas.

Dentro del NLG, los sistemas data-to-text (D2T) [2] generan
automáticamente textos a partir de grandes conjuntos de da-
tos numéricos o simbólicos, proporcionando una información
comprensible que no podrı́a producirse de otro modo. Los
sistemas D2T incluyen: i) una etapa de análisis de datos en
la que se extrae la información relevante de los mismos y ii)
una etapa de generación en la que se transmite la información
en lenguaje natural.

Además, también relacionado con el NLG, desde el campo
de la lógica difusa se propusieron varios enfoques para generar
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descripciones lingüı́sticas de datos (LDD, por sus siglas en
inglés), basadas en el uso de términos lingüı́sticos modelados
como conjuntos difusos. Siguiendo este enfoque, algunas
aproximaciones [3] resumen en una forma lingüı́stica una o
más variables numéricas y sus valores, utilizando la noción
general de protoforma [4] y de forma más especı́fica, senten-
cias cuantificadas borrosas que pueden seguir varios tipos de
estructura (por ejemplo, “En algunos puntos la temperatura es
alta”).

Las LDD carecen, en general, de la expresividad de los
textos reales, pero no por ello dejan de ser elementos de infor-
mación útiles que pueden utilizarse como entrada de alto nivel
para los sistemas NLG en general y D2T en particular [5], [6].
Se han propuesto aplicaciones de descripciones lingüı́sticas en
diversos campos como en el de la salud [7], negocios [8],
ahorro de energı́a [9] o meteorologı́a [10].

En este trabajo proponemos el sistema ICA2Text, que tiene
como objetivo la generación de descripciones lingüı́sticas a
partir de datos sobre el Índice de Calidad del Aire (ICA),
que es un indicador estándar de la calidad del aire utilizado
por todas las agencias meteorológicas y medioambientales del
mundo [11]. Nuestro sistema genera descripciones en lenguaje
natural a partir de datos de distribución del ICA en las esta-
ciones de la red de observación meteorológica proporcionadas
por la Agencia Meteorológica de Galicia, MeteoGalicia [12].

En el campo de la meteorologı́a existen varios enfoques a
lo largo de los años para generar descripciones a partir de
los datos de calidad del aire. [13] es un prototipo del sistema
TEMSIS centrado en describir si se han superado o no los
umbrales (diarios, mensuales...) de alerta temprana para cada
contaminante. También el sistema MARQUIS [14] de series
temporales de ı́ndice de calidad del aire numéricas incluye
referencias temporales simples (horas o intervalos especı́ficos)
para describir el último valor del ICA y los contaminantes
(concentración, información de archivo y previsión). En [15]
se propone una solución centrada en la generación de descrip-
ciones del ı́ndice de calidad del aire para una ventana temporal
que incluye tres valores diarios.

Este trabajo está estructurado de la siguiente manera: en
primer lugar, en la sección II presentamos el contexto del
problema gestionado en este trabajo y la arquitectura de
nuestro enfoque. En la Sección III describimos en profundidad
los detalles del modelo para la descripción en lenguaje natural
de la distribución del Índice de Calidad del Aire. En la sección
IV se presenta la validación por expertos humanos y sus
resultados. Por último, en la sección V ofrecemos algunas
observaciones finales y una discusión sobre trabajo futuro.

II. CONTEXTO DEL PROBLEMA

La presencia de contaminantes en el aire y, por lo tanto, el
deterioro de la calidad del aire, pueden tener efectos nocivos
para la salud de las personas.

El Índice de Calidad del Aire (ICA) es una variable simbóli-
ca del tiempo que representa la calidad del aire en cada
momento midiendo la presencia y densidad de diversos tipos
de partı́culas contaminantes en la atmósfera, utilizada por las

agencias meteorológicas y los gobiernos para informar a la
población sobre la calidad del aire.

En concreto, los datos con los que trabajamos describen
el Índice de Calidad del Aire en la red de 50 estaciones
meteorológicas (Figura 2) que envı́an datos actualizados cada
hora en tiempo real en Galicia. Se trata de datos oficiales
proporcionados por Meteogalicia, que es la agencia de meteo-
rologı́a oficial de la Xunta de Galicia [12].

Figura 2. Mapa de las estaciones meteorológicas de MeteoGalicia.

Este servicio se ha actualizado recientemente debido a un
proceso de unificación del Índice de Calidad del Aire por parte
de diferentes agencias meteorológicas, basado en los criterios
de la Agencia Europea de Medio Ambiente [11]. Actualmente,
cuenta con seis etiquetas con una percepción positiva, neutra
o negativa (Tabla I).

Estas etiquetas están representadas por un código de colores
en el que, por ejemplo, el color morado significa “pésima”
mientras que el amarillo significa “buena”.

Para determinar el valor de calidad del aire adecuado
para una situación, este servicio mide cinco contaminantes
diferentes: dióxido de azufre (SO2), dióxido de nitrógeno
(NO2), partı́culas en suspensión con un diámetro menor o
igual a 2.5 micras (PM25), partı́culas en suspensión con un
diámetro entre 2.5 y 10 micras (PM10) y ozono (O3).

A partir de los datos obtenidos de las estaciones meteo-
rológicas, MeteoGalicia proporciona representaciones gráficas
de la distribución de cada valor de calidad del aire en tiempo
real para todas las estaciones gallegas. MeteoGalicia represen-
ta estos valores a través de un gráfico de sectores que incluye
una leyenda con la lista de estaciones con ı́ndice de calidad del
aire “malo” o “muy malo” junto con el contaminante causante
de esa situación. En la Figura 3 se muestra un ejemplo de
la distribución de las etiquetas del ICA, donde el 58 % de
las estaciones tiene una calidad del aire “muy buena” y el
38 % de las estaciones tienen una calidad “buena”. Por otro
lado, una estación tiene una calidad del aire “moderada” y
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Tabla I
ETIQUETAS DEL ÍNDICE DE CALIDAD DEL AIRE CON SUS PERCEPCIONES E ÍNDICES NUMÉRICOS ASOCIADOS.

Percepción Positivo Neutro Negativo
Etiqueta Buena Favorable Regular Mala Muy mala Pésima
Índice 0 1 2 3 4 5

también una única estación tiene una situación “mala” debido
al contaminante PM10.

Figura 3. Distribución en tiempo real de los valores de calidad del aire.

III. DESCRIPCIONES LINGÜÍSTICAS DE LA DISTRIBUCIÓN
DEL ÍNDICE DE CALIDAD DEL AIRE

Los cuantificadores lingüı́sticos en el lenguaje son una
herramienta muy potente para representar y describir el cono-
cimiento sobre la cantidad de elementos que cumplen determi-
nadas propiedades, cuyo número, al menos desde el punto de
vista pragmático, suele encontrarse entre una (cuantificadores
unarios) y cuatro (cuantificadores cuaternarios). Las sentencias
cuantificadas unarias tienen la siguiente estructura: “Q X son
S” donde Q es un cuantificador (por ejemplo, “la mayorı́a”),
X es un conjunto referencial (por ejemplo, “dı́as”), y S es un
valor lingüı́stico (por ejemplo, “lluvia”). Ası́, un ejemplo de
enunciado cuantificado unario es “La mayorı́a de los dı́as son
lluviosos”.

En el caso de MeteoGalicia, se recogen en tiempo real
datos de valores del ı́ndice de calidad del aire (ICA) de
las 50 estaciones meteorológicas que componen su la Red
[16]. Debido a la importancia que tiene esta información
ya que puede afectar a la salud de las personas, surge el
interés en proporcionar descripciones en lenguaje natural sobre
los datos del ICA, que normalmente se presentan de forma
gráfica. Por lo tanto, hemos definido en colaboración con los
expertos de MeteoGalicia los requisitos de las descripciones
lingüı́sticas que luego se proyectaron en las diferentes etapas
de la arquitectura NLG.

III-A. Determinación de contenido

A partir de los datos del ICA de los que disponemos, surge
el interés de generar descripciones en cuanto a la distribución
de sus etiquetas a lo largo de la red de estaciones utilizando los
porcentajes. Sin embargo, generar descripciones incluyendo
porcentajes puede no ser atractivo para los usuarios, por lo tan-
to, para describir la distribución de las etiquetas del ı́ndice de

Figura 4. Representación gráfica de la definición de los cuantificadores para
la descripción de la distribución del ı́ndice de calidad del aire (porcentaje de
estaciones en la red meteorológica).

calidad del aire, utilizamos la partición de siete cuantificadores
“Ninguna”, “Pocas”, “Algunas”, “Aproximadamente la mitad”,
“Muchas”, “Casi todas”, “Todas” representados en la Figura 4,
lo que permite verbalizar de forma imprecisa el porcentaje de
estaciones que cumplen una etiqueta determinada. Esto resulta
más amigable para los usuarios que un porcentaje, puesto que
para este sistema no se demanda una descripción precisa.

Siendo Q los cuantificadores previamente definidos, X las
estaciones de la red y S las etiquetas del ICA, generamos
descripciones unarias, como, por ejemplo, “Muchas estaciones
tienen una calidad del aire mala”.

A modo de ejemplo, partiendo de un conjunto de datos
formado por la dupla ID de estación y valor del ICA para
las 50 estaciones (p.e., 2, 3, 52, 1, 85, 1, 107, 2, 164, 2, ...),
en esta fase se determinan las piezas de información que se
van a incluir en la descripción textual:

Muchas estaciones tienen calidad del aire muy mala.
Muchas estaciones tienen calidad del aire mala.
Rodı́s tiene calidad pésima debido al NO2.
Marraxón tiene calidad pésima debido a SO2.
Pastoriza tiene calidad pésima debido a PM10.
Magdalena tiene calidad pésima debido a O3.
Rı́o Cobo tiene calidad muy buena.
Laza tiene calidad muy buena.
Mourence tiene calidad muy buena.

III-B. Planificación del documento

Las descripciones en lenguaje natural están formadas por
las siguientes partes:

Descripción general que resume globalmente la situación,
con una proposición cuantificada como “Muchas de las
estaciones tienen una calidad del aire muy mala o mala”.
Intensificación, que destaca las estaciones que presentan
valores de calidad del aire que cumplan en mayor medida
con la misma percepción que la descripción general. Esta

294 XIX Conferencia de la Asociación Española para la Inteligencia Artificial CAEPIA 20/21



parte solo se incluye si hay alguna estación que cumpla
esta condición. Por ejemplo, “Destaca Rodı́s, con una
calidad del aire pésima debido al NO2”.
Excepción, que destaca las estaciones que tienen valores
de calidad del aire cuya percepción es contraria a la de la
descripción general. Esta parte solo se incluye si existe
alguna estación con un valor destacable. Por ejemplo,
“Por el contrario, Laza tiene una calidad muy buena”.

En el ejemplo anterior:
Muchas estaciones tienen calidad del aire muy mala o
mala.
Rodı́s tiene calidad pésima debido al NO2.
Marraxón tiene calidad pésima debido a SO2.
Pastoriza tiene calidad pésima debido a PM10.
Magdalena tiene calidad pésima debido a O3.
Rı́o Cobo tiene calidad muy buena.
Laza tiene calidad muy buena.
Mourence tiene calidad muy buena.

III-C. Planificación de la sentencia

Estas reglas de planificación están basadas en las máximas
de Grice [17], que pueden resumirse como sigue:

Calidad: las normas deben estar descritas con precisión.
Cantidad: las reglas deben contener suficiente informa-
ción para ser comprensibles sin proporcionar más infor-
mación de la necesaria.
Relevancia: las reglas deben contener las reglas impor-
tantes para este modelo.
Forma: las reglas deben estar claramente definidas evi-
tando descripciones ambiguas y deben estar ordenadas
en función de la estructura de la descripción lingüı́stica.

Las reglas para la descripción general consisten en:
Resaltar si hay un valor del ICA mayoritario cuando
cubre un porcentaje de estaciones superior a un umbral
definido, por ejemplo “Muchas de las estaciones tienen
una calidad del aire muy mala” 1.
Destacar si hay dos etiquetas del ICA con la misma
percepción que cubren un porcentaje de estaciones por
encima de un umbral fijo, por ejemplo “‘Muchas de las
estaciones tienen una calidad del aire muy mala”.
Si no hay un ICA predominante, se resaltan los peores
valores, por ejemplo “Ourense tiene una calidad del aire
extremadamente mala debido al contaminante PM10”.

Para la intensificación y la excepción, la descripción debe
seguir estas reglas:

Una vez que se ha descrito el ICA predominante en la
parte general de la descripción, el resto de valores se
consideran intensificaciones si son etiquetas con la misma
percepción o excepciones en caso contrario. Además, los
valores con percepciones negativas incluyen los conta-
minantes que las producen. Por ejemplo “Todas las esta-
ciones tienen una calidad del aire buena, especialmente

1El sistema ICA2Text genera descripciones en lenguaje natural bilingües
en español y gallego, pero en este trabajo mostramos los ejemplos solo en
español para facilitar la lectura.

Ourense con una calidad del aire muy buena. Por el
contrario, Paiosaco tiene una calidad del aire muy mala
debido al contaminante O3”.
Si dos o más estaciones tienen el mismo ICA y causante
se agrupan, por ejemplo “Laza y Santiago-Campus tienen
una calidad del aire muy mala debido al contaminante
PM10”.

Siguiendo el ejemplo, en esta fase obtenemos:
Muchas estaciones tienen calidad del aire muy mala o
mala.
Rodı́s tiene calidad pésima debido al NO2.
Marraxón tiene calidad pésima debido a SO2.
Pastoriza tiene calidad pésima debido a PM10.
Magdalena tiene calidad pésima debido a O3.
Rı́o Cobo, Laza y Mourence tienen calidad muy buena.

III-D. Realización

En una descripción es tan importante el contenido como la
forma de presentarlo, por lo que, con el objetivo de facilitar su
lectura, se incluyen reglas de realización relacionadas con la
estructura tanto para los casos de intensificación como para los
de excepción: si el número de casos destacados es superior a
2, se dispondrán como una lista, en caso contrario se incluirán
ambos como texto plano.

Debido a que la web de MeteoGalicia ofrece información
tanto en castellano como en gallego, hemos elaborado las
descripciones en ambos idiomas utilizando SimpleNLG-ES
[18] y SimpleNLG-GL [19], que son versiones extendidas de
SimpleNLG [20] para el castellano y el gallego, respectiva-
mente.

La descripción textual completa resultante en el ejemplo
anterior es:

Muchas estaciones tienen calidad del aire muy mala o mala.
Destacan 4 estaciones:

Rodı́s tiene calidad pésima debido al NO2.
Marraxón tiene calidad pésima debido a SO2.
Pastoriza tiene calidad pésima debido a PM10.
Magdalena tiene calidad pésima debido a O3.

Por el contrario, Rio Cobo, Laza y Mourence tienen una
calidad muy buena.

IV. VALIDACIÓN

Para la validación de los sistemas de Generación de Len-
guaje Natural se ha definido una metodologı́a estándar que
considera diferentes dimensiones [21]. En cuanto al objeto de
la validación, tenemos: i) la validación intrı́nseca, que mide el
rendimiento de un sistema en términos de su efectividad con
respecto a los usuarios; y ii) la validación extrı́nseca, enfocada
en medir la efectividad de un sistema a la hora de conseguir un
determinado fin u objetivo. En cuanto a la forma de realizar la
validación, tenemos: i) la validación manual, realizada a cargo
de evaluadores humanos, que pueden ser tanto expertos como
no expertos, en función del objetivo final del sistema, y ii)
la validación automática, utilizando métricas de rendimiento,
que son de uso unánime en sistemas de generación neuronal
profundo.
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Teniendo en cuenta estas consideraciones, y dadas las
caracterı́sticas del sistema ICA2Text optamos por una vali-
dación intrı́nseca manual realizada por expertos [22]. Ası́,
tres meteorólogos expertos de la Red de Calidad del Aire de
la Agencia de Meteorologı́a de Galicia [12] (MeteoGalicia)
participaron en la evaluación de la calidad de los descripciones
en lenguaje natural en este ámbito y su adecuación para la
descripción de la distribución del ICA. En la validación se les
presentó al grupo de tres expertos un cuestionario compuesto
por 25 ejemplos de casos reales de datos proporcionados
por 20 estaciones meteorológicas diferentes, que evaluaron
de forma conjunta, consensuando una única respuesta para
cada ı́tem de cada caso. En la Figura 5 mostramos uno de
los casos, donde se da una situación de ICA mala. Cada caso
está compuesto por un diagrama de sectores y la descripción
textual correspondiente generada por ICA2Text, acompañado
de cinco ı́tems (mostradas en la Tabla II), que debı́an responder
utilizando una escala Likert [23] de 5 puntos en el rango [1,
5] donde 1 indica acuerdo total del grupo de expertos con el
ı́tem del cuestionario y 5 indica desacuerdo total. Los ı́tems
hacen referencia a dos dimensiones principales: contenido de
la descripción (Q1, Q2) y su forma (Q3, Q4, Q5). El equipo de
expertos consensuó en todos los casos la evaluación numérica
conjuntamente de la correspondencia entre las descripciones
en lenguaje natural y la información proporcionada por el
gráfico.

Tabla II
ÍTEMS QUE COMPONEN EL CUESTIONARIO PARA LA EVALUACIÓN POR

PARTE DE LOS EXPERTOS.

Código Cuestión
Q1 Indicar el grado de concordancia entre la descripción lingüı́stica

proporcionado y los datos representados en la figura
Q2 Indicar el grado de concordancia entre la descripción lingüı́stica

proporcionado y cómo describirı́as los datos
Q3 Indicar el grado de conformidad con el uso correcto del

vocabulario
Q4 Indicar el grado de acuerdo con la organización de la descrip-

ción lingüı́stica para facilitar su comprensión
Q5 Indique el grado de acuerdo con la ortografı́a, la puntuación y

la estructura

Ninguno de estos expertos habı́a participado en la definición
del sistema ICA2Text ni de su modelo subyacente, puesto
que todos los requisitos fueron definidos con la ayuda de un
cuarto experto diferente, perteneciente también a la Red de
Calidad del Aire de MeteoGalicia. Por lo tanto, se realizó una
evaluación totalmente ciega, puesto que no se proporcionaron
detalles de ningún tipo acerca de cómo se generaron las
descripciones en lenguaje natural.

En la Tabla III se presenta un resumen de los resultados
tras la evaluación por parte de los expertos de las dimensiones
de contenido (Q1, Q2) y diseño (Q3, Q4, Q5) y el resultado
global.

Los resultados muestran que los expertos están de acuerdo
con las descripciones en lenguaje natural generadas, ya que
la media de las puntuaciones es de 4.80 con una desviación
tı́pica de 0.51. Además, en todos los ı́tems la moda la máxima
puntuación posible.

Figura 5. Ejemplo extraı́do del cuestionario diseñado para la validación de
expertos.

Tabla III
RESULTADOS DE LA EVALUACIÓN POR EXPERTOS.

Media Desviación tı́pica Moda
Q1 4.76 0.52 5
Q2 4.68 0.69 5
Q3 4.88 0.33 5
Q4 4.76 0.60 5
Q5 4.92 0.28 5

Contenido 4.72 0.61 5
Diseño 4.85 0.43 5
General 4.80 0.51 5

En general, podemos concluir que estas descripciones
lingüı́sticas generadas son muy adecuadas tanto en contenido
como en forma, con medias de 4.72 y 4.85 respectivamente,
para describir la distribución del ı́ndice de calidad del aire en
las 20 estaciones.

A partir de los resultados tan positivos obtenidos en la
validación por expertos, este sistema está actualmente en
producción y será próximamente desplegado en la página web
oficial de MeteoGalicia como un nuevo servicio público para
los usuarios que consulten la información sobre la calidad del
aire.

V. CONCLUSIONES

En este trabajo presentamos un modelo de generación de
lenguaje natural empleando cuantificadores borrosos para la
generación automática de descripciones lingüı́sticas a partir de
datos numéricos obtenidos de un caso real de aplicación en
el campo de la información medioambiental, proporcionando
explicaciones textuales sobre la distribución de los valores del
ı́ndice de calidad del aire (ICA), que es un indicador muy
conocido proporcionado por todas las agencias meteorológicas
del mundo. Basado en este modelo, describimos ICA2Text, un
sistema D2T para la generación automática de descripciones
en lenguaje natural sobre los datos del ICA proporcionados
por la Agencia de Meteorologı́a de Galicia.
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Los resultados de la validación manual por parte de los
expertos meteorólogos muestran que las descripciones en
lenguaje natural generadas son muy adecuadas, puesto que
en media calificaron las descripciones en lenguaje natural
generadas por el sistema ICA2Text con un 4.72 sobre 5 en
una escala Likert en cuanto a calidad del contenido y un 4.85
sobre 5 en cuanto a calidad lingüı́stica (diseño).

Actualmente, ICA2Text se ha integrado en la web de
producción de MeteoGalicia, de modo que tras un periodo de
pruebas, como trabajo futuro se plantea el despliegue como
servicio público en la sección de calidad del aire de la página
web de MeteoGalicia.
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Resumen—En este trabajo presentamos un estudio empı́rico
orientado a poner en evidencia posibles inconsistencias que
pueden producirse cuando utilizamos expresiones en lenguaje
natural con cuantificadores imprecisos, y éstas son evaluadas con
modelos de cuantificación borrosa que incumplen dos propieda-
des de interés que se han definido en la bibliografı́a para dichos
modelos (antonimia y efecto acumulativo). La experimentación
considera el modelo de cuantificación de Zadeh en el contexto
de un agente conversacional que realiza recomendaciones. Los
resultados muestran que hay diferencias significativas en la
percepción de la consistencia y la utilidad de las conversaciones
mantenidas entre una persona usuaria y el agente conversacional,
relacionadas con el modelo de cuantificación utilizado.

Index Terms—Cuantificadores borrosos, Generación de len-
guaje natural, Evaluación humana, Agentes conversacionales

I. INTRODUCCIÓN

La presencia de la cuantificación en el uso del lenguaje
natural humano es continua y juega un papel fundamental
tanto en términos de significado como de expresividad. A
menudo empleamos expresiones imprecisas como “algunos
de los alumnos sacaron buenas notas”, “en la mayor parte
de los ayuntamientos gallegos la incidencia de coronavirus es
baja” o “habrá pocos dı́as con cielos nublados esta semana”,
que nos permiten manejar la vaguedad del lenguaje y resumir
la información de forma natural. Debido a esta constante
aparición de expresiones cuantificadas en el lenguaje natural,
su modelado se ha convertido en un problema de gran interés
en múltiples campos relacionados con la Inteligencia Artificial.

El objetivo principal de los cuantificadores es permitirnos
caracterizar y describir propiedades cuantitativas sobre un
conjunto de elementos (un colectivo, denominado referencial),
en lugar de tener que hacerlo sobre cada elemento individual.
La forma en que los datos son agregados y resumidos en
una sentencia cuantificada depende directamente del modelo
de cuantificación que se utilice para procesar la información.
En caso de no seleccionarse un modelo adecuado, podrı́a
presentarse un resultado que no fuera representativo de los
datos o, directamente, incorrecto.

Para caracterizar el comportamiento de un modelo de
cuantificación, en el sentido de que los resultados obtenidos
supongan una interpretación coherente y apropiada de los
datos descritos, varios autores han propuesto una serie de
propiedades intuitivas y plausibles que, en principio, cualquier
modelo deberı́a satisfacer [1]–[3]. Sin embargo, la mayor parte
de los modelos de cuantificación más conocidos y utilizados

(por ejemplo, Zadeh [4], Yager [5], etc.) incumplen algunas
de estas propiedades, por lo que presentan un comportamiento
alejado del adecuado, y no deseado en algunos casos.

A pesar de que los modelos de cuantificación borrosa son
bien conocidos desde hace tiempo (principio de los años 80
del siglo pasado), y que en diversos trabajos posteriores se ha
llevado a cabo un análisis de las propiedades que cumplen a
nivel teórico [1], [2], existen muy pocos estudios empı́ricos
que, desde una perspectiva pragmática, midan el alcance o
impacto del incumplimiento de dichas propiedades a nivel
práctico en ámbitos concretos [6]. Este aspecto pragmático
es de especial relevancia y actualidad, especialmente a partir
del uso de cuantificadores en las descripciones lingüı́sticas de
datos [7]–[9] y en los sistemas de generación de lenguaje
natural [10], puesto que la pragmática es esencial en el
lenguaje humano y el incumplimiento de algunas propiedades
relevantes por parte de los cuantificadores puede dar lugar a
inconsistencias en la operativa interna de las aplicaciones en
estos u otros ámbitos que conviene hacer aflorar. La principal
aportación de este trabajo se centra precisamente en aportar
evidencias que ilustren el alcance del incumplimiento de estas
propiedades y, de alguna manera, hagan transparente hacia los
usuarios o desarrolladores su existencia.

Ası́, en este trabajo presentamos un estudio empı́rico que
evidencia las posibles inconsistencias que pueden producirse
en la práctica debido al incumplimiento de ciertas propiedades
por parte del modelo de cuantificación utilizado. En concreto,
nos centramos en el modelo de cuantificación escalar de
Zadeh [4], para el cual estudiamos el alcance del incum-
plimiento de la propiedad de antonimia y el problema del
efecto acumulativo, en un escenario de aplicación concreto.
Para ello, hemos creado el asistente virtual Quanversa1 [11],
que desarrolla conversaciones breves sobre la predicción me-
teorológica en lenguaje natural a partir de datos [10], [12] que
incluyen expresiones cuantificadas borrosas. Con fragmentos
de estas conversaciones hemos realizado un estudio basado
en cuestionarios, que nos ha permitido evaluar el impacto
que tiene el efecto acumulativo y el incumplimiento de la
propiedad de antonimia por parte del modelo de cuantificación
de Zadeh en cuanto a la coherencia del diálogo mantenido
entre el asistente y una persona usuaria, cuando se utilizan en
él expresiones cuantificadas imprecisas.

1https://demos.citius.usc.es/Quanversa/
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El resto del trabajo está organizado en cuatro secciones.
La sección II introduce brevemente los modelos de cuantifi-
cación borrosa considerados. La sección III presenta el nuevo
modelo de cuantificación propuesto. La sección IV describe
los experimentos realizados. Finalmente, la sección V resume
las principales conclusiones.

II. MODELOS DE CUANTIFICACIÓN BORROSA

En el lenguaje natural, es común encontrar términos vagos
o imprecisos como “alto”, “joven” o “pequeño”, que expresan
alguna propiedad sobre uno o más objetos y que pueden ser
modelados mediante conjuntos borrosos. Además, la introduc-
ción de este tipo de términos dentro de expresiones cuanti-
ficadas es habitual (por ejemplo, “muchos trabajadores son
jóvenes”, “la mayor parte de los jugadores son altos”, etc.),
dónde no solo la propiedad descrita presenta incertidumbre,
sino que también lo hace el cuantificador lingüı́stico utilizado.

Ası́, en el modelado de la cuantificación lingüı́stica, el
manejo de la vaguedad presente en el lenguaje es fundamental.
Fue Zadeh el primero en modelar el problema de la cuantifi-
cación en el lenguaje natural utilizando la teorı́a de conjuntos
borrosos [4]. Para ello, distinguió dos tipos de cuantificadores
lingüı́sticos (ver ejemplos en la figura 1): cuantificadores
borrosos absolutos, los cuales denotan una cantidad imprecisa
absoluta (“aproximadamente cinco”, “un número grande”,
“alrededor de diez”, etc.) y cuantificadores borrosos relativos
(o proporcionales), que referencian cantidades relativas (“la
mitad”, “casi todos”, “una pequeña parte”, etc.). Además,
propuso identificar ambos tipos de cuantificadores con un
conjunto borroso que represente la semántica del cuantificador.

  

1 

0 
0 

𝜇𝑄𝑟𝑒𝑙
 

1 0.7 0.9 

(a) Cuantificador relativo Qrel: casi todos.
  

1 

ℝ 0 
0 

𝜇𝑄𝑎𝑏𝑠𝑠  

10 13 7 

(b) Cuantificador absoluto Qabs: alrededor de diez.

Figura 1: Ejemplos de cuantificadores.

Zadeh se centró en el estudio de dos tipos de expresiones:
(1) las expresiones de tipo I , que siguen el esquema (o

protoforma) “Q de E son Ã”; y (2) las expresiones de tipo II ,
que responden a “Q de (D̃E) son Ã”, dónde E es el conjunto
referencial, Ã y D̃ dos conjuntos borrosos que representan
alguna propiedad de E, y Q un cuantificador borroso absoluto
o relativo. Un ejemplo de expresión de tipo I es “la mayorı́a
de estudiantes de matemáticas son altos”, mientras que un
ejemplo de expresión de tipo II podrı́a ser “la mayorı́a de los
buenos estudiantes de matemáticas son altos”, identificando en
ambos casos E con el conjunto de estudiantes de matemáticas,
Q con el cuantificador borroso relativo “la mayorı́a”, Ã y D̃
con los conjuntos borrosos que representan las propiedades de
“ser alto” y “ser buen estudiante”, respectivamente.

En lo que sigue, si Ã es un conjunto borroso que representa
una propiedad borrosa acerca de los elementos de un referen-
cial E = {e1, . . . , en}, escribiremos µÃ(E) = {a1, . . . , an},
con ai = µÃ(ei) para i ∈ {1, . . . , n}, representando los grados
de cumplimiento de la propiedad Ã sobre los elementos de E.

Siguiendo la aproximación propuesta por Zadeh, un modelo
de cuantificación es un método que permite combinar el
conjunto borroso que representa la semántica del cuantificador
Q con los conjuntos borrosos que modelan las propiedades Ã
y D̃, de forma que sea posible obtener una medida de la vera-
cidad o grado de cumplimiento de la expresión cuantificada. El
modelo de cuantificación escalar propuesto por Zadeh en [4] es
uno de los métodos más conocidos y utilizados en la práctica
para la evaluación de expresiones cuantificadas. En el caso de
expresiones de tipo I , se define, para cuantificadores borrosos
absolutos, mediante la expresión:

ZQabs
(Ã) = µQabs

(
n∑

i=1

ai

)
, (1)

y, para cuantificadores borrosos relativos, como:

ZQrel
(Ã) = µQrel

(
n∑

i=1

ai/n

)
. (2)

En el caso de expresiones de tipo II se define, para
cuantificadores borrosos absolutos, como:

ZQabs
(Ã/D̃) = µQabs

(
n∑

i=1

mı́n{ai, di}
)
, (3)

y, para cuantificadores borrosos relativos, como:

ZQrel
(Ã/D̃) = µQrel

(∑n
i=1 mı́n{ai, di}∑n

i=1 di

)
. (4)

A partir de este primer método introducido por Zadeh,
surgieron nuevas propuestas para la evaluación de expresiones
cuantificadas [5], [13], [14], de forma que cada uno utiliza
un esquema diferente para obtener el grado de verdad de una
expresión cuantificada. Con el objetivo de poder comparar y
evaluar el comportamiento de cada uno de estos modelos, en
relación a la obtención de resultados coherentes y apropiados,
varios autores han propuesto una serie de propiedades que, en
principio, deberı́an satisfacer todos aquellos modelos que ten-
gan un comportamiento consistente, intuitivo o plausible [1].
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Entre ellas, se encuentran, por ejemplo, la continuidad, la mo-
notonı́a, las relacionadas con la negación o la antonimia. Sin
embargo, muchos de los modelos más utilizados en la práctica
no verifican algunas de estas propiedades fundamentales. En
concreto, el comportamiento teórico no adecuado del modelo
de Zadeh debido al incumplimiento de ciertas propiedades
matemáticas ha sido estudiado en profundidad en la biblio-
grafı́a [1], [2]. En este trabajo, nos centraremos únicamente
en dos de sus principales problemas: el incumplimiento de la
propiedad de antonimia y el efecto acumulativo.

Debido a su continuo uso en el lenguaje natural, es funda-
mental que los modelos se comporten correctamente respecto
a las negaciones. En este sentido, la propiedad de antonimia
establece que todo modelo de cuantificación Γ debe verificar:

ΓQ(Ã) = ΓQant(Ãc) y (5)

ΓQ(Ã/D̃) = ΓQant
(Ãc/D̃), (6)

siendo Ãc el complementario de Ã, definido por:

µÃc
(e) = 1− µÃ(e) para todo e ∈ E

y Qant el antónimo de Q, que se define, si Q es un cuantifi-
cador borroso absoluto, como:

µQant
(x) = µQ(n− x) para todo x ∈ [0, n].

y, si Q es un cuantificador borroso relativo, como:

µQant
(x) = µQ(1− x) para todo x ∈ [0, 1].

La violación de la propiedad de antonimia puede tener
consecuencias importantes en la evaluación de expresiones
cuantificadas. Por ejemplo, dos expresiones como “todos los
dı́as del fin de semana habrá temperaturas altas” y “no
habrá dı́as este fin de semana en los que las temperaturas
no sean altas”, que semánticamente son equivalentes, podrı́an
obtener grados de verdad diferentes al ser evaluadas sobre
un mismo referencial. Este comportamiento poco intuitivo no
deberı́a ocurrir en ningún caso, puesto que ambas expresiones
en lenguaje natural realmente significan lo mismo.

El modelo de Zadeh no verifica la propiedad anterior,
como se demuestra con el siguiente contraejemplo; sean E
el conjunto de los próximos 4 dı́as, Ã y D̃ los conjuntos
borrosos que representan las propiedades “tener temperatura
alta” y “pertenecer al fin de semana”, de forma que µÃ(E) =
{0.5, 1, 1, 0.5} y µD̃(E) = {0.5, 1, 1, 0.5}. Definiendo el
cuantificador ∀ :=“todos” como:

µ∀(x) =

{
1 si x = 1,
0 si x 6= 1,

se tiene que:

Z∀(Ã/D̃) = µ∀

(
0.5 + 1 + 1 + 0.5

0.5 + 1 + 1 + 0.5

)
= µ∀(1) = 1,

mientras que:

Z∀ant
(Ãc/D̃) = µ∀ant

(
0.5 + 0 + 0 + 0.5

0.5 + 1 + 1 + 0.5

)
=

= µ∀ant(1/3) = µ∀(1− 1/3) = 0.

Por otro lado, el modelo de Zadeh puede provocar un
efecto acumulativo poco intuitivo, ya que es posible que varios
elementos con un grado de pertenencia bajo alcancen el mismo
valor acumulado que un único elemento con un grado de
pertenencia alto. Por ejemplo, supongamos que E y E′ son
los conjuntos de temperaturas para los próximos 5 dı́as en dos
ayuntamientos diferentes y Ã es el conjunto borroso que repre-
senta la propiedad de “ser una temperatura baja” de forma que
µÃ(E) = {0.2, 0.2, 0.2, 0.2, 0.2} y µÃ(E′) = {1, 0, 0, 0, 0}.
Definiendo el cuantificador absoluto “al menos uno” como:

µ“al menos uno′′(x) =

{
0 si x < 1,
1 si x ≥ 1,

y utilizando la fórmula (1), la evaluación de la expresión “al
menos una temperatura será alta” mediante el modelo de
Zadeh devolverá el mismo resultado para ambos conjuntos
referenciales E y E′, pero la situación en cada ayuntamiento
es diferente.

A pesar de los problemas evidenciados a nivel teórico, no
se conoce el impacto que puede tener el uso de un modelo
de cuantificación que presente estas deficiencias durante la
interacción entre un agente conversacional y sus usuarios.

III. MODELO DE ZADEH MODIFICADO

Hemos propuesto una modificación del modelo de Zadeh
para corregir los potenciales efectos indeseados asociados a
la antonimia y el efecto acumulativo [11], y de este modo
disponer de dos modelos de cuantificación muy similares que
permitiesen evaluar qué impacto tiene el incumplimiento de las
propiedades mencionadas en un contexto de aplicación real.
Se realizaron las modificaciones imprescindibles para abordar
directamente las dos propiedades citadas.

Por un lado, a la hora de realizar una agregación, el modelo
modificado solo considera los elementos que tengan un grado
de pertenencia suficientemente alto. Esto significa que, en las
definiciones (1)−(4), son excluidos aquellos términos de los
sumatorios en los que los valores de ai o di no alcancen el 0.5,
evitando la acumulación de pequeños grados de pertenencia
en la agregación. Se ha escogido el valor 0.5 por ser el
umbral que determina la pertenencia al conjunto cuando la
variable es desborrosificada. Ası́, los datos incluidos en la
agregación serán aquellos considerados en todo momento
como pertenecientes al conjunto.

Por otro lado, el incumplimiento de la propiedad de an-
tonimia se debe a la incorrecta evaluación de una expresión
cuantificada cuando ésta se formula en términos de Ãc. Dado
que semánticamente las expresiones “Q de (D̃E) son Ãc” y
“Qant de (D̃E) son Ã” son equivalentes, el modelo modi-
ficado realiza un procesamiento previo a la evaluación para
transformar la primera en la segunda, cuando es necesario.
Ası́, las expresiones de (5) y (6) se cumplen trivialmente y el
modelo verifica la propiedad de antonimia.

En el estudio empı́rico que describimos en la siguiente sec-
ción utilizaremos este modelo de Zadeh modificado junto con
el original para la evaluación de proposiciones cuantificadas
borrosas sobre un mismo referencial. Se plantean escenarios de
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conversación entre el agente conversacional Quanversa [11] y
una persona usuaria en los cuales las propiedades de antonimia
y efecto acumulativo juegan un papel relevante. Ello nos
permitirá comparar, desde el punto de vista pragmático, el
comportamiento del modelo modificado frente al original,
y valorar experimentalmente la importancia en un escenario
concreto del incumplimiento de las propiedades mencionadas.

IV. ESTUDIO EMPÍRICO

De un modo más formal, el estudio plantea un experimento
que permita verificar la siguiente hipótesis de investigación:
“La interacción con un agente conversacional resulta más
consistente y de mayor utilidad para los usuarios cuando los
datos son procesados mediante un modelo de cuantificación
que supera los problemas de la antonimia y el efecto acumu-
lativo propios del modelo de cuantificación escalar propuesto
originalmente por Zadeh [4]”.

Con el fin de validar esta hipótesis, se construyó un
cuestionario que permitió que los participantes en el estudio
pudieran valorar la consistencia y la utilidad de una serie de
conversaciones reales entre el agente conversacional Quan-
versa y una usuaria ficticia, Marı́a, mostradas mediante una
captura de pantalla (véase una muestra de un escenario en la
figura 2). El cuestionario incluye 6 escenarios distintos, que
nos permiten considerar las diferentes situaciones o contextos
de estudio en base al modelo considerado, tamaño de la
muestra, y la propiedad a analizar (ver la figura 3). Se somete
a los participantes a dichos escenarios (o estı́mulos), sin
permitir interacción en tiempo real con el asistente, para evitar
efectos de otros factores no controlados que no son objeto de
estudio, y ası́ dar respuesta a nuestra hipótesis de partida. El
cuestionario se distribuyó a través de listas de distribución y
redes sociales, y se mantuvo abierto desde el 6 hasta el 26 de
abril de 2021. Durante este tiempo, fue completado por 132
personas, de forma totalmente voluntaria y anónima.

La figura 4 muestra la relación entre el modelo de cuanti-
ficación utilizado por Quanversa durante la conversación y la
consistencia en sus respuestas apreciada por los participantes.
Las conversaciones asociadas al nuevo modelo se consideraron
más consistentes que en el caso del modelo original.

La figura 5 representa la relación entre el modelo de cuan-
tificación y la utilidad de la conversación para la resolución
de la tarea propuesta en el escenario, según los participantes
en el estudio. De nuevo, se observan diferencias entre ambos
modelos, aunque menos acentuadas que para el caso de la
consistencia.

Para contrastar la hipótesis de investigación planteada (con
un nivel de significación de 0.01), basta con comprobar la
dependencia o independencia entre las variables respuesta y
el modelo de cuantificación. Las hipótesis nula y alternativa
para los contrastes de independencia entre el modelo de
cuantificación y la consistencia/utilidad en cada contexto de
estudio (véase Ci, con i ∈ {1, 2, 3}, en la figura 3) son:

H0: La variable respuesta consistencia/utilidad es indepen-
diente del factor modelo de cuantificación en Ci.

Ha: El factor modelo de cuantificación influye en la variable
respuesta consistencia/utilidad en Ci.

Teniendo en cuenta lo anterior, se ha seleccionado el test
de McNemar [15], un test de independencia no paramétrico
utilizado como la alternativa a los test χ2 de Pearson cuando
los datos son pareados. El test de McNemar estudia si la
probabilidad de evento positivo para una variable (en nuestro
caso, conversación consistente o conversación útil) es igual
en los dos niveles de otra variable (en nuestro caso, para
los dos modelos de cuantificación). Su estadı́stico sigue una
distribución χ2 con 1 grado de libertad.

El test de McNemar aplicado a los tres contextos de estudio
revela que existen diferencias significativas, que soportan
rechazar H0 en favor de que sı́ existe relación entre el modelo
de cuantificación y la consistencia de las respuestas dadas por
Quanversa (C1: χ2 = 73.11, p-valor< 0.01; C2: χ2 = 81.01,
p-valor< 0.01; C3: χ2 = 100.08, p-valor< 0.01).

Análogamente, comprobamos la independencia de la varia-
ble utilidad respecto al modelo de cuantificación. De nuevo,
para los tres contextos estudiados, el test de McNemar arroja
diferencias significativas, rechazando H0 en favor de que sı́
existe relación entre el modelo de cuantificación y la utilidad
de la conversación mostrada entre Quanversa y la usuaria
Marı́a (C1: χ2 = 24.32, p-valor< 0.01; C2: χ2 = 37.21,
p-valor< 0.01; C3: χ2 = 39.2, p-valor< 0.01).

V. CONCLUSIONES

La aplicación del test no paramétrico de McNemar revela
que las diferencias encontradas son significativas tanto en
la percepción de la consistencia como en la percepción de
la utilidad respecto al modelo de cuantificación considerado.
Junto con la información recogida en las figuras 4 y 5, se
puede afirmar que un porcentaje significativo de participantes
encontró las interacciones con el agente conversacional más
consistentes y de mayor utilidad cuando este procesó los datos
mediante el modelo de cuantificación de Zadeh modificado
(que cumple la propiedad de antonimia y supera el problema
del efecto acumulativo). Por lo tanto, el experimento realizado
valida la hipótesis de investigación planteada.

Como trabajo futuro nos planteamos ampliar el estudio a
contextos de tipo conversacional en otros ámbitos y a otros
modelos de cuantificación, de modo que se pueda extender
la base experimental del presente estudio y generalizar las
conclusiones que hemos presentado en este trabajo. Asimismo,
estudiaremos con mayor profundidad dos aspectos pragmáti-
cos que hemos observado en el análisis de resultados, y cuyo
alcance merece atención y requiere investigación adicional.
Por un lado, el hecho de que, con cierta frecuencia, los
usuarios fueron capaces de tomar una decisión en relación a la
tarea propuesta incluso en escenarios donde habı́an detectado
inconsistencias en la conversación. Por otro, el hecho de que
un buen número de participantes tardaron más en responder a
los escenarios que involucraban al modelo de Zadeh, lo cual
puede ser debido a la inconsistencia en la conversación que
producı́a dicho modelo.
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Figura 2: Ejemplo de escenario a evaluar en el cuestionario.

AGRADECIMIENTOS

Jose M. Alonso-Moral es investigador Ramón y Cajal
(RYC-2016-19802). Alejandro Catalá es investigador Juan de
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Resumen—En este trabajo estudiamos el crecimiento, decreci-
miento o ausencia de tendencias en las relaciones entre objetos y
atributos en una sucesión de contextos L-fuzzy. Estas tendencias
nos permitirán ordenar los objetos, atributos y conceptos aten-
diendo a su crecimiento o decrecimiento a lo largo del tiempo.
Finalmente, ilustraremos nuestros resultados con una aplicación
práctica.

Palabras Clave—Conceptos L-Fuzzy, sucesiones de contextos
L-Fuzzy, análisis de tendencias.

I. INTRODUCCIÓN

El Análisis de Conceptos L-Fuzzy [1], [2] es una herra-
mienta matemática para el análisis y la representación del
conocimiento conceptual. Esta teorı́a utiliza los conceptos L-
fuzzy para extraer información de un contexto L-fuzzy. Re-
cordemos que un contexto L-fuzzy es una tupla (L,X, Y,R),
donde L es un retı́culo completo, X e Y son conjuntos de
objetos y atributos, y R ∈ LX×Y es una relación L-fuzzy
entre los objetos y los atributos. Podemos entender el Análisis
de Conceptos L-fuzzy como una extensión del Análisis de
Conceptos Formales de Wille [3], [4] que permite trabajar con
relaciones entre los objetos y atributos que toman valores en
un retı́culo L, en lugar de valores binarios.

Para trabajar con estos contextos L-fuzzy, hemos definido
los operadores derivación 1 y 2 por medio de las expresiones:

Para todo A ∈ LX , para todo B ∈ LY

A1(y) = ı́nf
x∈X
{I(A(x), R(x, y))},∀y ∈ Y

B2(x) = ı́nf
y∈Y
{I(B(y), R(x, y))},∀x ∈ X

con I un operador de implicación fuzzy definido en el retı́culo
(L,≤).

La información almacenada en el contexto se visualiza por
medio de los conceptos L-fuzzy, que representan a un grupo
de objetos que comparten, ellos y sólo ellos, un grupo de
atributos. Estos conceptos son pares (M,M1) ∈ LX × LY ,
donde el conjunto M ∈ fix(ϕ) es un punto fijo del opera-
dor constructor ϕ, que se define a partir de los operadores
derivación 1 y 2 como ϕ(M) = (M1)2 = M12.

Trabajo parcialmente subvencionado por el Gobierno Vasco (Proyecto
IT1256-19), y por el Grupo de Investigación “Inteligencia Artificial y Ra-
zonamiento Aproximado” de la Universidad Pública de Navarra.

Además, fijado un conjunto de partida A ∈ LX (o B ∈ LY ),
podemos obtener el concepto L-fuzzy asociados aplicando
sucesivamente los operadores derivación hasta encontrar un
punto fijo.

Para el caso de utilizar implicaciones residuadas, tal y como
haremos en este trabajo, obtendremos un punto fijo en la
segunda aplicación de los operadores derivación, con lo que
el cálculo del concepto L-fuzzy asociado a un conjunto de
partida se simplifica enormemente. Ası́, dado un conjunto de
objetos A ∈ LX (o un conjunto de atributos B ∈ LY ), el
concepto L-fuzzy asociado será (A12, A1) (o (B2, B21)).

En este trabajo trataremos de estudiar en qué medida las
relaciones entre los objetos y los atributos mejoran o empeoran
con el paso del tiempo. Representaremos estas situaciones
mediante una secuencia de contextos L-fuzzy en la que pro-
fundizaremos en el estudio de las tendencias tanto crecientes
como decrecientes. También estudiaremos los casos en los que
no haya tendencia.

Existen trabajos en la literatura que analizan la evolución
temporal en un contexto formal, por ejemplo, [5], [6]. En
particular, en [6], Wolff introduce un Sistema de Tiempo
Conceptual para definir el Análisis de Conceptos Temporales.
En este Sistema de Tiempo Conceptual, el estado y la fase
se definen como retı́culos de conceptos que representan el
significado de los estados con respecto a la descripción elegida
del tiempo. Además, otros autores definen tendencias de
evolución en [5], utilizando temporal matching en el caso del
Análisis de Conceptos Formales.

II. TENDENCIAS TEMPORALES

En [7] presentamos un primer estudio de sucesiones de
contextos L-fuzzy considerando el retı́culo L = [0, 1]. Co-
menzaremos este apartado recordando cómo definı́amos estas
sucesiones:

Definición 1: Una sucesión de contextos L-fuzzy es una
sucesión de tuplas (L,X, Y,Ri), i ∈ {1, 2, . . . , n}, siendo
L un retı́culo completo, X e Y dos conjuntos de objetos y
atributos respectivamente y para cada valor i ∈ {1, . . . , n}
Ri ∈ LX×Y representa la relación entre los conjuntos X e Y
en el instante i, la cual toma valores en el retı́culo L.

Posteriormente, con el objeto de estudiar la evolución de
la relación entre los objetos (o atributos) respecto de uno o
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varios atributos (u objetos), en [8], [9] realizamos un análisis
de tendencias temporales para identificar la evolución con el
tiempo de la sucesión de contextos L-fuzzy (L,X, Y,Ri), i ∈
{1, . . . , n}.

Una buena herramienta para analizar la evolución en el
tiempo de un objeto o un atributo es el estudio de sus
conceptos L-fuzzy asociados en los diferentes contextos L-
fuzzy de la sucesión. Ésta es la idea en la que se basan las
siguientes definiciones:

Definición 2: Consideremos el objeto x0 ∈ X . Sean
(Ai{x0}, Bi{x0}) los conceptos L-fuzzy asociados a {x0} en
la sucesión de contextos L-fuzzy (L,X, Y,Ri) con i ≤ n.
Denotamos por ITrend(x0) al conjunto de atributos cuya
relación con el objeto x0 se va fortaleciendo en la sucesión
de contextos, y lo definimos como:

ITrend(x0) ={y ∈ Y | B1{x0}(y) 6= Bn{x0}(y)

∧Bi{x0}(y) ≤ Bi+1{x0}(y),∀i < n}

Análogamente, dado el atributo y0 ∈ Y , y los conceptos
L-fuzzy (Ai{y0}, Bi{y0}) asociados a {y0} en la sucesión de
contextos L-fuzzy, definiremos el conjunto ITrend(y0) que
representa el conjunto de objetos que están cada vez más
relacionados con el atributo y0 de la siguiente manera:

ITrend(y0) ={x ∈ X | A1{y0}(x) 6= An{y0}(x)

∧Ai{y0}(x) ≤ Ai+1{y0}(x),∀i < n}

En el caso de tendencias decrecientes, podemos definir los
conjuntos de objetos o atributos cuyos grados de relación con
un determinado atributo u objeto sea cada vez menor.

Definición 3: Fijado el objeto x0 ∈ X definimos el conjunto

DTrend(x0) ={y ∈ Y | B1{x0}(y) 6= Bn{x0}(y)

∧Bi{x0}(y) ≥ Bi+1{x0}(y),∀i < n}

formado por los atributos cuyo grado de relación con dicho
objeto va disminuyendo con el paso del tiempo.

Del mismo modo, para el atributo y0 ∈ Y obtenemos el
conjunto de objetos cada vez menos relacionados con él:

DTrend(y0) ={x ∈ X | A1{y0}(x) 6= An{y0}(x)

∧Ai{y0}(x) ≥ Ai+1{y0}(x),∀i < n}

Finalmente, tendremos que tener en cuenta que podrı́a haber
situaciones en las cuales no se observe una tendencia creciente
ni decreciente. Para representar estos casos definimos los
siguientes conjuntos:

Definición 4: El conjunto de objetos que no muestran
ninguna tendencia en relación con el objeto x0 ∈ X es el
siguiente:

NTrend(x0) = {y ∈ Y/y /∈ ITrend(x0) ∪DTrend(x0)}

Para el atributo y0 ∈ Y , el conjunto de objetos sin ningún
tipo de tendencia se define como:

NTrend(y0) = {x ∈ X/x /∈ ITrend(y0) ∪DTrend(y0)}

Es sencillo demostrar que, dados un objeto y un atributo
cualesquiera del contexto L-fuzzy, se cumple la siguiente
propiedad.

Proposición 1: Para todo par de elementos (x, y) ∈ X × Y
se verifica que:

1. x ∈ ITrend(y)⇐⇒ y ∈ ITrend(x)
2. x ∈ DTrend(y)⇐⇒ y ∈ DTrend(x)

Estas definiciones de conjuntos de objetos (o de atributos)
que presentan algún tipo de tendencia en su variación en
el tiempo respecto de un atributo (o de un objeto) dado,
permitirán establecer pares de objetos y atributos que pueden
ser usados para un análisis más completo de la evolución de la
sucesión de contextos L-fuzzy (L,X, Y,Ri), i ∈ {1, . . . , n}.

A partir de esta idea, se construyen las matrices de tenden-
cias en el contexto L-fuzzy que indican la relación entre un
objeto y un atributo cuando se observa algún tipo de tendencia
relacionada con ellos.

Definición 5: La matriz de tendencia creciente ITM ⊆ X×
Y se define como (ver [10]):

ITM(x, y) =

=

{
1 si y ∈ ITrend(x) (o equival. x ∈ ITrend(y))

0 en otro caso

De forma análoga podemos definir las matrices de tendencia
decreciente y de ausencia de tendencia de la siguiente manera:

DTM(x, y) =

{
1 si x ∈ DTrend(y)

0 en otro caso

NTM(x, y) =

{
1 si y ∈ NTrend(x)

0 en otro caso

Estas matrices de tendencias nos permiten ahora defi-
nir los contextos formales (X,Y, ITM), (X,Y,DTM) y
(X,Y,NTM) y, a partir del análisis de sus respectivos
conceptos formales, tener una visión general de las tendencias
entre los objetos X y los atributos Y.

Definición 6: Sea el contexto formal (X,Y, ITM) con X
conjunto de objetos, Y conjunto de atributos y ITM ⊆ X×Y.
Llamaremos a los conceptos de (X,Y, ITM) conceptos for-
males ITrend. Estos conceptos representarán las tendencias
crecientes.
De la misma manera, podemos obtener los conceptos formales
DTrend para las tendencias decrecientes y conceptos forma-
les NTrend para los casos de ausencia de tendencias.

El cálculo de las matrices de tendencia nos va a permitir
analizar aquellos objetos y atributos que mejoran o empeoran
su relación con el tiempo. Sin embargo, no dispondremos
de herramientas para cuantificar lo que supone esa mejora o
empeoramiento.

En [10] y con el fin de medir el grado de evolución positiva
de las relaciones entre los objetos y los atributos, se definı́a
su nivel de tendencia como un valor en el intervalo [0, 1]. Esa
manera de definir el nivel de tendencia tiene el inconveniente
de que recoge el incremento que ha habido en los valores
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de la relación entre un objeto y un atributo, pero no la
relevancia absoluta del valor. Por este motivo, presentamos
aquı́ una nueva definición para los niveles de tendencias que
nos proporcionará una información más precisa.

Dado que los análisis de las tendencias crecientes y de las
decrecientes son en muchos aspectos simétricos, por simplifi-
car, escribiremos ΛTrend para referirnos a cualquiera de las
tendencias ITrend o DTrend:

Definición 7: Para cada x0 ∈ X, y ∈ Y, el nivel ΛTrendL
del objeto x0 para el atributo y se define como:

ΛTrendL(x0)y =

=

{
[ mı́n
1≤i≤n

Bi{x0}(y), máx
1≤i≤n

Bi{x0}(y)] si y ∈ ΛTrend(x0)

0 en otro caso

Análogamente, podemos definir para cada y0 ∈ Y, x ∈ X
el nivel ΛTrendL del atributo y0 para el objeto x:

ΛTrendL(y0)x =

=

{
[ mı́n
1≤i≤n

Ai{y0}(x), máx
1≤i≤n

Ai{y0}(x)] si x ∈ ΛTrend(y0)

0 en otro caso

Proposición 2: Para todo par de elementos (x, y) ∈ X × Y
se verifica que:

ΛTrendL(x)y = ΛTrendL(y)x

A partir de la definición de los niveles de tendencias
podemos establecer nuevas relaciones entre los objetos y los
atributos de la siguiente manera:

Definición 8: Denominamos relación de Λ-tendencia a la si-
guiente relación intervalovalorada definida entre los conjuntos
de objetos atributos.

Para cada (x, y) ∈ X × Y ,

ΛTrendLM(x, y) = ΛTrendL(x)y = ΛTrendL(y)x

III. RANKINGS DE OBJETOS, ATRIBUTOS Y CONCEPTOS
ATENDIENDO A LAS TENDENCIAS

A partir de las definiciones de ITrendLM y DTrendLM
para el caso de crecimiento y decrecimiento, vamos a intentar
definir relaciones entre los objetos y los atributos de acuerdo
con su evolución en el tiempo.

Denotaremos por ITrendLM(x, y) y ITrendLM(x, y),
respectivamente, al extremo inferior y superior de intervalo
ITrendLM(x, y). Análogamente para DTrendLM(x, y).

Definición 9: Para cada x ∈ X, y ∈ Y, el porcentaje de
crecimiento ITrendLPer y de decrecimiento DTrendLPer
del objeto x para el atributo y se definen como:

ITrendLPer(x, y) =

=

{
ITrendLM(x,y)−ITrendLM(x,y)

1−ITrendLM(x,y) si x ∈ ITrend(y)

0 en otro caso

Del mismo modo,

DTrendLPer(x, y) =

=

{
DTrendLM(x,y)−DTrendLM(x,y)

DTrendLM(x,y)
si x ∈ DTrend(y)

0 en otro caso

Agregando los porcentajes de crecimiento y, análogamente,
de decrecimiento de cada objeto o atributo podremos analizar
sus niveles porcentuales de tendencia.

Definición 10: Para cada x0 ∈ X, y0 ∈ Y definimos su
nivel porcentual de tendencia creciente (o decreciente) de la
siguiente manera:

ΛTLP (x0) =Agr
y∈Y

(ΛTrendLPer(x0, y))

ΛTLP (y0) =Agr
x∈X

(ΛTrendLPer(x, y0))

donde Agr es un operador de agregación.
Esta definición nos permite establecer relaciones de orden

en los conjuntos de objetos y de atributos en función de sus
niveles de tendencia:

Definición 11: Dados zi, zj ∈ X o zi, zj ∈ Y, definimos
las relaciones <ΛTL como zi <ΛTL zj si ΛTLP (zi) <
ΛTLP (zj).

De este modo, obtendremos rankings de crecimiento si tra-
bajamos con ITLP . Aquellos objetos o atributos con mayores
valores de ITLP serán los que hayan evolucionado de forma
más positiva a lo largo del tiempo dentro de su posibilidad de
mejora. También los habrá de decrecimiento, si lo hacemos
con DTLP.

Para obtener una información más completa sobre las ten-
dencias que se pueden observar en la secuencia de contextos
L-fuzzy, el siguiente paso consistirá en analizar la evolución
conjunta de objetos y atributos.

Ası́, utilizando las matrices de tendencias ΛTM , establece-
remos relaciones en los conceptos Trend definidos a partir
de los contextos formales (X,Y,ΛTM) que nos permitan
establecer qué conceptos son los que presentan unas tendencias
más acentuadas.

Asignaremos, en primer lugar, un nivel de tendencia por-
centual a cada uno de los conceptos formales de la siguiente
manera:

Definición 12: Para cada (A,B) concepto formal del con-
texto formal (X,Y,ΛTM) se define el nivel porcentual de
Λ-tendencia del concepto como:

ΛTLPC(A,B) =

=





Agr
(x,y)∈A×B

(ΛTrendLPer(x, y)) si A,B 6= ∅

0 en otro caso

donde Agr es un operador de agregación.
Esto nos permite obtener relaciones entre los conceptos

formales de los contextos definidos a partir de las matrices de
tendencias y establecer qué conceptos son los que presentan
tendencias crecientes o decrecientes más acentuadas. Para ello
utilizaremos la siguiente relación de orden:
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Definición 13: Dados (A,B), (C,D) ∈ X × Y definimos
la relación <ΛTLC de modo que (A,B) <ΛTLC (C,D) si
ΛTLPC(A,B) < ΛTLPC(C,D).

IV. APLICACIÓN PRÁCTICA

Para ilustrar la aplicación de los resultados vamos a con-
siderar una sucesión de contextos L-fuzzy (L,X, Y,Ri), i ∈
{1, . . . , 5} que recoge la estancia media de los clientes en
distintos tipos de alojamientos turı́sticos en algunas regiones
de España a lo largo de un periodo de cinco años.

El objetivo del estudio será analizar si ha habido algún
tipo de tendencia creciente o decreciente en dichas estancias,
teniendo en cuenta tanto los tipos de alojamientos como las
regiones consideradas en el estudio.

En estos contextos L-fuzzy hemos considerado el conjunto
de objetos formado por los distintos tipos de alojamientos
X ={x1=Hotel, x2=Camping, x3=Apartamento Turı́stico,
x4=Casa Rural }. Los atributos considerados son las dis-
tintas regiones en las que se ha realizado el estudio Y =
{y1=Andalucı́a, y2=Cataluña, y3=Navarra, y4=Paı́s Vasco} y
los valores de las relaciones se corresponden con las estancias
medias registradas desde 2016 hasta 2019. Los valores se
han normalizado para trabajar con el retı́culo formado por la
cadena L = {0, 0. 01, . . . , 0. 99, 1} (ver Tabla I).

Analizando los conjuntos derivados obtenidos a partir de
los distintos objetos o atributos, se obtienen las matrices de
tendencia creciente ITM y de tendencia decreciente DTM
que se muestran, respectivamente, en la Tabla II y Tabla III.
Estas matrices nos permiten observar para qué objetos hemos
tenido algún tipo de tendencia y en cuáles de los atributos se
ha mantenido dicha tendencia.

Podemos observar, por ejemplo, que mientras la estancia
media en hoteles (x1) tuvo una tendencia creciente en Anda-
lucı́a (y1), en Navarra y Paı́s Vasco (y3 e y4) la tendencia fue
decreciente.

Tras calcular las distintas matrices de tendencias, con el fin
de conocer en qué regiones y en qué tipos de alojamientos
se ha dado una tendencia más acentuada, vamos a establecer
rankings entre los objetos y los atributos. Calculamos para
ello los niveles porcentuales de tendencia tanto creciente como
decreciente. Los valores obtenidos se muestran en la Tabla IV.

Estos niveles de tendencia nos permiten ordenar los objetos
y atributos atendiendo a su mayor crecimiento o decrecimien-
to. La Figura 1 muestra la ordenación obtenida desde el objeto
(o atributo) con una mayor tendencia creciente.

Figura 1. Rankings de objetos y atributos con tendencia creciente.

Podemos observar que el tipo de alojamiento en el que
más ha crecido la estancia media ha sido en los apartamentos
turı́sticos (x3), mientras que la región que ha tenido una mayor
subida en sus estancias vacacionales ha sido Cataluña (y2).

Análogamente, observando el ranking obtenido a partir de
los niveles de tendencia decreciente (ver Figura 2), vemos que
el tipo de establecimiento que ha acusado una mayor bajada
ha sido el camping (x2). En cuanto a las regiones, la que ha
sufrido un mayor descenso ha sido Navarra (y3).

Figura 2. Rankings de objetos y atributos con tendencia decreciente.

Con el fin de tener una visión conjunta de alojamientos y
regiones, a partir de las matrices de tendencia mostradas en
la Tabla II, definimos los contextos formales (X,Y, ITM) e
(X,Y,DTM) y obtenemos los niveles de tendencia asociados
a sus distintos conceptos formales.

Para los conceptos formales del contexto (X,Y, ITM) se
obtienen los niveles porcentuales de tendencia creciente:

ITLPC(X, ∅) = 0

ITLPC({x1, x3, x4}, {y1}) = 0,25

ITLPC({x2, x3}, {y2}) = 0,93

ITLPC({x4}, {y1, y3}) = 0,42

ITLPC({x3}, {y1, y2, y4}) = 0,54

ITLPC(∅, Y ) = 0

A partir de estos niveles de tendencia obtenemos la prelación
en el conjunto de conceptos, ordenados de mayor a menor
crecimiento, representada en la Figura 3. Tal y como podemos

Figura 3. Ranking de conceptos con tendencia creciente.
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Tabla I
RELACIONES DE LA SUCESIÓN DE CONTEXTOS L-FUZZY.

2015 2016 2017
R1 y1 y2 y3 y4 R2 y1 y2 y3 y4 R3 y1 y2 y3 y4
x1 0. 38 0. 40 0. 31 0. 35 x1 0. 39 0. 41 0. 29 0. 33 x1 0. 39 0. 46 0. 29 0. 30
x2 0. 79 0. 52 0. 80 0. 41 x2 0. 63 0. 64 0. 58 0. 37 x2 0. 58 0. 65 0. 46 0. 36
x3 0. 47 0. 80 0. 56 0. 36 x3 0. 49 0. 80 0. 54 0. 42 x3 0. 56 0. 83 0. 54 0. 55
x4 0. 51 0. 47 0. 40 0. 41 x4 0. 52 0. 40 0. 46 0. 39 x4 0. 56 0. 39 0. 49 0. 38

2018 2019
R4 y1 y2 y3 y4 R5 y1 y2 y3 y4
x1 0. 43 0. 44 0. 22 0. 30 x1 0. 47 0. 42 0. 18 0. 28
x2 0. 52 0. 83 0. 45 0. 42 x2 0. 50 1 0. 45 0. 39
x3 0. 56 0. 87 0. 47 0. 59 x3 0. 58 0. 97 0. 35 0. 72
x4 0. 60 0. 37 0. 52 0. 42 x4 0. 71 0. 37 0. 66 0. 43

Tabla II
MATRIZ DE TENDENCIA CRECIENTE.

ITM y1 y2 y3 y4
x1 1 0 0 0
x2 0 1 0 0
x3 1 1 0 1
x4 1 0 1 0

Tabla III
MATRIZ DE TENDENCIA DECRECIENTE.

DTM y1 y2 y3 y4
x1 0 0 1 1
x2 1 0 1 0
x3 0 0 1 0
x4 0 1 0 0

observar, las estancias que han mantenido una mayor tendencia
creciente se han dado en campings y apartamentos turı́sticos
(x2 y x3) de Cataluña (y2), seguidas de las estancias en
apartamentos turı́sticos (x3) de Andalucı́a, Cataluña y Paı́s
Vasco (y1, y2 e y4).

De manera análoga, podemos calcular los niveles porcen-
tuales de tendencia para los conceptos formales del contexto

Tabla IV
NIVELES PORCENTUALES DE TENDENCIA.

ITLP

x1 0.04 y1 0.19
x2 0.25 y2 0.46
x3 0.41 y3 0.11
x4 0.21 y4 0.14

DTLP

x1 0.15 y1 0.09
x2 0.20 y2 0.05
x3 0.09 y3 0.31
x4 0.05 y4 0.05

(X,Y,DTM) definido a partir de la matriz de tendencia
decreciente. Los valores obtenidos son los siguientes:

DTLPC(X, ∅) = 0

DTLPC({x4}, {y2}) = 0,21

DTLPC({x1, x2, x3}, {y3}) = 0,41

DTLPC({x2}, {y1, y3}) = 0,40

DTLPC({x1}, {y3, y4}) = 0,31

DTLPC(∅, Y ) = 0

La ordenación de los conceptos de mayor a menor decreci-
miento es la representada en la Figura 4.

Figura 4. Ranking de conceptos con tendencia decreciente.

Observamos aquı́ que el mayor decrecimiento se ha dado
en las estancias medias en hoteles, campings y apartamentos
turı́sticos (x1, x2 y x3) de Navarra (y3).

V. CONCLUSIONES Y TRABAJO FUTURO

Hemos continuado con el estudio de tendencias en una
sucesión de contextos L-fuzzy que representa la evolución en
el tiempo de un contexto L-fuzzy analizando las tendencias
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crecientes, decrecientes y la ausencia de tendencias. Se ha ana-
lizado la relevancia de dichas tendencias temporales lo que ha
permitido establecer rankings de objetos, atributos y conceptos
formales. Como lı́nea futura se estudiarán clasificaciones de
objetos y de atributos a partir de conjuntos de partida y según
su crecimiento o decrecimiento.
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Abstract—Different approaches to obtain a notion of metric
in the context of fuzzy setting can be found in the literature.
In this paper, we deal with the concept due to George and
Veeramani, which is defined by means of continuous triangular
norms. Different authors have addressed the study of such a
concept from a theoretical point of view. In this paper, we
provide a new methodology to induce fuzzy metrics which gener-
alize the celebrated standard fuzzy metric. The aforementioned
methodology allows us to approach some questions related to
the continuous triangular norms from which such fuzzy metrics
are defined. Moreover, we show the applicability of the new
fuzzy metrics to an engineering problem. More specifically, we
address successfully robust model estimation through a variant
of the well-known estimator RANSAC. By way of illustration
of the performance of the approach, we report on the accuracy
achieved by the new estimator and other RANSAC variants for
a benchmark involving a specific model estimation problem and
a large number of datasets with varying proportion of outliers
and different levels of noise. The resulting estimator is shown
able to outperform the classical counterparts considered.

Index Terms—Fuzzy metric; continuous t-norm; Dombi t-
norm; standard fuzzy metric; model estimation; RANSAC

I. INTRODUCTION AND PRELIMINARIES

In 1965, L. A. Zadeh introduced the notion of fuzzy
set in [1]. Since then, such a concept has constituted the
grounds of many lines of research in different fields, such as
Mathematics, Computer Science, Economics. In Mathematics
and, in particular, in Topology, an interesting issue consists
in providing a notion of metric, in the fuzzy setting, in
accordance with the essence of the classical concept. With this
aim, in [2], I. Kramosil and J. Michalek introduced a notion
of fuzzy metric space by adapting the concept of statistical
metric due to Menger (see [3]) to the fuzzy context. Later
on, in [4], A. George and P. Veeramani slightly modified the
notion of Kramosil and Michalek with the aim of obtaining a
more faithful adaptation to the fuzzy setting of the classical
concept of metric. In both cases, the concept of fuzzy metric
is defined by means of continuous t-norms (see [5] to find
a deep treatment on t-norms). Following [4], a fuzzy metric
space is a triplet (X,M, ∗) where X is a non-empty set, ∗ is
a continuous t-norm and M is a fuzzy set on X ×X×]0,∞[
satisfying, for each x, y, z ∈ X and t, s ∈]0,∞[, the following:

This work is partially supported by EU-H2020 projects BUGWRIGHT2
(GA 871260) and ROBINS (GA 779776), and by projects PGC2018-095709-
B-C21 (MCIU/AEI/FEDER, UE), and PROCOE/4/2017 (Govern Balear, 50%
P.O. FEDER 2014-2020 Illes Balears). This publication reflects only the
authors views and the European Union is not liable for any use that may
be made of the information contained therein.

(GV1)M(x, y, t) > 0;
(GV2)M(x, y, t) = 1 if and only if x = y;
(GV3)M(x, y, t) = M(y, x, t);
(GV4)M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s);
(GV5) The assignment Mx,y :]0,∞[→]0, 1] is a continuous

function.
As usual, we say that (M, ∗), or simply M if no confusion
arises, is a fuzzy metric on X .

On account of the previous definition, the value of
M(x, y, t) can be interpreted as a degree of nearness between
the point x and y of X with respect to the parameter t ∈]0,∞[.
Then, the closer to 1 is such a value, the nearer the points x and
y with respect to t are. Contrarily, values close to 0 indicate a
lower degree of nearness. Thus, in this notion of fuzzy metric,
1 plays a similar role to 0 for the classical case, whereas 0
can be seen as ∞ in classical metrics. So, axiom (GV1) is
justified by the fact that the degree of nearness with respect
to a parameter never can be zero, just as in the classical case
the distance between two points cannot become ∞.

One can easily identify (GV2), (GV3) and (GV4) as fuzzy
versions of the axioms of, respectively, separation, symmetry
and transitivity, which altogether define the notion of classical
metric. Concretely, (GV2) means that, on the one hand, the
degree of nearness between two points with respect to an
arbitrary parameter only can be 1 whenever both points are
the same. On the other hand, the degree of nearness between
a point and itself is 1, with respect to an arbitrary parameter.
Finally, (GV5) ensures that no drastic changes arise in the
degree of nearness due to slight modifications of the parameter
with respect to which it is being measured.

An immediate consequence of (GV4), which was pointed
out by M. Grabiec for fuzzy metrics in the sense of Kramosil
and Michaleck (see [6]), is that the degree of nearness between
two points does not decrease when the parameter for which
such a degree is relative increases, i.e. for each x, y ∈ X , we
have that M(x, y, t) ≥ M(x, y, s) for each t, s ∈]0,∞[ with
t > s.

This kind of fuzzy metric spaces has been studied by
several authors from the mathematical point of view. Besides,
they have been used successfully in engineering problems
such as colour image filtering or perceptual colour difference
(see [7]–[11]). Indeed, fuzzy metrics show some advantages
with respect to the classical ones. On the one hand, the
parameter t allows the fuzzy metric to be better adapted to
context in which it is to be used. On the other hand, fuzzy
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metrics match perfectly with the employment of other fuzzy
techniques, since the value given by a fuzzy metric, as pointed
out before, can be directly interpreted as a fuzzy degree of
nearness. So, providing useful techniques for generating fuzzy
metrics becomes an interesting issue in order to provide a
wider range of measurement tools in such a way that the fuzzy
metric that best fits the problem being studied can be applied
to solve it.

A celebrated example of fuzzy metric is the so-called
standard fuzzy metric, which is defined from a classical metric
(see [4]). Indeed, let (X, d) be a metric space and define the
fuzzy set Md on X ×X×]0,∞[ as follows:

Md(x, y, t) =
t

t+ d(x, y)
, for each x, y ∈ X, t ∈]0,∞[.

(1)
The standard fuzzy metric on X deduced from d is the pair
(Md, ∗M ), where ∗M denotes the minimum t-norm (i.e. a∗M
b = min{a, b} for each a, b ∈ [0, 1]).

Observe that (X,Md, ∗) is also a fuzzy metric space for
each continuous t-norm ∗, since ∗M is the largest t-norm.
Indeed, given a continuous t-norm ∗, the inequality a ∗M b ≥
a ∗ b is satisfied for each a, b ∈ [0, 1].

From the topological point of view, the standard fuzzy
metric enjoys outstanding properties. The topologies generated
from the standard fuzzy metric and from the classical metric,
from which it is induced, coincide. Besides, it fulfils some
interesting properties which do not make sense in the classical
context but they do in the fuzzy context. Among others, it
should be stressed the property of being strong (see [12]). Let
us recall that a fuzzy metric space (X,M, ∗) is said to be
strong if, in addition, M satisfies, for each x, y, z ∈ X and
t ∈]0,∞[, the next inequality:

M(x, z, t) ≥M(x, y, t) ∗M(y, z, t). (2)

Observe that the preceding inequality is stronger than that
given in the axiom (GV4).

It is a well-known fact that, given a metric space (X, d),
then the standard fuzzy metric space (X,Md, ∗P ) is strong,
where ∗P denotes the usual product t-norm, i.e. a ∗P b =
a · b for each a, b ∈ [0, 1]. Nevertheless, (X,Md, ∗M ) is not a
strong fuzzy metric space in general, as pointed out in [12]. In
view of the preceding fact, an interesting question arises: there
exists a continuous t-norm ∗, different from ∗P , with ∗ ≥ ∗P
and such that (X,Md, ∗) is a strong fuzzy metric space for
each metric space (X, d)?

In [13], a generalization of the fuzzy set Md given by (1)
was introduced defining, for each x, y ∈ X and t ∈]0,∞[, the
next fuzzy set:

Mg,m
d (x, y, t) =

g(t)

g(t) +m · d(x, y)
, (3)

where m ∈]0,∞[ and g :]0,∞[→]0,∞[ is a non-decreasing
continuous function. According to [13], (X,Mg,m

d , ∗P ) is a
strong fuzzy metric space. Nevertheless, an extra condition on
g is required so that (X,Mg,m

d , ∗M ) is a fuzzy metric space
for any arbitrary metric space (X, d). Indeed, if the function g

is not superadditive, i.e. g(t+ s) ≥ g(t) + g(s) for each t, s ∈
]0,∞[, then (X,Mg,m

d , ∗M ) is not, in general, a fuzzy metric
space. Again, similar to the case of the standard fuzzy metric,
it seems natural to wonder whether there exits a continuous t-
norm, different from ∗P , with ∗ ≥ ∗P such that (X,Mg,m

d , ∗)
is a fuzzy metric space for each metric space (X, d) without
requiring any extra condition on g.

Coming back to the applicability of fuzzy metrics, in
most problems, we are interested in measuring some kind
of difference or similarity between objects. Therefore, fuzzy
metrics can be good candidates to evaluate such a measure-
ment. Concretely, the fuzzy set M is used to provide the
aforementioned difference or similarity. However, the t-norm
that defines M as a fuzzy metric does not play any role in
the way in which such a measure is provided and, thus, it
does not contribute anything that can make the fuzzy metric
better fit for the problem under consideration. Since the fuzzy
set Mg,m

d given by expression (3) depends on more elements
than the standard fuzzy metric Md, Mg,m

d allows to get more
flexibility to obtain a measurement tool that fits better to
the problem under consideration than Md. So, providing a
fuzzy set that generalizes expression (3) could improve the
potential applicability of fuzzy metrics, even though such a
generalization does not become a fuzzy metric for the same
class of t-norms for which Mg,m

d is so.
In the light of the exposed facts, the aim of this paper is

twofold. On the one hand, we focus our efforts on obtaining
a fuzzy set that generalizes expression (3) and on finding a
family of continuous t-norms for which this new fuzzy set
becomes a fuzzy metric. Moreover, we are interested in the
study of those continuous t-norms for which this new fuzzy
metric fulfils the property of being strong. Such a study allows
us to approach the two questions posed above. On the other
hand, we address a model estimation problem as an example
of engineering application to illustrate the applicability of the
new fuzzy metric proposed in Section II.

II. THE GENERALIZED STANDARD FUZZY METRIC

In this section, we build a new fuzzy metric which gener-
alizes, in some sense, the standard fuzzy metric and the fuzzy
metric given by expression (3). To this end, we recall a well-
known family of continuous t-norms introduced by J. Dombi
in [14].

Given λ ∈]0,∞[ the t-norm ∗λDom is defined, for each a, b ∈
[0, 1], by the following expression:

a ∗λDom b =





0, if a = 0 or b = 0
1

1+
(
( 1−a

a )
λ

+(( 1−b
b )

λ
) 1
λ

otherwise .

(4)
The construction of the promised fuzzy metric can be found

in the next result:
Theorem 2.1: Let (X, d) be a metric space, m,n ∈]0,∞[

and g :]0,∞[→]0,∞[ be a non-decreasing continuous func-
tion. Define the fuzzy set M̃g,m,n

d on X ×X×]0,∞[ as:

M̃g,m,n
d (x, y, t) =

g(t)

g(t) +m · dn(x, y)
, (5)
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where dn(x, y) denotes (d(x, y))
n. Then, (X, M̃g,m,n

d , ∗) is
a fuzzy metric space for each continuous t-norm ∗ satisfying
∗ ≤ ∗

1
n

Dom.
Proof.

Let ∗ be a continuous t-norm such that ∗ ≤ ∗
1
n

Dom. It is not
hard to check that M̃g,m,n

d satisfies axioms (GV1), (GV2),
(GV3) and (GV5). It remains to prove that (GV4) also holds.

Let x, y, z ∈ X and t, s ∈]0,∞[. We will see that

M̃g,m,n
d (x, z, t+ s) ≥ M̃g,m,n

d (x, y, t) ∗ M̃g,m,n
d (y, z, s).

Set α = max{g(t), g(s)}. Observe that

M̃g,m,n
d (x, z, t+ s) ≥ α

α+m · dn(x, z)
,

M̃g,m,n
d (x, y, t) ≤ α

α+m · dn(x, y)

and
M̃g,m,n
d (y, z, s) ≤ α

α+m · dn(y, z)
.

So, since ∗ ≤ ∗
1
n

Dom, we have that

M̃g,m,n
d (x, y, t) ∗ M̃g,m,n

d (y, z, s) ≤

≤ M̃g,m,n
d (x, y, t) ∗

1
n

Dom M̃g,m,n
d (y, z, s) ≤

≤ α

α+m · dn(x, y)
∗

1
n

Dom

α

α+m · dn(y, z)
=

=
1

1 + m·(d(x,y)+d(y,z))n

α

=
α

α+m · (d(x, y) + d(y, z))n
≤

≤ α

α+m · dn(x, z)
≤ M̃g,m,n

d (x, z, t+ s).

Therefore, for each x, y, z ∈ X and t, s ∈]0,∞[, M̃g,m,n
d

satisfies (GV4) for ∗ and we conclude that (X, M̃g,m,n
d , ∗) is

a fuzzy metric space. �

It must be stressed that (X, M̃g,m,n
d , ∗) is not a fuzzy metric

space, in general, when ∗ does not satisfy the condition ∗ ≤
∗

1
n

Dom, as the next example shows.
Example 2.2: Let (R, du) be the metric space where du is

the Euclidean metric on R, i.e. du(x, y) = |x−y|. Consider the
non-decreasing continuous function g1 :]0,∞[→]0,∞[ given
by g(t) = 1, for each t ∈]0,∞[, and m = n = 1. Then, the
fuzzy set M̃g1,1,1

du
is given by expression (5) as follows:

M̃g1,1,1
du

(x, y, t) =
1

1 + du(x, y)
, for each x, y ∈ R, t ∈]0,∞[.

Let ∗ be a continuous t-norm such that ∗ � ∗1Dom. Then,
there exists a, b ∈]0, 1[ such that a ∗ b > a ∗

1
n

Dom b.
Consider x = a−1

a , y = 0, z = 1−b
b and t, s ∈]0,∞[. Then,

M̃g1,1,1
du

(x, z, t+ s) =
1

1 + 1−a
a + 1−b

b

= a ∗1Dom b,

M̃g1,1,1
du

(x, y, t) = a and M̃g1,1,1
du

(y, z, s) = b.

Therefore, M̃g1,1,1
du

(x, y, t)∗M̃g1,1,1
du

(y, z, s) = a∗b > a∗1Dom
b = M̃g1,1,1

du
(x, z, t + s), and so M̃g1,1,1

du
does not satisfy

(GV4).
On account of Theorem 2.1 and the preceding example,

we conclude that ∗
1
n

Dom is the largest (continuous) t-norm for
which M̃g,m,n

d is a fuzzy metric on X , for each arbitrary
metric space (X, d), each non-decreasing continuous function
g :]0,∞[→]0,∞[ and each m,n ∈]0,∞[. Such a conclusion
allows us to approach the two questions posed in Section I.

On the one hand, Theorem 2.1 introduces a generalization
of the fuzzy set given by expression (3). Indeed, such a
fuzzy set is obtained by considering n = 1 in the fuzzy
set defined by expression (5), i.e. Mg,m

d = M̃g,m,1
d . Besides,

the aforementioned theorem establishes that Mg,m
d is a fuzzy

metric on X for each t-norm ∗ with ∗ ≤ ∗1Dom. This fact
allows us to answer in affirmative way one of the questions
that we wondered in Section I, which is whether there exists
a continuous t-norm ∗ ≥ ∗P such that (X,Md, ∗) is a fuzzy
metric space for each metric space (X, d) without requiring
any extra condition on g.

First, observe that, for each a, b ∈]0, 1], we have that

a ∗1Dom b =
1

1 + 1−a
a + 1−b

b

=
ab

a+ b− ab .

Now,

ab

a+ b− ab ≥ a · b⇔ 1 ≥ a+ b− ab = a(1− b) + b.

Taking into account that a ≤ 1 we have that 1 = 1− b+ b ≥
a(1− b) + b. So, a ∗1Dom b ≥ a ∗P b for each a, b ∈]0, 1]. Thus
∗1Dom ≥ ∗P for each a, b ∈ [0, 1], since a∗1Dom b = 0 = a∗P b
whenever a = 0 or b = 0.

Hence, we have found a continuous Archimedean t-norm
greater that the product t-norm ∗P for which Mg,m

d is a
fuzzy metric on X , for each arbitrary metric space (X, d),
each non-decreasing continuous function g :]0,∞[→]0,∞[
and each m ∈]0,∞[. Furthermore, on account of Example 2.2
we conclude that ∗1Dom is the largest t-norm for which
(X,Mg,1, ∗1Dom) is a fuzzy metric space, in general.

On the other hand, M̃g,m,n
d becomes the standard fuzzy met-

ric when we consider the non-decreasing continuous function
g(t) = t and m = n = 1. Under this remark and, based on the
argument exposed in the proof of Theorem 2.1, we prove the
next result which will be useful to answer the first question
about the standard fuzzy metric set out in Section I.

Theorem 2.3: Let (X, d) be a metric space, m,n ∈]0,∞[
and g :]0,∞[→]0,∞[ be a non-decreasing continuous func-
tion. Then the fuzzy metric space (X, M̃g,m,n

d , ∗), where
M̃g,m,n
d is given by (5), is strong for each continuous t-norm

satisfying ∗ ≤ ∗
1
n

Dom.
Proof.

Consider a continuous t-norm ∗ such that ∗ ≤ ∗
1
n

Dom. By
Theorem 2.1 we conclude that (X, M̃g,m,n

d , ∗) is a fuzzy
metric space. It remains to show that inequality (2) holds.
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Let x, y, z ∈ X and t, s ∈]0,∞[. Then,

M̃g,m,n
d (x, z, t) =

g(t)

g(t) +m · dn(x, z)
≥

≥ g(t)

g(t) +m · (d(x, y) + d(y, z))n
=

= M̃g,m,n
d (x, y, t) ∗

1
n

Dom M̃g,m,n
d (y, z, t) ≥

M̃g,m,n
d (x, y, t) ∗ M̃g,m,n

d (y, z, t).

Hence, (X, M̃g,m,n
d , ∗) is a strong fuzzy metric space. �

As a consequence of the previous theorem, we conclude
that (X,Md, ∗1Dom) is a strong fuzzy metric space. This fact
answers affirmatively the first question lay out in Section I
by providing a continuous t-norm greater that the product t-
norm ∗P for which the standard fuzzy metric is strong for any
arbitrary metric space (X, d).

Even more, on account of Example 2.2 we conclude that
the standard fuzzy metric is just a strong fuzzy metric in
general for continuous t-norms less than ∗1Dom. Notice that
the aforementioned example provides that the standard fuzzy
metric (R,Mdu , ∗) is not strong if ∗ � ∗1Dom. Indeed, let
a, b ∈]0, 1[ such that a ∗ b > a ∗1Dom b. Then, take x = a−1

a ,
y = 0 and z = 1−b

b . Therefore,

Mdu(x, z, 1) =
1

1 + 1−a
a + 1−b

b

= a ∗1Dom b < a ∗ b =

= Mdu(x, y, 1) ∗Mdu(y, z, 1).

III. APPLICATION CASE: ROBUST MODEL ESTIMATION

Solving model estimation problems is a fundamental com-
ponent of numerous applications involving perception tasks.
Nowadays, facing this kind of problem requires to cope with
new challenges due to an increased use of poor, low-cost
sensors, and the ever growing deployment of robotic devices
which may operate in potentially unknown environments.
Generally speaking, the underlying algorithms have to be
robust against uncertain data that besides may be corrupted
by outliers, i.e. data items which are not consistent with the
original model due to an arbitrary bias affecting them. A robust
estimator is able to correctly find the original model that
supposedly the input data fits to under the aforementioned
conditions [15]. The Random Sample Consensus algorithm
(RANSAC) [16] is one of these robust estimation techniques,
which is widely used nowadays, so much that it has become
common in robotics and computer vision.

Briefly speaking, RANSAC tries to achieve a maximum
consensus in the input dataset in order to deduce the inliers
by generating random hypotheses on the model parameters
through a hypothesize-and-verify approach. That is to say,
instead of using every sample in the dataset to perform the
estimation as in traditional regression techniques, RANSAC
tests many random sets of samples and outputs the one leading
to the best fitting. Since picking an extra point decreases

exponentially the probability of selecting an outlier-free sam-
ple [17], RANSAC takes the Minimum Sample Set size (MSS)
to determine a unique candidate model, thus increasing its
chances of finding an all-inlier sample set. This model is
assigned a score based on the cardinality of its consensus set.
Finally, RANSAC returns the hypothesis that has achieved the
highest consensus and the set of inliers, which are used next
to estimate the ultimate model by regression.

Searching for an all-inlier sample, RANSAC typically runs
for N iterations:

N =
log (1− ρ)

log (1− (1− ω)s)
(6)

where ρ is the desired probability of success, i.e. at least one
of the considered random sets is outlier-free, s is the size of
the MSS for the problem at hand and ω is the ratio of outliers.
See [16] for the details on Eq. (6).

Algorithm 1 outlines FM-based RANSAC, a variant of
RANSAC described in [18] that avoids discriminating between
inliers and outliers by means of the use of a fuzzy metric that
encodes as a similarity the compatibility of each sample to the
currently hypothesized model. In this work, we particularize
FM-based RANSAC for the fuzzy metric M̃g,m,n

d introduced
as Eq. (5) in Section II. M̃g,m,n

d is also incorporated into
the final model refinement step that follows the main hy-
pothesis selection loop. Finally, in Section IV, we report on
the accuracy achieved by FM-based RANSAC for a specific
model estimation problem when using M̃g,m,n

d for different
values of m and n. The assessment involves a comparison
with RANSAC and MSAC [19] for a benchmark comprising
a large number of datasets with varying proportion of outliers
and different levels of noise.

We detail next the features of FM-based RANSAC:
1) Samples classification. In the original RANSAC, for

every model considered, data samples are classified
into inliers and outliers by comparing the fitting error
with a threshold τI related to data noise. As already
mentioned, FM-based RANSAC does not distinguish
between inliers and outliers, but makes use of a com-
patibility value φ ∈ [0, 1] between each sample xj
and the current model MΘ̂k

, given the fitting error
ε(xj ;MΘ̂k

). Such compatibility value derives from the
fuzzy metric M̃g,m,n

d once parameterized by (d,Φ) with
Φ = (n,m, g). Since in the following we contemplate
the use of an only, specific distance d, i.e. the Euclidean
metric, and g is set to the constant function θn as a
reference of noise scale1, we denote the fuzzy metric as
Mm,n eliminating the allusion to d and g. From now
on, the value of Mm,n will be denoted by φ(ε; Φ).

2) Model scoring. The individual compatibility values
φ(ε; Φ) are aggregated by simple summation to obtain
the model score (step 6 in Alg. 1) and hence the so-far-
the-best-model is given by the maximum score found up
to the current iteration (steps 7 - 9 of Alg. 1).

1In this regard, we refer to the form Mg,m,n
d (x, y) = 1

1+m·(d(x,y)/θ)n .
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Algorithm 1 FM-based RANSAC

Input: D - dataset comprising samples {xj}
φ(ε ; Φ) - FM compatibility value for fitting error
kmax - maximum number of iterations of the main loop
tmax - maximum number of iterations of the refinement

stage
Output: MΘ̂ - estimated model

1: k := 0, ϕmax := −∞
2: for k := 1 to kmax do . find best consensus model MΘ̂
3: select randomly a minimal sample set Sk of size s
4: estimate model MΘ̂k

from Sk
5: calculate fitting errors ε(xj ;MΘ̂k

),∀xj ∈ D
6: find model score ϕk :=

∑
xj∈D φ( ε(xj ;MΘ̂k

) ; Φ )
7: if ϕk > ϕmax then
8: ϕmax := ϕk, M0

Θ̂
:=MΘ̂k

9: end if
10: end for
11: t := 0
12: repeat . refine model MΘ̂
13: calculate fitting errors ε(xj ;Mt

Θ̂
),∀xj ∈ D

14: estimate modelMt+1

Θ̂
using weights φ(ε(xj ;Mt

Θ̂
) ; Φ )

15: t := t+ 1
16: until convergence or t ≥ tmax
17: return Mt

Θ̂

3) Model refinement. Once a sufficient number of models
have been considered, we re-estimate the winning model
using iterative weighted least squares, where the com-
patibility values φ(ε; Φ), calculated for the fitting errors
resulting from the current model, are used as weights for
the new, refined model (steps 12 - 16 of Alg. 1). The
loop iterates until changes in the estimated parameters
of the model Θ̂ are negligible (or after tmax iterations).

IV. EXPERIMENTAL RESULTS

A. Experimental setup

For testing purposes, we consider a hyperplane model
estimation problem for 2D (straight lines), 3D (planes) and
10D, the latter as a case of higher dimensionality. To this end,
we generate synthetic datasets stemming from hyperplanes in
random orientations and positions: 500 for 2D/3D hyperplanes
and 250 for 10D hyperplanes. Given a 2D/3D/10D random
point p belonging to a hyperplane with normal vector ~n, an
inlier pI is generated by shifting p along ~n using a zero-
mean Gaussian distribution with standard deviation σ, i.e.
pI = p + N (0, σ) · ~n. Outliers pO are uniformly generated
within a rectangular area containing part of the hyperplane,
ensuring that they lie out of a 3σ stripe at both sides of the
hyperplane. Every pair (σ, ω) gives rise to a different dataset.

Regarding hypothesis generation within the main loop, in all
experiments, the size of the MSS is always set to the minimum,
i.e. s = 2, s = 3 and s = 10 for respectively 2D, 3D and 10D.
Besides, the number of iterations kmax is calculated according

to Eq. (6), with ρ = 99%. The parameters of φ(ε; Φ), Φ =
(n,m, g), are set as follows: n,m ∈ {1, 2}, as indicated for
each experiment; and g is the constant function θn, where
θ = κ · σ. For RANSAC/MSAC τI = κ · σ. Different values
for κ are considered for both θ and τI . Finally, to compare
properly RANSAC, MSAC and our estimator, we make use of
the same sequence of MSS’s to avoid the effect of randomness.

B. Results and discussion

In the following, to measure the estimation accuracy for
the hyperplane fitting problem, we make use of the average
µ[ε] of the angle ε between the true and the estimated normal
vector. We also report on the average number of iterations
spent during model refinement µ[t].

Table I and Fig. 1 show performance results for the fuzzy
metric Mm,n and several outlier ratios ω and Gaussian noise
magnitudes σ. In sight of these results, it is worth noting
that: (1) the estimation accuracy for M2,2 is above that of
plain RANSAC and MSAC in all cases, while, for the other
configurations of Mm,n, the accuracy is in general better
than the classical counterparts though not in all cases; (2) the
value of θ in Mm,n does not seem to be critical, since the
highest change in µ[ε] for θ with κ ∈ {1, 2, 2.5, 3, 4} is less
than 1◦; (3) the distribution of the average error µ[ε] shows
always larger errors for RANSAC/MSAC than for M2,2 for all
percentiles. As for the number of iterations of the refinement
stage t: (4) in general, µ[t] is similar for every combination
of Mm,n when varying the noise parameters (σ, ω) and
particularly higher for M2,2 when κ is low; (5) lower values of
κ allow the proposed estimator to perform a better refinement
stage in terms of accuracy but at the expense of computational
cost since more iterations are required. Regarding the fuzzy
metric Mm,n, both M2,n and Mm,2 lead in general to higher
accuracy, with a slight increase in the number of refining
iterations for low κ values or higher noise (σ, ω).

V. CONCLUSIONS

This work introduces a methodology to induce fuzzy metrics
that generalizes the celebrated standard fuzzy metric. More-
over, some questions related to the continuous triangular norms
from which such fuzzy metrics are defined have been posed
and answered. A concrete new fuzzy metric induced through
the aforementioned methodology has been succesfully embed-
ded within a revised version of RANSAC. By means of this
metric, we avoid discriminating between inliers and outliers, to
instead make use of a compatibility value to the current model
for each sample. Experimental results show good performance,
actually outperforming two classical counterparts, RANSAC
and MSAC.
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TABLE I
2D/3D/10D HYPERPLANES ESTIMATION ACCURACY AND NUMBER OF

ITERATIONS OF THE REFINEMENT STAGE FOR (TOP) DIFFERENT OUTLIER
RATIOS ω, (MIDDLE) DIFFERENT NOISE MAGNITUDES σ AND (BOTTOM)

DIFFERENT SETTINGS FOR τI , θ = κ · σ. WHEN KEPT CONSTANT: σ = 1,
ω = 0.4, κ = 3. LIGHTER BACKGROUND MEANS HIGHER PERFORMANCE.

2D µ[ε] (◦)

ω RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

0.60 4.43 3.14 4.63 4.10 3.97 3.10
0.50 3.03 2.33 2.61 2.33 2.28 1.88
0.40 2.13 1.81 1.77 1.59 1.57 1.33
0.20 1.58 1.53 0.96 0.88 0.89 0.80

µ[t]

ω
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

0.60 9.11 10.44 10.79 11.05
0.50 7.28 7.93 8.57 8.58
0.40 6.47 6.71 7.68 7.40
0.20 5.68 5.51 6.82 6.32

σ RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

2.00 9.82 6.92 4.08 4.62 3.87 4.46
1.00 2.13 1.81 1.77 1.59 1.57 1.33
0.50 0.74 0.71 0.90 0.55 0.73 0.45
0.25 0.37 0.36 0.48 0.20 0.36 0.17

σ
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

2.00 7.40 8.38 9.00 9.64
1.00 6.47 6.71 7.68 7.40
0.50 6.20 5.63 7.21 6.29
0.25 6.02 4.93 6.87 5.57

κ RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

4.00 2.85 2.09 1.85 1.84 1.65 1.54
3.00 2.13 1.81 1.77 1.59 1.57 1.33
2.50 2.03 1.88 1.71 1.45 1.52 1.23
2.00 2.18 2.18 1.65 1.29 1.47 1.13
1.00 3.60 3.58 1.47 1.04 1.35 1.01

κ
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

4.00 6.05 6.26 7.14 6.81
3.00 6.47 6.71 7.68 7.40
2.50 6.79 7.02 8.03 7.94
2.00 7.14 7.54 8.61 8.78
1.00 8.61 10.65 10.66 13.56

3D µ[ε] (◦)

ω RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

0.60 6.14 4.58 5.11 4.00 4.24 3.04
0.50 4.07 3.48 2.90 2.34 2.46 1.87
0.40 3.13 3.01 1.95 1.61 1.69 1.35
0.20 2.31 2.29 1.07 0.92 0.98 0.84

µ[t]

ω
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

0.60 10.02 10.87 11.69 11.47
0.50 7.55 8.10 9.05 8.83
0.40 6.69 6.91 8.01 7.67
0.20 5.73 5.55 6.87 6.41

σ RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

2.00 13.32 9.97 5.21 4.92 4.53 4.32
1.00 3.13 3.01 1.95 1.61 1.69 1.35
0.50 1.11 1.08 0.99 0.57 0.79 0.47
0.25 0.64 0.63 0.52 0.21 0.39 0.18

σ
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

2.00 8.68 9.63 10.45 10.66
1.00 6.69 6.91 8.01 7.67
0.50 6.32 5.82 7.43 6.52
0.25 6.15 5.19 7.14 5.91

κ RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

4.00 3.71 2.95 2.07 1.87 1.79 1.56
3.00 3.13 3.01 1.95 1.61 1.69 1.35
2.50 3.23 3.22 1.88 1.46 1.63 1.25
2.00 3.75 3.75 1.79 1.31 1.57 1.15
1.00 5.73 5.83 1.57 1.07 1.43 1.06

κ
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

4.00 6.23 6.47 7.40 7.04
3.00 6.69 6.91 8.01 7.67
2.50 7.00 7.28 8.45 8.25
2.00 7.40 7.87 9.04 9.17
1.00 9.04 11.25 11.33 14.38

10D µ[ε] (◦)

ω RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

0.60 10.69 10.18 7.46 4.19 5.53 3.00
0.50 8.82 8.77 3.56 2.26 2.83 1.78
0.40 6.92 6.94 2.29 1.54 1.88 1.29
0.20 5.66 5.70 1.17 0.90 1.03 0.84

µ[t]

ω
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

0.60 14.12 14.53 15.61 14.52
0.50 8.85 9.50 10.67 10.34
0.40 7.30 7.60 8.88 8.50
0.20 6.02 5.98 7.28 6.88

σ RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

2.00 26.76 20.83 9.83 7.47 7.49 5.52
1.00 6.92 6.94 2.29 1.54 1.88 1.29
0.50 3.03 3.04 1.08 0.55 0.84 0.48
0.25 1.30 1.31 0.56 0.22 0.42 0.20

σ
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

2.00 15.13 16.20 16.62 16.38
1.00 7.30 7.60 8.88 8.50
0.50 6.74 6.38 8.00 7.22
0.25 6.45 5.81 7.56 6.63

κ RANSAC MSAC FM-based RANSAC
M1,1 M1,2 M2,1 M2,2

4.00 6.26 6.09 2.50 1.85 2.03 1.49
3.00 6.92 6.94 2.29 1.54 1.88 1.29
2.50 7.75 7.86 2.16 1.39 1.80 1.20
2.00 9.03 9.13 2.03 1.26 1.71 1.14
1.00 12.61 12.61 1.71 1.10 1.52 1.12

κ
FM-based RANSAC

M1,1 M1,2 M2,1 M2,2

4.00 6.96 7.16 8.14 7.74
3.00 7.30 7.60 8.88 8.50
2.50 7.78 8.03 9.28 9.11
2.00 8.14 8.79 10.06 10.06
1.00 10.06 12.41 12.58 15.87
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Banská Bystrica, Slovakia
vladimir.janis@umb.sk

5th Susana Montes
Dept. Statistics, O.R & M.E.

University of Oviedo
Oviedo, Spain

montes@uniovi.es

Resumen—En muchos problemas reales no se pueden tomar
medidas de forma exacta. Ası́, los conjuntos difusos surgieron
como una forma de intentar tratar con la incertidumbre de la
forma más eficiente posible. Por otro lado, debe señalarse que la
convexidad es un concepto interesante en varias áreas dentro de
las matemáticas. Teniendo esto en cuenta, en este documento
proponemos una extensión del concepto de convexidad para
conjuntos difusos intervalo-valuados basada en el uso de t-
normas para intervalos. Para ello, y teniendo en consideración la
literatura cientı́fica existente respecto de t-normas, presentamos
una definición de t-norma aplicada a intervalos. Por último,
comprobamos que nuestra definición de convexidad, utilizando
t-normas, preserva la convexidad a través de intersecciones, es
decir, que la intersección de dos conjuntos difusos intervalo-
valuados convexos es también convexa.

Index Terms—Conjuntos difusos intervalo-valuados, t-normas,
convexidad

I. INTRODUCCIÓN

En la vida real no todas las mediciones son exactas, por
ello, en 1965, Zadeh [29] introdujo los conjuntos difusos para
lidiar con la imprecisión. Desde entonces, muchos autores los
han estudiado, ası́ como a sus extensiones. Una de las más
conocidas es la que da lugar a los conjuntos difusos intervalo-
valuados, que fueron en la década de 1970 presentados in-
dependientemente por Zadeh [30], Grattan-Guiness [13], Jahn
[16] y Sambuc [22]. Hoy en dı́a, los estudios sobre este tipo
de conjuntos han aumentado gracias a su aplicabilidad (ver
[5], [7], [12], [22], [26]).

Por otro lado, la convexidad es una herramienta muy útil
en muchos campos de las matemáticas (ver por ejemplo [17]–
[19], [25]).

Este estudio ha sido parcialmente patrocinado por el programa español MI-
NECO (TIN-2017-87600-P: P. Alonso; PGC2018-098623-B-I00: P. Huidobro
and S. Montes), MICIN (PID2019!108392GB!I00: H. Bustince), la ayuda
no. 1/0150/21 proporcionada por la agencia de subvenciones eslovaca VEGA
(V. Janiš) y el programa de ayudas Severo Ochoa PA-20PF-BP19-169 (P.
Huidobro).

Cuando Zadeh presentó los conjuntos difusos, estudió tam-
bién su convexidad. Desde entonces, numerosos autores han
trabajado sobre este tema, ası́ como sobre la convexidad de
sus extensiones, por ejemplo Ammar y Metz [1], Diaz et al.
[8], Gupta y Dabgar [14], Ramik y Vlach [21], Sarkar [23],
Syau y Lee [24], Yang [28] o Zhang et al. [31].

Según nuestro conocimiento, la convexidad en conjuntos di-
fusos intervalo-valuados no ha sido estudiada en profundidad,
por lo que Huidobro et al. [15] han trabajado recientemente
en esa dirección.

Este trabajo está organizado del siguiente modo. Primero,
en la sección 2, haremos una presentación de los conceptos
necesarios para los desarrollos llevados a cabo. A continua-
ción, en la sección 3 estudiaremos las t-normas para intervalos
cerrados contenidos en el [0, 1]. Finalmente, analizaremos
si la convexidad de conjuntos difusos intervalo-valuados se
preserva por intersecciones.

II. CONCEPTOS BÁSICOS

Denotaremos por X al conjunto de referencia. Un conjunto
difuso µA puede caracterizarse por una función de pertenencia
µA : X → [0, 1]. La colección de todos los conjuntos difusos
sobre X se representa como FS(X). Un conjunto difuso
intervalo-valuado está caracterizado por una función A : X →
L([0, 1]), donde A(x) = [A(x), A(x)] y A(x) ≤ A(x) para
todo x ∈ X, y L([0, 1]) son todos los intervalos cerrados
contenidos en el [0, 1]. Denotaremos como IV FS(X) a la
colección de todos los conjuntos difusos intervalo-valuados
en X . Podemos observar que los conjuntos difusos intervalo-
valuados son una generalización de los conjuntos difusos,
donde la función de pertenencia toma como valor intervalos.

El primer problema que encontramos es cómo ordenar los
elementos. Mientras que en R hay un orden natural (a ≤ b
sii b − a no es un número negativo), en L([0, 1]) no ocurre
lo mismo. Algo que parece lógico, a la hora de considerar
órdenes, es respetar el orden reticular (lattice order en inglés)
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[11], definido como a �Lo b if a ≤ b y a ≤ b para cualquier
a = [a, a] y b = [b, b] en L([0, 1]). En este trabajo seguiremos
las ideas de Bustince et al. [6] usando órdenes admisibles, que
son órdenes totales refinando el order reticular. Para un estudio
más detallado del uso de órdenes admisibles entre intervalos
ver [15].

Definición 2.1: [6] Sea (L([0, 1]),�) un conjunto parcial-
mente ordenado. El orden � se dice admisible si verifica

i) � es un orden total en L([0, 1]),
ii) para todo [a, a], [b, b] ∈ L([0, 1]), [a, a] � [b, b] cuando

[a, a] ≤Lo [b, b].
Los órdenes admisibles pueden generarse con funciones de

agregación, ası́ que recordemos su definición.
Definición 2.2: [4], [20] Sea A :

⋃n
i=1[0, 1]n → [0, 1]

cumpliendo
i) A(0, 0, . . . , 0) = 0,A(1, 1, . . . , 1) = 1,

ii) A es monótona en cada variable,
entonces A se llama función de agregación.

Hemos restringido el método propuesto por Bustince et al.
[6] al intervalo [0, 1], ya que aunque el resultado original
trabaja con funciones en R, nosotros estamos centrados en
el intervalo [0,1]:

Proposición 2.1: Sean A,B : [0, 1]2 → [0, 1] dos funciones
de agregación continuas y sean (u∗, v∗), (u′, v′) ∈ {(u, v) ∈
[0, 1]2 |u ≤ v}. Las igualdades A(u∗, v∗) = A(u′, v′) y
B(u∗, v∗) = B(u′, v′) sólo pueden darse si (u∗, v∗) = (u′, v′).
Definida la relación �A,B en L([0, 1]) por a �A,B b si y solo
si

A(a, a) < A(b, b)

o
A(a, a) = A(b, b) y B(a, a) ≤ B(b, b)).

Entonces �A,B es un orden admisible en L([0, 1]).
Con este método, no solo podemos construir nuevos órdenes

admisibles, sino que también podemos comprobar que algunos
de los órdenes más conocidos para intervalos son, en efecto,
órdenes admisibles. Por ejemplo:

Orden lexicográfico tipo 1 [6]: a �Lex1 b ⇔ a < b o
a = b y a ≤ b, donde A(x, y) = x and B(x, y) = y.
Orden lexicográfico tipo 2 [6]: a �Lex2 b ⇔ a < b o
a = b y a ≤ b, donde A(x, y) = y and B(x, y) = x.
Orden de Xu y Yager [27]: a �Y X b⇔ a+ a < b+ b o
a + a = b + b y a− a ≤ b− b, donde A(x, y) = x + y
and B(x, y) = y − x.

Por otro lado, dados dos conjuntos difusos µA y µB , se
dice que µA está contenido en µB si µA(x) ≤ µB(x) [29].
Basándose en esta idea, si A y B son dos conjuntos difusos
intervalo-valuados, decimos que A está o-contenido en B, y lo
denotamos como A ⊆o B, si A(x) �o B(x) para todo x ∈ X ,
donde �o es una relación de orden en L([0, 1]). Teniendo en
cuenta este punto de vista, Huidobro et al. [15] definieron la
intersección de conjuntos difusos intervalo-valuados.

Definición 2.3: [15] Sean A, B dos conjuntos difusos
intervalo-valuados en X y sea �o una relación de orden en

L([0, 1]). Se llama o-intersección de A y B, A∩oB, al mayor
conjunto difuso intervalo-valuado o-contenido en A y B.

En [15], Huidobro et al. probaron que esta definición depen-
de del orden considerado en L([0, 1]), obteniéndose distintas
intersecciones para los distintos órdenes, pero con algo en
común si se utilizan órdenes totales.

Proposición 2.2: [15] Sea �o un orden total en L([0, 1]).
Para cualquier A,B ∈ IV FS(X), la o-intersección de A y B
es el conjunto difuso intervalo-valuado definido por:

A ∩o B(x) =

{
A(x) si A(x) �o B(x),
B(x) si B(x) �o A(x).

En consecuencia, resulta evidente que si A está o-incluido
en B, entonces la intersección de A y B es A, ya que es el
conjunto más grande contenido en ambos.

III. T-NORMAS PARA INTERVALOS

En esta sección repasaremos algunas de las definiciones
que se pueden encontrar en la literatura sobre t-normas para
después presentar nuestra propuesta.

Las t-normas en [0, 1] son funciones t : [0, 1]×[0, 1]→ [0, 1]
asociativas, conmutativas y crecientes en cada argumento
verificando que t(1, u) = u para todo u ∈ [0, 1]. Para inter-
valos, Gehrke et al. [10] consideraron el orden reticular y el
contenido usual. Partieron de que dado un punto c ∈ L([0, 1]),
tiene un intervalo asociado [c, c] y con varias premisas más
llegaron a la siguiente definición:

Definición 3.1: [10] Una operación binaria T en L([0, 1])
que es asociativa y conmutativa es una t-norma si para todo
a, b, c ∈ L([0, 1]) se cumplen las siguientes propiedades:

i) T ([u, u], [v, v]) es un intervalo degenerado (origen y
extremo coincidentes), donde u, v ∈ [0, 1],

ii) T (a, b ∨ c) = T (a, b) ∨ T (a, c),
iii) T (a, b ∧ c) = T (a, b) ∧ T (a, c),
iv) T (a, [1, 1]) = a,
v) T ([0, 1], [a, a]) = [0, a],

donde ∨ y ∧ se definen como:

[a, a] ∨ [b, b] = [a ∨ b, a ∨ b],
[a, a] ∧ [b, b] = [a ∧ b, a ∧ b].

Además, también dieron una caracterización de las t-normas
para intervalos.

Teorema 3.1: [10] Toda t-norma en L([0, 1]) se puede poner
de la forma T (a, b) = [t(a, b), t(a, b)], donde t es una t-norma
en [0, 1].

Además, fueron capaces de relajar la última condición de
la definición si el operador binario es convexo, es decir, si
T (a, b) ≤Lo c ≤Lo T (d, e), entonces existen r, s ∈ L([0, 1])
con a ≤Lo r ≤Lo d y b ≤Lo s ≤Lo e de manera que c =
T (r, s).

Teorema 3.2: [10] Un operador binario convexo, conmuta-
tivo y asociativo, T en L([0, 1]), es una t-norma si para todo
a, b, c ∈ L([0, 1]) se verifican las siguientes propiedades:

i) T ([u, u], [v, v]) es un intervalo degenerado (origen y
extremo coincidentes), donde u, v ∈ [0, 1],

ii) T (a, b ∨ c) = T (a, b) ∨ T (a, c),
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iii) T (a, b ∧ c) = T (a, b) ∧ T (a, c),
iv) T (a, [1, 1]) = a,
v) T ([0, 1], [0, 1]) = [0, 1].
Bedregal y Takahashi [3] propusieron una extensión de la

definición dada por Gehrke et al.:
Definición 3.2: [3] Una aplicación T en L([0, 1]) es una

t-norma para intervalos si para todo a, b, c, d ∈ L([0, 1]) se
verifica:

i) T (a, b) = T (b, a),
ii) T (a, T (b, c)) = T (T (a, b), c)),

iii) si a ≤Lo b y c ≤Lo d, entonces T (a, c) ≤Lo T (b, d),
iv) si a ⊆ b y c ⊆ d, entonces T (a, c) ⊆ T (b, d),
v) T (a, [1, 1]) = a.
De este modo obtenemos t-normas para intervalos partiendo

de t-normas.
Proposición 3.1: [3] Sean t1 y t2 dos t-normas en [0, 1].

Si t1 ≤ t2, entonces la aplicación I[t1, t2], definida como
I[t1, t2](a, b) = [t1(a, b), t2(a, b)], es una t-norma para inter-
valos llamada t-norma para intervalos derivada de t1 y t2.

Cuando consideramos un intervalo como un conjunto de
números reales, tras hallar la intersección de a y b, a∩b, tiene
sentido que si a1 ⊆ a y b1 ⊆ b, entonces a1∩ b1 ⊆ a∩ b [32].
Sin embargo, nosotros estamos considerando que un intervalo
es una descripción imprecisa de la funcion de pertenencia,
ya que estamos usando conjuntos difusos intervalo-valuados.
Desde esta perspectiva, la monotonı́a en la inclusión es equi-
valente a ser creciente, esto es, si A,B ∈ IV FS(X), A ⊆o B
si y solo si A(x) �o B(x),∀x ∈ X .

Por ello, en este trabajo consideraremos la definición pro-
puesta por Deschrijver [9]. En ella, elimina la cuarta condición
de la Definición 3.2.

Definición 3.3: [9] Una t-norma en L([0, 1]) es una función
T : L([0, 1]) × L([0, 1]) → L([0, 1]) conmutativa, asociativa,
creciente en ambos argumentos con respecto a ≤Lo y cum-
pliendo que T ([1, 1], a) = a para todo a ∈ L([0, 1]).

Partiendo de esta definición, podrı́amos definir t-norma para
intervalos como:

Definición 3.4: Sea �o un orden en L([0, 1]). Una t-norma
en L([0, 1]) es una función T : L([0, 1])×L([0, 1])→ L([0, 1])
conmutativa, asociativa, creciente en ambos argumentos con
respecto a ≤o y tal que T ([1, 1], a) = a para todo a ∈
L([0, 1]).

Una de las t-normas más conocidas es la función mı́nimo.
En nuestro caso, el mı́nimo también es t-norma para intervalos.

Proposición 3.2: Sea �o un orden admisible en L([0, 1]).
La aplicación TM : L([0, 1]) × L([0, 1]) → L([0, 1]) definida
como TM ([a, a], [b, b]) = mı́n{[a, a], [b, b]} para cualquier
[a, a], [b, b] ∈ L([0, 1]) es una t-norma para intervalos.

Como hemos visto previamente, son interesantes aquellos
casos donde podemos relacionar t-normas para intervalos con
t-normas para números (ver [2], [3], [9]).

Definición 3.5: Sea T una t-norma en L([0, 1]). T se dice
representable si existen dos t-normas, t1, t2 tal que T (a, b) =
[t1(a, b), t2(a, b)], para todo a, b ∈ L([0, 1]).

En general es más sencillo usar t-normas representables para
intervalos, ya que simplifican la dificultad del problema.

Proposición 3.3: Sean t1, t2 dos t-normas con t1 ≤ t2. La
función T : L([0, 1]) × L([0, 1]) → L([0, 1]) definida como
T (a, b) = [t1(a, b), t2(a, b)] es una t-norma para intervalos
con respecto al orden reticular.

Nota 3.1: Este resultado no es cierto para cualquier orden. Si
consideramos un ejemplo de orden admisible como es el orden
lexicográfico tipo 1, podemos obtener que [0,2, 0,7] �Lex1
[0,3, 0,4]. Sin embargo, considerando que t1 y t2 sean la
t-norma mı́nimo, llegamos a que T ([0,1, 0,8], [0,2, 0,7]) =
[0,1, 0,7] y T ([0,1, 0,8], [0,3, 0,4]) = [0,1, 0,4]. Por tanto,
T ([0,1, 0,8], [0,2, 0,7]) 6�Lex1 T ([0,1, 0,8], [0,3, 0,4]), y pode-
mos concluir que T no es creciente en la segunda componente.

Para otros órdenes admisibles pueden conseguirse contra-
ejemplos similares.

En la Proposición 3.3 hemos obtenido un método para
obtener t-normas aplicadas a intervalos a partir de t-normas,
sin embargo, hemos visto en la Nota 3.1 que esto no siempre
es posible. De hecho, hemos encontrado una caracterización
en el siguiente resultado:

Proposición 3.4: Sea �o un orden total en L([0, 1]) y sean
t1 y t2 dos t-normas en [0, 1]. Si consideramos la aplicación T
definida como T (a, b) = [t1(a, b), t2(a, b)], entonces tenemos
que T es una t-norma para intervalos si y solo si T es creciente
en el segundo argumento.

IV. CONVEXIDAD DE CONJUNTOS DIFUSOS
INTERVALO-VALUADOS UTILIZANDO T-NORMAS

En este trabajo hemos considerado la definición de conve-
xidad propuesta por Huidobro et al. [15]:

Definición 4.1: Sea (X,≤) un espacio ordenado y sea
�o una relación de orden en L([0, 1]). Un conjunto difuso
intervalo-valuado A en X se dice o-convexo, si para cada
x ≤ y ≤ z en X se cumple A(x) �o A(y) o A(z) �o A(y).

Claramente esta definición generaliza la idea de convexidad
en conjuntos difusos propuesta por Zadeh [29], ya que si
consideramos un conjunto difuso µA como conjunto difuso
intervalo-valuado, esto es, A(x) = [µA(x), µA(x)],∀x ∈
X , diremos que A es convexo si se cumple A(x) �o
A(y) o A(z) �o A(y). Esto es equivalente a decir que
[µA(x), µA(x)] �o [µA(y), µA(y)] o [µA(z), µA(z)] �o
[µA(y), µA(y)], que con el uso de cualquier orden que refine
al orden reticular, por ejemplo cualquiera de los órdenes
admisibles, equivale a µA(x) ≤ µA(y) o µA(z) ≤ µA(y). Con
esto recuperamos la definición de convexidad para conjuntos
difusos propuesta por Zadeh, que venı́a dada por: µA es
convexo si y solo si µA(y) ≥ mı́n{µA(x), µA(z)} para
x < y < z.

Cuando trabajamos con órdenes totales, esta definición es
equivalente a mı́n{A(x), A(z)} �o A(y), y nosotros hemos
podido comprobar satisfactoriamente que el mı́nimo es una
t-norma para intervalos. Partiendo de esa idea, reemplazare-
mos el mı́nimo por otra t-norma para intervalos. Por lo que
proponemos la siguiente definición:

Definición 4.2: Sea (X,≤) un espacio ordenado, sea �o
una relación de orden total en L([0, 1]) y sea T una t-norma
para intervalos. Un conjunto difuso intervalo-valuado A en X
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se dice T -o-convexo, si para cada x ≤ y ≤ z en X se cumple
T (A(x), A(z)) �o A(y).

Comprobemos la validez de la definición comprobando su
compatibilidad con la intersección.

Proposición 4.1: Sea (X,≤) un espacio ordenado, sea �o
una relación de orden total en L([0, 1]) y sea T una t-norma
para intervalos. La intersección de dos conjuntos difusos
intervalo-valuados T -o-convexos es T -o-convexa.

Este resultado apoya nuestra definición de t-normas para
intervalos mientras que las otras consideradas no conservaban
esta propiedad. Veamos un ejemplo.

Ejemplo 4.1: Consideremos el orden lexicográfico tipo
1 y la Definición 3.1. Según esta definición, el operador
T ∗(a, b) = [mı́n{a, b}, mı́n{a, b}] es una t-norma en
L([0, 1]). Consideremos X = {x, y, z} con x < y < z y
los conjuntos difusos intervalo-valuados A y B definidos por
A(x) = [0,3, 1], A(y) = [0,3, 0,8] y A(z) = [0,7, 0,8], y
B(x) = [0,4, 0,5], B(y) = [0,5, 0,7] y B(z) = [0,6, 0,9].

La intersección resulta ser (A ∩Lex1 B)(x) =
[0,3, 1], (A ∩Lex1 B)(y) = [0,3, 0,8] y (A ∩Lex1 B)(z) =
[0,6, 0,9]. Es fácil comprobar que A y B son
T ∗-Lex1-convexos, pero A ∩Lex1 B no, ya que
T ∗(A ∩Lex1 B(x), A ∩Lex1 B(z)) = T ∗([0,3, 1], [0,6, 0,9]) =
[0,3, 0,9] 6�Lex1 [0,3, 0,8] = A∩Lex1B(y). Este contraejemplo
es válido también para la Definición 3.2.

V. CONCLUSIONES

En este trabajo hemos presentado una definición de t-norma
para intervalos. Utilizando este concepto, hemos generalizado
la noción de convexidad para conjuntos difusos intervalo-
valuados y hemos podido comprobar que la definición pro-
puesta es compatible con la intersección de conjuntos difusos
intervalo-valuados.
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Resumen—Varios estudios han demostrado que el uso de esca-
las no lineales mejoran las decisiones obtenidas en problemas de
Toma de Decisión en Grupo (TDG). Este trabajo está orientado
a incorporar estas escalas no lineales en Procesos de Alcance de
Consenso (PAC), los cuales son la herramienta fundamental para
suavizar los conflictos que aparecen en los problemas de TDG.
Para ello, utilizaremos automorfismos no lineales definidos en el
intervalo unidad para deformar las preferencias de los expertos,
expresadas mediante relaciones de preferencia difusas, con el
objetivo de obtener escalas más realistas. Este trabajo introduce
estas deformaciones no lineales como Amplificaciones de Valores
Extremos (AVEs), analiza sus principales propiedades y presenta
dos familias concretas de AVEs: una basada en la función seno
y otra basada en polinomios. Por último estudiamos mediante
un caso práctico cómo influye este enfoque no lineal basado en
AVEs en dos modelos de consenso clásicos para TDG.

Palabras clave—Toma de Decisión en Grupo, Procesos de
Alcance de Consenso, Amplificación de Valores Extremos, Pre-
ferencias no lineales.

I. INTRODUCCIÓN

Tradicionalmente se han utilizado escalas lineales para mo-
delar las preferencias en los problemas de Toma de Decisión
en Grupo (TDG). Sin embargo, estudios recientes han probado
que se obtienen mejores decisiones usando escalas no lineales
para representar las preferencias de los expertos [1], [2]. Sin
embargo, ninguna de esas propuestas tiene en cuenta los
conflictos entre expertos que normalmente aparecen en los
problemas de TDG.

En este trabajo estudiaremos el efecto de deformar las
preferencias de los expertos mediante escalas no lineales en
Procesos de Alcance de Consenso (PACs) para problemas de
TDG. Asumiremos que las preferencias de los expertos vienen
dadas por medio de Relaciones de Preferencia Difusas (RPDs)
y aplicaremos una deformación no lineal a cada una de estas
preferencias para ajustar los valores iniciales a una escala más
realista. Por último, estudiaremos el impacto de este enfoque
no lineal en los modelos de consenso propuestos en [3], [4]
analizando el grado de consenso obtenido y número de rondas
empleado.

Esta contribución está dividida como sigue: En la Sección
II se revisan brevemente los problemas de TDG y los PAC. La
Sección III está dedicada a la noción principal de este trabajo,
la Amplificación de Valores Extremos (AVE), definidas como
aquellos automorfismos del intervalo [0, 1] que incrementan

la distancia entre valores extremos de las preferencias dadas
mediante RPDs. En la Sección IV se muestra cómo influyen
estas escalas no lineales en los PAC. Finalmente, la Sección
V concluye el trabajo.

II. TOMA DE DECISIÓN EN GRUPO Y PROCESOS DE
ALCANCE DE CONSENSO

En esta sección se revisan brevemente los principales con-
ceptos relativos a TDG y PACs.

Un problema de TDG es una situación en la que un grupo
de expertos E = {e1, e2, ..., em}, 2 ≤ m ∈ N, tiene que
elegir la mejor solución dentro de un conjunto de posibles
alternativas X = {X1, X2, ..., Xn}, 2 ≤ n ∈ N. Sin pérdida de
generalidad, podemos suponer que las opinión de cada experto
viene dada por medio de una RPD, la cual consiste en una
matriz Pk ∈ Mn×n([0, 1]) donde cada entrada pkij ∈ [0, 1]
representa el grado en el que el experto ek prefiere la alter-
nativa Xi sobre la Xj . Las RPDs verifican la condición de
simetrı́a pkij + pkji = 1 ∀ i, j ∈ {1, 2, ..., n} , k ∈ {1, 2, ...,m},
conocida como reciprocidad aditiva.

Es posible que en el proceso de resolución de un problema
de TDG surjan conflictos entre las opiniones de los expertos
y que algunos consideren que sus opiniones no se han tenido
suficientemente en cuenta durante el proceso [5], [6]. En estos
casos se aplican PACs para lograr un acuerdo en la solución
elegida [7], [8]. Un PAC es un proceso iterativo que usa
una medida de consenso para calcular la cercanı́a entre las
preferencias de los expertos [6] y finaliza cuando se alcanza
un grado de consenso predefinido o se alcanza un determinado
número de rondas. En este trabajo usaremos los modelos de
consenso propuestos en [3], [4], ya que han demostrado un
buen funcionamiento [8].

III. AMPLIFICACIÓN DE VALORES EXTREMOS

En esta sección se introduce la definición de AVE, ası́
como algunos ejemplos concretos de familias de funciones que
cumplen con los requisitos que caracterizan a estas AVEs.

Definición 1 (Amplificación de Valores Extremos). Llamare-
mos Amplificación de Valores Extremos (AVE) a una función
D : [0, 1]→ [0, 1] verificando:

1. D es un automorfismo en el intervalo [0, 1],
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2. D es una función de clase C1, esto es, D es derivable
en [0, 1] y su derivada D′ es continua en [0, 1],

3. D verifica D(x) = 1−D(1− x) ∀ x ∈ [0, 1],
4. D′(0) > 1 y D′(1) > 1,
5. D es cóncava en un entorno de 0 y convexa en un

entorno de 1.

El propósito de las AVEs es transformar las preferencias
de un problema de TDG de forma que los nuevos valores
obedezcan una escala no lineal en la que las distancias entre
los valores más extremos se ven incrementadas respecto a las
diferencias originales.

Nota 1. Aunque el propósito y las caracterı́sticas de las
AVEs están orientadas al modelado de las escalas no lineales
para las preferencias en PAC, el hecho de que permitan
definir medidas de similaridad junto al enfoque particular
que proporcionan a la hora de tratar la información más
extrema recuerda al Hypermatching introducido por Yager y
Petry [14]. En el futuro nos gustarı́a estudiar detalladamente
cómo relacionar ambas propuestas.

La primera propiedad, junto con las condiciones de regu-
laridad de la segunda, garantizan que la biyectividad de las
AVEs. Esto es fundamental al comparar preferencias, puesto
que no deseamos que dos valores diferentes de las preferencias
originales tengan por imagen el mismo valor. La tercera
propiedad está orientada a asegurar la reciprocidad aditiva
de la matriz obtenida al aplicar la AVE a cada uno de los
items de una RPD. La cuarta propiedad está relacionada con
la amplificación de las distancias entre los valores extremos de
las preferencias originales (los cercanos a 0 y a 1), mientras
que la quinta permite deducir que a medida que nos acercamos
a los extremos, la amplificación de las distancias será mayor.
Formalmente:

Teorema 1. Sea D : [0, 1]→ [0, 1] un AVE. Entonces
1. La función dD : [0, 1]× [0, 1]→ [0, 1] definida por

dD(x, y) = |D(x)−D(y)| ∀ x, y ∈ [0, 1],

es una Disimilitud Restringida [9] y la función SD :
[0, 1]× [0, 1]→ [0, 1] definida por

SD(x, y) = 1− |D(x)−D(y)| ∀ x, y ∈ [0, 1].

es una Función de Equivalencia Restringida [9],
2. Podemos encontrar tres intervalos I1, I2, I3 ⊂ [0, 1]

tales que 0 ∈ I1, 1 ∈ I3, y I1 < I2 < I3 verificando

|D(y)−D(x)| > |y − x| ∀ x, y ∈ I1 : x 6= y,

|D(y)−D(x)| < |y − x| ∀ x, y ∈ I2 : x 6= y,

|D(y)−D(x)| > |y − x| ∀ x, y ∈ I3 : x 6= y,

3. El gráfico de D está por encima de la diagonal del
cuadrado [0, 1]× [0, 1] para valores cercanos a 0 y está
bajo la misma diagonal para los valores cercanos a 1,

4. Existen un entorno U0 de 0 y un entorno U1 de 1 tales
que para cada par x, y ∈ U◦0 , x < y existe h0 > 0 tal
que |D(x)−D(x−t)| ≥ |D(y)−D(y−t)| ∀ t ∈ [0, h0]

y para cada par x, y ∈ U◦1 , x < y, existe h1 > 0 tal que
|D(x− t)−D(x)| ≤ |D(y − t)−D(y)| ∀ t ∈ [0, h1].

Demostración. La prueba de este resultado es consecuencia
del Teorema del Valor Medio. Omitimos los detalles concretos
por limitación de espacio.

Las cuatro tesis de este resultado permiten interpretar las
caracterı́sticas de las AVEs de la siguiente manera:

1. Transforman RPDs en RPDs.
2. Amplifican las distancias entre los valores extremos y

reducen la distancia entre los valores intermedios.
3. Su gráfica tiene un patrón común (ver Figura 1).
4. La amplificación de las distancias se incrementa a me-

dida que nos acercamos a los extremos.

Figura 1: Esbozo del gráfico de una AVE

A continuación presentamos un par de familias de AVEs.

AVEs basadas en la función seno.

Sea α ∈]0, 1
2π ]. La función de clase C∞ sα : [0, 1] → [0, 1]

dada por

sα(x) = x− α · sin(2πx− π) ∀ x ∈ [0, 1]

es una AVE (ver la Figura 2).

Figura 2: AVE s0,09
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AVEs basadas en polinomios.

Fijado α > 1, la función mα : [0, 1] → [0, 1] dada
por

mα(x) =

{
1
2 − 1

2 (1− 2x)α 0 ≤ x < 1
2

1
2 + 1

2 (2x− 1)α 1
2 ≤ x ≤ 1

,

es una AVE (ver las Figuras 3 y 4).

Figura 3: AVE m2.

Figura 4: AVE m3,39.

IV. AMPLIFICACIÓN DE VALORES EXTREMOS EN
PROCESOS DE ALCANCE DE CONSENSO

En esta sección mostramos el funcionamiento de las AVEs
cuando son utilizadas en PAC para TDG. Para ello, hemos
implementado el enfoque no lineal de las AVEs en los PAC
ampliamente utilizados en la literatura y presentados en [3],
[4], que están implementados en el software AFRYCA [6].

El problema de TDG considerado consiste en grupo de 100
expertos que enuncian sus preferencias sobre las alternativas
X = {X1, X2, X3, X4} por medio de RPDs (ver [10]). Para
hacer las simulaciones hemos usado los valores por defecto
que AFRYCA define para los parámetros de cada modelo. El
umbral de consenso deseado se ha establecido en 0.85 y el
máximo número de rondas permitido es 15. Los resultados
obtenidos se muestran en las Tablas I y II.

AFRYCA [6] proporciona una herramienta para visualizar
los resultados de las distintas simulaciones mediante la técnica
de escalado multidimensional [11] (ver Figuras 5 y 6). Esta
representación muestra la opinión colectiva de los expertos en
el centro del gráfico y a su alrededor las preferencias de los
expertos.

Tabla I: Resultados con Herrera-Viedma et al. [3]

AVE Orden de alternativas Rondas Consenso
Clásico x1 � x2 � x4 � x3 6 0.87
s0,08 x1 � x2 � x4 � x3 6 0.89
s0,09 x1 � x2 � x4 � x3 6 0.92
m2 x1 � x2 � x4 � x3 5 0.86
m3,39 x1 � x2 � x4 � x3 5 0.91

Tabla II: Resultados con Quesada et al. [4]

AVE Orden de alternativas Rondas Consenso
Clásico x4 � x1 ∼ x2 ∼ x3 10 0.85
s0,08 x4 � x1 � x2 ∼ x3 7 0.86
s0,09 x4 � x1 � x2 ∼ x3 7 0.87
m2 x4 � x1 � x2 ∼ x3 7 0.86
m3,39 x4 � x1 � x2 ∼ x3 5 0.87

El modelo clásico [3] alcanzó un grado de consenso de
0,87 en 6 rondas. Para este modelo, las AVEs s0,08 y s0,09
han mejorado el grado de consenso alcanzado, aunque no han
reducido el número de rondas. Las AVEs polinómicas m2 y
m3,39 han reducido el número de rondas, obteniendo grados
de consenso de 0,86 y 0,91 respectivamente en 5 rondas.

Por otro lado, el modelo clásico [4] necesitó 10 rondas
para lograr un grado de consenso de 0,85. En este caso,
ambas familias de AVEs han mejorado significativamente el
modelo original. Las AVEs s0,08, s0,09 y m2 han mejorado
ligeramente el grado de consenso en 7 rondas, mientras que
la AVE m3,39 destaca por haber incrementado el grado de
consenso en sólo 5 rondas. Las simulaciones indican que las
AVEs mejoran ambos modelos ya que o bien disminuyen el
número de rondas o bien incrementan el grado de consenso
alcanzado.

Para analizar el comportamiento de las AVEs en un PAC
desde un punto de vista teórico es necesario tener en cuenta
dos aspectos clave. Por un lado, es un hecho probado que en
los modelos de consenso los valores menos extremos de las
preferencias aportan cohesión al grupo y favorecen el alcance
del consenso colectivo [12], [13]. Por otro lado, si bien es
cierto que las AVEs amplifican la distancia entre los valores
extremos, cuando usamos una AVE los valores intermedios se
acercan entre sı́. Considerando estos dos hechos conjuntamente
podemos deducir que al aplicar una AVE a las preferencias
que van a ser usadas en un modelo de consenso, el modelo
de consenso modificado por la AVE alcanzará generalmente el
grado de consenso deseado más rápido que el modelo original
puesto que los valores intermedios de las preferencias, esto es,
la información más importante para el consenso, están más
cerca desde el principio.
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Figura 5: Herrera Viedma et al. [3] simulations.
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Figura 6: Quesada et al. [4] simulations.
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Para que los resultados obtenidos sean fiables, es impres-
cindible tener en cuenta que aunque la AVE usada en el PAC
modifique los valores iniciales de las preferencias, el orden de
preferencia de las alternativas en cada RPD no sufre altera-
ciones significativas. Omitimos aquı́ los detalles concretos por
motivos de espacio, pero es posible demostrar que las familias
de AVEs propuestas en este trabajo, sα, y mα no introducen
cambios significativos en el orden de las alternativas preferidas
por cada experto.

V. CONCLUSIONES

Los PAC clásicos asumen escalas lineales para los valores
de preferencias de los expertos. Este trabajo propone el uso
de escalas no lineales en estos modelos con el objetivo de
modelar las preferencias de los expertos de una forma más
realista.

Este trabajo presenta las propiedades analı́ticas de estas
escalas no lineales y estudia sus principales propiedades. Estas
deformaciones no lineales han recibido el nombre de AVEs
y se caracterizan por transformar RPDs en RPDs de forma
que las distancias entre los valores extremos se incrementan
mientras que las distancias entre los valores intermedios se re-
ducen. Para mostrar el impacto de las AVEs en los PAC, hemos
utilizado el software AFRYCA para simular el funcionamiento
de dos modelos de consenso cuando se combinan con las AVEs
definidas en este trabajo. Los resultados muestran que o bien
se reducen el número de rondas necesarias para alcanzar el
consenso o bien se incrementa el grado de consenso.

Como trabajos futuros definiremos nuevas AVEs e intenta-
remos optimizar los parámetros de las AVEs existentes para
modelos de consenso concretos de acuerdo con diferentes
métricas. También pretendemos analizar el comportamiento de
las AVEs en otros modelos de consenso, ası́ como aplicar este
marco teórico para resolver problemas de decisión del mundo
real.
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Abstract—El empleo de relaciones borrosas R : A2 → [0, 1]
está ampliamente extendido de cara a representar grados de
preferencia entre alternativas en A. En el trabajo recientemente
aceptado [1] se reflexiona en primer lugar sobre la aparente
incompatibilidad entre las relaciones recı́procas y el marco
estándar de preferencias borrosas establecido en [2], proponiendo
a continuación un marco general para estudiar el significado
preferencial de las relaciones recı́procas a partir de la semántica,
bien establecida, de las relaciones y estructuras de preferencia
del modelo estándar. Una consecuencia de este análisis es que
es posible dotar a las relaciones recı́procas de una estructura
de preferencia propia con dos relaciones, preferencia estricta
y ausencia de preferencia. Además, es posible dotar de un
significado unı́voco a esta estructura sobre la base de las
estructuras de preferencia estándar cuando se cumplen ciertas
condiciones de compatibilidad entre ambos modelos.

Index Terms—Relaciones de preferencia borrosa, relaciones
recı́procas, estructuras de preferencia, semántica preferencial

I. INTRODUCCIÓN

Considérese un problema de decisión con conjunto de
alternativas A, y sea R : A2 → [0, 1] una relación de
preferencia borrosa sobre A. R es una relación de preferencia
débil si es reflexiva, esto es, si R(a, a) = 1 ∀a ∈ A, mientras
que R es estricta si es antireflexiva, R(a, a) = 0 ∀a ∈ A, y R
se dice recı́proca cuando R(a, b)+R(b, a) = 1 ∀a, b ∈ A. Sean
respectivamente R y G los conjuntos de todas las relaciones
de preferencia borrosas débiles y recı́procas. Según se discute
en [1], las relaciones de preferencia borrosas recı́procas
presentan una incompatibilidad esencial con las relaciones
de preferencia borrosa estándar, tanto débiles como estrictas,
debido a que la condición de reciprocidad es incompatible
con las propiedades de reflexividad y antireflexividad. Esto
plantea dudas sobre el significado del predicado preferencial
de una relación recı́proca, ası́ como sobre las situaciones
preferenciales que un modelo de tipo recı́proco puede expresar.
Para estudiar esta cuestión, en [1] se plantea dotar a las
relaciones recı́procas de una estructura de preferencia propia,
y establecer el significado de esta en base al de las estructuras
de preferencia estándar, siguiendo la formulación dada por

Este trabajo ha sido parcialmente financiado por la Fundación Carolina
(ayudas para estancias cortas postdoctorales), el Gobierno de España (proyecto
PGC2018-096509-B-100) y la Universidad Complutense de Madrid (grupo de
investigación 910149).

Fodor y Roubens [2]. Esto se lleva a cabo en base a
la posibilidad de obtener relaciones recı́procas a partir de
relaciones débiles mediante transformaciones F : R → G
representables en términos de una función recı́proca f :
[0, 1]2 → [0, 1], tal que para R ∈ R y a, b ∈ A se
cumple que F (R)(a, b) = f(R(a, b), R(b, a)) = f(x, y). Esta
herramienta permite probar que cualquier relación recı́proca
G ∈ G puede descomponerse como G = P + 0.5(I + J),
donde 〈P, I, J〉 denota cualquier estructura de preferencia de
una relación débil R ∈ R tal que R ∈ F−1g (G), donde
la transformación Fg : R → G se representa mediante la
función g(x, y) = 1+x−y

2 . Esta descomposición sugiere que
cualquier relación recı́proca puede expresarse en términos de
una componente de preferencia estricta P y otra componente
de ausencia de preferencia L = I + J , y que por tanto la
estructura de preferencia de una relación recı́proca G ∈ G debe
estar compuesta por dos relaciones, PG y LG, respectivamente
representando esas componentes de preferencia estricta y
ausencia de preferencia. Sin embargo, esta descompoción no
es única a menos que se cumpla una compatibilidad perfecta
entre las estructuras de preferencia de las relaciones débiles
y recı́procas implicadas. Las condiciones bajo las que se
cumple esta compatibilidad son estudiadas en [1] mediante
un enfoque axiomático, que conduce al planteamiento de un
sistema de ecuaciones funcionales que solo puede verificarse
mediante estructuras compatibles. Esto permite probar que
esta compatibilidad solo es posible cuando la semántica de
las relaciones débiles se modela mediante una preferencia
estricta asimétrica. Además, se muestra también que el sistema
de ecuaciones mencionado admite al menos dos soluciones,
basadas en diferentes transformaciones entre relaciones débiles
y recı́procas. Ası́, es posible concluir que las relaciones
recı́procas pueden admitir diferentes semánticas compatibles
con el marco estándar de preferencias borrosas, de modo
parecido a cómo una relación de preferencia borrosa débil
puede ser dotada de diferentes semánticas a partir de diferentes
soluciones a las ecuaciones del modelo estándar.

II. DEFINICIONES Y RESULTADOS

Recordemos en primer lugar que el modelo de preferencias
borrosas estándar [2] se establece mediante un enfoque
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axiomático que considera la existencia de funciones p, i, j :
[0, 1]2 → [0, 1], de manera que la estructura de preferencia
〈P, I, J〉 de una relación débil R ∈ R se obtiene como
P (a, b) = p(x, y), I(a, b) = i(x, y) y J(a, b) = j(a, b), donde
x = R(a, b) e y = R(b, a), con a, b ∈ A. Para representar la
semántica mı́nima de preferencias, estas funciones p, i, j deben
cumplir el sistema de ecuaciones funcionales

x = SL(p(x, y), i(x, y)), (1)

1− y = SL(p(x, y), j(x, y)). (2)

donde SL denota la t-conorma de Lukasiewicz bajo el
automorfismo identidad. Existen múltiples soluciones al
sistema anterior, siendo relevante para este trabajo la dada por

p(x, y) = max{x− y, 0} (3)

i(x, y) = min{x, y} (4)

j(x, y) = min{1− x, 1− y} (5)

que define una preferencia estricta asimétrica.
Asumiremos además que la representación de

transformaciones F : R → G se lleva a cabo mediante
funciones recı́procas, que se definen como funciones
f : [0, 1]2 → [0, 1] que verifican f(x, y) + f(y, x) = 1 para
todo x, y ∈ [0, 1], y son continuas, monótonas no decrecientes
en x (y por tanto no crecientes en y) y tales que f(1, 0) = 1
y f(0, 1) = 0. En [1] se prueban diversos resultados sobre
estas funciones recı́procas.

Por otro lado, los principales resultados en [1] que sustentan
la mencionada descomposición semántica general de cualquier
relación recı́proca G ∈ G son los siguientes:

Teorema 1. Sea 〈p, i, j〉 una solución del sistema de
ecuaciones del modelo estándar dado por Ecs.(1) y (2).
Entonces, la función f : [0, 1]2 → [0, 1] dada por f(x, y) =
p(x, y)+ 0.5(i(x, y)+ j(x, y)) es una función recı́proca, y se
cumple que f(x, y) = g(x, y) = 1+x−y

2 .

Corolario 1. Sea G ∈ G una relación recı́proca, y sea
R ∈ R una relación débil tal que G(a, b) = g(x, y) para todo
a, b ∈ A, donde x = R(a, b) e y = R(b, a). Si 〈P, I, J〉 es
una estructura de preferencia asociada a R mediante alguna
solución del sistema dado por las Ecs.(1) y (2), entonces
G(a, b) = P (a, b)+0.5(I(a, b)+J(a, b)) para todo a, b ∈ A.

Ası́ pues, toda relación recı́proca puede ser descompuesta
en términos de dos componentes, preferencia estricta P y
ausencia de preferencia (estricta) L = I + J , en tanto I y
J recogen las situaciones preferenciales que no pueden ser
asociadas a preferencia entre alternativas. Esto lleva a asociar
una nueva relación borrosa L a esa componente de ausencia de
preferencia, dada por L(a, b) = SL(I(a, b), J(a, b)), para todo
a, b ∈ A. Es fácil comprobar que esta relación L es reflexiva y
simétrica. Además, es posible reestablecer la descomposición
anterior en términos de disyunción entre preferencia estricta
P y ausencia de preferencia L:

Corolario 2. En las condiciones del Corolario 1, se cumple
que G(a, b) = SL(P (a, b), 0.5L(a, b)).

Estos resultados sugieren que es natural asociar a una
relación recı́proca G ∈ G una estructura de preferencia
〈PG, LG〉. No obstante, en principio la descomposición de G
en las relaciones PG y LG no es única, en tanto depende
de la descomposición de una relación débil R ∈ R tal que
G = Fg(R) en la estructura 〈P, I, J〉, que es posible realizar
mediante cualquier solución de las Eqs.(1) y (2). Esto además
conlleva que la estructura 〈PG, LG〉 no sea necesariamente
obtenible a partir de G. Para estudiar la posibilidad de que la
estructura 〈PG, LG〉 pueda ser obtenida directamente a partir
de G, y que al mismo tiempo sea armónica con la semántica
de la estructura de preferencia débil 〈P, I, J〉 que la dota de
significado, en [1] se recurre a un enfoque axiomático que
asume la existencia de funciones pG, lG : [0, 1] → [0, 1] tales
que PG(a, b) = pg(u) y LG(a, b) = lG(u) para todo a, b ∈ A
y u = G(a, b), con pG no decreciente y lG simétrica respecto
a 0.5, esto es, lG(u) = lG(1 − u), y que conduce a plantear
el siguiente sistema de ecuaciones funcionales:

SL(pR(x, y), iR(x, y)) = x, (6)

SL(pR(x, y), jR(x, y)) = 1− y, (7)

u = f(x, y), (8)

pG(u) = pR(x, y), (9)

lG(u) = SL(iR(x, y), jR(x, y)), (10)

u = A(pG(u), lG(u)), (11)

para todo x, y ∈ [0, 1], y donde A : {(pG(u), lG(u))|u ∈
[0, 1]} → [0, 1] es una función continua que permite recuperar
la relación recı́proca G a partir de su estructura de preferencia.
El principal resultado en [1] sobre este sistema es el siguiente:

Teorema 2. El sistema dado por Ecs.(6)-(11) admite solución
si y solo si pR, iR, jR vienen dadas por Ecs.(3)-(5).

Una solución particular del sistema anterior, cuando la
función recı́proca empleada es f = g, viene dada como:

Teorema 3. Si una solución del sistema Ecs.(6)-(11) es
tal que pR, iR, jR vienen dadas por Ecs.(3)-(5) y f = g,
entonces pG(u) = max{2u − 1, 0}, lG(u) = 1 − |2u− 1| y
A(pG(u), lG(u)) = SL(pG(u), 0.5lG(u)) para todo u ∈ [0, 1].

En [1] se establecen otros resultados adicionales, como que
el sistema anterior admite solución solo si f es estrictamente
creciente en x y es invariante en la dirección (1,1) de [0, 1]2,
o que la función A es la dada en el teorema anterior si y solo
si f = g, y se prueba la existencia de al menos otra solución
al sistema referido.
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Resumen—A pesar de que la fiabilidad humana puede tener
mucha imprecisión asociada, debido a la incertidumbre natural
relacionada con las decisiones tomadas por las personas, una de
las principales herramientas en esta área, la matriz de riesgo,
se define de manera muy precisa. Esto hace que los expertos no
puedan tener ninguna duda a la hora de clasificar un posible
error humano. Para evitar este problema, aquı́ se propone una
relajación de la matriz de riesgo, en la que la valoración de los
riesgos se dará no solo mediante números, sino también utilizando
intervalos o incluso una generalización de estos, que llamaremos
cajas. Dicho concepto es analizado en detalle, ası́ como los órdenes
obtenidos para el conjunto de cajas.

Index Terms—matriz de riesgo, órdenes entre intervalos, caja,
órdenes entre cajas, métodos de elección

I. INTRODUCCIÓN

Las técnicas de análisis de fiabilidad se enfocaron ini-
cialmente en aspectos técnicos del diseño y calidad de la
maquinaria. Sin embargo, algunas investigaciones demostraron
que el error humano era la causa más común de fallo en
muchas situaciones (ver, por ejemplo, [1], [4], [7]). Desde que
IEEE publicó un informe sobre fiabilidad humana en 1972, han
surgido muchos trabajos en esta temática (ver, por ejemplo,
[2], [8], [12], [14], [16], [26]).

Una herramienta fundamental es la matriz de evaluación de
riesgos (ver [9]). Esta herramienta facilita la clasificación de
diferentes tipos de errores en función de su riesgo asociado.
Esta clasificación puede ayudar a priorizar los diferentes tipos
de error.

Existen distintas versiones de matrices de evaluación de
riesgos, pero en todas ellas los decisores se ven obligados a
elegir entre los diferentes niveles de consecuencia/frecuencia,
a pesar de que están tomando una decisión subjetiva y, en
muchos casos, la elección del nivel apropiado se convierte
en una tarea difı́cil. Para considerar un procedimiento más
flexible, proponemos una metodologı́a en la que los decisores
pueden expresar valores intermedios. Bajo esta consideración,
el valor asociado con un tipo de error ya no es un número sino
un intervalo de la lı́nea real o incluso una generalización de
este que llamaremos caja. Ası́, para medir el riesgo asociado a
los diferentes tipos de error, es necesario establecer un orden
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entre cajas, que generalizará los órdenes considerados entre
números e intervalos.

Ası́, la estructura de este trabajo es la siguiente: la sección
2 ofrece una visión general de los conceptos básicos nece-
sarios para la comprensión del mismo. En la sección 3
introduciremos el concepto de caja, ası́ como distintas formas
de ordenarlas, lo que nos permitirá acabar proponiendo una
matriz de riesgo imprecisa, que era el objetivo fundamental del
trabajo. Para ver la forma de utilizar la metodologı́a propuesta,
planteamos un ejemplo de aplicación en la sección 4, donde
la información proporcionada por los distintos órdenes es
fusionada mediante métodos de ranking. Finalizamos con
algunas conclusiones y puntos abiertos.

II. CONCEPTOS BÁSICOS

En esta sección, se recuerdan algunos conceptos básicos
sobre matrices de riesgo y órdenes entre intervalos. Sirve
además para fijar las notaciones que se van a utilizar a lo
largo del trabajo.

A. Matriz de evaluación de riesgos

La matriz de riesgo es un elemento que permite cuan-
tificar los riesgos disminuyendo el nivel de subjetividad en
el momento de su evaluación, siempre que la parametrización
y asignación de valores a los indicadores esté debidamente
fundamentada. Son un instrumento que nace con la necesidad
de poder cuantificar los errores y saber ası́ sobre cuáles
deberemos actuar con mayor rapidez.

Para obtener los valores de dicha matriz se deberá estudiar
cuál es la frecuencia y las consecuencias de cada uno de los
errores a examinar. Veamos cuál es su definición formal.

Definición 1: [9], [19] Sea M una matriz de dimensiones
n × m, se dice matriz de riesgo a la combinación de
ciertas consecuencias (asociadas a las columnas de la matriz),
ocurriendo en un cierto escenario y con una cierta probabilidad
(asociadas a las filas de la matriz), lo cual significa que se
necesitan solamente dos entradas para construir la matriz de
riesgo.
• Los valores de dicha matriz reciben el nombre de valores

de riesgo y quedarán determinados por los ejes de la
matriz de riesgo, es decir por las consecuencias y la
probabilidad de las mismas.
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• Las consecuencias, la probabilidad y los valores de riesgo
pueden estar divididos en diferentes niveles, según el caso
particular con el que estudiemos dicha matriz.

• El proceso del cálculo de los valores de riesgo viene
presentado por la implicación lógica: si la probabilidad
es p y consecuencia es c, entonces el riesgo es r.

A pesar de esta definición común, la estructura de la matriz
de riesgo es muy variable, pudiendo variar tanto sus dimen-
siones, como la posible nomenclatura. En el caso particular
de matriz de riesgo aquı́ considerada (ver [18]), el eje de la
frecuencia lo podremos categorizar como improbable (I), poco
probable (Pp), posible (Pos), probable (P) y muy probable
(Mp) y el eje de las consecuencias lo podremos clasificar
como poco (P), normal (N), grande (G), elevada (E) y extrema
(Ex). Las filas Frec. indican la frecuencia o probabilidad de
ocurrencia y las columnas Consec. indican las consecuencias.
Ası́ pues, la matriz de riesgo estándar que vamos a considerar
es la mostrada en la tabla I.

TABLE I
MATRIZ DE RIESGO ESTÁNDAR.

Frec.
Cons. Poco Normal Grande Elevada Extrema

Muy probable 5 10 15 20 25
Probable 4 8 12 16 20
Posible 3 6 9 12 15
Poco probable 2 4 6 8 10
Improbable 1 2 3 4 5

Tı́picamente se asigna un código de colores a los valores
de la matriz de riesgos, según cual sea su valor. En concreto,
se considera el color verde para valores de riesgo menores o
igual que 3, el amarillo para valores mayores que 3 y menores
o iguales que 7, el color naranja para valores mayores que 7
pero no mayores que 12 y el rojo para el resto. Es evidente
que la zona con mayor riesgo se representa de color rojo.
En esta zona están los problemas graves, aquellos sobre los
que debemos encontrar una rápida solución. La zona naranja
muestra los problemas que tienen una importancia elevada. La
zona media, de color amarilla, es aquella donde se encuentran
los problemas que tienen menos relevancia pero aún ası́ son
importantes. La zona de bajo riesgo, en color verde, contiene
los riesgos controlados. Es habitual que no se actúe sobre los
problemas que están en esta área.

B. Ordenación de intervalos en R

En la subsección anterior hemos visto que los errores se
cuantifican mediante números reales entre 1 y 25. No obstante,
a la hora de flexibilizar esta matriz para recoger mejor la
incertidumbre asociada a la toma de decisiones, nos van a
aparecer en la misma intervalos. Recordemos que dados x1,
x2 ∈ R con x1 ≤ x2, llamaremos intervalo (cerrado) al
conjunto definido como X = [x1, x2] = {y ∈ R / x1 ≤
y ≤ x2}, denotando por I(R) el conjunto de todos los
intervalos cerrados en el conjunto de los números reales, es
decir, I(R) = {[x1, x2] / x1, x2 ∈ R con x1 ≤ x2}.

Es sabido que si bien los números reales forman un conjunto
totalmente ordenado con el orden usual (a < b si b − a es
un número positivo), encontrar un orden total en el conjunto
de los intervalos no es un problema tan inmediato. Ası́, en
la literatura se han introducido diversas formas de comparar
intervalos. En concreto, algunos ejemplos son los siguientes:
orden débil [5], Maximin [22], [24], Maximax [21], Domi-
nancia de intervalos [13], Hurwicz [17] y el orden producto
(también llamado lattice order en inglés) [15]. De todos ellos,
solo el orden producto es un verdadero orden. Recordemos
que viene definido por: X ≤LO Y ⇔ x1 ≤ y1 y x2 ≤ y2.
No obstante, y a pesar de ser un orden muy natural y habitual
entre intervalos, es evidente que considerando dicho orden hay
intervalos incomparables. Para evitar este problema, buscamos
órdenes que sean completos y refinen el orden producto. Esto
es posible gracias al concepto de orden admisible (orden total
que refina el orden producto) introducido por Bustince et al.
(ver [6]).

Dados X , Y ∈ I(R) con X = [x1, x2] e Y = [y1, y2],
son órdenes admisibles sobre I(R): 1) Orden lexicográfico 1
: X ≤Lex1 Y si y solo si x1 < y1 o (x1 = y1 y x2 ≤ y2);
2) Orden lexicográfico 2: X ≤Lex2 Y si y solo si x2 < y2
o (x2 = y2 y x1 ≤ y1) y 3) Orden de Xu y Yager ( [25]):
X ≤XY Y si y solo si x1 + x2 < y1 + y2 o (x1 + x2 =
y1 + y2 y x2 − x1 ≤ y2 − y1).

III. MATRIZ DE RIESGO IMPRECISA

En una matriz de riesgo clásica, el decisor tiene que decidir
por una frecuencia poco probable o posible y no se permite
una opción intermedia. Sin embargo, podrı́a ser muy natural
una clasificación del riesgo entre poco probable y posible. En
ese caso, podrı́a ser lógico considerar que el valor de riesgo
es un número entre 8 y 12 si la consecuencia es elevada. Por
lo tanto, el valor de riesgo podrı́a venir dado por el intervalo
cerrado [8, 12].

Puede ocurrir una situación similar con respecto a la
consecuencia. Por tanto, podrı́amos considerar situaciones
intermedias y llegamos a una propuesta de matriz de riesgo
9× 9, que permite opciones intermedias para la frecuencia y
la consecuencia, tal como la representada en la tabla II.

TABLE II
PRIMERA APROXIMACIÓN A LA MATRIZ DE RIESGO IMPRECISA.

Frec.
Consec. P PN N NG G GE E EEx Ex

MP 5 [5,10] 10 [10,15] 15 [15,20] 20 [20,25] 25
MPP [4,5] [8,10] [12,15] [16,20] [20,25]
P 4 [4,8] 8 [8,12] 12 [12,16] 16 [16,20] 20
PPos [3,4] [6,8] [9,12] [12,16] [15,20]
Pos 3 [3,6] 6 [6,9] 9 [9,12] 12 [12,15] 15
PosPP [2,3] [4,6] [6,9] [8,12] [10,15]
PP 2 [2,4] 4 [4,6] 6 [6,8] 8 [8,10] 10
PPI [1,2] [2,4] [3,6] [4,8] [5,10]
I 1 [1,2] 2 [2,3] 3 [3,4] 4 [4,5] 5

En la tabla II, se ha denotado con las letras correspondientes
a las dos clases que la delimitan a cualquier categorı́a inter-
media. Por ejemplo, si la frecuencia es entre poco probable y
posible, se representa por PosPp, si la consecuencia es entre
elevada y extrema, se denota por EEx, etc.

En el caso de que exista imprecisión en la consecuencia,
pero la frecuencia sea fija, ya tendrı́amos resuelto el problema
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de clasificar un riesgo, tal como hemos visto en la tabla II. En
este caso el valor de riesgo serı́a un intervalo. Lo mismo ocurre
si la consecuencia es fija y la imprecisión está en la frecuencia.
Puesto que todo número x se puede identificar con el intervalo
[x, x], podrı́amos considerar los órdenes entre intervalos vistos
en la sección anterior para ordenar los distintos errores según
sus valores de riesgo. El problema viene cuando tanto la
valoración de las consecuencias, como la de las frecuencias,
es imprecisa. En tal caso no hemos podido valorar el riesgo,
tal como se ha visto en la tabla II. Vamos a centrarnos en una
zona determinada de la misma, para ir analizando la solución
dada para este problema. En concreto nos centramos en la
zona correspondiente al caso de consecuencias entre elevadas
y extremas y de frecuencias entre poco probable y posible, la
cual aparece ampliada en la tabla III.

TABLE III
ZOOM DE LA MATRIZ DE RIESGO.

Consecuencia
E EEx Ex

Pos 12 [12, 15] 15
Frecuencia PosPp [8, 12] ? [10, 15]

Pp 8 [8, 10] 10

Para la celda restante, podrı́amos pensar en considerar
nuevamente un intervalo. Sin embargo, lo que tiene que ocurrir
es que el valor debe estar entre [8, 10] y [12, 15] y además entre
[8, 12] y [10, 15]. Para recoger esta idea, aparece un nuevo
concepto como intersección de dos “intervalos” de intervalos.

Definición 2: Sean a, b, c, d cuatro números reales con a ≤
b ≤ c ≤ d. El conjunto {[x, y] ∈ I(R)/[a, c] ≤LO [x, y] ≤LO
[b, d], [a, b] ≤LO [x, y] ≤LO [c, d]} se llama caja con extremos
a, b, c y d y se denota por [a, b, c, d].

Por lo tanto, está claro que cualquier elemento en la caja
[a, b, c, d] es un intervalo tal que está entre el intervalo [a, b]
y el intervalo [c, d] y, al mismo tiempo, está entre el intervalo
[a, c] y el intervalo [b, d] con respecto al orden producto.
Denotaremos por C(R) al conjunto de todas las cajas en R,
es decir, C(R) = {[a, b, c, d]/a, b, c, d ∈ R, a ≤ b ≤ c ≤ d}.
A continuación, presentamos una definición equivalente del
concepto de caja.

Proposición 1: Sea [a, b, c, d] en C(R). Se tiene que:
[a, b, c, d] = {[x, y] ∈ I(R)/a ≤ x ≤ b, c ≤ y ≤ d}

De esta definición equivalente se puede deducir que una
caja es un tipo particular de hiperrectángulo bidimensional o
2-ortótropo (ver [10]). Por otro lado, considerando ahora la
identificación entre la caja [a, b, c, d] y la 4-tupla (a, b, c, d),
el concepto de caja coincide con el de intervalo 4-dimensional,
tal como ha sido definido por Bedregal et al. en [3]. En
dicho trabajo se pone además de manifiesto que el conjunto
de los intervalos 2-dimensionales coincide con el conjunto de
los intervalos cerrados y el de los intervalos 1-dimensionales
con el de los números reales. Ası́ pues, todos los valores
que tenemos hasta el momento en la matriz de riesgo (ver
tabla II) puede considerarse que son cajas. Además, podrı́amos
considerar cajas adecuadas para llenar los espacios vacı́os

en esta matriz. Por ejemplo, el valor restante en el ejemplo
considerado en la tabla III serı́a [8, 10, 12, 15]. Podrı́amos
repetir este procedimiento a lo largo de todas las celdas vacı́as
de la matriz de la tabla II. Sin embargo, para poder colorear
esta matriz, debemos definir un orden apropiado en C(R). Una
primera propuesta podrı́a ser la siguiente.

Definición 3: Sea [a, b, c, d] y [ā, b̄, c̄, d̄] en C(R). Diremos
que [a, b, c, d] es menor o igual que [ā, b̄, c̄, d̄] con respecto al
orden producto, y se denota por [a, b, c, d] ≤LO [ā, b̄, c̄, d̄], si
y solo si a ≤ ā, b ≤ b̄, c ≤ c̄ y d ≤ d̄.

Es fácil probar que ≤LO es un orden en C(R), pero no es
una relación completa. Por ejemplo, [2, 3, 4, 5] 6≤LO [2, 2, 5, 5]
y [2, 2, 5, 5] 6≤LO [2, 3, 4, 5]. Como necesitamos ordenar todos
los elementos en la matriz de riesgo, necesitamos definir un
orden total en C(R). A partir de las ideas de los órdenes
lexicográficos en L(R) podemos obtener 24 órdenes distintos
en C(R). Comenzamos con el de tipo 1, que nos servirá para
generar el resto.

Definición 4: Sea [a, b, c, d] y [ā, b̄, c̄, d̄] en C(R). Diremos
que [a, b, c, d] es menor o igual que [ā, b̄, c̄, d̄] con respecto al
orden lexicográfico tipo 1, que se denota por [a, b, c, d] ≤1234

[ā, b̄, c̄, d̄], si y solo si se cumple una de las condiciones
siguientes: a < ā o (a = ā, b < b̄) o (a = ā, b = b̄, c < c̄) o
(a = ā, b = b̄, c = c̄, d ≤ d̄).

Se puede probar que la relación en C(R) es un orden total
que refina el orden producto.

Puesto que en dicha definición no hemos considerado las
relaciones entre los cuatro elementos que describen una caja
y cualquier caja [a, b, c, d] se puede identificar con una 4-
tupla (a, b, c, d) en R4, el orden lexicográfico 1 en C(R) se
podrı́a generalizar de forma inmediata a R4 y también en ese
espacio serı́a un orden lineal. De hecho, vamos a utilizarlo
como generador de órdenes lineales en ese espacio, tal como
puede verse en el siguiente resultado.

Proposición 2: Sea A una matriz cualquiera de rango
completo con A ∈ M4×4. Se tiene que la relación binaria
R definida sobre R4 × R4 como (a, b, c, d)R(ā, b̄, c̄, d̄) si
y solo si A(a, b, c, d)′ ≤1234 A(ā, b̄, c̄, d̄)′ para cualesquiera
(a, b, c, d), (ā, b̄, c̄, d̄) ∈ R4, es un orden total en R4.

Este resultado puede considerarse una generalización in-
mediata del demostrado para el intervalo [0, 1] en [11].
Además es inmediato que cualquier orden generado de esta
forma, puede ser restringido al conjunto de cajas C(R). En
concreto, es evidente que según vayamos considerando las 24
matrices de rango completo con un 1 en cada fila y el resto
de los elementos nulos, podrı́amos generar 24 órdenes lineales
distintos sobre C(R).

Corolario 1: Sea {i, j, k, l} una permutación cualquiera
del conjunto {1, 2, 3, 4} y sea Aijkl una matriz en M4×4
tal que todos sus elementos son nulos salvo a1i = a2j =
a3k = a4l = 1. La relación ≤ijkl definida como
[a, b, c, d] ≤ijkl [ā, b̄, c̄, d̄] si y solo si Aijkl(a, b, c, d)′ ≤1234

Aijkl(ā, b̄, c̄, d̄)′), para cualesquiera [a, b, c, d], [ā, b̄, c̄, d̄] ∈
C(R), es un orden total en C(R).
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Si aplicamos la proposición 2 para la matriz

A =

(
1 1 1 1
−1 1 −1 1
1 0 0 0
0 0 1 0

)

obtenemos la generalización del orden de Xu-Yager para cajas.
Proposición 3: Dadas [a, b, c, d] y [ā, b̄, c̄, d̄] dos cajas

en C(R). La relación ≤XY sobre C(R) definida como:
[a, b, c, d] ≤XY [ā, b̄, c̄, d̄] si y sólo si verifica alguna de las
siguientes condiciones:
• a+ b+ c+ d < ā+ b̄+ c̄+ d̄
• a + b + c + d = ā + b̄ + c̄ + d̄ y (b − a) + (d − c) <

(b̄− ā) + (d̄− c̄)
• a + b + c + d = ā + b̄ + c̄ + d̄ , (b − a) + (d − c) =

(b̄− ā) + (d̄− c̄) y a < ā
• a + b + c + d = ā + b̄ + c̄ + d̄ , (b − a) + (d − c) =

(b̄− ā) + (d̄− c̄), a = ā y c ≤ c̄
es un orden total que refina el orden producto.

También se puede probar que si nos restringimos a interva-
los estos órdenes corresponden con sus homónimos en L(R) y
si nos restringimos a números, con el orden habitual sobre la
recta real. Evidentemente una caja que es menor que otra con
respecto a un orden, puede no serlo con respecto al otro. Si
consideramos el orden lexicográfico tipo 1 y los colores verde
(≤1234 3), amarillo (>1234 3 y ≤1234 7), naranja (>1234 7 y
≤1234 12) y rojo (>1234 12), obtenemos la matriz de riesgo
imprecisa que puede verse en la tabla IV.

TABLE IV
MATRIZ DE RIESGO IMPRECISA.

Frec.
Cons. P PN N NG G GE E EEx Ex

Mp 5 [5,10] 10 [10,15] 15 [15,20] 20 [20,25] 25
MpP [4,5] [4,5,8,10] [8,10] [8,10,12,15] [12,15] [12,15,16,20] [16,20] [16,20,20,25] [20,25]
P 4 [4,8] 8 [8,12] 12 [12,16] 16 [16,20] 20
PPos [3,4] [3,4,6,8] [6,8] [6,8,9,12] [9,12] [9,12,12,16] [12,16] [12,15,16,20] [15,20]
Pos 3 [3,6] 6 [6,9] 9 [9,12] 12 [12,15] 15
PosPp [2,3] [2,3,4,6] [4,6] [4,6,6,9] [6,9] [6,8,9,12] [8,12] [8,10,12,15] [10,15]
Pp 2 [2,4] 4 [4,6] 6 [6,8] 8 [8,10] 10
PpI [1,2] [1,2,2,4] [2,4] [2,3,4,6] [3,6] [3,4,6,8] [4,8] [4,5,8,10] [5,10]
I 1 [1,2] 2 [2,3] 3 [3,4] 4 [4,5] 5

Si prefiriésemos trabajar con todos los órdenes a la vez,
combinándolos, podrı́amos utilizar métodos de elección como
el de Borda o Concorcet. Vamos a ver el procedimiento
completo mediante un ejemplo.

IV. CASO DE ESTUDIO

Veremos de qué manera podemos aplicar estas formas de
ordenar los distintos tipos de errores en un ejemplo ilustrativo
(ver [23]). El objetivo es mostrar de qué forma quedan
clasificados los errores según el orden que utilicemos. Ası́,
podremos aplicar toda la teorı́a que hemos desarrollado para
poder ver cuál es su utilidad real. En particular, estudiaremos
y clasificaremos los errores más comunes que puede cometer
un conductor de autobús. Podemos considerar los siguientes
eventos:
• E1. Cruzar un semáforo en ámbar.
• E2. Cruzar un semáforo en rojo.
• E3. Conducir bajo los efectos de alcohol o de drogas.
• E4. No poner el intermitente al girar.
• E5. Saludar a otros conductores.
• E6. Confundirse en el cambio más de 50 céntimos.

• E7. Confundirse en el cambio menos de 50 céntimos.
Ahora, deberemos ver cuál es la frecuencia con la que

se produce cada uno de los eventos, ası́ como ver cuáles
son las consecuencias de los mismos. Las frecuencias y
las consecuencias de cada error se pueden determinar, por
ejemplo, a partir de estadı́sticas que relacionen la asiduidad
y el impacto que han tenido a lo largo de cierto periodo de
tiempo. En base a esos datos, se podrı́an clasificar en las
distintas categorı́as de las frecuencias y consecuencias (con
la posibilidad de considerar intervalos).

En la tabla V aparece resumida toda la información: la
etiqueta que relaciona cada error, con unas frecuencias y
consecuencias que se han considerado razonables.

TABLE V
ESTIMACIÓN DE LAS FRECUENCIAS Y DE LAS CONSECUENCIAS DE CADA

EVENTO.

Evento Frecuencias Consecuencias
E1 MpP GE
E2 Pos Ex
E3 PpI Ex
E4 PosPp EEx
E5 Mp P
E6 PpI PN
E7 PosPp P

La notación utilizada es la misma que se ha utilizado en la
matriz de riesgo imprecisa de la tabla IV.

Una vez obtenida la información de la tabla V, debemos
considerar dicha matriz de riesgo para asignar a cada uno de
los eventos (errores a cuantificar) el valor de riesgo asociado
a los mismos, que vendrá dado mediante una caja, recordando
que los números y los intervalos pueden ser vistos como tipos
particulares de cajas. Ası́, dichas valoraciones son:
• E1. Cruzar un semáforo en ámbar: CE1 = [12, 15, 16, 20].
• E2. Cruzar un semáforo en rojo: CE2 = 15.
• E3. Conducir bajo los efectos de alcohol o de drogas:
CE3 = [5, 10].

• E4. No poner el intermitente al girar: CE4 =
[8, 10, 12, 15].

• E5. Saludar a otros conductores: CE5 = 5.
• E6. Confundirse en el cambio más de 50 céntimos: CE6 =

[1, 2, 2, 4].
• E7. Confundirse en el cambio menos de 50 céntimos:
CE7 = [2, 3].

Si aplicamos cada uno de los 24 órdenes lexicográficos que
hemos introducido, la ordenación entre los distintos errores se
repite en muchos de ellos, tal como puede verse en la tabla
VI.

Nótese que tenemos solamente tres ordenaciones posibles.
Aún ası́, se observa como la elección del orden entre cajas
hace que la clasificación de los errores varı́e de un caso a otro.
Si queremos fusionar la información de varios órdenes, para
no dar más relevancia a unas componentes de la caja que a
otras, podrı́amos fusionar las distintas ordenaciones mediante
métodos de elección. En particular, estudiaremos los métodos
de Borda y de Condorcet. El primero se basa en la posición y el
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TABLE VI
ORDENACIONES OBTENIDAS SEGÚN LOS DISTINTOS ÓRDENES

LEXICOGRÁFICOS.

Frec. Ranking
8 CE1 ≥ CE2 ≥ CE4 ≥ CE3 ≥ CE5 ≥ CE7 ≥ CE6

8 CE1 ≥ CE2 ≥ CE4 ≥ CE3 ≥ CE5 ≥ CE6 ≥ CE7

8 CE2 ≥ CE1 ≥ CE4 ≥ CE3 ≥ CE5 ≥ CE7 ≥ CE6

segundo en la comparación por pares. En la mayorı́a de casos
ambos criterios actúan de igual forma, aunque puede haber
casos en los que la ordenación sea completamente contraria.
Veremos a continuación qué es lo que sucede en este ejemplo.

A. Ranking Borda Count

Existen distintos rankings para clasificar órdenes, en este
caso nos centraremos en el Ranking de Borda Count.

Para hacer una clasificación de todos estos órdenes que
hemos señalado previamente, usaremos dicho ranking para fu-
sionar la información dada por todos los órdenes considerados.

En este método (ver [20] para más información al respecto),
basta mirar cuál es la frecuencia de cada una de las ordena-
ciones posibles. La representación usual es la que aparece en la
matriz O, llamada matriz de votación, en la que el elemento
oij representa el número de veces que ai ≥ aj . A partir de la
matriz O, bastará sumar por filas obteniendo un valor αi. Para
obtener el ranking final basta hacer una clasificación natural
con los valores αi obtenidos.

La matriz de votación asociada a este ejemplo puede verse
en la tabla VII.

TABLE VII
MATRIZ DE VOTACIÓN.

O CE1 CE2 CE3 CE4 CE5 CE6 CE7

CE1 0 16 24 24 24 24 24
CE2 8 0 24 24 24 24 24
CE3 0 0 0 0 24 24 24
CE4 0 0 24 0 24 24 24
CE5 0 0 0 0 0 24 24
CE6 0 0 0 0 0 0 8
CE7 0 0 0 0 0 16 0

La puntuación que nos ofrece el ranking de Borda se denota
por

αEi
=

n∑

j=1

oij

donde el elemento oij representa la i-ésima fila y la j-ésima
columna de la matriz O.

Ası́, las puntuaciones de Borda serı́an las siguientes: αE1 =
136 y αE2

= 128, αE3
= 72, αE4

= 96, αE5
= 48, αE6

= 8,
αE7

= 16. Se obtendrı́a ası́ el ranking según el Ranking de
Borda Count por medio de la ordenación de estos números de
menor a mayor:

CE6 ≤ CE7 ≤ CE5 ≤ CE3 ≤ CE4 ≤ CE2 ≤ CE1

Vemos en la figura 1 cómo queda la representación gráfica
si usamos un diagrama de Hasse.

CE6

��
CE7

��
CE5

��
CE3

��
CE4

��
CE2

��
CE1

Fig. 1. Órdenes lexicográficos (ordenación por Borda).

Observamos como el diagrama tiene un aspecto lineal. El
evento que tiene una mayor importancia y que domina a todos
los demás es el evento que queda en la parte inferior, en este
caso es el evento CE1, como ya hemos visto.

La interpretación real de todo lo que se ha comentado
es que, si fuéramos propietarios de esta empresa de auto-
buses donde se producen estos errores, el primer error en
el que nos deberı́amos centrar en solucionar serı́a el CE1.
Este error se corresponde con cruzar un semáforo en ambar.
Habrá distintas formas de enfocar este problema y de intentar
encontrar una solución, como el hecho de realizar cursos de
concienciación, intentar disminuir las horas que un conductor
está conduciendo el autobús de continuo, etc. Se pueden
probar distintos métodos, y una vez que la frecuencia con la
que se produce este error disminuya de manera considerable,
podemos intentar solucionar el siguiente evento, que en este
caso es CE2. Se procederı́a ası́ sucesivamente hasta conseguir
que todos los eventos tengan un riesgo bajo o, si esto no es
posible, conseguir disminuirlo de forma considerable.

B. Ranking de Condorcet

En muchas situaciones reales habituales es difı́cil que
cuando obtenemos distintos rankings y el objetivo es obtener
un ranking consenso se tenga un ranking que aparezca más
de la mitad de las ocasiones. Para solucionar este problema,
Condorcet se apoya en el concepto de ganador por mayorı́a.
Condorcet propone un ganador basado en la dominancia del
mismo sobre el resto de candidatos. Si tal candidato existe,
será elegido el ganador.

Para ver cuál es el ganador de Condorcet (para más in-
formación, ver de nuevo [20]), debemos buscar cuál es el
candidato que comparado con el resto es el preferido por el
mayor número de votantes. En este ejemplo, deberemos mirar
cuál es el evento que tiene mayor importancia en la mayorı́a
de los órdenes lexicográficos.

Se puede observar que el evento CE1 es elegido como
primero un total de 16 veces sobre 24 posibles clasificaciones.
Como 16 es más de la mitad del número de ordenaciones, este
candidato será también preferido por pares a todos los demás.
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Además en este caso, el único evento que le hace una
competencia real a CE1 es CE2, ya que este es el único que
le supera en alguna ocasión (lo hace en las 8 restantes). Ası́
el primer evento sobre el que deberı́amos prestar atención es
el CE1. Para ver qué sucede con el resto de la clasificación,
debemos seguir mirando qué sucede con el resto de pares. El
segundo evento sobre el que nos deberı́amos fijar es sobre
CE2 ya que domina al resto de errores (salvo CE1, como
hemos mencionado anteriormente) de manera absoluta. De
igual manera CE4 domina al resto de los eventos (salvo a
CE1 y a CE2), estamos en la misma situación con los eventos
CE3 y CE5. Todos ellos tienen dominancia sobre los eventos
siguientes, CE3 tiene dominancia sobre CE5, CE6 y CE7 y CE5

tiene dominancia sobre los eventos CE6 y CE7. Finalmente,
CE7 tiene dominancia sobre el evento CE6.

Ası́, la clasificación según Condorcet quedarı́a de la siguien-
te manera: CE6 ≤ CE7 ≤ CE5 ≤ CE3 ≤ CE4 ≤ CE2 ≤ CE1. En
este caso, la clasificación de Borda y de Condorcet coinciden,
lo cuál ya habı́amos comentado que suele ser habitual. Como
ambos criterios coinciden, tanto el diagrama de Hasse, como la
interpretación que podemos hacer en este caso es exactamente
la misma que ocurrı́a cuando utilizábamos el método de
clasificación de Borda. Nótese que el método de Condorcet
no siempre da lugar a una ordenación de los eventos (puede
haber ciclos).

C. Orden de Xu-Yager
Por otro lado, si consideramos la generalización del orden

de Xu-Yager, obtenemos la siguiente clasificación: CE1 ≥XY
CE2 ≥XY CE4 ≥XY CE3 ≥XY CE5 ≥XY CE7 ≥XY CE6.

En este caso, sucede lo contrario que cuando estudiamos
los órdenes lexicográficos, tenemos una única clasificación
posible para todos ellos, ya que los dos primeros puntos
de la definición de ≤XY son suficientes para determinar la
clasificación.

Las conclusiones según este orden coincide que se co-
rresponden con las dadas por la fusión de los órdenes lexi-
cográficos, tanto aplicando Borda, como Concordet.

V. CONCLUSIONES

Hemos introducido un concepto que generaliza al de in-
tervalo y nos permite definir una matriz de riesgo bajo im-
precisión, además de analizar distintas estructuras de orden
sobre el conjunto de cajas. La nueva matriz generaliza a
la usual, manteniendo coherencia con el significado de las
etiquetas y los colores de la misma, pero permitiendo además
hacer consideraciones menos estrictas. Los elementos de dicha
matriz pueden ser ordenados con distintos órdenes totales y en
un ejemplo aplicado vemos como dicha información puede ser
fusionada aplicando los métodos de Borda y Concordet, que
en este caso llegan a la misma conclusión.

Es inmediato observar que las cuestiones estudiadas
plantean la necesidad de resolver algunos problemas bastante
directos. Por ejemplo, considerar otro orden en la definición de
caja, estudiar otros órdenes en el conjunto de cajas o utilizar
otros métodos de elecciones para fusionar la ordenación dada
por distintos criterios.
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Abstract—En esta contribución se describe la implementación
de una plataforma web que puede ser integrada en el campus vir-
tual de cualquier centro educativo con el objetivo de centralizar
la gestión de las tareas de toma de decisiones en grupo por parte
de los estudiantes. Debido a la situación actual propiciada por
el virus COVID-19, muchas clases que antes eran presenciales
se están impartiendo de forma “online”. Por tanto, situaciones
de toma de decisiones relativas al trabajo en grupo que hasta
hace poco se resolvı́an directamente con un rápido debate en
clase, ahora necesitan llevarse a cabo de forma no presencial.
Dicha plataforma actúa como moderador virtual, permitiendo a
los usuarios comunicarse a través de la web con el objetivo de
tomar decisiones consensuadas.

Index Terms—Toma de decisiones en grupo, Consenso, Lógica
difusa, Clase online

I. INTRODUCCIÓN

La toma de decisiones es una tarea cotidiana que todos
realizamos a diario. Hay decisiones con poca trascendencia
como la de escoger si tomar café o zumo en el desayuno,
y otras más relevantes como decidir si cambio de trabajo
o mantengo mi puesto actual. La actividad docente no está
excluida de este tipo de tareas, tanto desde el punto de vista del
profesor como desde las tareas intrı́nsecas del estudiante [14].
Decidir qué dı́a de la semana hacer una tarea, la fecha de un
examen o escoger el tema de un trabajo de entre un conjunto
de posibilidades, son decisiones que se toman frecuentemente
en la universidad.

Asimismo, cuando se trabaja en grupo y la decisión afecta a
varias personas, la situación empieza a ser más compleja. Este
caso es conocido como el problema de la toma de decisiones
en grupo. Resolver este problema de forma presencial suele
ser relativamente sencillo; se discuten conjuntamente las difer-
entes alternativas para intentar llegar a una solución conjunta
que sea “lo mejor para todos”. Sin embargo, analizándolo
bien, se pueden dar situaciones en las que cada persona

perteneciente al grupo tenga unos intereses o motivaciones
diferentes, incluso que dé más importancia a unos criterios de
elección diferentes al resto de compañeros [9].

Cuando los alumnos se encuentran en una de estas situa-
ciones, sumando a la ecuación que el entorno de estudio no
sea presencial, necesitan herramientas o entornos virtuales que
les ayuden con el proceso de toma de decisiones en grupo,
de forma que no se paralice el trabajo sencillamente porque
no hay consenso en alguna decisión que afecta al grupo en
su conjunto. Por el momento, los estudiantes disponen de
herramientas que les facilitan la comunicación, como foros,
chats, o incluso wikis que fomentan el trabajo colaborativo.
Sin embargo, no tienen ningún soporte para ayudarles a llegar
a acuerdos grupales.

Cuando hablamos de toma de decisiones en grupo, hay
varias formas de llegar a un acuerdo [5]. Desde un punto de
vista más dominante, en el que habrı́a un lı́der que toma la
decisión y todos los demás le hacen caso (casuı́stica poco
recomendable en el entorno docente), hasta modelos más
participativos en los que se hace lo que dice la mayorı́a
(usando un sistema de votación en el que la alternativa que
tenga más votos será la elegida como decisión del grupo). Sin
embargo, tanto la primera como la segunda opción pueden
dejar a algunos miembros del equipo sin sentirse cómodos con
la decisión tomada, creando diferentes bandos en el grupo de
trabajo. Lo ideal serı́a alcanzar algún tipo de consenso [2].

Dicho esto, el objetivo general de este proyecto es el de
implementar un modelo de consenso usando la lógica difusa
[1], [11], [12], [22], en el que todos los miembros del grupo se
sientan igualmente representados por la decisión tomada. Para
ello, no trataremos el concepto de consenso como un concepto
“crisp” binario (hay consenso total o no lo hay), si no que se
establecerá una medida del nivel de consenso alcanzado por
el grupo en base a sus preferencias individuales (valores entre
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cero y uno), y se establecerá un umbral para considerar si hay
consenso suficiente o la negociación debe continuar [2], [16],
[17]. De esta forma, usamos es término “Soft consensus” para
referirnos a que el concepto de consenso puede tener diferentes
grados y para poder medir el nivel de consenso que existe en
cada momento en los procesos de toma de decisiones.

Para guiar la negociación de forma que el proceso sea
convergente (que cada vez las posiciones de los estudiantes
estén más cerca), se establecerá un mecanismo de consenso,
que actuará como moderador virtual enviando un mensaje
personalizado a cada uno de los miembros del grupo para que
relaje un poco sus preferencias individuales en la dirección
que marque el grupo en su conjunto.

De esta forma, tendremos dos procesos diferenciados que
actúan conjuntamente de forma secuencial. El proceso de
consenso actúa para lograr alcanzar el máximo grado de
consenso posible entre las opiniones de los usuarios. Cuando
todos han expresado sus opiniones, el sistema calcula el
grado de consenso existente. Si es satisfactorio, entonces se
aplica el proceso de selección de cara a obtener la solución
final. Por el contrario, si el grado de consenso medio no
es satisfactorio, entonces el sistema insta a los usuarios a
modificar sus opiniones de cara a aumentar la proximidad
en sus preferencias. De esta manera, un proceso de toma de
decisiones puede verse como un proceso dinámico e iterativo
en el que los usuarios van acercado sus posiciones hasta
maximizar el consenso.

En la plataforma quedarán registradas todas las interac-
ciones de los alumnos con el sistema, de forma que el profesor
dispondrá de nuevos indicadores para la evaluación de la
competencia de trabajo en grupo en caso de ser evaluable
según el plan docente de cada asignatura [6], [15], [18].

El resto de este documento se estructura de la siguiente
forma. La Sección 2 muestra el estado del arte. En la Sección
3 se describe la plataforma implementada. Finalmente, la
Sección 4 presenta las conclusiones obtenidas y los trabajos
futuros.

II. ESTADO DEL ARTE

En esta sección vamos a mostrar los conceptos técnicos en
los que se basa el modelo implementado.

A. Conceptos Básicos

Formalmente, el problema subyacente a un proceso de toma
de decisiones en grupo se puede definir de la siguiente manera:

Sea X = {x1, x2, . . . , xn}(n ≥ 1) un conjunto de
alternativas posibles y, teniendo en cuenta los valores de
preferencia, P = {p1, . . . , pm}, proporcionados por un
grupo de expertos E = {e1, . . . , em}, ¿cómo deben ordenarse
los valores del conjunto X de mejor a peor alternativa posible?

Por lo general, para resolver el problema, los procesos de
toma de decisiones en grupo siguen los siguientes pasos [7]:

1) Introducción de preferencias en el sistema: Los ex-
pertos proporcionan sus preferencias al sistema. Las

Fig. 1. Proceso de toma de decisiones con medidas de consenso.

preferencias definen directa o indirectamente un orden
sobre el conjunto de alternativas.

2) Cálculo de la matriz colectiva de preferencias: La
información de las preferencias proporcionadas por to-
dos los usuarios es agregada en una sola pieza de
información. La matriz colectiva representa la media de
las preferencias proporcionadas.

3) Proceso de selección de alternativas: Usando la matriz
colectiva y los operadores de selección deseados, se
genera el ranking final de las alternativas.

El esquema comentado arriba tiene la desventaja de que no
permite a los usuarios debatir ni llegar a ningún consenso
antes de tomar la decisión final. Para solucionar este problema
se utilizan las medidas de consenso [3]. Usando las matrices
de preferencia de los expertos involucrados en el proceso de
decisión, las medidas de consenso permiten determinar si los
expertos opinan de forma parecida o si, por el contrario, tienen
opiniones encontradas. De esta forma, si los expertos no llegan
a un consenso, se les puede permitir que hablen y modifiquen
sus preferencias con el objetivo de que se pongan de acuerdo.
Si, por el contrario, todos están de acuerdo, se calcula el
ranking de alternativas y el proceso de decisión termina. En
la Fig. 1, podemos ver un esquema de como se definirı́a un
proceso de toma de decisiones con medidas de consenso.

En un proceso de toma de decisiones, los expertos pueden
proporcionar sus preferencias de diferentes formas. El proced-
imiento elegido es muy importante ya que establecerá la forma
en que se deben realizar las operaciones necesarias para la
toma de decisiones. Los métodos más comunes en la literatura
son los siguientes [4], [19]:

• Órdenes de preferencia: El experto ek proporciona sus
preferencias utilizando una lista ordenada de preferencias
Ok = {ok(1), . . . , ok(n)} donde ok(·) se define como
una función de permutación sobre el conjunto de ı́ndices
{1, . . . , n} del conjunto de alternativas. De esta forma, las
alternativas aparecen ordenadas de mejor a peor opción.
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• Funciones de utilidad: El experto ek comunica sus
preferencias representadas como un conjunto de n valores
de utilidad Uk = {uki , i = 1, . . . , n}, uki ∈ [0, 1] donde
uki representa la evaluación que el experto ek proporciona
a la alternativa xi.

• Relaciones de preferencia difusa: El experto ek propor-
ciona sus preferencias mediante una relación P k ⊂ X ×
X cuya función de pertenencia es µPk : X×X → [0, 1].
µPk = pkij establece el grado de preferencia de la
alternativa xi sobre xj .

En este trabajo, vamos a utilizar las relaciones de preferen-
cia difusas como formato de representación de preferencias.

B. Medidas de consenso y proximidad

Para calcular el consenso de un proceso de toma de deci-
siones que utiliza relaciones de preferencia difusa, podemos
seguir los pasos expuestos en el artı́culo de Mata et al. [13] y
que detallamos a continuación:

1) Para cada par de expertos ei y ej , calculamos las
matrices de similaridad smij . Para ello, aplicamos la
siguiente función de similaridad para cada uno de los
valores de preferencia de cada dos expertos:

s(plki , p
lk
j ) = 1− |(plki − plkj )| (1)

donde s(plki , p
lk
j ) muestra la similaridad entre las pref-

erencias de las alternativas xl sobre xk para los expertos
ei y ej .

2) Una vez calculadas todas las matrices se agregan en una
única matriz de consenso colectiva. Para ello podemos
utilizar el operador de media:

smc = φ(smij),∀i,∀j, i 6= j, i < j (2)

3) Utilizando la matriz de consenso colectiva smc, pode-
mos calcular tres medidas distintas de consenso, cada
una representativa de un nivel diferente:

a) Nivel 1, consenso entre pares de alternativas: Cada
valor de la matriz smc nos muestra el consenso
alcanzado para cada par de alternativas:

cplk = cmlk∀l, k = 1, . . . , n,∧l 6= k (3)

donde n es el número de alternativas del proceso
de toma de decisiones.

b) Nivel 2, consenso en cada alternativa: Para cada
alternativa xl, puede calcularse el nivel de con-
senso alcanzado, cal, usando la matriz cp tal y
como muestra la siguiente expresión:

cal =

∑n
k=1,l 6=k(cp

lk + cpkl))

2(n− 1)
(4)

c) Nivel 3, consenso general del proceso: Finalmente,
podemos agregar los valores de consenso de cada
una de las alternativas para obtener un valor de
consenso global:

cr =
n∑

l=1

cal/n (5)

También es interesante calcular la distancia que hay entre las
preferencias de cada uno de los expertos a la matriz colectiva
global. De esta forma, podemos ver si las opiniones del experto
son similares o no a la de los demás y en que grado. Estas
medidas de proximidad [10], al igual que las de consenso, se
pueden calcular en tres niveles distintos:

1) Nivel 1, proximidad en cada par de alternativas: El nivel
de proximidad para cada par de alternativas (xl, xk), ppi,
del experto e1, puede calcularse de la siguiente forma:

pplki = s(plki , p
lk
c ) (6)

donde pc es la matriz colectiva.
2) Nivel 2, proximidad para cada alternativa: De manera

análoga que en el consenso, podemos calcular el nivel
de proximidad del experto a cada una de las alternativas
mediante la siguiente expresión:

pali =

∑n
k=1,l 6=k(pp

lk
i + ppkli )

2 · (n− 1)
(7)

3) Nivel 3, Proximidad general: El nivel de proximidad
general de las preferencias del experto ei puede calcu-
larse usando la siguiente expresión:

pri =
pali
n

(8)

Estas medidas serán útiles a la hora de identificar aquellos
usuarios mas alejados de la opinión colectiva del grupo, y
que por tanto, deberı́an acercar posturas con el mismo para
maximizar el grado de consenso.

C. Métodos de agregación de información

Para calcular la matriz colectiva de preferencias es necesario
agregar la información proporcionada por los expertos. Para
ello debemos usar algún operador de agregación. A contin-
uación expondremos algunos operadores que pueden usarse
para completar esta tarea:
• el operador de media.
• el de media ponderada.
• el operador de media de pesos ordenados (OWA) [20],

[21].
Para calcular la matriz de preferencias colectiva utilizando

el operador de media podemos utilizar la siguiente expresión:

Cij =
p1ij + . . .+ pnij

m
(9)

D. Operadores de selección

Para el proceso de selección, se utilizan los operadores de
selección. Este tipo de operadores son capaces de obtener un
ranking de alternativas a partir de una matriz colectiva de
preferencias. Dos ejemplos de este tipo de operadores son los
operadores de dominancia y no dominancia, GDD y GNDD
respectivamente [8]. El operador GDD calcula el grado en
que una alternativa domina a otra mientras que el de no
dominancia se encarga de determinar qué alternativas no son
dominadas por otras.

CAEPIA 20/21 XIX Conferencia de la Asociación Española para la Inteligencia Artificial 339



El operador GDD se calcula mediante la siguiente ex-
presión:

GDDi = φ(ci1, ci2, . . . , ci(i−1), ci(i+1), . . . , cin) (10)

donde c es la matriz de preferencia colectiva y φ representa
el operador de media.

El operador GNDD puede calcularse utilizando la siguiente
expresión:

GNDDi = φ(cs1i, c
s
2i, . . . , c

s
(i−1)i, c

s
(i+1)i, . . . , c

s
ni) (11)

donde
csji = max{cji − cij , 1}

III. PLATAFORMA DE AYUDA A LA TOMA DE DECISIONES
GRUPALES EN EL TRABAJO DE CLASE ONLINE

En esta sección vamos a mostrar el funcionamiento de la
plataforma desarrollada.

A. Tecnologı́as empleadas para el desarrollo de la plataforma

A nivel tecnológico, la plataforma ha sido desarrollada
teniendo como cimiento de programación el lenguaje PHP 8 y,
a mas alto nivel, se ha utilizado el framework de aplicaciones
web PHP Laravel.

Dicha plataforma cuenta entre sus dependencias con una
extensión de seguridad diseñada por el propio ámbito de
Laravel llamado Laravel JetStream. Dicha extensión nos ofrece
una funcionalidad complementaria para la autenticación de
usuarios y todo el conjunto referente a su gestión dentro de la
plataforma. Incluyéndose el uso de los “teams” para los roles
de los usuarios.

Para el envı́o de emails a los usuarios con la información
sobre las decisiones a tomar o ya tomadas, se ha utilizado
la dependencia PHPMailer por un servidor SMTP (Simple
Mail Transfer Protocol) con un correo previamente definido
y adecuado para esta envergadura.

El estilo de la página viene predefinido por una base de
Boostrap 5 con modificaciones e inclusión de clases de CSS
propias.

La plataforma se basa en un modelo de tres capas, definida
como Modelo-Vista-Controlador (MVC). La base de datos que
utiliza el modelo es una base de datos relacional MySQL.

B. Ejemplo de uso y funcionalidad ofrecida por la Plataforma

En la pantalla inicial (ver Fig. 2), se puede configurar un
nuevo proceso de decisión en grupo ajustando las alternativas
y los expertos, que son divididos en diferentes roles según los
tipos de decisiones que van a tomar. Una vez configurado el
proceso, los usuarios pueden proceder a insertar sus preferen-
cias individuales (ver Fig.3) .

Cuando el usuario se identifica en la plataforma, tendrá una
sección llamada “Mis Participaciones” donde puede ver todos
los procesos de decisión pendientes en los que se ha visto
involucrado y el estado en el que se encuentran.

Otra de las operaciones que ofrece la plataforma es el
panel de administración (ver Fig.4). El administrador de cada

Fig. 2. Pantalla inicial

Fig. 3. Inserción de preferencias sobre las alternativas

proceso podrá ver qué usuarios han registrado sus preferencias,
el estado de la decisión y en el caso de que el nivel de consenso
sea suficiente, la alternativa escogida como mejor opción.

Fig. 4. Panel de Administración

Una vez que todos los usuarios han insertado sus pref-
erencias, al administrador se le enviará un mensaje con los
resultados obtenidos (ver Fig.5) y, en caso de no alcanzar
el nivel de consenso requerido, tendrá la opción de iniciar
una nueva ronda de valoraciones de preferencias, mostrando
previamente a cada experto, no solo el consenso alcanzado a
nivel de alternativas, sino también la proximidad con respecto
a la opinión colectiva para que vea si es necesario actualizar
sus preferencias (y en qué dirección) como mecanismo de
retroalimentación que trate de conseguir que el proceso sea
convergente y en cada iteración el nivel de consenso sea mayor
que en la anterior.

En cambio, si la acción escogida es “Terminar Valoración”,
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debido a que el nivel de consenso ya es satisfactorio, el
proyecto pasará a un estado de “Valoración Final” donde ya
los expertos tendrán en el apartado “Decisiones Tomadas” un
mensaje con el resultado sobre la decisión final consensuada.

Fig. 5. Estado actual del proceso de toma de decisiones

Finalmente, en la Fig. 6, se puede observar la versión de la
aplicación móvil de la plataforma funcionando bajo el sistema
operativo Android.

Fig. 6. Aplicación Android

IV. CONCLUSIONES Y TRABAJOS FUTUROS

En esta contribución se ha presentado una plataforma web
de toma de decisiones en grupo, orientada al caso práctico del
trabajo grupal en clase en un entorno docente no presencial
propiciado por el Covid-19. De esta manera, la plataforma
creada actúa como moderador virtual, ayudando a tomar
decisiones sensatas para todos los participantes.

Como trabajos futuros, se propone la extensión de la
plataforma para aceptar diferentes estructuras de repre-
sentación de preferencias. También se plantea la posibilidad
de implementar un sistema de control de consistencia y de

estimación de preferencias no rellenas. Por último, se desea
implementar una plataforma dinámica, que permita que los
elementos del problema puedan cambiar una vez comenzado
el proceso de negociación.
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Resumen—En los últimos años hemos observado avances
enormes en el área del Aprendizaje Automático, especialmente
a través del uso de Redes Neuronales Profundas. Uno de los
ejemplos más relevantes es la clasificación de imágenes, donde
las Redes Neuronales Convolucionales han demostrado ser una
herramienta muy precisa. Aunque las funciones de agregación,
como los operadores OWA, ya han sido empleadas en com-
binación con redes neuronales, en este trabajo proponemos y
exploramos una nueva forma de integrar operadores OWA en
redes neuronales. Para ello, introducimos los operadores OWA
dentro de una nueva capa en una red neuronal convolucional.
Realizamos varios experimentos introduciendo la capa en una
red basada en VGG-13 y mostramos como la capa introduce
nuevo conocimiento en la red.

Index Terms—Redes Neuronales, Redes Neuronales Convolu-
cionales, aprendizaje profundo, operadores OWA

I. INTRODUCCIÓN

Uno de los problemas más estudiados en aprendizaje au-
tomático es el de clasificación supervisada de imágenes [1],
[2]. En este tipo de problemas intentamos desarrollar un mo-
delo matemático que aprende sobre un conjunto de imágenes
etiquetadas, y que después sea capaz de etiquetar nuevos
ejemplos apropiadamente. Actualmente, la técnica más común
es el uso de redes neuronales convolucionales (CNNs), el foco
de atención de este trabajo.

Las medidas ponderadas ordenadas (OWA) [3], [4] son
un tipo de agregación paramétrica comúnmente utilizada en
el campo del aprendizaje automático y la lógica difusa. En
trabajos previos, los operadores OWA han sido integrados en
aprendizaje profundo principalmente como un método para
combinar las salidas de diferentes clasificadores (ensembles)
[5], [6], [7], [8]. También han sido empleados con resultados
interesantes en las capas de pooling de las CNNs [9].

A diferencia de los trabajos anteriores, intentamos emplear
operadores OWA en las capas internas de una CNN, con
el objetivo de incrementar la información disponible para la
siguiente capa, añadiendo muy pocos parámetros a la red.
Nuestro objetivo es generar información sin coste en la red,
obteniendo los mapas de caracterı́sticas en un punto de la
red y añadiendo información derivada que serı́a difı́cil de

Este trabajo ha sido financiado por el Servicio de Investigación de la Uni-
versidad Pública de Navarra bajo el proyecto PJUPNA1926, y por el MICIN
de España (PID2019-108392GB-I00 / AEI / 10.13039/501100011033).

conseguir a través de operadores convolucionales normales.
Para esto, proponemos implementar una capa de agregaciones
OWA a nivel de canal, que aprenda los pesos de varios
operadores junto con los parámetros de la red, y los aplique
para añadir mapas de caracterı́sticas virtuales a la información
ya existente.

Para comprobar el funcionamiento de esta propuesta hemos
considerado una arquitectura base de tipo VGG13 [10], y
hemos insertado capas OWA en ella. Probamos diferentes
configuraciones de la capa sobre los datasets de clasificación
de imágenes CIFAR10 y CIFAR100 [11].

El resto del trabajo está organizado de la siguiente manera.
La Sección II describe la literatura relevante a nuestra pro-
puesta. La Sección III revisa algunos conceptos preliminares
sobre OWA y CNN. Después, la Sección IV especifica nuestra
metodologı́a para la inserción de la capa OWA y explica el
funcionamiento interno de esta. La Sección V presenta los
experimentos que hemos diseñado para probar la capa y los
detalles de implementación. A continuación, la Sección VI
recopilamos los resultados experimentales y los analizamos.
Finalmente, la Sección VII concluye este trabajo y propone
algunas lı́neas de trabajo futuras.

II. LITERATURA RELACIONADA

En la literatura se han explorado previamente varias maneras
de combinar operadores OWA y redes neuronales [5], [6], [7],
[8], [9]. La manera más habitual es emplear OWAs sobre la
salida de las redes, agregando sus resultados [5], [6], [7], [8].
La otra técnica habitual es la sustitución de las agregaciones
en las capas de pooling por OWAs [9].

El empleo de operaciones de agregación basadas en medidas
difusas [12], como las integrales Choquet y Sugeno (de las
cuales los operadores OWA son un caso particular), para
agregar ensembles de redes neuronales ha sido estudiado en
múltiples ocasiones recientemente [5], [6], [7], [8]. En estos
sistemas, se entrenan una serie de clasificadores independien-
temente, y se emplean operadores de agregación sobre los
resultados. En este paso final es donde se pueden emplear
operadores OWA y otros operadores de agregación basados
en medidas difusas.

Los operadores basados en medidas difusas también se
han utilizado como operadores de reducción en las capas de
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pooling de CNNs [9]. En este caso, las agregaciones habituales
empleadas en las capas de pooling se reemplazan directamente
por otros operadores. La idea es obtener representaciones
más fieles de la información original tras la reducción de
dimensionalidad que se da en estas capas.

Finalmente, la inspiración principal para este trabajo se
encuentra en [13], donde los autores proponen la creación de lo
que ellos denominan una “Capa Difusa”. Esta capa, insertada
en diferentes puntos de una CNN, realiza seis operaciones
OWA predeterminadas (máximo, mı́nimo, máximo suavizado,
mı́nimo suavizado, media y un operador aleatorio) sobre los
canales de la red, ordenados en base a una medida de la
entropı́a de cada canal. Mientras que los autores aplicaban
su método a un problema de segmentación de imágenes [14],
experimentalmente hemos comprobado que intentar trasladar
la técnica a problemas generales de clasificación de imágenes
no obtenı́a buenos resultados. En nuestra opinión, en el caso
de las redes empleadas para clasificación, existe demasiada
información codificada en el orden de los mapas de carac-
terı́sticas, que se pierde al aplicar los operadores OWA. Por
tanto, diseñamos nuestra propuesta con la idea de aumentar la
información en la red, en vez de reemplazarla, concatenando
los nuevos mapas de caracterı́sticas a los ya presentes. De
esta manera, empleamos la salida de nuestra capa OWA como
un complemento a la salida de las convoluciones estándar,
proporcionando a las siguientes capas información que serı́a
de otra forma difı́cil de obtener (información global a partir
de las métricas del canal). Además, incluimos los pesos de los
operadores OWA como parámetros de la red, aprendiéndolos
en vez de mantenerlos fijos como en [13].

III. PRELIMINARES

III-A. Operadores OWA

Los operadores OWA fueron propuestos inicialmente por
Yager [3]. Estos operadores son mapeos F : Rn → R ba-
sados en una colección de pesos W = [w1, . . . , wn], con la
condición de wi ∈ [0, 1] para todo i = 1, . . . , n y

∑n
i=1 = 1,

y definidos como:

F (a1, . . . , an) =
n∑

j=1

wjbj (1)

donde bj representa el j-ésimo elemento más grande de ai.
Algunos ejemplos notables de operadores OWA serı́an el

máximo (W = [1, 0, . . . , 0]), mı́nimo (W = [0, . . . , 0, 1]), y
la media aritmética (W =

[
1
n , . . . ,

1
n

]
).

III-B. Redes Neuronales Convolucionales Profundas

Las redes neuronales convolucionales (CNNs) modifican
la arquitectura habitual de las redes neuronales para espe-
cializarse en información espacial [15]. El uso más común,
el procesamiento de imágenes, supone reconocer las relacio-
nes 2D espaciales de la información de entrada, y emplear
operaciones convolucionales que sólo toman en consideración
pı́xeles vecinos de la imagen. Esto también supone perder algo
de información de gran escala de la imagen, al sólo trabajarse
con pı́xeles cercanos.

Otra importante caracterı́stica de las CNNs son las capas
de pooling [1]. Estas capas, como las convolucionales, re-
conocen la estructura espacial de las imágenes y mapas de
caracterı́sticas derivados, pero en vez de agregar mapas (como
las convolucionales) operan sobre un solo canal, resumiendo
la información por bloques y reduciendo el tamaño de cada
mapa de caracterı́sticas independientemente.

Algunas arquitecturas de CNN conocidas que han sido
desarrolladas para clasificación de imágenes son LeNet [16],
la familia VGG [10] y ResNet [2]. En este trabajo nos
centraremos en VGG, pero nuestra metodologı́a podrı́a ser
extrapolada a casi cualquier arquitectura CNN.

IV. METODOLOGÍA

IV-A. Capa OWA

Nuestra capa OWA propuesta funcionará tomando una en-
trada de N imágenes, con una resolución de I filas por J co-
lumnas y Cin canales de profundidad (mapas de caracterı́sticas
de entrada), y agregando Cf nuevos canales a los originales,
con Cf ∈ [0, Cin]. La salida será de N imágenes con la
misma resolución I × J , pero Cout = Cin + Cf canales de
profundidad, Cout ≥ Cin. Para generar esos Cf nuevos mapas
de caracterı́sticas, aplicaremos Cf operadores OWA sobre los
canales de entrada. Estos operadores OWA compartirán la
misma función de ordenación, que utilizará métricas calcu-
ladas por canal para reordenarlos. Después, cada uno de estos
operadores OWA generará un nuevo mapa de caracterı́sticas
como una combinación lineal de los canales ordenados, a partir
de un vector de pesos propio. Estos vectores de pesos, uno
por cada uno de los Cf OWAs aprendidos, se aprenderán y
actualizarán como parámetros de la red. Profundizamos más
sobre esto en la Sección IV-C. La arquitectura general de la
capa se muestra en la Figura 1.

IV-B. Ordenación de canales

Al decidir trabajar por canal (y no por pı́xel), resulta vital
definir precisamente la función de ordenación, esto es, en base
a que métrica ordenaremos los canales. Dado un canal X de
tamaño I × J , consideramos las siguientes métricas:

Entropı́a del canal. Empleamos la fórmula de entropı́a de
Shannon [17] aplicada a los valores de todos los pı́xeles
del canal,

H(X) = −
I∑

i=1

J∑

j=1

xij log xij (2)

Como esta función está diseñada para trabajar sobre
vectores de elementos en el rango xij ∈ [0, 1] con∑I
i=1

∑J
j=1 xij = 1, primero aplicamos la función

softmax a la entrada X para normalizar el mapa de
caracterı́sticas,

Softmax(xkl) =
exkl

∑I
i=1

∑J
j=1 e

xij

(3)

Intuitivamente, podemos entender la entropı́a como una
medida de desorden, de la cantidad de información
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Layer N-1

N × Cin × I × J

Input data

N × Cin × I × J

Ordered
channels

N × Cin × I × J

Aggregated
channels

N × Cf × I × J

concatenate

Concatenated
channels

N × (Cin + Cf )× I × J

Layer N+1

N × (Cin + Cf )× I × J

order

aggregate

Figura 1. Propuesta de estructura para la capa OWA.

codificada en un canal. Un valor más elevado de entropı́a
se corresponde con más uniformidad en los valores de en-
trada, mientras que un valor más pequeño se corresponde
con un mayor contraste e información en la entrada.
Suma de valores. Consideramos también la suma simple
de activaciones en el canal,

S(X) =
I∑

i=1

J∑

j=1

xij (4)

Variación total [18]. Considerando las caracterı́sticas
espaciales de la imagen, calculamos las diferencias entre
cada pı́xel y su vecindad, tanto horizontal como vertical-
mente, y sumamos el valor absoluto de las diferencias en
la imagen.

TVv(X) =
I∑

i=2

J∑

j=1

|xi,j − xi−1,j | (5)

TVh(X) =

I∑

i=1

J∑

j=2

|xi,j − xi,j−1| (6)

TV (X) = TVv(X) + TVh(X) (7)

La Variación Total (TV), como se define en [18], es
una medida que nos dice cuánta variación existe entre
los pı́xeles de una imagen y sus vecinos. Esta medida
será elevada para imágenes con muchos bordes nı́tidos y
contraste elevado, y baja para imágenes muy uniformes.
Mediana de los valores. Un operador OWA clásico,

M(X) = median(x11, . . . , xIJ) (8)

donde el operador mediana devuelve el ceil(I · J/2)-
ésimo elemento más grande de X si I · J es impar o la
media aritmética de los I ·J/2-ésimo y I ·J/2+1-ésimos
elementos más grandes de X , si I · J es par.
Máximo de los valores. En este contexto, el valor del
pı́xel más activado del canal,

MAX(X) = máx(x11, . . . , xIJ) (9)

Hemos considerado, además, dos métodos de ordenación de
referencia que no se basan en los valores del canal:

No ordenación. Mantenemos los canales en el orden que
vienen, convirtiendo el OWA en una agregación estándar.
Ordenación aleatoria. Esta ordenación nos permitirá
introducir ruido equivalente al resultado de aplicar la
capa OWA, permitiéndonos descartar que se obtengan
mejoras en la precisión debido a fenómenos de tipo
regularización.

IV-C. Agregación ponderada

Con los canales de entrada ya ordenados, realizaremos una
agregación ponderada, empleando Cf vectores de pesos (uno
por OWA), cada uno de ellos con un peso por cada canal de
entrada (Cin en total). En nuestra propuesta, los inicializare-
mos de forma aleatoria siguiendo una distribución U(0, 1).
Trataremos estos pesos como parámetros de la red, y por
tanto se aprenderán a través del método de retropropagación
habitual.

Estos pesos no se encuentran directamente restringidos, y
conforme son aprendidos pueden llegar a tomar cualquier
valor. Para ajustarnos a la definición de OWA dada en la
Sección III-A, donde para cada wi, i ∈ 1, . . . , Cf , requerimos
wi ∈ [0, 1] y

∑Cf

i=1 wi = 1, aplicamos algunas transforma-
ciones antes de realizar la agregación. Primero, empleamos
una función ReLU para convertir los pesos negativos en 0, y
después normalizamos dividiendo el vector por la suma de sus
valores, de forma que sumen en total 1.

ReLU(x) = max(x, 0) (10)

wj =
ReLU(xj)∑Cf

i=1ReLU(xi)
(11)

El resultado es un vector de pesos OWA correcto que puede
ser aplicado directamente a los canales.

V. MARCO EXPERIMENTAL

V-A. Datasets

Como datasets de pruebas hemos escogido CIFAR10 y
CIFAR100 [11]. Ambos son datasets de clasificación de
imágenes muy conocidos, compuestos cada uno por 60.000
imágenes en color en una resolución de 32x32 pı́xeles. En
el caso de CIFAR10 se reparten en 10 clases balanceadas
y fácilmente distinguibles (6.000 por clase), mientras que
CIFAR100 etiqueta sus imágenes en 100 clases (600 ejemplos
por clase). Ambos distribuyen las imágenes en un conjunto de
entrenamiento de 50.000 imágenes y un conjunto de prueba
de 10.000, balanceados por clase.
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La elección de estos datasets está motivada por el número de
pruebas de configuraciones diferentes que queremos realizar.
Estos datasets de pequeño tamaño nos facilitan realizar múlti-
ples repeticiones y entrenamientos por cada configuración, de
manera que podamos obtener resultados promediados estables.

V-B. Arquitectura

Decidimos trabajar con una arquitectura de referencia de
tipo VGG [10]. Se trata de una arquitectura relativamente
simple pero con muy buenos resultados, y el entrenamiento
es lo suficientemente rápido como para realizar múltiples re-
peticiones. Al tener una estructura lineal, nos ofrece múltiples
puntos de inserción para nuestra capa OWA sobre los que
evaluar sus caracterı́sticas.

De las posibles configuraciones de esta familia hemos
seleccionado la VGG13, que experimentalmente nos ofrece
buenos resultados para CIFAR sin ser excesivamente costosa
de entrenar.

La red en particular consta de 10 capas convolucionales,
compuestas por una convolución, una capa de normalización
por lotes y una activación no lineal ReLU, seguidas por un
clasificador final. Estas 10 capas se reparten en 5 bloques,
cada uno de ellos delimitado por capas MaxPool que reducen
la resolución del mapa de caracterı́sticas por la mitad. El cla-
sificador final se compone de 3 capas densamente conectadas
en la estructura original, pero en nuestro caso lo reducimos a
una sola, considerando la pequeña resolución de las imágenes
de CIFAR, siguiendo el ejemplo de [19].

Para nuestros experimentos, consideraremos como poten-
ciales puntos de inserción de capas OWA los puntos justo
antes de cada capa convolucional, a excepción de la primera,
resultando en 9 posibles puntos de inserción. La red de
referencia será siempre la original sin ninguna inserción, y
introduciremos capas en los puntos de inserción para generar
las configuraciones de estudio. Esta estructura se refleja en la
Tabla I.

V-C. Detalles de Implementación

La implementación de estos experimentos se ha realizado
en PyTorch 1.3.1 y Fastai 1.0.58.

Para todas las configuraciones empleamos los mismos hi-
perparámetros, en concreto, un ratio de aprendizaje máximo
de 1e−2 con una polı́tica de entrenamiento 1cycle [20].
Este parámetro se ha determinado empleando la herramienta
lr finder de Fastai, optimizándolo para la red de referencia (sin
capas OWA). Para todos los experimentos se ha empleado un
tamaño de lote de 1024.

Adicionalmente hemos empleado aumentación de datos,
siguiendo el ejemplo de [21]. En particular, hemos realizado
volteos horizontales con una probabilidad de 0.5, y padding
de 4 pı́xeles (empleado espejado para rellenar las regiones
externas) seguido de un recorte aleatorio a la resolución
original (32× 32).

V-D. Evaluación

Para la evaluación de los resultados de los experimentos,
optamos por repetir el entrenamiento de cada configuración

Tabla I
ARQUITECTURA DE LA RED*.

Nombre Tamaño de núcleo Paso Tamaño de salida
input data - - 32× 32× 3

conv1 1 3× 3 1 32× 32× 64
OWA1 - - 32× 32× (64 + Cf )
conv1 2 3× 3 1 32× 32× 64
maxpool 2× 2 2 16× 16× 64

OWA2 - - 16× 16× (64 + Cf )
conv2 1 3× 3 1 16× 16× 128
OWA3 - - 16× 16× (128 + Cf )
conv2 2 3× 3 1 16× 16× 128
maxpool 2× 2 2 8× 8× 128

OWA4 - - 8× 8× (128 + Cf )
conv3 1 3× 3 1 8× 8× 256
OWA5 - - 8× 8× (256 + Cf )
conv3 2 3× 3 1 8× 8× 256
maxpool 2× 2 2 4× 4× 256

OWA6 - - 4× 4× (256 + Cf )
conv4 1 3× 3 1 4× 4× 512
OWA7 - - 4× 4× (512 + Cf )
conv4 2 3× 3 1 4× 4× 512
maxpool 2× 2 2 2× 2× 512

OWA8 - - 2× 2× (512 + Cf )
conv5 1 3× 3 1 2× 2× 512
OWA9 - - 2× 2× (512 + Cf )
conv5 2 3× 3 1 2× 2× 512
maxpool 2× 2 2 1× 1× 512

flatten - - 512
linear - - 10

* Las capas marcadas como OWAx son los posibles puntos de inserción para las nuevas
capas OWA.

50 veces, cada una de ellas de cero (reinicializando la red)
y entrenando por 30 épocas. De estos resultados recogemos
la precisión en test final de cada repetición, y empleamos la
media y desviación estándar de esas precisiones como medidas
principales. Para comparar los resultados de las configuracio-
nes modificadas respecto de la original empleamos el test no
paramétrico de Mann-Whitney U [22]. Calculamos este test
considerando como hipótesis nula que la referencia obtiene
precisiones mayores o iguales que la versión modificada.

La referencia es siempre una versión sin modificar de la
red. En el tercer experimento, además, entrenamos la red
con dos ordenaciones de canal de referencia (no ordenarlos
y ordenarlos aleatoriamente).

V-E. Configuración de los experimentos

Dada la gran cantidad de combinaciones de parámetros po-
sibles hemos dividido el trabajo en 3 experimentos principales.
Cada experimento pretende determinar uno de los principales
parámetros de la capa OWA: posición, cantidad de operadores
y métrica de orden. Cada experimento se repite con CIFAR10
y con CIFAR100.

1. Posición de la capa. En el primer experimento, man-
tenemos constante el número de operadores aprendidos
(Cf = 16) y generamos configuraciones para todas las
posiciones de capa posibles (OWA1 a OWA9). Como
métrica de orden consideramos la suma de activaciones.

2. Número de operadores. En el segundo experimento pro-
bamos una variedad de números de operadores (Cf = 4,
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Cf = 8, Cf = 16 y Cf = 32) para las dos mejores po-
siciones del experimento anterior, ambas con las mismas
métricas.

3. Métrica de ordenación. En el tercer experimento nos
centramos en las métricas de orden, fijando las mejores
configuraciones de posición y número de operadores
del experimento anterior. En este experimento, además,
estudiamos las matrices de pesos de los operadores OWA
aprendidos en la red.

VI. ESTUDIO EXPERIMENTAL

VI-A. Posición de la capa

Los resultados del primer experimento se recogen en la Ta-
bla II. Podemos observar como existe una fuerte dependencia
entre el punto de inserción y la precisión obtenida. En el caso
de CIFAR10 observamos como todos los puntos de inserción
entre OWA2 y OWA5 obtienen una mejora de precisión
estadı́sticamente significativa respecto de la media, con el
mejor en OWA4. En CIFAR100 podemos observar resultados
similares, con las mejores configuraciones en OWA3 y OWA5.

Sospechamos que esta tendencia a obtener mejores resulta-
dos en las capas inferiores está ligada al tamaño de imagen
muy reducido de nuestro dataset, de 32 × 32 pı́xeles. Esto,
en combinación con la arquitectura VGG, hace que las capas
superiores tengan tamaños de imagen realmente pequeños
(4×4 y menores a partir de OWA6), haciendo que las métricas
de capa no aporten información respecto de las convoluciones
estándar.

Tabla II
RESULTADOS EN FUNCIÓN DEL PUNTO DE INSERCIÓN.

Capa CIFAR10 prec. CIFAR100 prec.

referencia 92.44± 0.17 69.74± 0.27

OWA1 92.40± 0.19 69.85± 0.29•

OWA2 92.53± 0.19• 69.87± 0.32•

OWA3 92.52± 0.18• 69.9769.9769.97± 0.270.270.27•

OWA4 92.5592.5592.55± 0.180.180.18• 69.95± 0.24•

OWA5 92.51± 0.17• 69.97± 0.28•

OWA6 92.45± 0.20 69.75± 0.33
OWA7 92.44± 0.17 69.82± 0.25
OWA8 92.44± 0.18 69.79± 0.30
OWA9 92.49± 0.20 69.78± 0.25

Los resultados señalados con • mejoran la referencia con p-valor < 0.05.

VI-B. Número de operadores

Los resultados del segundo experimento se resumen en la
Tabla III. A partir de los resultados del primer experimento,
decidimos seguir explorando los puntos de inserción en OWA3

y OWA4 y mantenemos la métrica de ordenación de suma de
activaciones.

En estos resultados observamos una cierta tendencia a favo-
recer mayores números de operadores aprendidos, pero sin una
variación particularmente significativa. Todos los resultados
para Cf = 8 y Cf = 16, en ambos datasets, obtienen
resultados estadı́sticamente significativos con p-valor < 0.05.

Tabla III
RESULTADOS SEGÚN NÚMERO DE OPERADORES.

Capa Cf CIFAR10 prec. CIFAR100 prec.

referencia - 92.44± 0.17 69.74± 0.27

OWA3 4 92.49± 0.19 69.82± 0.32
8 92.51± 0.21• 69.88± 0.26•

16 92.52± 0.18• 69.9769.9769.97± 0.270.270.27•

32 92.5792.5792.57± 0.160.160.16• 69.82± 0.28

OWA4 4 92.47± 0.17 69.81± 0.33
8 92.50± 0.19• 69.91± 0.31•

16 92.55± 0.18• 69.95± 0.24•

32 92.51± 0.17• 69.90± 0.29•

Los resultados señalados con • mejoran la referencia con p-valor < 0.05.

VI-C. Métricas de orden

Los resultados del tercer experimento se recogen en la Tabla
IV. En este experimento se han empleado, en base a los
resultados de los anteriores experimentos, el punto de inserción
OWA3 con Cf = 32 para CIFAR10 y el punto OWA3 con
Cf = 16 para CIFAR100. Podemos observar que la suma
de activaciones obtiene mejores resultados de precisión que el
resto de métricas, seguida de cerca por la variación total, tanto
en CIFAR10 como en CIFAR100.

Las dos medidas de referencia, la ordenación aleatoria y la
no ordenación de canales, obtienen resultados similares a la
referencia sin capa OWA, de forma consistente con la hipótesis
de que la capa OWA introduce nueva información a través de
la función de ordenación.

Tabla IV
RESULTADOS SEGÚN LA MÉTRICA DE ORDEN.

Orden CIFAR10 prec. CIFAR100 prec.

referencia 92.44± 0.17 69.74± 0.27

activ sum 92.5792.5792.57± 0.160.160.16• 69.9769.9769.97± 0.270.270.27•

total var 92.55± 0.19• 69.91± 0.24•

max activ 92.51± 0.21• 69.74± 0.28
median activ 92.48± 0.19 69.84± 0.31
entropy 92.47± 0.16 69.80± 0.25
random 92.45± 0.17 69.76± 0.26
no sorting 92.43± 0.19 69.79± 0.30

Los resultados señalados con • mejoran la referencia con p-valor < 0.05.

VI-D. Matrices de pesos

Resulta de especial interés estudiar las matrices de pesos
obtenidas de los entrenamientos. En la Figura 2 mostramos 8
ejemplos de matrices de pesos de las capas OWA aprendidas,
todas ellas sobre la misma configuración base (inserción en
OWA2, Cf = 8) y variando la métrica de orden. El tamaño
de estas matrices es de 8 × 64, siendo Cf = 8 el número de
operadores aprendidos (cada uno representado en una lı́nea de
la imagen) y Cin = 64 el número de pesos de cada operador,
correspondientes a los canales de entrada a capa.

Podemos apreciar como el sistema converge a patrones
bastante claros para la mayor parte de las agregaciones. Estos
patrones se corresponden con operaciones de tipo máximo y
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mı́nimo suavizados, donde la mayor parte del peso se reparte
en las capas de entrada con mayor o menor valor de métrica
asociados.

En concreto, se observa que en general el sistema converge
a operaciones de tipo mı́nimo suavizado para todos los ope-
radores excepto la entropı́a, aunque en todos los casos con
algún operador de tipo máximo suavizado intercalado. En el
caso de la variación total y la suma de activaciones se observan
operadores con valores más concentrados, mientras que para
la mediana los operadores se acercan más a una media. En el
caso de la no ordenación y la ordenación aleatoria, como es
de esperar, no se aprecian patrones claros.

(a) Variación total

(b) Suma de activaciones

(c) Mediana

(d) Entropı́a

(e) No ordenación

(f) Ordenación aleatoria

Figura 2. Operadores OWA aprendidos por la capa propuesta según diferentes
métricas de orden. El eje vertical se corresponde con los diferentes operadores
aprendidos, mientras que el horizontal con los pesos de los canales de entrada.

VII. CONCLUSIONES Y TRABAJO FUTURO

En este trabajo hemos propuesto la inserción de operadores
OWA dentro de CNNs como un método para aumentar la infor-
mación de los mapas de caracterı́sticas. Si bien los resultados
obtenidos no se posicionan en el estado del arte, consideramos
que prueban sin dudas el potencial de esta técnica.

En el futuro, serı́a importante analizar si este enfoque
puede aplicarse en redes más complejas, como ResNet [2]
y arquitecturas similares, que se adaptan mejor a ciertos
problemas. Es necesario, en general, una investigación más
profunda sobre cómo la red neuronal está obteniendo la ventaja
que hemos constatado en nuestros experimentos.
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Abstract—Ordered Weighted Averaging (OWA) is a popular
family of aggregation operators that has been used in many
practical applications. This paper addresses the problem of
learning the weighting vector of OWA operators and uses a
hybrid approach combining a sample learning method and a
function-based method. The idea is to search for the parameters
of a fuzzy quantifier that minimizes the error on a given set of
examples. We also perform an experimental study in the field of
smart cities.

Index Terms—aggregation, fuzzy quantifiers, smart cities

I. INTRODUCTION

Aggregation of different criteria into a single value is a very
common operation in many real-world applications. For exam-
ple, online travel agencies typically provide a simple way for
customers to compare hotels by combining the scores obtained
in different criteria (such as location, price, or cleanness) into
a single value. The interest in aggregation operators is not
expected to decrease in the next years. For instance, in the field
of smart cities, with high numbers of sensors providing pieces
of information that need to be combined somehow, aggregation
operators seem crucial.

Ordered Weighted Averaging (OWA) operators [1] are a
very popular family of aggregation operators that has been
successfully used in many applications [2]. OWA operators
are parameterized with a vector of weights. While the choice
of the weights is critical in the behaviour of the operators,
determining the concrete values is a common problem in
practice. Among the many existing solutions, we are interested
in quantifier-guided aggregation [3], where the weights are
computed from fuzzy quantifiers.

To illustrate the interest in quantifier-guided aggregation, we
will mention some examples in the field of fuzzy ontologies,
which are fuzzy extensions of the current de-facto standard
for knowledge representation. For example, the fuzzy ontology
language Fuzzy OWL 2 [4] and the fuzzy ontology reasoner
fuzzyDL [5] support quantifier-guided aggregation using right-
shoulder and linear functions. Some recent applications using
fuzzy ontologies also take advantage of quantifier-guided
aggregation. In particular, the beer recommender system Gim-
meHop [6] and Fuzzy BIM [7] support flexible queries about

We were partially supported by the projects TIN2016-78011-C4-3-
R (AEI/FEDER, UE), PID2020-113903RB-I00 (AEI/FEDER, UE), and
DGA/FEDER.

beers and a semantic Building Information Modeling (BIM),
respectively. In both cases, user preferences can be combined
using OWA operators, built in a transparent way for the user
from right-shoulder, linear, and power functions.

Although there have been many approaches to determine
the weights of an OWA operator, the comparisons between the
existing alternatives are mostly theoretical. Instead, it would
be interesting to evaluate the performance of different methods
on real-world datasets. In this paper, we use empirical data to
learn the parameters of different functions (fuzzy quantifiers)
used in quantifier-based aggregation. Therefore, our method
can be seen as a combination of a sample learning method
and a function-based method [8]. Moreover, we evaluate the
behaviour of our learning strategy using smart cities data.

The remaining of this paper is organized as follows. Sec-
tion II provides some background on aggregation operators and
quantifier-based aggregation. Then, Section III describes our
approach, and Section IV discusses the result of our empirical
evaluation. Finally, Section V sets out some conclusions and
ideas for future work.

II. AGGREGATION OPERATORS

Aggregation Operators (AOs) are mathematical functions
that are used to combine different pieces of information
(typically, membership degrees to fuzzy sets) [9], [10]. There
is no standard definition of AO. Following [9], an AO takes
n numerical values x1, x2, . . . , xn (the values of n different
criteria) and returns another numerical value, i.e., given a
domain D (such as [0, 1] or R), an AO of dimension n is
a mapping @ : Dn → D. A classical example of AO is the
weighted mean. We will write @W to denote the usual case
where an AO is parameterized with a vector of n weights
W = [w1, . . . , wn] such that wi ∈ [0, 1] and

∑n
i=1 wi = 1.

A very important family of AOs are the Ordered Weighted
Averaging (OWA) operators [1]. OWA operators provide a
parameterized class of mean type AOs. Formally, given a
weighting vector W , an OWA operator of dimension n is
an AO such that:

@owa
W (x1, . . . , xn) =

n∑

i=1

wixσ(i) (1)

where σ is a permutation such that xσ(1) ≥ xσ(2) ≥ · · · ≥
xσ(n), i.e., xσ(i) is the i-th largest of the values x1, . . . , xn

CAEPIA 20/21 XIX Conferencia de la Asociación Española para la Inteligencia Artificial 351



to be aggregated. Note that, because of this reordering step, a
weight wi is not associated with a specific argument but with
an ordered position of the aggregate. By choosing different
weights, OWA operators can implement different AOs, such
as arithmetic mean, k-th maximum, k-th minimum, median or
order statistic, among others.

Example 1: The average temperatures of Barcelona, Basel,
Logroño, Madrid, and Milan in February 2018 are 6.7, 1.4,
5.5, 6, and 7.5 º C, respectively. Given the weighting vector
W = [0.0048, 0.9952, 0, 0, 0], the aggregated value using
OWA @owa

W (6.7, 1.4, 5.5, 6, 7.5) is given by:

0.0048 ·7.5 + 0.9952 ·6.7 + 0 ·6 + 0 ·5.5 + 0 ·1.4 = 6.70384

A common practical problem is how to compute the weights
of an OWA operator, and several solutions have been proposed
in the literature [8], [11], [12]. According to X. Liu, existing
approaches can be classified in 5 categories [8]: optimization-
based methods, sample learning methods fitting to empirical
data, function-based methods, argument dependent methods,
and preference methods.

The family of function-based methods include methods
to build the weights from an orness value. For example,
the vector of weights W can be defined starting from a
desired value for the orness in two recursive ways, a Left
Recursive Form and a Right Recursive Form [13], or using
Faulhaber’s formulas [14]. However, the most popular example
of function-based methods is quantifier-based aggregation.

In quantifier-based aggregation, the vector of weights W
can be defined using a fuzzy quantifier Q : [0, 1] → [0, 1].
We will focus on Regular Increasing Monotone (RIM) quan-
tifiers [15], characterized by the idea that as the proportion
increases, the degree of satisfaction does not decrease. More
formally, RIMs satisfy the boundary conditions Q(0) = 0 and
Q(1) = 1, and are monotone increasing, i.e., x1 ≤ x2 implies
Q(x1) ≤ Q(x2). A RIM Q can be used to define an OWA
weighting vector WQ of dimension n, where each weight is
computed as follows:

wi = Q(
i

n
)−Q(

i− 1

n
) (2)

Note that indeed wi ∈ [0, 1] and
∑
i wi = 1.

In this paper, we will consider the following functions to
build RIMS:
• Right-shoulder (or window [16]), illustrated in Figure 1

(a). Given q1, q2 ∈ [0, 1] such that q1 < q2:

right(q1, q2) =





0 x ≤ q1
x− q1
q2 − q1

x ∈ [q1, q2]

1 x ≥ q2

(3)

If q1 = q2 6= 1, we have a step function [16]:

right(q1, q2) =

{
0 x ≤ q1
1 x > q1

(4)

If q1 = q2 = 1, we also have a step function:

right(q1, q2) =

{
0 x < q1
1 x ≥ q1 (5)

• Linear, illustrated in Figure 1 (b). Given q1, q2 ∈ [0, 1]
with q1 ∈ (0, 1):

linear(q1, q2) =





q2
q1
· x x ≤ q1

(1− q2)x+ (q2 − q1)

1− q1
x > q1

(6)
If q1 = 0:

linear(q1, q2) =

{
0 x = 0

(1− q2)x+ q2 x > 0
(7)

If q1 = 1:

linear(q1, q2) =

{
q2 · x x < 1

1 x = 1
(8)

• Power, illustrated in Figure 1 (c). Given q ∈ (0,∞):

power(q) = xq (9)

Example 2: The weighting vector in Example 1, with
n = 5 weights, can be computed from the quantifier Q =
right(0.1991, 0.3851):
• w1 = Q(1/5)−Q(0) = 0.0048− 0 = 0.0048
• w2 = Q(2/5)−Q(1/5) = 1− 0.0048 = 0.9952
• w3 = Q(3/5)−Q(2/5) = 1− 1 = 0
• w4 = Q(4/5)−Q(3/5) = 1− 1 = 0
• w5 = Q(5/5)−Q(4/5) = 1− 1 = 0

III. LEARNING THE PARAMETERS OF THE FUZZY
QUANTIFIERS

We assume that we have a set of examples E =
〈e1, . . . , em〉. Each example ej contains the values of n input
variables (xij) and the value of an output variable (yj):

ej = 〈x1j , x2j , . . . , xnj , yj〉 (10)

For each ej , we compute aggregated values using different
weighting vectors W :

zWj = @owa
W (x1j , x2j , . . . , xnj) (11)

For each W , we compute the error between the expected value
yj and the aggregated value zj . In particular, we consider the
Mean Absolute Percentage Error (MAPE), which is computed
as a percentage in [0, 100] where the smaller the percentage,
the smaller the error:

MAPE(E,W ) =
100

m

m∑

j=1

∣∣∣∣∣
yj − zWj

yj

∣∣∣∣∣ (12)

Finally, we choose the quantifier type and parameters that lead
to the weighting vector W minimizing the MAPE:

argmin
W

MAPE(E,W ) (13)

Example 3: Revisiting Example 1, assume that we want
to predict the temperature in Zaragoza from the tempera-
tures of the other 5 cities. If the expected value of the
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(a) (b) (c)
Fig. 1. (a) Right-shoulder function; (b) Linear function; (c) Power function

temperature in Zaragoza in February 2018 is 6.8 ºC, then
the term of the summation corresponding to this example is
|(6.8− 6.70384)/6.70384| = 0.0143.

The key of our approach is that W is built using different
types of RIM functions and with different parameters. If the
search space is not very large, and computing the weights and
the aggregation using OWA are not computationally expensive
operations. Therefore, it could be possible to compute the best
parameters by brute force, at least for not very large datasets.
• Algorithm 1 shows how to compute the parameters of

a linear RIM quantifier that minimizes the MAPE using
brute force. The algorithm loops over the values of q1
and q2 by adding an increment ∆. The best MAPE is
initialized to 100, the highest possible value. When a
smaller MAPE is found, the parameters q1 and q2 that
made it possible are stored. Finally, the pair of parameters
〈q1, q2〉 is returned.

• A brute-force algorithm to compute the parameters of a
right-shoulder RIM quantifier is similar, but the loop over
all values of q2 starts from q1 so that q1 ≤ q2.

• Finally, for the power function, a single loop is needed,
as there is just one parameter q, ranging in (0,∞).

As a final remark, note that we do not split out set of examples
E into training and test sets.

For large datasets, it could be possible to use heuristic
methods, such as Monte Carlo algorithms, local search, or
evolutionary algorithms. For example, Algorithm 2 shows how
to compute the parameters of a linear RIM quantifier using a
Monte Carlo algorithm. The idea is to generate pseudo-random
numbers as the possible values of q1 and q2, repeating the
experiments several times, and storing the values that minimize
the MAPE.

To conclude this section, let us note that it is trivial to
consider the case where there are missing values, i.e., for some
examples ej some of the values xij are unknown. In this case,
rather than having the same vector W for all the examples,
we could compute for each example ej a weighting vector
of dimension nj , where nj is the number of non-missing
values for the input variables, using the same function type
and parameters for all the examples.

Algorithm 1 Brute-force algorithm to compute the parameters
of a LINEAR quantifier minimizing the MAPE.
Input: A dataset E with examples as in Equation 10.
Output: Parameters 〈q1, q2〉 of a linear func-
tion.

1: bestMapeL← 100
2: for q1 ← 0 to 1 by ∆ do
3: for q2 ← 0 to 1 by ∆ do
4: Q← linear(q1, q2)
5: W ← compute a vector from Q using Eq. 2
6: mape← compute MAPE(E,W ) using Eq. 12
7: if mape < bestMapeL then
8: bestMapeL← mape
9: bestQ1← q1

10: bestQ2← q2
11: end if
12: end for
13: end for
14: return 〈bestQ1, bestQ2〉

IV. EVALUATION

This section discusses an evaluation of our approach in the
field of smart cities.

a) Datasets: We consider two datasets: Temperatures
and Tourism.

• The Temperatures dataset includes the temperatures in 7
cities: Barcelona, Basel, Buenos Aires, Logroño, Madrid,
Milan, and Zaragoza. Note that all of them are cities in
Northern hemisphere except Buenos Aires, which thus
has opposite seasons. Table I shows the URLs where the
temperatures were retrieved. The dataset has 12 rows,
with the monthly average temperatures on one year.

• The Tourism dataset includes information about London1:
the total number of visits, the total number of nights,
and the total spend. The values cover the period 2002–
2019 (so the effects of the COVID-19 pandemic are

1http://data.london.gov.uk/dataset/number-international-visitors-london
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TABLE I
URLS WITH THE TEMPERATURES OF EACH SMART CITY

City URL
Barcelona http://opendata-ajuntament.barcelona.cat/data/es/dataset/temperatures-hist-bcn

Basel https://www.meteoblue.com/es/tiempo/archive/export/basilea suiza 2661604
Buenos Aires http://data.buenosaires.gob.ar/dataset/registro-temperatura-ciudad

Logroño http://datos.gob.es/en/catalogo/a17002943-estaciones-meteorologicas-sos-rioja1
Madrid http://es.climate-data.org/europe/espana/comunidad-de-madrid/madrid-92/t/enero-1
Milan http://dati.comune.milano.it/dataset/ds305-ambientemeteo-temperature-mese-2008-2014

Zaragoza http://datosclima.es/Aemet2013/Temperatura2013.php

Algorithm 2 Monte Carlo algorithm to compute the parame-
ters of a linear quantifier minimizing the MAPE.
Input: A dataset E with examples as in Equation 10, and the
number of repetitions MAX REPETITIONS.
Output: Parameters 〈q1, q2〉 of a linear func-
tion.

1: bestMapeL← 100
2: repetition← 0
3: repeat
4: q1 ← random number in [0, 1]
5: q2 ← random number in [0, 1]
6: Q← linear(q1, q2)
7: W ← compute a vector from Q using Eq. 2
8: mape← compute MAPE(E,W ) using Eq. 12
9: if mape < bestMapeL then

10: BestMapeL← mape
11: BestQ1← q1
12: BestQ2← q2
13: end if
14: repetition← repetition+ 1
15: until repetition = MAX REPETITIONS
16: return 〈bestQ1, bestQ2〉

not observed) and are aggregated by quarters. Therefore,
there are 72 rows.

b) Experiments: We consider two experiments with the
Temperatures dataset, and three with the Tourism dataset:

E1. Prediction of the temperature in Zaragoza from the
temperatures of 5 cities: Barcelona, Basel, Logroño,
Madrid, and Milan.

E2. Prediction of the temperature in Zaragoza from the
temperatures of 6 cities: Barcelona, Basel, Buenos
Aires, Logroño, Madrid, and Milan. This experi-
ments is similar to E1 but taking Buenos Aires into
account.

E3. Prediction of the total number of visits from the total
number of nights and the total spend.

E4. Prediction of the total number of nights from the total
number of visits and the total spend.

E5. Prediction of the total spend form the total number
of visits and the total number of nights.

In the Tourism dataset we apply a normalization step, since
the three variables have a different range of values. For each

variable, we divide each value by the maximum value plus a
5 %, obtaining a value in [0, 1].

c) Parameters:

• In our brute-force algorithms, we use increments ∆ =
0.001 and ∆ = 0.0001.

• For the power quantifier, we take 20 as an upper bound
for the value of the parameter, i.e. q ∈ (0, 20]. This choice
was made after checking experimentally that higher val-
ues produce very small changes in a vector of 5 weights.

• In our Monte Carlo algorithms, we repeat the experiments
5 ·105 times. This choice was made to have a similar run-
ning time as in the brute-force algorithm with ∆ = 0.001.
We also noticed that in different runs of the algorithm,
the MAPE did not change if we rounded to two decimals.

d) Environmental setup: Our code was implemented in
Java 1.8. All experiments were performed on a laptop com-
puter with Intel Core i7-8750H, 16 GB RAM, 1 TB HDD +
256 GB SSD under Windows 10, 64-bits.

e) Results: Table II includes the results. For each experi-
ment, for each algorithm, and for each quantifier type, we show
the best MAPE, the best parameters, and the corresponding
weighting vector. For each experiment and algorithm, we show
the total running time (in seconds) to optimize the parameters
of all quantifier types.

Figures 2, 3, and 4 illustrate a summary of the results for
the brute-force algorithm in experiment E1, for different types
of quantifiers (right-shoulder, linear, and power, respectively)
and an increment ∆ = 0.1. MAPE values are rounded to the
next integer. In Figure 4 the rows and the columns indicate
the integer part and the fractional part of q, respectively, and
the integer part is not shown if higher than 10.

f) Discussion: To start with, it is worth to clarify that our
main objective is not to solve some prediction problems but to
find the parameters corresponding to the best OWA weights.
Indeed, to solve these prediction problems, more complex
machine learning strategies are very likely to perform with
better results.

The first interesting observation is that the MAPE is very
similar regardless of the algorithm for a given quantifier type.
In all the experiments with the Tourism dataset (E3, E4,
and E5), the MAPE is actually the same (and so is the
weighting vector) regardless of the quantifier type. In the other
experiments, the differences in the MAPE are smaller than
0.007.
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TABLE II
RESULTS OF THE EXPERIMENTS

Experiment Algorithm Quantifier MAPE Parameters Weights Time

E1

Brute-force ∆ = 0.0001
Right-shoulder 5.3888 0.1991 0.3851 [0.0048 0.9952 0 0 0]

47Linear 9.4604 0.4434 0.9319 [0.4203 0.4203 0.1104 0.0245 0.0245]
Power 10.0735 0.3014 [0.6156 0.143 0.0986 0.0777 0.065]

Brute-force ∆ = 0.001
Right-shoulder 5.3956 0.199 0.4 [0.005 0.995 0 0 0]

0.6Linear 9.4614 0.443 0.932 [0.4208 0.4208 0.1096 0.0244 0.0244]
Power 10.0741 0.301 [0.616 0.1429 0.0985 0.0776 0.065]

Monte Carlo
Right-shoulder 5.3893 0.1995 0.3007 [0.0048 0.9952 0 0 0]

0.6Linear 9.461 0.4438 0.9327 [0.4203 0.4203 0.1110 0.0242 0.0242 ]
Power 10.0736 0.3013 [0.6157 0.143 0.0986 0.0776 0.065]

E2

Brute-force ∆ = 0.0001
Right-shoulder 5.2896 0.166 0.513 [0.0019 0.4803 0.4803 0.0375 0 0]

60Linear 12.6139 0.0836 0.0082 [0.0981 0.1804 0.1804 0.1804 0.1804 0.1804]
Power 13.4133 102.431 [0.1078 0.1474 0.1673 0.1816 0.1931 0.2028]

Brute-force ∆ = 0.001
Right-shoulder 5.2896 0.166 0.513 [0.0019 0.4803 0.4803 0.0375 0 0]

0.7Linear 12.6139 0.125 0.053 [0.0981 0.1804 0.1804 0.1804 0.1804 0.1804]
Power 13.4136 10.243 [0.1078 0.1474 0.1673 0.1816 0.1931 0.2028]

Monte Carlo
Right-shoulder 5.29 0.166 0.5129 [0.0019 0.4805 0.4805 0.0372 0 0]

0.7Linear 12.6139 0.1447 0.0743 [0.0981 0.1804 0.1804 0.1804 0.1804 0.1804]
Power 13.4133 1.2431 [0.1078 0.1474 0.1673 0.1816 0.1931 0.2028]

E3

Brute-force ∆ = 0.0001
Right-shoulder 9.007 0.1492 0.5278 [0.9266 0.0734]

112Linear 9.007 0.0535 0.861 [0.9266 0.0734]
Power 9.007 0.11 [0.9266 0.0734]

Brute-force ∆ = 0.001
Right-shoulder 9.007 0.235 0.521 [0.9266 0.0734]

1.5Linear 9.007 0.142 0.874 [0.9266 0.0734]
Power 9.007 0.11 [0.9266 0.0734]

Monte Carlo
Right-shoulder 9.007 0.3208 0.5142 [0.9266 0.0734]

1.3Linear 9.007 0.4624 0.921 [0.9266 0.0734]
Power 9.007 0.11 [0.9266 0.0734]

E4

Brute-force ∆ = 0.0001
Right-shoulder 9.8532 0.1265 0.501 [0.9973 0.0027]

105Linear 9.8532 0.0263 0.9948 [0.9973 0.0027]
Power 9.8532 0.0038 [0.9974 0.0026]

Brute-force ∆ = 0.001
Right-shoulder 9.8532 0.126 0.501 [0.9973 0.0027]

1.4Linear 9.8532 0.251 0.996 [0.9973 0.0027]
Power 9.8533 0.004 [0.9972 0.0028]

Monte Carlo
Right-shoulder 9.8532 0.0612 0.5012 [0.9973 0.0027]

1.4Linear 9.8532 0.1962 0.9957 [0.9973 0.0027]
Power 9.8532 0.0039 [0.9973 0.0027]

E5

Brute-force ∆ = 0.0001
Right-shoulder 16.582 0.5 0.5 [0 1]

108Linear 16.582 0.5 0 [0 1]
Power 16.582 20 [0 1]

Brute-force ∆ = 0.001
Right-shoulder 16.582 0.5 0.5 [0 1]

1.3Linear 16.582 0.5 0 [0 1]
Power 16.582 20 [0 1]

Monte Carlo
Right-shoulder 16.582 0.6822 0.842 [0 1]

1.2Linear 16.582 0.5584 0 [0 1]
Power 16.582 20 [0 1]

Brute-force with ∆ = 0.0001 always has the smaller
MAPE. Brute-force with a higher increment is slightly worse
in 5 cases (in E1 and in E2 for two quantifier types) and
Monte Carlo is slightly worse in 4 cases (in E1 and in E2 for
one quantifier type). If we compare the two worse algorithms,
Monte Carlo wins strictly speaking in 4 cases and loses in 1,
but the MAPEs are actually equal if we round to 2 decimals.

However, reasoning times can be more different. The fastest
algorithms are brute-force with ∆ = 0.001 and Monte Carlo
algorithm, both of them with almost the same time. On the
other hand, brute-force with ∆ = 0.0001 is pretty much
slower, and the increase in the running time is not compensated
with a significant decrease in the MAPE.

If we compare the quantifier types, right-shoulder is always
the best function in the Temperatures dataset, whereas in the
Tourism dataset the same MAPE is always obtained regardless

of the quantifier type.

Now let us give a closer look to each dataset. In the Tem-
peratures dataset, the MAPE is in general clearly smaller in E1
than in E2. This result is expected, because E2 introduces data
(from Buenos Aires) making the prediction harder. However,
experiments with the right-shoulder function are an exception,
and the MAPE is actually slightly smaller in E2. We can notice
that in these cases the weight associated to the smallest value
to be aggregated is 0, and the weight associated to the largest
value is very small, about 0.002. Because Buenos Aires is
the only city from the Southern hemisphere, its temperature
will usually be either the highest or the lowest one, but it
will have a small influence in the aggregated value because
of the weights. Note that after considering Buenos Aires, the
size of the weighting vector increases. Therefore, to build
the weighting vectors, the quantifier functions are evaluated
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Fig. 2. MAPE for right-shoulder quantifiers in E1

Fig. 3. MAPE for linear quantifiers in E1

in the points {0, 0.2, 0.4, 0.6, 0.8, 1} rather than in the points
{0, 0.25, 0.5, 0.75, 1}.

In the Tourism dataset, the best strategy seems using almost
exclusively one of the two input variables. Indeed, in E5, the
weighting vector is [0, 1]. In the other experiments E3 and E4,
the highest value to be aggregated has a weight greater than
0.9. The MAPE is worse than in the Temperatures dataset, an
is particularly high when predicting the total spend (E5).

V. CONCLUSIONS AND FUTURE WORK

In this paper we have followed a hybrid approach to learn
the weights of OWA operators by choosing the parameters of
some functions, commonly used in quantifier-guided aggrega-
tion, that minimize the error over a set of samples. We studied

Fig. 4. MAPE for power quantifiers in E1

right-shoulder, linear, and power functions, and proposed two
alternatives for the search on the parameter space: brute force
and a Monte Carlo algorithm.

Our approach has several advantages over learning the OWA
weights directly. On the one hand, the number of parameters
is smaller, reducing the search space. On the other hand, the
results of more interpretable, as fuzzy quantifiers can be more
easily understood by humans.

We have also discussed the results of an empirical evaluation
on two datasets in the field of smart cities. We found significant
differences in the running times of the algorithms but not on
the error. Furthermore, we observed that in one dataset the
error was smaller for right-shoulder functions, whereas in the
other dataset the results were independent on the function type.

There are a lot of directions for our future work. Firstly,
it would be interesting to consider more types of RIMS.
Secondly, we could consider more complex algorithms to
search for the best parameters. We could also take into account
alternative approaches than quantifier-guided aggregation. Fi-
nally, experiments on more real-world datasets are desirable.
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Bonifacio Llamazares
Departamento de Economı́a Aplicada

Universidad de Valladolid
Valladolid

boni@eco.uva.es
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Departamento de Análisis Económico y Economı́a Cuantitativa

Universidad Complutense de Madrid
Madrid

patrizip@ucm.es

I. RESUMEN

Los indicadores sintéticos (también denominados com-
puestos) se han convertido en una herramienta muy valiosa
en diversos ámbitos cientı́ficos dado que permiten resumir
en un único valor la información proporcionada por diversos
indicadores. A la hora de elaborar un indicador sintético es
conveniente seguir una serie de pasos (véase [1, Tabla 1]),
entre los que se encuentra la selección de un procedimiento
de agregación. En la elección de dicho procedimiento resulta
fundamental tener en cuenta tanto la posible correlación exis-
tente entre los indicadores utilizados como la compensabilidad
que se desea permitir entre ellos (véanse [2, p. 363], [1, p. 21]).

En este contexto, uno de los métodos más habituales para
agregar los valores de los indicadores consiste en utilizar
funciones de agregación. Entre la gran variedad de funciones
existentes destacan, por su sencillez y propiedades, las medias
aritméticas y geométricas.1 Aunque estas funciones están
presentes en la construcción de muchos indicadores sintéticos,
su uso ha sido objeto de diversas crı́ticas.

En el caso de la media aritmética, la principal tiene que ver
con el hecho de que valores elevados en algunos indicadores
pueden compensar valores bajos de otros. Ello ha originado
que, en algunos casos, haya sido sustituida por la media
geométrica. Por ejemplo, el Índice de Desarrollo Humano
(IDH), que hasta el año 2009 se basaba en la media aritmética,
se construye desde el año 2010 mediante la media geométrica
debido a que esta función permite una menor compensabilidad
entre los indicadores que la media aritmética. Por lo que
respecta a la media geométrica, sus principales debilidades
son la imposibilidad de utilizar el 0 como valor mı́nimo de
referencia (algo bastante habitual en la práctica al transformar
los valores de los indicadores mediante determinadas norma-
lizaciones), lo cual dificulta la capacidad informativa de la
escala utilizada, y que no es invariante a cambios de origen
[3].

En el contexto descrito, la integral de Choquet [4] emerge
como un instrumento eficaz para solventar los problemas
anteriormente mencionados. Además, permite tener en cuenta

Patrizia Pérez-Asurmendi agradece el apoyo recibido por la Fundación
Areces (Proyecto CISP18A6216).

1En ambas funciones, la importancia de los indicadores en el indicador
sintético se establece con el vector de pesos utilizado en su cálculo.

tanto la posible correlación existente entre los indicadores
utilizados como la compensabilidad que se desea permitir
entre ellos. En la definición de la integral de Choquet juega
un papel fundamental el concepto de capacidad. Entre la
amplia variedad de capacidades que se pueden construir,
las capacidades 2-aditivas [5] son, probablemente, el mejor
compromiso entre baja complejidad y riqueza del modelo [6].

En trabajos anteriores (véanse [7], [8]) se ha desarrollado
un modelo basado en capacidades 2-aditivas que permite tener
en cuenta las interacciones que habitualmente existen entre los
indicadores empleados. En el presente trabajo se extiende el
modelo anterior de manera que, además de tener en cuenta
las interacciones existentes entre los indicadores, es posible
regular la compensabilidad que se permite entre ellos.

Como aplicación práctica, el modelo propuesto se aplica
al Índice de Sociedad Sostenible (SSI),2 reemplazando, como
función de agregación, la media geométrica por la integral de
Choquet y comparando los resultados obtenidos según ambas
agregaciones.
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Abstract—En este trabajo presentamos una definición de la
integral de Choquet discreta n-dimensional, para fusionar datos
vectoriales. Como aplicación, utilizamos estas nuevas integrales
de Choquet discretas multidimensionales en la fusión de infor-
mación secuencial en las redes neuronales recurrentes, mejorando
los resultados obtenidos mediante el método de agregación
tradicional.

Index Terms—Integral de Choquet, Función de Agregación, In-
formación Multivariante, Redes Neuronales Recurrentes, LSTM.

I. INTRODUCCIÓN

El proceso de fusión de información resulta un
procedimiento fundamental a la hora de combinar o
agregar distintas estructuras de información en una sola
[1]. Su utilización es necesaria en diversos campos, como
por ejemplo: toma de decisión multi-criterio [2], economı́a
y finanzas [3], estadı́stica, procesamiento de imágenes [4],
aprendizaje automático [5], etc. Recientemente también se
ha aplicado en el aprendizaje profundo, por ejemplo en las
capas de pooling de redes neuronales convolucionales [6].
En la literatura se analizan multitud de métodos de agregación
de información. Algunos de los más habituales son las medias
aritméticas ponderadas [7] o los órdenes estadı́sticos [8]. Sin
embargo, frecuentemente los criterios y datos considerados
interactúan entre ellos y es conveniente utilizar operadores
de agregación que tengan en cuenta este hecho. En este
sentido, en la literatura se han utilizado las integrales difusas
[9], las cuales se basan en medidas difusas. Estas medidas
[10] permiten tener en cuenta la relación existente entre
los elementos a agregar, valorando la relevancia de posibles
coaliciones entre los datos [5].
Una de las integrales difusas más utilizadas es la integral de
Choquet [11]. Hasta ahora, en la literatura se han presentado
distintas generalizaciones de la integral de Choquet [12],
[13], [5], [14] para datos unidimensionales.
Frecuentemente los elementos a agregar son datos o instancias
con varias variables, es decir, información multivariante,
estructurada en forma de vectores. Por ejemplo, un modelo
utilizado actualmente en la inteligencia artificial donde se
manejan datos multivariantes son las Redes Neuronales

Recurrentes [15].
Las Redes Neuronales Recurrentes son un tipo de red
neuronal artificial que se encargan de modelar información de
tipo secuencial o temporal, como las series temporales o el
procesamiento de lenguaje natural [16]. Dichas redes constan
de una arquitectura en la que en cada instante, los valores
de salida de la capa del instante anterior se conectan con la
información del instante actual. Para la conexión de dichos
datos multivariantes, usualmente se suelen sumar los vectores
como forma de agregación de la informacion multivariante
secuencial. Entre los datos recurrentes generados por la red
y los datos provinientes del dataset puede haber interacción
entre los mismos.
El objetivo de este trabajo es presentar una extensión
multidimensional de la integral de Choquet, es decir, una
función que agregue m datos n-dimensionales, teniendo en
cuenta las posibles coaliciones entre los mismos.
Para mostrar la utilidad de nuestra extensión, presentamos
su uso en la modelización de las posibles coaliciones entre
datos en el proceso de agregación de una red neuronal
recurrente. En concreto, la modificación de la arquitectura
que presentamos en este trabajo consiste en una red neuronal
recurrente del tipo memoria de corto y largo plazo (LSTM)
[17]. En los pasos en los que se agrega la información
recurrente con la información inicial estudiamos la utilización
de la integral de Choquet discreta multidimensional. De forma
análoga, completamos el estudio con el uso de combinaciones
lineales de otras funciones de agregación.
Este trabajo se organiza de la siguiente manera: en la Sección
II recordamos los conceptos preliminares necesarios para
comprender el resto del trabajo. En la Sección III se introduce
la nueva definición de la integral de Choquet extendida
a datos multivariantes. En la Sección IV se introduce la
modificación en la arquitectura. En la Sección V se presenta
la experimentación realizada. Por último, en la Sección VI,
se explican las conclusiones ası́ como las lı́neas futuras del
trabajo.
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II. PRELIMINARES

En esta sección, recordamos nociones básicas y termi-
nologı́a necesarias para abordar el desarrollo del trabajo.
Presentamos por un lado las definiciones teóricas básicas de
función de agregación, medida difusa e integral de Choquet, y
por otro la explicación del funcionamiento de una red neuronal
recurrente de tipo LSTM.

A. Funciones de agregación e integral de Choquet

Consideremos el retı́culo (L,≤) donde L = [0, 1] y sea
≤ el orden natural de los números reales. Denotamos 0 =
(0, . . . , 0) ∈ Ln y 1 = (1, . . . , 1) ∈ Ln.

Definición II.1. Sea m un entero positivo. Una función M :
Lm → L es una función de agregación m-aria si satisface
las siguientes propiedades:

(i) M(0) = 0 y M(1) = 1
(ii) es no-decreciente en cada variable, es decir, para todo

(x1, . . . , xm), (y1, . . . , ym) ∈ Lm, M(x1, . . . , xm) ≤
M(y1, . . . , ym) si x1 ≤ y1, . . . , xm ≤ ym.

Denotamos el conjunto {1, . . . ,m} por [m]. Dos vectores
(x1, . . . , xm), (y1, . . . , ym) ∈ Lm son considerados
comonótonos si y sólo si existe una permutación
σ : [m] → [m] tal que xσ(1) ≤ . . . ≤ xσ(m) e
yσ(1) ≤ . . . ≤ yσ(m).

Denotamos con letras negrita los elementos en Ln, esto
es, x = (x1, . . . , xn) ∈ Ln. Existe un orden parcial ≤P
inducido por ≤ y dado de la siguiente manera:

x ≤P y si y sólo si xi ≤ yi
para todo i ∈ {1, . . . , n}.

De hecho, podemos verificar que (Ln,≤) es un retı́culo
donde el elemento mı́nimo es 0 y el máximo es 1. En este
retı́culo el ı́nfimo y el supremo de dos elementos vienen
dados por las siguientes operaciones:

x ∧ y = (min(x1, y1), . . . ,min(xn, yn)) (1)

x ∨ y = (max(x1, y1), . . . ,max(xn, yn)) (2)

Con anterioridad a la definición del concepto de integral de
Choquet, consideramos la definición de medida difusa.

Definición II.2. [18] Una medida difusa definida sobre [m]
es una función ν : 2[m] → L tal que:

(i) ν(∅) = 0 y ν([m]) = 1
(ii) ν(A) ≤ ν(B) para todo A ⊆ B ⊆ [m]

Una medida difusa ν : 2[m] → L se dice que es aditiva si
ν(A ∪ B) = ν(A) + ν(B) para todo A,B ⊆ [m] tales que
A ∩ B = ∅.
Ejemplo II.3. Un ejemplo de medida difusa considerada en
este trabajo es la medida de potencia. Es definida para todo
A ⊆ [m] por:

νq(A) =
( |A|
m

)q
(3)

donde q > 0.

Ejemplo II.4. La medida difusa νl : 2[m] → L más pequeña
viene dada por

νl(A) =
{
1 si A = [m]
0 en otro caso (4)

La medida difusa νu : 2[m] → L más grande viene dada por

νu(A) =
{
0 si A = ∅
1 en otro caso (5)

Para cualquier medida difusa ν : 2[m] → L se cumple:

νl(A) ≤ ν(A) ≤ νu(A)
para todo A ⊆ [m]

Una vez introducida la medida difusa, presentamos la
definición de la integral de Choquet discreta, la cual es un
ejemplo de función de agregación presentada en la Definición
II.1.

Definición II.5. [11] La integral de Choquet discreta en
L con respecto a la medida difusa ν es definida como una
aplicación Chν : Lm → L

Chν(x) =
m∑

i=1

(
xσ(i) − xσ(i−1)

)
ν
(
Aσ(i)

)
(6)

donde x = (x1, . . . , xm) ∈ Lm, ν : 2[m] → L es una medida
difusa en el conjunto [m], σ : [m]→ [m] es una permutación,
con xσ(1) ≤ . . . ≤ xσ(m) con la convención xσ(0) = 0 y
Aσ(i) := {σ(i), . . . , σ(m)} es el subconjunto de los ı́ndices
correspondiente a los m− i+1 mayores elementos de x para
todo i ∈ [m].

Por último, si bien definimos la integral de Choquet
Chν : Lm → L, en la literatura también podemos encontrar
la definición [19] para un intervalo I = [a, b] ⊂ R. Dado que
posteriormente en la aplicación (Sección IV) la utilizaremos,
se puede definir la integral de Choquet discreta como una
aplicación Chν : Im → I, mediante la misma expresión que
en la Eq. 6. Donde x = (x1, . . . , xm) ∈ Im con la medida
difusa ν : 2[m] → L, manteniendo la convención xσ(0) = 0 y
Aσ(i) := {σ(i), . . . , σ(m)}.

A continuación introducimos la definición de funciones
de agregación n-dimensionales, como marco introductorio a
la Sección III.

Definición II.6. [20] Sean n, m enteros positivos. Una
aplicación M : (Ln)m → Ln es una función de agregación
m-aria n-dimensional si satisface las siguientes propiedades:

(i) M(0, . . . ,0) = 0 y M(1, . . . ,1) = 1

(ii) Para todo x1, . . . ,xm,y1, . . . ,ym ∈ Ln tal que
x1 ≤ y1, . . . ,xm ≤ ym, entonces M(x1, . . . ,xm) ≤
M(y1, . . . ,ym).
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B. Redes Neuronales Recurrentes: Memoria a corto y largo
plazo (LSTM)

Las Redes Neuronales Recurrentes (RNN) nacen con la
intención de modelar datos que tienen dependencia secuen-
cial o de tiempo. Sin embargo, dado que los algoritmos de
aprendizaje para redes neuronales suelen están basados en el
gradiente, en estas redes surge el problema llamado vanishing
gradient [21], es decir, el decrecimiento recurrente del valor
de una variable en la salida de la red neuronal. Esto es un
problema especialmente grave cuando tratamos de entrenar
redes con dependencias o secuencias temporales largas.
Las Long Shot-Term Memory (LSTM) surgen principalmente
como respuesta a este problema y suponen un cambio radical
[21] en el entrenamiento de las redes recurrentes ya que evitan
el decrecimiento continuo de los parámetros. De esta manera,
esta arquitectura de neurona artificial [17] genera un estado
que permite la memorización de conocimiento que se utiliza
en instantes temporales posteriores.
Las neuronas LSTM han tenido diversas modificaciones en
la literatura, pero en este trabajo utilizamos una de las más
extendidas [16]. En la Fig. 1 podemos observar el detalle del
interior de una LSTM donde es importante recalcar las puertas
[22] forget gate (f ), input gate (i) y output gate (o) ası́ como
la celda candidata (c̃).

f i c̃ o

Wfh

Wfx

Wih

Wix

Wch

Wcx

Woh

Wox

σ σ tanh σ

× +

× ×
tanh

c(t−1)

h(t−1)

x(t)

c(t)

h(t)

h(t)

Fig. 1. Representación de una unidad LSTM.

A continuación, explicamos el funcionamiento de una unidad
LSTM. Sea N la longitud de la secuencia de entrada, H el
número de caracterı́sticas que extraiga la celda y T el número
de instantes de tiempo de la secuencia. Los que se detallan a
continuación son las matrices y vectores asociados a cada una
de las puertas y celda candidata:

• Matrices de pesos de entrada: Wfx,Wix,Wcx,Wox ∈
RH×N

• Matrices de pesos recurrentes: Wfh,Wih,Wch,Woh ∈
RH×H

• Vectores de pesos del sesgo: bf ,bi,bc,bo ∈ RH

El funcionamiento de forma descriptiva para cada instante de
tiempo t ∈ {1, . . . , T} es el siguiente:

i. Los valores de entrada x(t),h(t−1) entran a las puertas
f (Eq. 7), i (Eq. 8), c̃ (Eq. 9) y o (Eq. 11). En cada
una de ellas, el valor x(t) se multiplica por cada una
de las matrices de pesos de entrada, en función de la
puerta. De forma análoga ocurre con los valores h(t−1)

y las matrices de pesos recurrentes. Los vectores H-
dimensionales obtenidos se suman junto con los vectores
de sesgo correspondientes en cada una de ellas. Se utiliza
una sigmoidea logı́stica (σ(x) = 1

1+e−x ) como función
de activación de las puertas y la tangente hiperbólica
como función de activación de la celda candidata.

ii. El vector de la memoria a largo plazo del instante anterior
(c(t−1)) y el de la celda candidata (c̃(t)) se combinan.
Para ello se calcula el producto de Hadamard o elemento
a elemento (◦) entre el valor de la forget gate y la input
gate respectivamente (Eq. 10). Ambos valores se suman
obteniendo el valor de la celda en el instante actual (c(t)).

iii. Por último, se calcula el vector de la memoria a corto
plazo. Para ello, en primer lugar se pasa la información a
corto plazo por una función de activación de salida. Para
ello, utilizamos la tangente hiperbólica. Posteriormente
se calcula el producto de Hadamard entre el valor de
la output gate con la información obtenida de la última
función de activación, obteniendo el valor de la memoria
a corto plazo, h(t).

Las ecuaciones que describen el proceso son las siguientes
(Eq. 7-12):

f (t) = σ(Wfxx
(t) +Wfhh

(t−1) + bf ) (7)

i(t) = σ(Wixx
(t) +Wihh

(t−1) + bi) (8)

c̃(t) = tanh(Wcxx
(t) +Wchh

(t−1) + bc) (9)

c(t) = f (t) ◦ c(t−1) + i(t) ◦ c̃(t) (10)

o(t) = σ(Woxx
(t) +Wohh

(t−1) + bo) (11)

h(t) = o(t) ◦ tanh(c(t)) (12)

III. INTEGRAL DE CHOQUET MULTIDIMENSIONAL

A continuación se presenta una definición de la Integral de
Choquet en retı́culos (Ln,≤), la cual es también un ejemplo
de función de agregación n-dimensional, presentada en la
Definición II.6.
Sean x1 = (x11, . . . , x1n), . . . ,xm = (xm1, . . . , xmn)
m vectores en Ln. Denotaremos por x1, . . . ,xn a los
siguientes n vectores en Lm: x1 = (x11, . . . , xm1), . . . ,x

n =
(x1n, . . . , xmn). Es decir, por ejemplo si x1, . . . ,xm son
filas de una matriz de tipo m × n, entonces x1, . . . ,xn son
las columnas de dicha matriz.
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Definición III.1. Sean n y m dos números enteros positivos.
Sea ν = (ν1, . . . , νn) una secuencia de medidas difusas en
el conjunto [m] y sean Chνi : Lm → L las integrales de
Choquet en L con respecto a la medida νi para todo i ∈ [m].
Una función Chrν : (Ln)m → Ln dada por:

Chrν(x1, . . . ,xm) =
(
Chν1(x

1), . . . , Chνn(x
n)
)

(13)

para todo x1, . . . ,xm ∈ Ln es una Integral de Choquet
discreta representable en Ln con respecto a ν y al orden ≤.

La integral de Choquet Chrν se denomina representable ya
que es obtenida a través de la utilización de n integrales de
Choquet en L de forma separada para cada componente:

Chrν(x1, . . . ,xm) = (Chν1(x11, . . . , xm1), . . . ,

Chνn(x1n, . . . , xmn))
(14)

Esta expresión es una generalización de la integral de Choquet
estándar en L, ya que si todos los vectores de entrada son n-
tuplas con las mismas coordenadas, p.e. x = (x, . . . , x) y la
secuencia de medidas difusas es un vector con las mismas
medidas, esto es, ν1 = . . . = νn = ν, la salida es una n-tupla
con las mismas coordenadas iguales a Chν .
Ası́ mismo, de forma análoga a la que se explica en la
Sección II, se puede extender la Definición III.1 a un intervalo
I = [a, b] ⊂ R. De esta manera, podemos extender la función
Chrν : (Ln)m → Ln a una aplicación Chrν : (In)m → In
dada por:

Chrν(x1, . . . ,xm) =
(
Chν1(x

1), . . . , Chνn(x
n)
)

(15)

para todo x1, . . . ,xm ∈ In con respecto a ν y al orden ≤.

Proposición III.2. Bajo las condiciones de la definición
anterior, sean ν1 = . . . = νn = ν. Entonces:

Chrν(x1, . . . ,xm) = (Chν(x1, . . . , xm), . . . ,

Chν(x1, . . . , xm))
(16)

para todo xi = (xi, . . . , xi) ∈ Ln, i ∈ [m].

IV. MODIFICACIÓN DE LA ARQUITECTURA DE UNA RED
NEURONAL RECURRENTE BASADA EN LA DEFINICIÓN
MULTIDIMENSIONAL DE LA INTEGRAL DE CHOQUET

En la presente sección se explica la introducción de las
definiciones expuestas en las anteriores secciones en la arqui-
tectura de una red neuronal recurrente, concretamente en una
LSTM.
En este sentido, modificamos el operador de agregación de
la red LSTM (suma de vectores) por la nueva definición de
integral de Choquet discreta multidimensional.
En las nuevas ecuaciones generadas por la modificación de
la función de agregación, esto se ve reflejado en el cálculo
de la salida de la forget gate (Eq. 17), input gate (Eq.
18), output gate (Eq. 21) y celda candidata (Eq. 19), donde
los vectores son fusionados mediante la integral de Choquet
multidimensional.
El conjunto de las ecuaciones modificadas que describen el
proceso son las siguientes:

f (t) = σ
(
Chrν(Wfxx

(t),Wfhh
(t−1),bf )

)
(17)

i(t) = σ
(
Chrν(Wixx

(t),Wihh
(t−1),bi)

)
(18)

c̃(t) = tanh
(
Chrν(Wcxx

(t),Wchh
(t−1),bc)

)
(19)

c(t) = f (t) ◦ c(t−1) + i(t) ◦ c̃(t) (20)

o(t) = σ
(
Chrν(Woxx

(t),Wohh
(t−1),bo)

)
(21)

h(t) = o(t) ◦ tanh(c(t)) (22)

Como hemos mostrado, la modificación principal del fun-
cionamiento de la celda LSTM será la sustitución de la suma
por la integral de Choquet multidimensional. No obstante,
por completitud en el estudio, en la fusión de información
vectorial en la unidad LSTM utilizaremos distintas funciones
de agregación, ası́ como las combinaciones lineales entre sı́.
Tomamos z = (Wgxx

(t),Wghh
(t−1),bg) = (zi)

3
i=1 para

g ∈ {f, i, c, o}, dado que son la misma expresión con matrices
de pesos diferentes. A partir de ello, en la Tabla I mostramos
las distintas funciones que utilizaremos.

TABLE I
DISTINTAS FUNCIONES DE AGREGACIÓN UTILIZADAS

M Expresión función agregación
Max max3i=1 zi
Ch2 Chr

ν2
(z)

Chq Chr
νq

(z)

Sum
∑3

i=1 zi
Max + Sum λ1 max3i=1 zi + λ2

∑3
i=1 zi

Ch2 + Sum λ1Chr
ν2

(z) + λ2
∑3

i=1 zi
Chq + Sum λ1Chr

νq
(z) + λ2

∑3
i=1 zi

Ch2 + Max λ1Chr
ν2

(z) + λ2 max3i=1 zi
Chq + Max λ1Chr

νq
(z) + λ2 max3i=1 zi

Siendo νq(A) la expresión de la Eq. 3 donde q es un
parámetro aprendido por la red neuronal. La medida ν2(A)
se corresponde a la misma expresión de la Eq. 3 evaluando
q = 2. Los parámetros λ1 y λ2 son aprendidos por la propia
red neuronal recurrente mediante el método de descenso por
gradiente estocástico.

V. ESTUDIO EXPERIMENTAL

En la presente sección explicamos la arquitectura, conjunto
de datos e hiperparámetos utilizados ası́ como los resultados
obtenidos y su posterior valoración.

A. Marco de trabajo experimental

1) Conjunto de datos: El conjunto de datos utilizado es
el Fashion-MNIST [23], el cual consiste en un conjunto de
entrenamiento de 60.000 imágenes de dimensiones 28 × 28
distribuidas en 10 clases, junto con un conjunto de test
compuesto por 10.000 imágenes similares. Las imágenes cor-
responden a 10 artı́culos diferentes de categorı́as de ropa. En
este caso, planteamos los datos que contiene una imagen como
información secuencial [24].
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2) Arquitectura: En este caso, como podemos observar en
Fig. 2, establecemos una arquitectura en la que las imágenes
son tomadas como datos secuenciales. En cada instante de
tiempo t ∈ {1, . . . , T} es tomada una fila de la imagen en
forma de vector como dato de entrada x(t) ∈ [0, 255]N . En el
caso de este dataset concreto, T = N = 28.
La arquitectura consta de dos capas. La primera, una unidad
de memoria LSTM con H = 128 nodos de capa oculta.
En segundo lugar, una capa totalmente conectada (FC) que
conecta los 128 nodos de la unidad LSTM con 10 nodos de
FC, asignándoles un valor de probabilidad en [0, 1] a cada uno
de ellos. Se clasifica en el número de clase correspondiente
al máximo valor de probabilidad del vector softmax. Esto es,
tomando ŷ = argmax

exp(FCj)∑9
k=0 exp(FCk)

.
En este experimento se han realizado 10 ejecuciones
independientes de 40 epochs cada una. La tasa de aprendizaje
fijada para el experimento es de α = 0.1 y el método de
optimización utilizado para el aprendizaje ha sido el descenso
por gradiente estocástico (SGD).

...

x(1)

LSTM

FC

ŷ(1)

x(2)

LSTM

FC

ŷ(2)

x(s)

LSTM

FC

ŷ(s)

...

T

N

x(1)∈RN

Fig. 2. Arquitectura de la red utilizada.

B. Resultados experimentales

A continuación mostramos los resultados obtenidos tras el
cálculo de una media aritmética de diez ejecuciones indepen-
dientes para cada una de las funciones de agregación ası́ como
para las combinaciones lineales de funciones. En las tablas II
y III se recalca con negrita el resultado con mayor precisión
obtenida.
En primer lugar, en la tabla II mostramos los resultados
obtenidos con una sola función de agregación. El mejor resul-
tado promedio lo obtenemos cuando realizamos la agregación

de los valores mediante la integral de Choquet, pero cuando
el exponente q > 0 es aprendido por la propia red neuronal
recurrente. Esto supone que el algoritmo modeliza mejor la
interacción y posible coalición entre los datos. De esta manera,
obtenemos una ponderación de los datos que permite una
mejora de 1.01 puntos con respecto a la forma de agregación
clásica en esta arquitectura, la suma.

TABLE II
PRECISIÓN DE DISTINTAS AGREGACIONES PARA EL DATASET

FASHION-MNIST (MEDIA DE 10 EJECUCIONES)

Agregación Precisión
Max 86.45
Ch2 85.65
Chq 90.01
Sum 89.00

Dado que es posible mejorar los resultados mediante la
combinación lineal de funciones de agregación, en la tabla III
mostramos los resultados obtenidos a partir de la aplicación
de estas últimas. A nivel general, en comparación con los
resultados obtenidos con la aplicación de una única función
de agregación, podemos observar que todos los resultados son
mejores, ya que los valores λ1, λ2 ∈ R permiten modelar con
mayor acierto los datos. Ası́ mismo, con similitud a la tabla II,
las agregaciones con las que mejor resultado obtenemos son
aquellas las cuales uno de sus componentes es la integral de
Choquet en la que se aprende la medida.

TABLE III
PRECISIÓN DE DISTINTAS COMBINACIONES DE AGREGACIONES PARA EL

DATASET FASHION-MNIST (MEDIA DE 10 EJECUCIONES)

Combinación Precisión
Max + Sum 89.78
Ch2 + Sum 90.04
Chq + Sum 90.12
Ch2 + Max 89.71
Chq + Max 90.14

VI. CONCLUSIONES

En este trabajo hemos propuesto un nuevo método para la
fusión de vectores multidimensionales, ası́ como la utilización
de dicha expresión para la fusión de información secuencial
en redes neuronales recurrentes tipo LSTM. Ası́ mismo, se
ha corroborado una mejora en la precisión en el dataset
Fashion-MNIST. Hemos observado que los mejores resultados
se obtienen cuando sustituimos la suma por la integral de
Choquet.
En cuanto a las lı́neas futuras, en el aspecto teórico nuestra
intención es continuar investigando nuevas formas de fusión de
vectores basadas en la integral de Choquet, como por ejemplo
la generalización de expresiones o la utilización de órdenes
admisibles. En la vertiente aplicada, las lı́neas futuras van en
la dirección de la modificación de más arquitecturas y más
complejas, ası́ como la utilización de otros conjuntos de datos.
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integrals based on dissimilarities,” Fuzzy Sets and Systems, vol. 414,
pp. 1–27, 2021. Aggregation Functions.

[13] G. P. Dimuro, G. Lucca, B. Bedregal, R. Mesiar, J. A. Sanz, C.-
T. Lin, and H. Bustince, “Generalized cf1f2-integrals: From choquet-
like aggregation to ordered directionally monotone functions,” Fuzzy
Sets and Systems, vol. 378, pp. 44–67, 2020. Theme : Aggregation
Operations.

[14] G. Lucca, J. Antonio Sanz, G. P. Dimuro, B. Bedregal, H. Bustince, and
R. Mesiar, “Cf-integrals: A new family of pre-aggregation functions
with application to fuzzy rule-based classification systems,” Information
Sciences, vol. 435, pp. 94–110, 2018.

[15] A. Graves, Supervised Sequence Labelling with Recurrent Neural Net-
works. Studies in computational intelligence, Berlin: Springer, 2012.

[16] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 10, pp. 2222–2232, 2017.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[18] T. Murofushi, M. Sugeno, and M. Machida, “Non-monotonic fuzzy
measures and the choquet integral,” Fuzzy Sets and Systems, vol. 64,
no. 1, pp. 73–86, 1994.

[19] L. Jin, M. Kalina, R. Mesiar, and S. Borkotokey, “Discrete choquet
integrals for riemann integrable inputs with some applications,” IEEE
Transactions on Fuzzy Systems, vol. 26, no. 5, pp. 3164–3169, 2018.

[20] B. Bedregal, G. Beliakov, H. Bustince, T. Calvo, R. Mesiar, and
D. Paternain, “A class of fuzzy multisets with a fixed number of
memberships,” Information Sciences, vol. 189, pp. 1–17, 2012.

[21] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies,”
in A Field Guide to Dynamical Recurrent Neural Networks (S. C. Kremer
and J. F. Kolen, eds.), IEEE Press, 2001.

[22] F. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: contin-
ual prediction with lstm,” in 1999 Ninth International Conference on
Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), vol. 2,
pp. 850–855 vol.2, 1999.

[23] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms,” ArXiv,
vol. abs/1708.07747, 2017.

[24] Q. V. Le, N. Jaitly, and G. E. Hinton, “A simple way to initialize
recurrent networks of rectified linear units,” CoRR, vol. abs/1504.00941,
2015.

CAEPIA 20/21 XIX Conferencia de la Asociación Española para la Inteligencia Artificial 363
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Abstract—Computable aggregation operators can be seen as a
generalization of aggregation operators where the mathematical
function is replaced by a program that performs the aggre-
gation process. This extension allows the introduction of new
aggregation processes not feasible under the classical framework.
Particularly interesting are some non-deterministic processes
widely considered to merge information. However, especially in
non-deterministic processes, the extension of some of the well-
known concepts for aggregation operators such as monotony,
is needed. In this work, a new concept of monotonicity is
proposed, from a probabilistic perspective, for non-deterministic
computable aggregation operators. To be consistent, the concept
coincides with the classical definition in the deterministic case.
In addition, some cases of interest are analysed.

Index Terms—aggregation, computable aggregation, mono-
tonicity.

I. INTRODUCTION

One of the most important processes for dealing with
complex information is the aggregation process [1]–[6].

Aggregation is a key tool for most knowledge-based sys-
tems. In general, we can say that aggregation has the aim of
using different pieces of information to come to a conclusion
or a decision. Several research communities consider these
tools, such as the multi-criteria community, the decision-sensor
fusion community, the decision-making community, and the
data mining community, among many others.

Aggregation functions have been associated in literature
with aggregation processes. In this sense, the process to
aggregate information has usually been modelled by a function
or a family of functions.

Nevertheless, in the pioneering work of Montero [7] the
concept of computable aggregations was defined. In that
definition, an aggregation process is associated with a program
not necessarily being expressed in terms of functions. This
approach focuses on the way each aggregation is obtained,
i.e., the procedure that produces the aggregated value. Relevant
properties come from these procedures, and it is the specific
procedure we apply what should be the main object of study.

Furthermore, the rupture between functions and aggregation
operators allows to open the domain of aggregation pro-
cesses to a field not yet analysed in this discipline: non-
deterministic computable aggregations [8], which are those
aggregations in which it cannot be guaranteed that the results
of the information that is going to be aggregated coincide
when replicating the process, so they are not functions. This
type of aggregation procedure is very common in statistics,
where, due to the volume of information that is processed,
it is frequent to choose a representative sample on which to
operate. Obviously, replicating the process does not imply that
the sample coincides and therefore the result varies. This kind
of computable aggregation needs to redefine some common
properties of aggregation operators, as monotonicity, being no
longer valid for non-deterministic computable aggregations.

Monotonicity has been always present in aggregation pro-
cesses, from the initial ideas by Zadeh (corresponding to
set operations as unions and intersections) to more recent
proposals (directional monotonicity [6], arity-monotonic ag-
gregation operators [9], . . . ). Monotonicity seems to be a
desirable property associated with a certain robustness of the
aggregation process (obviously not always needed). As an
example, when aggregating information representing positive
evidence on a fact, one expects aggregation being monotone.
Even if the aggregation process is non-deterministic (a non-
deterministic computable aggregation), one would expect some
kind of monotonicity in this process as well.

The purpose of this paper is to revisit and redefine the
monotony property for non-deterministic computable aggrega-
tions. Section II contains some preliminary knowledge useful
to follow the rest of the paper. In Section III we address the
key issue of how the output of a non-deterministic computable
aggregation can be described. In Section IV we discuss the
concept of empirical monotonicity, and population monotonic-
ity, which generalizes monotonicity in the deterministic frame-
work. Comparison between both concepts is developed in
Subsection IV-C. Final Section includes an additional analysis
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and stresses the interest of our results.

II. PRELIMINARIES

A. Non-deterministic Computable Aggregations

Aggregation operators were initially defined to deal with
fuzzy sets [3], [5], [10]–[12], and as a consequence, they were
associated with membership functions. So, this is the reason
why they were defined as follows:

Definition 1. [2] An aggregation operator is a mapping Ag :
[0, 1]n → [0, 1] that satisfies:

1) Ag(0, 0..., 0) = 0 and Ag(1, 1, .., 1) = 1.
2) Ag is monotonic.

It is even possible in some cases to define aggregation
processes going beyond functions by considering methods that
do not match with the concept of mapping. To analyse this
option let us remind the concept of computable aggregation.
The main contribution in [7] was to separate the strong
association that existed between ”aggregation processes” and
explicit functions. But to do so let’s first rewrite the previous
definition in terms of lists as we will use a list notation all
trough this paper.

Definition 2. Let L be the set of non-empty and finite lists of
degrees in [0, 1]. Then an aggregation operator is a mapping
Ag : L → [0, 1] that satisfies:

1) Ag([0, 0..., 0]) = 0 and Ag([1, 1, .., 1]) = 1.
2) Ag is monotonic.

Definition 3. [7] (Computable aggregation). Let L < T >
be a non-empty and finite list of n elements with type T . A
computable aggregation P is a program that transforms the
list L < T > into an element of T .

Remark 1. This paper combines computational and mathe-
matical aspects. From a computational point of view, the term
list is used to refer to the type of data with which our program
(Computable aggregation) works. However, from a mathemat-
ical approach, even considering that we will maintain the term
list, these lists should be analysed as tuples.

Given a program, there exist some situations in which it is
not possible to build a function associated to it. Those are, for
example, the non-deterministic programs that we introduce in
the following definition.

Definition 4 (Deterministic program). A program is determin-
istic, or repeatable, if it produces the very same output when
given the same input, no matter how many times it is run.

On the other hand, we have programs that can not be
modelled by functions because of the intrinsic definition of
function.

Definition 5 (Non-deterministic computable aggregation). A
computable aggregation P over the set T is non deterministic
if and only if the program implementing it is non deterministic.

Hereafter, we will assume T = [0, 1], and consequently, our
lists (L) will be defined in L. The obtained results can be easily

extended to any lattice totally ordered and with maximum and
minimum.

Let us denote by PD the class of deterministic computable
aggregations and by PND the set of non deterministic com-
putable aggregations.

The non deterministic behaviour of a program can arise
from different sources, but we will concentrate now in those
aggregation processes involving random or probabilistic deci-
sions. Some elements of PND with this characteristic are the
following [8]:

Definition 6. (Probability sampled computable aggrega-
tion). Given a value p ∈ (0, 1], and given a family of
aggregation operators {Agn : [0, 1]n −→ [0, 1], n ≥ 1}, let
us define the computable aggregation PAg,p as the three steps
program that for a given list L1 = [x1, . . . , xn] ∈ L performs
the following actions:
• Step 1. Reduce the list L1 into another list L2 of lower

(or equal) dimension by randomly erasing the elements
of the list with probability 1− p.

• Step 2. If L2 is empty then return to Step 1.
• Step 3. Return the value Ag|L2|(L2) if |L2| ≥ 1.

Note that the computable aggregation PAg,p=1 is deter-
ministic since PAg,1(L1) = Ag|L1|(L1) (since in this case
L2 = L1).

Another way to sample a list is by fixing a value k, and
randomly selecting k elements from it. Given a list of m
elements in [0, 1], L1 = [x1, . . . , xm] ∈ L, let us denote by
Selk a program that randomly chooses a sample (without re-
sampling) of k elements of the list if k < m, and maintains
the same list if k ≥ m.

Definition 7. (k-sampled computable aggregation). Given
a family of aggregation operators {Agn, n ≥ 1}, the com-
putable aggregation PAg,k, is defined as the program that for
a given list L1 of m elements, first applies the procedure
L2 = Selk(L1), and then computes the value Ag|L2|(L2).

It is important to notice that in the previous definitions the
sampled list L2 should be a sublist of L1, then maintaining
the relative positions among elements.

B. Distribution functions

In our analysis based on populations we will use distribution
functions and will consider some related concepts.

Definition 8. Given a random distribution X , the cumulative
distribution function of X (denoted by FX ), is a function
that for each value x0 computes the probability induced by X
of the set {X ≤ x0}. Formally the function FX : R −→ [0, 1],
is defined as

FX(x0) = P (X ≤ x0).
We can simply use the term distribution function to refer to

the cumulative distribution function.
Another concept that we need to introduce is the idea of

empirical distribution. The empirical distribution function can
be understood as an estimation of the cumulative distribution
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function that is obtained from a sample of the global popula-
tion.

Definition 9. Given a list l = [a1, . . . , am] with m values in
[0, 1], then the empirical distribution function associated to l
and denoted by EFl can be formally defined for all x ∈ R as

EF l(x) =
|{i | ai ≤ x}|

m
.

Given a distribution X , if we obtain l = [a1, . . . , am] in an
independent way from the global distribution X , there exist
many statistical results that deal with the convergence of the
empirical distribution function to the underlying cumulative
distribution function. So, in general, when m increases, EFl
converges to FX .

In addition, given two distributions we can compare them.

Definition 10. Given two distributions X1 and X2 with
distribution functions FX1 and FX2 : R −→ [0, 1]. We will
say that X1 ≤D X2 when for all x ∈ R, FX1

(x) ≥ FX2
(x).

III. CHARACTERISING THE OUTPUT OF A NON
DETERMINISTIC COMPUTABLE AGGREGATION

Taking into account that the core properties of aggregation
operators are monotonicity and boundary conditions, it is
obvious that defining a new kind of aggregation, as the non
deterministic computable aggregations, requires the analysis
of this two properties.

The boundary conditions are quite simple concepts that have
a straightforward counterpart in this kind of non deterministic
computable aggregations. Any sampling of a list of 0s will
be a new list of 0s (similarly for a list of 1s), so, as the
underlying aggregation satisfies the boundary conditions, the
computable aggregation also does. But monotonicity is a quite
different question. The analysis of monotonicity requires the
comparison of the outputs of two aggregations. The problem is
that, differently from other aggregation processes, the output of
a non-deterministic aggregation cannot be described in terms
of a known and fixed value. This situation rises a previous
question prior to consider monotonicity. How can we describe
the output of a non-deterministic computable aggregation?

Given a computable aggregation P aggregating a list L1 ∈
L, we could describe its output by running the program several
times and compiling the outputs. Clearly, if considering a de-
terministic computable aggregation, all outputs should be the
same. However, a non-deterministic computable aggregation
would probably produce several different values.

From now on we will denote by LPmL1
∈ L the list of length

m obtained after m executions of the program P over the list
L1. These m-realizations could be characterized in terms of a
distribution [13].

Definition 11. (Empirical distribution of a computable
aggregation). Given a computable aggregation P and given
a list L1 ∈ L, the distribution of results obtained after m
executions of the program P over the list L1, will be referred
as the empirical distribution with size m of the program P
over the list L1 in L, represented by DPmL1

.

It is also possible that, by simply analysing the program
or the underlying algorithm, we could determine what should
theoretically be the distribution of outputs for a given input.

Given a computable aggregation P that aggregates a list
L1 ∈ L, let us denote by P(L1) the theoretical distribution
after all possible realizations of the program P over the fixed
list L1. Obviously, if P ∈ PD, the associate P(L1) for any
list will be a single value. For non deterministic programs,
we will have here a probability distribution P(L1) for each
fixed value of L1. However there will be some cases where
we would be not able to obtain that theoretical distribution.

In general, given a non deterministic computable aggrega-
tion P , it is not possible to know the theoretical distribution
P(L1). Nevertheless, we could try to approximate it by
making many realizations of P (L1).

After defining LPmL1
, DPmL1

and P(L1) we need to consider
its relations. In order to show the differences between the list
of executions, the empirical distribution, and the theoretical
distribution, let’s consider the following example.

Example 1. Let L1 = [0.1, 0.2, 0.6, 0.7] be a list of four
elements in [0, 1], and let P be a deterministic program that
calculates the average of the elements of the list. Let m = 5
be the number of executions. In one hand, it is easy to see
that LP 5

L1
= [0.4, 0.4, 0.4, 0.4, 0.4] (i.e. a list of 5 elements

each one of them taking the value 0.4), since the program is
deterministic and the program will give always the same result.
On the other hand, the empirical and theoretical distributions
DP 5

L1
and P(L1) coincide with the degenerate distribution

in the point 0.4 (i.e. DP 5
L1

= P(L1) = {0.4}) that can be
described by the following cumulative distribution function.

F (x) =

{
0 If x < 0.4

1 If x ≥ 0.4.

We have obtained the list of executions, the empirical distri-
bution and the theoretical distribution.

Once analysed the previous example considering a deter-
ministic computable aggregation, let’s consider now a generic
approach including the non deterministic case. Taking into
account the concept of distribution function presented in
previous section, if we want to estimate the distribution of
P(L1), we can execute m times P (L1), obtaining the list
LPmL1

. From this list, it is possible to obtain what we have
denoted by DPmL1

that is the empirical distribution of the
values of the list LPmL1

. The result will be:

FDPm
L1

= EFLPm
L1
. (1)

Proposition 1. [14] Given a deterministic computable ag-
gregation P , the following holds:

DPmL1
= P(L1).

Starting from a list L1 ∈ L of elements to be aggregated,
and a non deterministic aggregation process, we have defined
two distributions describing the result of the aggregation
process: the theoretical distribution P(L1) and the empiri-
cal distribution (DPmL1

). In addition we have the list LPmL1
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obtained after m executions of the aggregation process. The
interactions and relations among these elements will describe
and characterize a non deterministic computable aggregation.

IV. MONOTONICITY IN NON-DETERMINISTIC
COMPUTABLE AGGREGATION

In a first approach to the monotonicity condition, we will
assume that the output for a certain input list L1 ∈ L is
described in terms of m-realizations LPmL1

∈ L, being also
a list. In this situation any monotonicity analysis will require
a method to compare/order elements of L.

Let L1 = [a1, . . . , an] and L2 = [b1, . . . , bn] be two lists of
L with the same length n > 0. We will represent by s(L1) the
list obtained by sorting L1 in increasing order. Accordingly,
s(L2) will correspond to the sorted version of L2.

Definition 12. (Sorted 1to1 preorder). A list L1 in L is
S1to1 lower or equal than a list L2 in L, if and only if the kth

value of s(L1) is lower or equal to the kth value of s(L2), for
all k from 1 to n, that is:

L1 ≤S1to1 L2 if and only if s(L1)k ≤ s(L2)k,∀k = 1, . . . n.

Definition 13. (1to1 partial order). A list L1 = [a1, . . . , an]
in L is 1to1 lower or equal than a list L2 = [b1, . . . , bn] in L,
if and only if the kth element of L1 is lower or equal than the
kth degree of L2. It is:

L1 ≤1to1 L2 if and only if ak ≤ bk,∀k = 1, . . . n.

This partial order is equivalent to the one obtained by
considering the lists (of lenght n) in L as elements in Rn
with its usual order.

A. Empirical monotonicity for non-deterministic computable
aggregations

How to generalize the idea of monotonicity from classical
aggregation operators to non-deterministic computable aggre-
gations is not a trivial task. In general terms, monotonicity
implies that if we have two input lists L1 ≤ L2, their outputs
should maintain that order. Consequently, the usual concept
of monotonicity of aggregation operators is not valid for non-
deterministic computable aggregations, as these aggregations
do not produce the same output when receiving the same input.
To cope with this situation, the concept of list associated to
m executions for a given list Li (LPmLi

) has been previously
introduced. This concept describes the result obtained (a list
Lo ∈ L) after m executions of the program P over the list
Li. When m is large enough it allows an empirical analysis
of the computable aggregation.

The following properties try to answer the question of how
to define monotonicity from this point of view, applying the
different methods previously considered for the comparison of
lists. It is important to notice that we have lists as inputs (Li),
and we describe the outputs also in terms of lists (LPmLi

).
In what concerns the lists of inputs (Li), from the point of

view of an aggregation processes these lists behave as vectors
(the n inputs of an aggregation process are an element of

[0, 1]n), and should be ordered considering the usual order
of [0, 1]n, that is equivalent to ≤1to1 previously defined.
Consequently we will use this notation in the definitions.

Definition 14. (Strong ≤-monotonicity of non-deterministic
computable aggregations]). Let P be a non-deterministic
computable aggregation. Let L1 = [a1, . . . , an] and L2 =
[b1, . . . , bn] be two lists of degrees in L. Let ≤ be a (partial)
order on the set L. A non-deterministic computable aggrega-
tion P is strong ≤-monotone if and only if, when L1 ≤1to1 L2

then (LPmL1
) ≤ (LPmL2

) for any m ≥ 1.

Definition 15. (Asymptotic ≤-monotonicity of non-
deterministic computable aggregations). Let P be a non-
deterministic computable aggregation. Let L1 = [a1, . . . , an]
and L2 = [b1, . . . , bn] be two lists of degrees in L. Let ≤ be
a partial order on the set L. A non-deterministic computable
aggregation P is asymptotic ≤-monotone if and only if, there
exists a natural number n0 such that If L1 ≤1to1 L2 then
(LPmL1

) ≤ (LPmL2
) for any m > n0.

B. Population monotonicity for non-deterministic computable
aggregations

Once defined an order in the output-space of non determin-
istic computable aggregations, let us consider monotonicity.

Definition 16 (Population monotonicity of non-deterministic
computable aggregations). Let P be a non-deterministic com-
putable aggregation, and let L1 and L2 be two lists ∈ L
ordered with the classical vectorial order definition (equivalent
to the previously defined 1to1 order). A non-deterministic
computable aggregation P is population monotone if and
only if, when L1 ≤ L2 then P(L1) ≤D P(L2).

Remark 2. Let us observe that previous definition general-
izes the classical definition of monotonicity for deterministic
computable aggregations. In the following proposition we will
see in detail.

Proposition 2. Let P be a deterministic computable aggrega-
tion with associated function Ag. Then, the following holds:

P is population monotone if and only if Ag is monotone.

Proof. • From left to right. Given L1 ≤ L2, will prove that
Ag(L1) ≤ Ag(L2). First, since P is deterministic with
associated aggregation function Ag, the following holds
for the list L1 and L2.

FP(L1)(x) =

{
0 If x < Ag(L1)

1 If x ≥ Ag(L1)

and

FP(L2)(x) =

{
0 If x < Ag(L2)

1 If x ≥ Ag(L2).

Then, since P is monotone, P(L1) ≤D P(L2) which
implies that for all x FP(L1)(x) ≥ FP(L2)(x). Finally, it
is very easy to see that these inequalities hold if and only
if Ag(L1) ≤ Ag(L2) so the result is proved.
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• From right to left. Given L1 ≤ L2, we are going to prove
that P(L1) ≤D P(L2). Since P is deterministic, P(L1)
and P(L2) are degenerated distributions in the values
Ag(L1) and Ag(L2), respectively. Since Ag is monotone,
Ag(L1) ≤ Ag(L2), and thus it is very easy to see that
FP(L2)(x) ≤ FP(L1)(x) for any value of x.

For practical reasons, we can approximate the theoretical
distribution empirically if the number of executions is enough
to ensure that empirical distribution is close to theoretical
distribution. Taking into account this consideration, we present
the following definition.

Definition 17 (Population asymptotic monotonicity of non-de-
terministic computable aggregations). Let P be a non-
deterministic computable aggregation, and let L1 and L2

be two lists in L ordered with the classical vectorial order
definition. A non-deterministic computable aggregation P
is population asymptotic monotone if and only if when
L1 ≤ L2 then, ∀x ∈ R,

lim
m−→∞

(
FDPm

L1
(x)− FDPm

L2
(x)
)
≥ 0.

Proposition 3. Let P be a non deterministic computable ag-
gregation, if P is population monotone then P is population
asymptotic monotone.

Proof. First of all, let us note that FDPm
L1

and FDPm
L2

are
bounded functions in [0, 1]. Also, by Glivenko-Cantelli the-
orem, there exist punctual convergence of the empirical dis-
tribution function (FDPm

L
) into the theoretical one (denoted

as FP (L)) for L ∈ {L1, L2}. Consequently, the limits of
FDPm

L1
(x) and FDPm

L2
(x) exist for all x ∈ R, and the limit of

the difference coincides with the difference of limits. So, the
following holds:

lim
m−→∞

(
FDPm

L1
(x)− FDPm

L2
(x)
)
=

lim
m−→∞

FDPm
L1
(x)− lim

m−→∞
FDPm

L2
(x)

Now, due to the punctual convergence previously men-
tioned,

lim
m−→∞

FDPm
L1
(x)− lim

m−→∞
FDPm

L2
(x) = FPL1

(x)− FPL2
(x).

Finally, since P is population monotone, P (L1) ≤D P (L2)
so the previous difference is greater than or equal to zero and
the result is proved.

C. Empirical and population monotonicity

Finally, in this subsection we will see the relationship
between the defined concepts of monotonicity for lists and
distributions. In particular, let us analyse the relations between
population monotonicity, asymptotic population monotonicity,
asymptotic ≤ monotonicity and strong ≤ monotonicity.

Let us first consider the relation between the order ≤D for
distribution functions and the order ≤S1to1 for lists.

Proposition 4. Given a computable aggregation P , two lists
L1, L2 ∈ L, two m-realizations of the computable aggregation
on these lists LPmL1

, LPmL2
∈ L, and the corresponding empir-

ical distributions DPmL1
and DPmL2

, then DPmL1
≤D DPmL2

if
and only if LPmL1

≤S1to1 LPmL2
.

It is relevant to mention that the strong monotonicity defined
for lists will not have an equivalence in the context of
distributions since the requirements are too strong, so we will
focus on the equivalence in the asymptotic cases for lists
and distributions. Our first result is a natural consequence of
Proposition 4, which establishes an equivalence between the
orders in distributions after m realizations and the associated
lists.

Proposition 5. P is population asymptotic monotone if P is
≤S1to1-asymptotic monotone.

Proof. This is direct by Proposition 4 in which we have that
DPmL1

≤D DPmL2
if and only if LPmL1

≤S1to1 LPmL2
. So if

P is ≤S1to1-asymptotic monotone, then DPmL1
≤D DPmL2

for a given value of m ≥ m0, and as a consequence
limm−→∞

(
FDPm

L1
(x)− FDPm

L2
(x)
)
≥ 0.

Now taking into account the previous implications between
list of orders, distributions, and different classes of monotonic-
ity, the following implications trivially holds.

Corollary 1. Let P be a computable aggregation.
• If P is strong ≤S1to1 monotone, then P is population

asymptotic monotone.
• If P is strong ≤S1to1 monotone, then P is population

monotone.
• If P is a deterministic computable aggregation, then P

is strong ≤ monotone, for any order.

Prior to conclude the paper with a preliminary analysis on
sampling aggregations, it is important to remark the reason
to introduce the analysis based on populations, once we have
the empirical approach. The main reason relies in the fact that
once we move from lists to distributions, the dimension of the
list does not affect. We can compare distributions related to
lists of different dimension. That is, we can compare DPmL1

and DPnL2
, no matter if n 6= m.

V. FINAL ANALYSIS AND CONCLUSIONS

Once introduced the different definitions and properties,
it is possible to analyse monotonicity for a family of non
deterministic computable aggregations that includes the most
famous non deterministic process in statistics: sampling. We
will consider now the k-sampled and probability sampled
computable aggregations.

It is possible to check that both families of non deterministic
computable aggregations are population monotone, for any
classical aggregation operator function Ag. To do so, a possi-
ble guideline of the proof is to use the concept of empirical

368 XIX Conferencia de la Asociación Española para la Inteligencia Artificial CAEPIA 20/21



distribution function associated to a list (EFl, see definition
9) and the distribution associated to a list l denoted as Dl,
and described (according to Eq. 1) as FDl

= EFl. Note that
this is a generalization of the relation defined between a list
of m−realizations (LPmL1

) and the corresponding empirical
distribution (DPmL1

).
The idea beyond this, is to compare the associated empirical

distribution with the population distributions associated with
lists that are generated after we aggregate all possible scenarios
of these two computable aggregations.

To conclude this section, let us note that in this work we
provide an approach to monotonicity of non deterministic
computable aggregations. This definition includes the classical
notion in the deterministic case and offers two different
approaches. The first approach relies on orders (and preorders)
on lists. The second represents a probabilistic conception
appearing in a natural way since we model the outputs of
a computable aggregation (that in the deterministic case are
single points), as probability distributions. As a consequence,
we have had to answer the question of how to order lists
and/or probability distributions. In this work, we provide a
natural way of comparing distributions following the idea of
stochastic dominance between distribution functions.

To conclude we make two additional comments. On the
one hand, it is clear that other definitions for ordering lists
and probability distributions could be considered and would
give different versions of monotonicity. How to establish other
orders between lists and between probability distributions is
a question that we believe is worth studying in the future.
On the other hand, we have also interpreted the output of a
computable aggregation after a sufficient number of iterations,
simply as a list of values. In that framework, we can also
explore other order relations (now between lists) that would
produce different notions of monotonicity.
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Universidad Pública de Navarra
Pamplona, Spain

marisol@unavarra.es
6th Humberto Bustince

Estadı́stica, Informática y Matemáticas
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Abstract—Las interfaces cerebro-ordenador (BCI) basadas en
el análisis de Electroencefalografı́a (EEG) están compuestas por
varios elementos para procesar y clasificar las señales de entrada
del cerebro. Una fase relevante de estos sistemas es el módulo de
toma de decisiones, en el que la salida de diferentes clasificadores
se fusiona en uno solo. En este trabajo proponemos el uso de
funciones basadas en desviaciones moderadas con ponderaciones
para la fase de toma de decisiones del sistema de BCI de
fusión multimodal mejorado (EMF). Las funciones de agregación
basadas en desviación moderada (MD) nos permiten elegir el
mejor valor para agregar un vector de puntos utilizando una
función de desviación moderada. Usando una MD ponderada,
también podemos tener en cuenta la importancia relativa de
cada dimensión en los datos multidimensionales que estamos
agregando. Utilizando estas funciones en el EMF, podemos
ponderar cada una de las diferentes señales cerebrales según su
importancia, y utilizando la diferenciación automática, también
podemos optimizarlas para el problema concreto a solucionar.

I. INTRODUCCIÓN

Las interfaces cerebro-ordenador (BCI) tienen como
objetivo decodificar patrones de señales cerebrales para
controlar diferentes mecanismos del cerebro [1], [2]. Se
pueden utilizar diferentes propiedades de una señal para
controlar dispositivos mediante señales cerebrales, [3], [4].
Una estrategia popular para modular las señales cerebrales
de modo que se puedan interpretar en comandos es el
entrenamiento con imágenes motoras (MI). Durante el
proceso de MI, una persona imagina el movimiento de una
parte del cuerpo, como por ejemplo la mano izquierda o
derecha, los pies o la lengua [5]. Durante la imaginación
de los movimientos, la potencia eléctrica de las áreas
sensoriomotoras, contralaterales al lado del movimiento,
se reduce, en un efecto conocido como desincronización
relacionada con el evento (ERD), [6]–[8] y, a menudo,
también se da un aumento de la potencia, o sincronización
relacionada con el evento (ERS) en el lado ipsilateral. La
identificación correcta de ERD/ERS influye en gran medida
en el rendimiento de un sistema BCI basado en MI. Algunos
algoritmos muy populares para identificar y clasificar los

cambios de potencia de las señales MI son el patrón espacial
común (CSP), las máquinas vectoriales de soporte o las redes
neuronales de aprendizaje profundo, [6], [9]–[14].

Los sistemas BCI se diseñan utilizando una amplia gama
de técnicas para extraer caracterı́sticas de los datos originales
en bruto antes de extraer patrones cerebrales clasificables.
Algunos procedimientos comunes incluyen la estimación de
la potencia de banda estrecha en el dominio de tiempo
[15], [16], en el dominio de frecuencia [17]–[19] o en
el dominio de tiempo-frecuencia utilizando, por ejemplo,
ondas de Meyer [20], [21]. Posteriormente, la clasificación se
realiza generalmente empleando clasificadores lineales como
el Análisis Discriminante Lineal (LDA), pero también QDA
o SVMs [22] son procedimientos de clasificación populares.
A veces, especialmente en el caso de paradigmas multiclase,
están involucradas muchas caracterı́sticas diferentes o se
combinan diferentes caracterı́sticas. En esos casos, el módulo
de reconocimiento de patrones puede estar compuesto por
un conjunto de clasificadores. La estrategia más común para
combinar resultados de clasificación es probablemente la
votación por mayorı́a [23].

En [24], los autores propusieron una nueva forma de realizar
la toma de decisiones en un marco BCI en dos fases, la toma
de decisiones multimodal. En [25] los autores propusieron
una actualización de este mismo proceso, lo que resultó en
el marco BCI de fusión multimodal mejorado (EMF). Este
trabajo también presentó un estudio detallado de diferentes
funciones de agregación, que mostró diferencias significativas
en cuanto a la precisión de la clasificación final.

Sin embargo, el problema de elegir la mejor función de
agregación sigue estando abierto. La literatura sobre teorı́a
de la agregación sugiere el uso de agregaciones basadas en
desviaciones moderadas (MD) como una opción para resolver
el problema de escoger la agregación más adecuada para
conjunto de datos [26]. La idea de las MD es utilizar una
desviación moderada para calcular la similitud entre el posible
valor de salida y el conjunto de datos de entrada. Luego,
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buscamos el valor que maximiza esa similitud con respecto
a los datos de entrada.

En este trabajo, usamos la MD desarrollada en [27]
para tomar en cuenta las diferentes importancias de cada
caracterı́stica de entrada usando pesos, y para resolver el
problema de elegir la mejor agregación. Mostramos cómo se
aplican estas funciones al marco BCI publicado en [25] y
un procedimiento para aprender los pesos de acuerdo con los
datos de entrada.

El resto del artı́culo es el siguiente: en la sección
II explicamos las funciones basadas en la desviación
moderada multivariante ponderada (II-A) y el marco de fusión
multimodal mejorado (II-B) y como aplicar estas funciones
en dicho marco. En la Sección III describimos nuestros
experimentos y mostramos los resultados obtenidos, y en la
Sección IV damos nuestras observaciones finales para este
trabajo y explicamos nuestras pautas futuras.

II. MÉTODOS

En esta sección explicamos los conceptos asociados con las
funciones basadas en la MD y el EMF para la clasificación de
señales MI-BCI.

A. Desviaciones moderadas

Sea I un intervalo cerrado de números reales y sea a =
min I y b = max I . Una aplicación M : In → I se dice
que es una función de agregación (n-dimensional) si M es
creciente y M(a, . . . , a) = a, M(b, . . . , b) = b. Además, se
dice que una función de agregación M es promedia [28] si
solo si

min(x1, . . . , xn) ≤M(x1, . . . , xn) ≤ max(x1 . . . , xn)

por cada x1, . . . , xn ∈ I .
Se puede encontrar una lista completa de varios ejemplos de

funciones de agregación en [29]. Existen muchas familias de
funciones de agregación, utilizadas según las circunstancias de
cada problema. Entre ellas, el concepto de agregación basada
en desviación resulta muy eficaz en muchas circunstancias.
Su procedimiento es sencillo: se mide la diferencia entre los
valores a agregar y un posible valor de salida y se escoge el
valor que sea más similar a todos ellos.

Para medir la disimilitud en estos pares de valores, se puede
utilizar una función de desviación o una función de desviación
moderada. Sea I un intervalo cerrado de números reales. Se
dice que un mapeo D : I2 → R es una función de desviación
si y solo si D(x, ·) : I → R es continuo y estrictamente
creciente, y D(x, x) = 0 para todo x ∈ I . Además, sea n un
número natural, un mapeo MD : In → R se dice que es una
media de Daróczy si y solo si MD viene dado por

MD(x) = y,

donde y es la solución de la ecuación
n∑

i=1

D(xi, y) = 0.

Una media de Daróczy nos permite determinar qué tan
diferente es cada entrada xi de y, y el resultado final de
la función MD es ese y para el cual la suma de todas las
diferencias es tan pequeña como sea posible. Sin embargo,
debido a algunos problemas de esta definición, se propusieron
las desviaciones moderadas:

Sea I un intervalo cerrado de números reales. Se dice que
un mapeo D : I2 → R es una función de desviación moderada
si y solo si

1) Por cada x ∈ I , D(x, ·) : I → R no es decreciente;
2) Por cada y ∈ I , D(·, y) : I → R no es creciente;
3) D(x, y) = 0 si y solo si x = y, x, y ∈ I .

Una función dada por D(x, y) = y − x para x, y ∈ R,
representa el ejemplo prototı́pico de función de desviación
moderada.

Ahora procedemos a presentar un método para construir
desviaciones moderadas ponderadas para datos multi-variable,
que luego usaremos para agregar preferencias de distintos
expertos.

Proposition II.1. Sea f : R→ R una función no decreciente
tal que f(x) = 0 si y solo si x = 0. Sea s : [0, 1] → R
una función estrictamente creciente. Luego, un mapeo Df,s :
[0, 1]2 → R dado por

Df,s(x, y) = f
(
s(y)− s(x)

)

es una función de desviación moderada.

Sea el conjunto de datos multidimensionales una matriz
p × q A de n vectores de manera que tanto p como q sean
divisibles por un entero positivo r, r 6= 1. La matriz A puede
considerarse compuesta de n submatrices A1, A2, . . . , An con
entradas reales, donde Aj es una “ sección transversal ” de A
a través de todos sus j -ésimos componentes . Por tanto, la
matriz A puede considerarse como el vector (A1,A2, . . . ,An)
de matrices.

Descompongamos la matriz A en (p/r) · (q/r) mutuamente
disjuntas submatrices r × r Bαβ , α ∈ {1, 2, . . . , p/r},
β ∈ {1, 2, . . . , q/r}. Al aplicar el método de fusión en
cuestión, reemplazaremos cada submatriz de n-tuplas por un
representante apropiado que es nuevamente una n-tupla, lo
que da como resultado un (p/r)× (q/r) matriz C de n reales
-tuplas.
Paso #1 (Descomposición de la matriz A): sea I = [p/r] y
J = [q/r]. Denotando el elemento en la posición (r, s) de A
por ars. Se define para cada α ∈ I y β ∈ J una r× r matriz
Bαβ de n-tuplas como

bαβi,j = a(α−1)r+i,(β−1)r+j para i, j ∈ [r]. (1)

Entonces, la matriz A puede verse como una unión disjunta
de matrices Bαβ sobre todos los ı́ndices α ∈ I, β ∈ J .

Sea α un ı́ndice arbitrario pero fijo de I y β de J ,
respectivamente. Entonces la matriz Bαβ consta de n de r× r
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matrices cuadradas

Bαβk =




bαβ11k bαβ12k · · · bαβ1rk

bαβ21k bαβ22k · · · bαβ2rk

...
...

. . .
...

bαβr1k bαβr2k · · · bαβrrk




para cada k ∈ [n]. (2)

Nota: Dentro del espacio euclidiano n-dimensional En

alcance, los elementos de Bαβk corresponden a las proyecciones
sobre el k-eje.

Paso #2 (Fijando un dominio): teniendo en cuenta las
posibles aplicaciones, es necesario fijar un intervalo real
cerrado para ser utilizado como dominio de una función de
agregación basada en desviaciones. Por esta razón, designamos

∧αβk = min
i,j∈[r]

{bαβijk} y ∨αβk = max
i,j∈[r]

{bαβijk}, k ∈ n.

Llamando Iαβk al intervalo real cerrado [∧αβk ,∨αβk ], i.e.

Iαβk = {x ∈ R | ∧αβk ≤ x ≤ ∨
αβ
k }. (3)

Servirá como el dominio de una función de agregación basada
en la desviación que se aplicará como la agregación de Bαβk
elementos.

Paso #3 (Implementación de la agregación basada en
desviaciones):

Theorem II.2. Sea I un intervalo de números reales. Sea X
una matriz s × t tal que xij ∈ I por cada i ∈ [s], j ∈ [t].
Denotamos por IX un intervalo real cerrado

[
min

i∈[s],j∈[t]
{xij}, max

i∈[s],j∈[t]
{xij}

]
.

Sea D : IX × IX → R una función de desviación moderada.
Se define una función MD : Is·tX → R por

MD(X) =
1

2

(
sup
{
y ∈ I |

s∑

i=1

t∑

j=1

D(xij , y) < 0
}
+

+ inf
{
y ∈ I |

s∑

i=1

t∑

j=1

D(xij , y) > 0
})
.

(MDX)

entonces MD es una función de agregación idempotente y
simétrica.

Paso #4 (Ponderando las matrices): Sea I un intervalo de
números reales. Sea D : I2 → R una función de desviación
moderada. Sea W una matriz de ponderación no negativa s×t
tal que wij ∈ [0,∞) por cada i ∈ [s], j ∈ [t], y X será una
matriz s×t de números reales tal que xij ∈ I por cada i ∈ [s],
j ∈ [t]. Se dice que el mapeo MD,W : Ip·q → I es una función

de agregación matricial basada en la desviación ponderada
si y solo si

MD,W(X) =
1

2

(
sup
{
y ∈ I |

s∑

i=1

t∑

j=1

wijD(xij , y) < 0
}
+

+ inf
{
y ∈ I |

s∑

i=1

t∑

j=1

wijD(xij , y) > 0
})
.

(MDWX)

La imagen MD,W(X) de X se denomina agregación de
matrices basada en desviaciones moderadas ponderada.

Proposition II.3. Siendo k ∈ [n] un número entero escogido
arbitrariamente. Sea Bαβk una matriz r × r definida como
Eq. (2). Siendo w = (w1, w2, . . . , wn) ∈ [0,∞)n un vector
de pesos no negativos. Siendo MD : (Iαβk )r·r → R una
agregación de matrices basada en desviaciones moderadas.
Entonces, para cada k ∈ [n], la función MD,w : (Iαβk )r·r →
R definida como:

MD,wk
(Bαβk ) =MD(wkBαβk )

=MD




wk · bαβ11k · · · wk · bαβ1rk
wk · bαβ21k · · · wk · bαβ2rk

...
. . .

...

wk · bαβr1k · · · wk · bαβrrk




(MDw)

es una agregación de matrices basada en desviaciones
moderadas ponderada.

Example II.4. Siendo I un intervalo de números reales cerrado.
Siendo A una matriz de dimensión 12 000×800 de cuádruplas
reales aij de modo que

aij = (aij1, aij2, aij3, aij4), i ∈ [10 000], j ∈ [800],

y

(aij1, aij2, aij3, aij4) ∈ I5.

Siendo r = 2. Entonces, siguiendo (1), α ∈ [10 000/2] =
[5 000] y β ∈ [800/2] = [400].

Para ε ≥ 1, se define Dε : I
2 → R como

Dε(x, y) = (x+ ε)(y − x).

Pues, Dε es una función de desviación, y la correspondiente
función de agregación de dos variables MDε

: I2 → R es
dada por:

MDε(u, v) =
u(u+ ε) + v(v + ε)

u+ v + 2ε
(4)

para todo u, v ∈ I siendo u+ v + 2ε 6= 0.
Siendo w = (w1, w2, w3, w4) ∈ [0,∞) un vector de pesos.

Para todo k ∈ [4], α ∈ [5 000], β ∈ [400], se define, de
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acuerdo con Eq. ((2)), una matriz 2 × 2 Bαβk . Entonces la
función MDε,w : I4 → R:

MDε,wk
(Bαβk ) =MDε(wkB

αβ
k )

=MDε




wkb
αβ
11k wkb

αβ
12k

wkb
αβ
21k wkb

αβ
22k




=

2∑
i=1

2∑
j=1

wkb
αβ
ijk(b

αβ
ijk + ε)

4wkε+
2∑
i=1

2∑
j=1

wkb
αβ
ijk

(5)

es la agregación de matrices basada en desviaciones
moderadas ponderada. Finalmente, la resultante matriz de
5 000× 400 C de 5 000 · 400 = 2 000 000 cuadrúplas

yαβw =
(
MDε,w1(B

αβ
1 ), . . . ,MDε,w4(B

αβ
4 )
)
,

α ∈ [5 000], β ∈ [400], es el resultado A con respecto a Dε.

B. Enhanced-Multimodal Fusion BCI Framework

El EMF es el marco MI BCI que clasifica señales EEG [25].
El EMF consta de 5 fases diferentes:

1) Calcular la transformada rápida de Fourier de la señal
de EEG para transformar los datos de potencia de EEG
en el dominio de la frecuencia. Luego, se realiza una
diferenciación de la salida FFt en cada frecuencia.

2) Se dividen los datos en cinco bandas de ondas diferentes:
δ 1 − 4 Hz, θ 4 − 8 Hz, α 8 − 14 Hz, β14 − 30 Hz y
1− 30 Hz (Todas).

3) Se calcula el CSP en cada banda de onda para extraer
caracterı́sticas con separación espacial máxima [30].

4) Se entrena un conjunto de clasificadores para cada banda
de onda: un análisis discriminante lineal (LDA), análisis
discriminante cuadrático (QDA), máquina de vectores de
soporte (SVM), K-vecinos cercanos (KNN) y proceso
gaussiano (GP). De esta manera tenemos un clasificador
de cada tipo para cada banda de onda estudiada.

5) Se realiza la decisión multimodal utilizando dos
funciones de agregación. Los mejores resultados en
[25] se obtuvieron utilizando una integral de Choquet /
Sugeno en la primera fase de la agregación y una función
de overlap generalizada [31].

Se puede encontrar un esquema visual del EMF en la
Figura 1.

C. Aprendizaje de ponderaciones en una agregación basada
en desviación moderada ponderada

Como se detalla en la Sección II-A, es posible usar una MD
para agregar un vector de entradas, dando más importancia a
algunos canales. Sin embargo, este proceso de ponderación no
es sencillo, ya que qué canales deberı́an ser más importantes
que otros depende en gran medida de la tarea a resolver.
Además, en el caso de la decisión multimodal, los pesos
aprendidos para la fase 1 pueden influir mucho en los pesos
óptimos para la fase 2.

En el caso de una tarea de aprendizaje supervisado,
podemos plantear este problema como uno de optimización.
Usando los logits de los clasificadores como datos de
entrenamiento, los agregamos usando la MD ponderada y
luego clasificamos cada muestra. La función de coste para la
función de optimización es la entropı́a cruzada para las clases
C y las muestras de M :

−
M∑

m=1

C∑

c=1

yc,m ∗ log(pc,m) (6)

donde yc,m es un valor binario que es 1 solo si c es la
etiqueta real para la muestra m, y pc,m es la probabilidad
predicha para la muestra m a ser de clase c.

Procedemos entonces a solucionar este problema mediante
la autodiferenciación. El algoritmo de backpropagation para
resolver este problema está presente en todas las bibliotecas
de cálculo de tensores, que se utilizan comúnmente para Deep
Learning [32].

III. EXPERIMENTOS Y RESULTADOS

Para nuestros experimentos, hemos utilizado el conjunto de
datos BCI Competition IV 2a [33]. Este conjunto de datos
consta de cuatro clases de tareas: lengua, pie, mano izquierda
y mano derecha realizadas por 9 voluntarios. Para cada tarea,
se recolectaron 22 canales de EEG. Hay un total de 288
ensayos para cada participante, distribuidos equitativamente
entre las 4 clases. Para nuestra configuración experimental,
hemos utilizado 4 de los 22 canales disponibles (8, 12, 14,
18), siguiendo los procedimientos de [24], [25].

De cada sujeto, hemos generado veinte particiones de las
288 pruebas que constan de 50% entrenamiento (144 pruebas)
y 50% test (144 pruebas) elegidas al azar. Dado que tenemos
9 sujetos, esto produce un total de 90 conjuntos de datos
diferentes.

Estudiamos tanto la clasificación binaria de mano
izquierda/derecha como la tarea completa de cuatro clases.

A. Resultados de la clasificación binaria

En esta sección hemos estudiado el rendimiento del EMF
utilizando una MD ponderada para la clasificación binaria.
Hemos estudiado dos versiones de esta MD ponderada,
estableciendo todos los pesos en 1 y aprendiéndolos usando
la propagación hacia atrás.

En la Tabla I mostramos los resultados de la MD ponderada
en ambos casos y los comparamos con otras agregaciones.
Obtuvimos un mejor resultado aprendiendo los pesos que
fijándolos al mismo valor, lo que mostró que el algoritmo de
entrenamiento funcionó bien. Funcionó de manera similar a
la media aritmética y la integral de Choquet, y mejor que la
integral de Sugeno. Creemos que esta ventaja de rendimiento
se debe a la flexibilidad que se obtiene al utilizar diferentes
funciones de agregación en ambas fases.

CAEPIA 20/21 XIX Conferencia de la Asociación Española para la Inteligencia Artificial 373
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Fig. 1. Esquema visual para el marco BCI de fusión multimodal mejorado.

TABLE I
RESULTADOS DE LA CLASIFICACIÓN BINARIA UTILIZANDO EL EMF CON

DIFERENTES CONFIGURACIONES.

Agregación Tasa de acierto

MD-Ponderada aprendida 86.97%± 3.98
MD-Ponderada fijada 85.80%± 4.08

Media Aritmética 85.80%± 4.04
Integral de Choquet 86.39%± 4.20
Integral de Sugeno 81.39%± 4.39

B. Resultados de la tarea completa

En esta sección, hemos estudiado el rendimiento del sistema
BCI EMF utilizando la MD ponderada para la tarea de
clasificación de cuatro clases. Hemos estudiado la versión
de pesos fijos de la MD, donde todos los canales son
igualmente importantes, y la versión de peso aprendido usando
la propagación hacia atrás, al igual que en la tarea de
clasificación binaria.

Hemos mostrado nuestros resultados en la Tabla II. En
esta Tabla también encontramos los resultados para la media
aritmética y las integrales de Sugeno y Choquet. Descubrimos
que la MD ponderada funciona igual o mejor que las otras
integrales. Aprender el peso del canal también nos dio un peor
resultado que fijar todos los pesos a 1, probablemente por la
falta de suficientes datos. El mejor resultado se obtuvo usando
la MD ponderado fija y la integral de Choquet, que resultaron
en una precisión de 72, 93%.

TABLE II
RESULTADOS DE LA CLASIFICACIÓN DE LAS CUATRO CLASES UTILIZANDO

EL EMF CON DIFERENTES CONFIGURACIONES.

Agregación Tasa de acierto

MD-Ponderada aprendida 65.91%± 13.15
MD-Ponderada fijada 72.93%± 2.29

Media Aritmética 72.22%± 2.31
Integral de Choquet 72.93%± 1.85
Integral de Sugeno 64.45%± 2.66

IV. CONCLUSIONES

En este trabajo hemos presentado las agregaciones
ponderadas basadas en desviaciones moderadas aplicadas a un
marco de interfaz cerebro-computadora de imágenes motoras,
el marco de fusión multimodal mejorado. Hemos mostrado
en qué parte del marco BCI se aplica y cómo se pueden
optimizar los pesos de esta función mediante la diferenciación
automática.

Hemos comparado los resultados utilizando pesos
optimizados y fijos, obteniendo mejores resultados al
aprenderlos. Asimismo, hemos comparado las agregaciones
basadas en Desviación Moderada con el promedio aritmético
y las integrales de Sugeno y Choquet, obteniendo resultados
favorables a nuestras soluciones.

Nuestra investigación futura tendrá como objetivo mejorar
el proceso de aprendizaje para requerir menos muestras
de entrenamiento y mejorar aún más la fase de salida
del clasificador explorando más funciones de desviación
moderada.
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Abstract—En este trabajo proponemos un nuevo enfoque del
algoritmo de clustering gravitacional basado en lo que Einstein
consideró su “mayor error”: la constante cosmológica. De manera
similar al algoritmo de clustering gravitacional, nuestro enfoque
está inspirado en principios y leyes del cosmos, y al igual que
ocurre con la teorı́a de la relatividad de Einstein y la teorı́a
de la gravedad de Newton, nuestro enfoque puede considerarse
una generalización del agrupamiento gravitacional, donde, el
algoritmo de clustering gravitacional se recupera como caso
lı́mite. Además, se desarrollan e implementan algunas mejoras
que tienen como objetivo optimizar la cantidad de iteraciones
finales, y de esta forma, se reduce el tiempo de ejecución tanto
para el algoritmo original como para nuestra versión.

Index Terms—cosmos, clustering, no supervisado, simulación,
fuerza gravitacional

I. INTRODUCCIÓN

LOS OPERADORES DE COMPARACIÓN han sido ob-
jeto de estudio en el ámbito del procesamiento de la

información. De hecho, la comparación (cuantitativa) de in-
formación es una de las tres operaciones más básicas sobre
datos, junto a las operaciones de igualdad y ordenación. De
manera general, la investigación se ha centrado en simular el
comportamiento humano al realizar este tipo de operaciones.

Gran parte de la literatura sobre operadores de com-
paración está dedicada a las métricas, ası́ como a clases de
operadores estrechamente relacionados (pseudométricas [1],
cuasimétricas [2], etc.). Una de las principales crı́ticas a las
métricas como operadores de comparación es el hecho de
que se imponga la desigualdad triangular [3]. Si bien la
desigualdad triangular es matemáticamente conveniente en una
amplia gama de escenarios, no está claro si los humanos
realmente se comportan de acuerdo con esta propiedad, y
se pueden encontrar muchos contraejemplos diferentes en
contextos especı́ficos [4]. Por esta razón, los investigadores
han intentado construir paradigmas de comparación que no se
basen ni se inspiren en métricas.

Dentro de la teorı́a de conjuntos difusos, la comparación
se ha abordado de diferentes maneras. Una parte importante
se ha dedicado a la idea de métricas difusas [5], [6] o
pseudométricas [7], [8], y las Funciones de Equivalencia

Restringida (REF por sus siglas en inglés), son en este ámbito
de vital relevancia. Estas fueron presentadas en [9] para la
comparación de grados de pertenencia en el intervalo [0, 1]
adaptando los axiomas originales propuestos por J. Fodor y
M. Roubens [10]. Desde su introducción, el concepto de REF
se ha adaptado a ámbitos en los que los valores a comparar
se encuentran dentro del intervalo [0, 1]. Ejemplos relevantes
son las REF intervalo-valoradas (IV-REF), diseñadas para
comparar grados de pertenencia con intervalos [11], o las REF
radiales (RREF), adaptadas para datos escalares en configura-
ciones radiales [12]. Una necesidad crı́tica en la adaptación
de las REF a escenarios distintos al original es en relación al
modelado del orden de crecimiento, que se utiliza crı́ticamente
en la definición axiomática de REF.

En este trabajo presentamos una adaptación de las REF a
datos multivaluados, que denotamos como Ln. Para lograr este
objetivo, presentamos la idea de Ln -REF, y desarrollamos
un conjunto de axiomas que estos operadores deben cumplir.
Además, introducimos métodos de construcción para Ln -REF
capaces de acomodar diferentes interpretaciones en el orde-
namiento multivaluado. Nuestras propuestas, en términos de
ordenación de datos multivaluados, se cicunscriben dentro del
la taxonomı́a de Barnett [13]. Tengase en cuenta que imponer
algún orden para los datos multivaluados es necesariamente
arbitrario y dependiente del contexto, ya que no hay un
orden natural para los datos multivaluados [13]. A modo de
ejemplo, utilizamos las Ln -REF en la comparación de colores,
ya que el color se representa de forma habitual como un
dato multivaluado (independientemente del espacio de color
especı́fico). Además sirve como ejemplo de aplicación de las
Ln -REF en visión artificial.

El resto de este trabajo está organizado de la siguiente
manera. La Sección II resume algunos conceptos de uso para
las próximas secciones. La Sección III presenta nuestra prop-
uesta, mientras que diferentes ejemplos ilustrativos presentan
una prueba de concepto de nuestros operadores en el contexto
de la comparación de colores. Finalmente, en la Sección IV se
recogen las conclusiones de nuestro trabajo y posibles lı́neas
futuras.
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II. PRELIMINARES

A. REF en L

Considérese (L,≤) donde L = [0, 1] y ≤ es el orden
natural de los números. Ahora bien, considérense en le-
tra mayúscula los elementos pertenecientes a Ln, es decir
X = (x1, . . . , xn) ∈ Ln donde n ∈ N. Existe un orden
parcial ≤P inducido por ≤ dado de la siguiente manera:
X ≤P Y iff xi ≤ yi para todo i ∈ {1, . . . , n}1.

Denótense 0 = (0, . . . , 0) ∈ Ln y 1 = (1, . . . , 1) ∈ Ln.
Una función de agregación n-aria M de elementos multivalu-
ados en Ln es una función M : Ln → L creciente para cada
una de las variables y debe satisfacer M(0) = 0, M(1) = 1
[14]–[16]. Las siguientes propiedades para las funciones de
agregación M : Ln → L son de utilidad para las siguientes
secciones:
(P1) M(x1, . . . , xn) = 0 iff x1 = . . . = xn = 0.
(P2) M(x1, . . . , xn) = 1 iff x1 = . . . = xn = 1.

Una Media Aritmética Ponderada n-aria (MAP) en L con
pesos normalizados w1, . . . , wn ∈ L y X = (x1, . . . , xn) es
una función ω : Ln → L definida como ω(X) = w1x1+ . . .+
wnxn tal que w1 + . . .+ wn = 1.

Definición II.1. Un automorfismo de L es una función con-
tinua estrictamente creciente ϕ : L → L tal que ϕ(0) = 0 y
ϕ(1) = 1. Además, la identidad en L se indica con Id.

Defı́nase una REF en L construida por automorfismos de
la siguiente manera.

Definición II.2. [9] Una función R : [0, 1]2 → [0, 1] es
llamada Función de Equivalencia Restringida si cumple:
(R1) R(x, y) = 1 iff x = y;
(R2) R(x, y) = 0 iff {x, y} = {0, 1};
(R3) R(x, y) = R(y, x) para todo x, y ∈ [0, 1];
(R4) Si x ≤ y ≤ z, entonces R(x, z) ≤ R(x, y) y R(x, z) ≤

R(y, z) para todo x, y, z ∈ [0, 1].

En [17] se introduce un método para construir REFs en
términos de automorfismos.

Proposición II.3. [17] Si ϕ1, ϕ2 son dos automorfismos de
L, entonces la funcion R : L2 → L definida como

R(x, y) = ϕ−11

(
1− |ϕ2(x)− ϕ2(y)|

)
,

es una REF.

Definición II.4. Una función f : (Ln)
m → Ln es llamada

representable si existen f1, . . . , fn : Lm → L tales que

f(X1, . . . , Xm) =(
f1(x11, . . . , xm1), . . . , fn(x1n, . . . , xmn)

)
,

(1)

para todo X1, . . . , Xm ∈ Ln with Xi = (xi1, . . . , xin) para
todo i ∈ {1, . . . ,m}.

1A lo largo de este trabajo, la definición de i será la misma para abreviar.
De lo contrario, se redefinirá explı́citamente para algunas excepciones si ası́
fuera necesario.

B. Espacios de color y operadores lineales

Como se expone en [18], para reproducir una imagen a
color, es necesario generar nuevos vectores en el espacio
espectral n a partir de los obtenidos por un sensor multi-
espectral dado, mientras que los dispositivos de salida, que
pueden caracterizarse como aditivos o sustractivos, debe poder
reproducir colores de estos vectores. Dado que el ojo humano
se puede representar como un sensor n = 3, lo más común
es usar espacios tridimensionales para guardar información de
color. Entre todos los diferentes sistemas de color posibles
para dispositivos de salida aditiva, el modelo RGB [19] es el
más extendido debido a la evolución de la codificación, que
trata las imágenes a color como tres bandas monocromáticas
independientes [20]. A pesar de que existen otros espacios de
color como CIE L∗a∗b∗ que intentan reproducir un espacio
de color uniforme basado en la percepción humana del color,
donde el significado de cada valor L∗, a∗ y b∗ es bastante
diferente. Por el contrario, el espacio RGB es un espacio
simple en forma de cubo y el significado de cada valor que
compone un triplete es siempre el mismo, siendo la cantidad
de rojo, verde o azul que compone un color respectivamente.
Por simplicidad e idoneidad, tomaremos el modelo RGB como
espacio de color en el que trabajar. Incluso si se puede
elegir cualquier otro espacio de color, los resultados y las
interpretaciones podrı́an ser bastante diferentes.

En RGB es habitual representar los tres componentes de un
color en una escala de 0 a 255 y sólo se corresponde un único
color para cada triplete en el espacio [0, 255]3. Consideremos
ahora el espacio RGB, pero refactorizado al espacio [0, 1]3,
es decir, L3. Entonces, los colores que corresponden a las
esquinas del cubo RGB son:

� Rojo: CR
(1, 0, 0)

� Cian: CC
(0, 1, 1)

� Verde: CG
(0, 1, 0)

� Magenta:CM
(1, 0, 1)

� Azul: CB
(0, 0, 1)

� Amarillo: CY
(1, 1, 0)

� Negro: CK
(0, 0, 0) o 0

� Blanco: CW
(1, 1, 1) o 1

Estos son los únicos colores compuestos usando solo 0s y 1s
y por esta razón los llamamos tripletes crisp o colores crisp.

Todos los colores posibles en el espacio RGB se pueden
describir, de acuerdo con la terminologı́a común, en los sigu-
ientes términos de apariencia de color [21]: brillo, tonalidad
o matiz y saturación. Un color pierde brillo si disminuye el
promedio de los valores del triplete que describe su posición
en el espacio RGB. Entonces, todos los colores dentro de un
plano perpendicular a la diagonal entre 0 y 1 tienen brillo
idéntico. El tono del color es otra propiedad principal y está
relacionada con la longitud de onda dominante percibida; en
otras palabras, si un color es rojo, azul, amarillo, naranja... Los
colores dentro de la diagonal entre 0 y 1 son los únicos colores
sin matiz, y además, en esta diagonal se encuentran todos los
colores grises posibles; por eso dicha recta se llama diagonal
de grises. Finalmente, la saturación describe cuán cerca está
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un triplete de la diagonal de grises; cuanto más cerca(lejos)
de la diagonal de grises, menor(mayor) saturación. A mayor
saturación, más fácil es percibir el tono de un color dado.

Denotamos colores complementarios a los pares de colores
que, cuando se combinan, producen un determinado color en
escala de grises [22]. Estos pares de colores se consideran
complementarios dependiendo de la teorı́a de color que se
utilice: la teorı́a de color moderna utiliza el modelo de color
aditivo RGB o el modelo CMY para los sustractivos. Es por
ello que en este trabajo consideramos colores complementarios
crisp los pares CR − CC , CG − CM , y CB − CY . El par de
colores CK − CW es común a todas las teorı́as del color.

A lo largo de todo este trabajo, se pueden aplicar diferentes
f : (Ln)

m → Ln (como se presenta en Def. II.4) a un punto
X = (x1, . . . , xn) ∈ Ln, es decir, f(X×m). Además, algunas
funciones f se construyen con m = n MAPs. En estos casos,
la función f toma la forma

f(X × n) =
(
ω1(X), . . . , ωn(X)

)
,

que se puede reescribir como una transformación lineal de
un punto X ∈ Ln a otro punto X ′ ∈ Ln mediante una
multiplicación matricial;
(
f(X × n)

)T
=


ω1(X)

...
ωn(X)


 =



w11x1 + · · ·+ w1nxn

...
...

...
wn1x1 + · · ·+ wnnxn


 =




w11 · · · w1n

...
...

wn1 · · · wnn







x1
...
xn


 = WXT = X ′T ,

(2)

donde la fila i-ésima de la matriz W se compone de los pesos
de la i-ésima MAP, ωi.

Esta forma de representación nos permite tratar muchas
de las futuras operaciones en este trabajo como operaciones
lineales algebraicas en el espacio RGB y se utilizarán para:

1) Visualizar de una manera sencilla lo que sucede con el
espacio de color, mientras,

2) La notación algebraica reduce la complejidad de las
expresiones obtenidas, y además,

3) Simplifica la implementación del algoritmo presentado.
Nótese que para cualquier n el cubo Ln se transforma en un

n-hiperparalelepı́pedo más pequeño dentro del cubo original
Ln con dos de sus vértices opuestos en 0 y 1 debido a
las propiedades (P1) y (P2). Además, sea Xd = (x, . . . , x)
cualquier punto en la diagonal de Ln, i.e., Xd está en la lı́nea
entre 0 y 1. Es fácil ver que Xd permanecerá inmutable bajo
la transformación W presentada en la Eq. 2 debido a que cada
una de las filas de W suma 1, entonces,

X
′T
d = WXT

d = XT
d . (3)

En términos de color, la Eq. 3 implica que cualquier color
gris es inmutable bajo cualquier W . Con respecto a los colores
de fuera de la diagonal de grises, estos serán diferentes bajo
una transformación W . De hecho, los colores que no son grises

Fig. 1: Transformación del cubo L3 para los valores del
Ejemplo II.5. Es evidente que las propiedades del espacio
resultante se pueden deducir de las propiedades de la matriz
W como, por ejemplo, sus simetrı́as, el determinante, etc.

se aproximarán a la diagonal de la escala de grises cuando
det(W ) < 1, por lo que los colores perderán saturación. En
muchas otras transformaciones, estos colores también pueden
cambiar su tono y brillo.

Ejemplo II.5. Tomemos la siguiente matriz W para un
ejemplo en L3,

W =




1
3

1
3

1
3

1
2

1
4

1
4

1
4

1
2

1
4


 .

Teniendo en cuenta las columnas de W , es fácil ver que los
tripletes CR, CG y CB , que son la base de nuestro espacio
RGB, se transforman en � =

(
1
3 ,

1
2 ,

1
4

)
, � =

(
1
3 ,

1
4 ,

1
2

)
y

� =
(
1
3 ,

1
4 ,

1
4

)
respectivamente. La representación visual de

la transformación del espacio RGB se muestra en la Figura 1.
Como se deduce de la Eq. 3, cualquier color de la escala de
grises permanecerá invariante bajo transformación. También
se puede apreciar cómo los colores de las esquinas CR, CG y
CB han perdido saturación, y además, han cambiado de tono
debido a la rotación inducida por W . Los colores CR y CG
han ganado brillo, mientras CB lo ha perdido.

Como resumen, si aplicamos esta W a los colores que for-
man la base del espacio RGB, CR, CG y CB , se transformarán
en

���→ ���.
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III. Ln -REF: NUEVO OPERADOR PARA COMPARAR DOS
COLORES OBTENIENDO UN TERCERO COMO RESULTADO

El objetivo de esta sección es construir un operador que
sea capaz de devolver una medida de equivalencia en Ln

como resultado de comparar dos elementos multivaluados
pertenecientes a dicho espacio. Para ello, mientras la teorı́a
es desarrollada para cualquier n, los ejemplos ilustrativos se
darán para n = 3, y en concreto, se presentará un algoritmo
de comparación de imágenes. Este, dadas dos imágenes, debe
devolver una imagen de salida donde sus pixeles pueden ser
interpretados como un mapa, donde sea posible interpretar
las regiones donde las imágenes de entrada son similares en
color o, en su defecto, diferentes. Para lograr este objetivo,
introducimos un algoritmo para comparar pixel a pixel todos
los pixeles de una imagen con los pixeles correspondientes en
una segunda imagen de entrada, siendo necesario que, ambas
tengan las mismas dimensiones.

Definamos el pixel ij-ésimo de una imagen A como PAij
.

En el Algoritmo 1 presentamos la estructura computacional de
nuestra propuesta.

Algoritmo 1: Comparación pixel a pixel
Entrada: Dos imagenes A y B del mismo tamaño.
Resultado: Una imagen a color de tamaño idéntico.
Escoger un método de comparación de pixeles ;
para cada posición ij hacer

Comparar los pixeles PAij y PBij ;
Asignar al ij-ésimo pixel de la imagen resultado el

valor de la comparación entre pixeles anterior;
fin

Por lo tanto, para la acción de compararación del Alg. 1
es necesario construir un método para comparar pixeles, es
decir, encontrar un operador que dados dos tripletes de entrada
su salida sea otro triplete que guarde la información de la
comparación.

Llegados a este punto, podemos considerar dos filosofı́as
diferentes teniendo en cuenta cuáles de los tripletes crisp
complementarios son antagonistas para el caso del color. Es
posible construir dos métodos diferentes, uno para cada una
de las siguientes filosofı́as:

1) Un método que trata el par de colores complementarios
CK − CW de manera diferente a los otros pares crisp
complementarios al compararlos, siendo CK − CW el
único par que presenta el mayor antagonismo.

2) Un método que trata todos los pares crisp complemen-
tarios por igual al compararlos.

Para comparar dos pixeles de color, debemos definir la
noción de REF sobre L3 (en general sobre Ln), de tal forma
que el valor que obtengamos sea nuevamente un elemento de
L3 (Ln). En las siguiente subsección definimos y presentamos
una versión de REF en Ln con este propósito. De las dos
filosofı́as posibles, en este trabajo solamente se ha desarrollado
la primera planteada donde el par CK − CW se trata de
diferente manera que los restantes.

A. Ln -REF basadas en la filosofı́a donde el par 0 − 1 es
tratado de diferente manera

Esta versión de REF trata el par CK − CW como el único
que representa la menor eequivalencia posible.

Definición III.1. Sea n un número entero positivo. Una
función RLn : Ln × Ln → Ln se llama función de equiv-
alencia restringida en Ln (RLn ), si satisface:

(RL1) RLn(X,Y ) = 1 iff X = Y ;
(RL2) RLn(X,Y ) = 0 iff {X,Y } = {0,1};
(RL3) RLn(X,Y ) = RLn(Y,X) para todo X,Y ∈ Ln;
(RL4) Si X ≤P Y ≤P Z, entonces RLn(X,Z) ≤P

RLn(X,Y ) y RLn(X,Z) ≤P RLn(Y, Z) para todo
X,Y, Z ∈ Ln.

Teniendo en cuenta Def. II.2, la justificación del axioma
(RL1) es natural; comparar tripletes equivalentes debe de-
volver el valor más alto en Ln, i.e., 1, como medida de
equivalencia dado que estos son equivalentes. En cuanto al
axioma (RL2), se trata de comparar los tripletes 0 y 1. En
este caso, estamos teniendo en cuenta que los tripletes CK
y CW son los tripletes menos equivalentes entre todos los
pares de colores posibles según la filosofı́a escogida, entonces,
siendo este nuestro punto de partida, se justifica que son los
tripletes únicos que al compararse, deben devolver 0, es decir,
el valor más bajo posible de todo Ln. La justificación del
axioma (RL3) es que se exige a la REF que la comparación
entre dos pixeles debe cumplir con la simetrı́a. Esta propiedad
puede no ser necesaria en otras aplicaciones donde existe una
dependencia entre imágenes comparadas (como imágenes de
vı́deo donde existe una relación temporal entre fotogramas), en
nuestro caso, no se considera dependencia del tiempo, por lo
que (RL3) está justificado. Finalmente, la justificación del ax-
ioma (RL4 1) es que la equivalencia resultante entre comparar
dos tripletes similares debe ser mayor que la equivalencia de
comparar dos tripletes que son, al menos, más diferentes que
los anteriores.

Ahora damos un método de construcción para RLn en Ln

de acuerdo con Def. III.1.

Teorema III.2. Sea ωi : Ln → L una MAP n-aria como vec-
tor de pesos normalizados (wi1, . . . , win) tal que los vectores
son linealmente independientes y existe k ∈ {1, . . . , n} con
wkj 6= 0 para todo j ∈ {1, . . . , n}. Sea R = (R1, . . . , Rn)
una secuencia de REFs en L. Entonces la función RLn :
Ln × Ln → Ln dada por,

RLn(X,Y ) =(
R1

(
ω1(X), ω1(Y )

)
, . . . , Rn

(
ωn(X), ωn(Y )

))
,

(4)

para todo X,Y ∈ Ln, es una RLn en Ln.

Proof. (RL1) La suficiencia se deriva de Eq. (4). Con re-
specto a la necesidad, sea RLn(X,Y ) = 1, entonces,
Ri

(
ωi(X), ωi(Y )

)
= 1, por lo tanto ωi(X) = ωi(Y ) y

finalmente X = Y .
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(a) Img. A (b) Img. B

Fig. 2: Las imágenes sintéticas A (Fig. 2a) y B (Fig. 2b) son
el input para el Algoritmo 1 en el Ejemplo III.4.

(RL2) Sea RLn(X,Y ) = 0. Por lo tanto para todo i, se tiene
que Ri

(
ωi(X), ωi(Y )

)
= 0, de modo que {ωi(X), ωi(Y )} =

{0, 1}. Ya que existe k tal que ωk satisface (P1) y (P2), se
sigue que {X,Y } = {0,1}.

(RL3) La prueba es directa teniendo en cuenta (R3).
(RL4) De xi ≤ yi ≤ zi se obtiene ωj(X) ≤ ωj(Y ) ≤

ωj(Z) para todo j y consecuentemente Rj (ωj(X), ωj(Z)) ≤
Rj (ωj(X), ωj(Y )), de donde se sigue que RLn(X,Z) ≤P
RLn(X,Y ). La prueba para RLn(X,Z) ≤P RLn(Y, Z) es
similar.

Si aplicamos el método de construcción de las REFs
R1, . . . , Rn en el Teorema. III.2 en términos de automorfismos
se obtiene que al seguir la construcción de RLn .

Corolario III.3. Si se asume el Teorema III.2, sea ϕij para
j = 1, 2, un automorfismo de L. Luego la función RLn :
Ln × Ln → Ln dada por,

RLn(X,Y ) =

(
ϕ−111

(
1−

∣∣ϕ12

(
ω1(X)

)
− ϕ12

(
ω1(Y )

)∣∣
)
,

. . . , ϕ−1n1

(
1−

∣∣ϕn2
(
ωn(X)

)
− ϕn2

(
ωn(Y )

)∣∣
))

,

(5)

para todo X,Y ∈ Ln, es una RLn en Ln.

Nótese que es posible reescribir la anterior expresión en
términos de Eq. 2 dado el caso en el que ωi son MAPs,

RLn(X,Y ) = R
(
(WXT )T , (WY T )T

)
, (6)

donde W es la matriz construida con los pesos de las MAP y
R es una secuencia de REFs en L.

Tomemos los colores crisp presentados en la Sub-
sección II-B y compongamos las imágenes sintéticas A y
B (Figuras 2a y 2b respectivamente). Ambas son la misma
imagen pero una rotada con respecto a la otra, y además, la
segunda contiene tres caracteres adicionales: el caracter blanco
“L” a la izquierda, el caracter cian “R” a la derecha y un tercer
carácter negro “C” en el centro.

Ejemplo III.4. Las imágenes sintéticas Fig. 2a y Fig. 2b nos
permiten comparar muchos de los colores crisp entre sı́ al

(a) Alg1(A,B)W=I
RL2

(b) Alg1(A,B)W=Γ
RL2

Fig. 3: Mapas resultantes para W = I (Fig. 3a), y para W = Γ
(Fig. 3b).

usar el Alg. 1. En este ejemplo, el resultado se calcula dos
veces; uno para W = I y otro para W = Γ, siendo

Γ =




0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6


 ,

donde, en ambos casos la secuencia de REFs elegida es R =
(1− |x− y|, 1− |x− y|, 1− |x− y|).

Los mapas de caracterı́sticas resultantes se muestran en la
Fig. 3. Se observa cómo al comparar CR y CB devuelve el
mismo tono verde que al comparar CC y CY para diferentes
valores de W sin rotación. Esta simetrı́a se debe a que el
canal que permanece inalterado es el segundo. Véase como,
tomando CC = (0, 1, 1) y CY = (1, 1, 0) el canal con
valor equivalente sigue siendo el segundo. Entonces, esto
se puede interpretar como; los tonos de color del mapa
resultante identifican los canales que son más equivalentes
entre los pixeles comparados, haciendo coincidir el tono del
pixel resultante con sus canales correspondientes cuando no
hay rotación inducida por W .

Ejemplo de (RL1) es que el fondo de ambos mapas es CW
porque se compara el mismo color; en ambos casos, el color
CK está como fondo. Además, el área circundante del carácter
“C” en los mapas es CW porque en ambas imágenes de
entrada se compara el color CW . Por el contrario, teniendo
en cuenta (RL2) CK se obtiene en el mapa resultante para el
carácter “C” y la parte superior del carácter “L” al comparar
0 con 1.

El color en la parte izquierda de “R” es el resultado
de comparar dos pares de colores crisp complementarios
(CR −CC) y depende de W . Para W = I (en la Fig. 3a), se
obtiene CK y lo mismo sucede si se comparan cualquiera de
los colores crisp complementarios en el cubo RGB; CK−CW ,
CR −CC , CG −CM o CB −CY . Esto implica que todos los
pares crisp complementarios tienen el mismo comportamiento
con respecto a la REF que va en contra de la filosofı́a
establecida. Entonces, debido a esta razón, W no puede
ser la matriz de identidad para RLn . En otras palabras,
esto significa que CK se puede obtener en más casos que
comparando exclusivamente CK con CW , entonces, el axioma
RL2 no se cumple para W = I (o, en cualquier caso, cuando
det(W ) = 1).
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(a) (b) (c)

Fig. 4: La imagen 3063 original (Fig. 4a) y su versión
modificada (Fig. 4b) para usar como input del Alg. 1 en el
Ejemplo III.5. El mapa resultante se muestra en la Fig. 4c.

Para concluir este trabajo, mostramos un ejemplo donde
aplicamos el Alg. 1 usando RLn . Este Ejemplo III.5 es
una posible aplicación del Algoritmo 1 donde se detecta un
objeto en función de la diferencia de color entre las imágenes
de entrada. Con este propósito, hemos tomado del Berkeley
Segmentation Dataset [23] la imagen indexada como 3063
(Fig. 4a) y la hemos modificado para agregar un segundo avión
en la esquina superior derecha como se muestra en la Fig. 4b.

Ejemplo III.5. La RLn tal y como aparece en la Eq. 6 es
usada para comparar mediante el Alg. 1 las imágenes de la
Fig. 4 tomando como secuencia de REFs R = (1−|x−y|, 1−
|x− y|, 1− |x− y|). Por simplicidad W es la misma que en
el Ejemplo II.5. El mapa resultante se muestra en la Fig. 4c.

IV. L ÍNEAS FUTURAS

Una evidente lı́nea futura es generar una nueva clase de
operadores Ln -REF que se basen en la filosofı́a en la cual
todos los posibles complementarios crisp sean tratados de la
misma manera, por ejemplo, deberán tomar como igualmente
antagónicos todos los elementos multivaluados que sean com-
plementarios crisp y no acentuar la diferencia para el único
par 0− 1.

En concreto, la creación de este tipo de operador nos llevarı́a
a tener que analizar qué diferencias se podrı́an apreciar entre
la aplicación de los operadores construidos en base a las
diferentes filosofı́as en el procesamiento de imagen a color.

Otra posible lı́nea futura es extender las aplicaciones a otro
tipo de formato de información como pueden ser las imágenes
multi e hiperespectrales.
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Abstract—This is a summary of our article published in
IEEE Transaction on Fuzzy Systems [1]. This article introduces
a new fuzzy linguistic representation model for comparative
linguistic expressions that takes advantage of the goodness of
the 2-tuple linguistic representation model and improves the
readability and accuracy of the results in computing with words
processes, resulting the so-called extended comparative linguistic
expressions with symbolic translation.

Index Terms—Decision making, computing with words, sym-
bolic translation, comparative linguistic expressions

I. INTRODUCTION

Nowadays, Decision Making (DM) problems are defined
in changing contexts in which uncertainty and vagueness are
quite common. The fuzzy linguistic approach [2] has been used
successfully to model such uncertainty by means of linguistic
information, giving rise to the so-called Linguistic Decision
Making. Consequently, the use of linguistic information im-
plies to perform computations with it in order to solve decision
problems under uncertainty. Computing with Words (CW) [3]
methodology carries out processes “where words and not
numbers are used for computing” and mimics the human
beings’ reasoning process in which, from linguistic premises,
provides linguistic results. In this way, CW methodology
guarantees interpretable results.

There are several proposal that try to follow a CW ap-
proach. One of the most widely used in DM is the 2-tuple
linguistic model [4] which presents interpretable and precise
linguistic results, the latter thanks to use of the symbolic
translation concept. However, such results are represented by
single linguistic terms that are inadequate to represent experts’
hesitancy. To overcome the latter limitation, Rodrı́guez et
al. [5] introduced the Hesitant Fuzzy Linguistic Term Set
(HFLTS) that, together with the use of context-free grammars,
allow to generate Comparative Linguistic Expressions (CLEs)
close to the natural language used by human beings. However,
the existing computational model that makes use of CLEs does
not provide interpretable results.

Therefore, in order to overcome previous drawbacks, we
propose a new fuzzy linguistic representation model that

extends the CLEs by using the concept of symbolic trans-
lation introduced by the 2-tuple linguistic model resulting
the so-called Extended Comparative LInguistiC Expressions
with SymbolIc Translation (ELICIT) information. These ex-
pressions extend the representation of CLEs generated by a
context-free grammar into a continuous domain to perform
CW processes without any kind of approximation. The pro-
posed context-free grammar to generate ELICIT information
is described below:

Definition 1: [1] Let GH be a context-free grammar and
S = {s0, . . . , sg} a linguistic term set. The elements of GH =
(VN , VT , I, P ) are defined as follows.

VN = {(continuous primary term), (composite term),

(unary relation), (binary relation), (conjunction)}
VT = {at least, at most, between, and, (s0, α)

γ ,

(s1, α)
γ , . . . , (sg, α)

γ}
I ∈ VN
P = {I ::= (continuous primary term)|
(composite term)

(composite term) ::= (unary relation)

(continuous primary term)|
(binary relation)(continuous primary term)

(conjunction)(continuous primary term)

(continuous primary term) ::= (s0, α)
γ |

(s1, α)
γ | . . . |(sg, α)γ

(unary relation) ::= at least|at most
(binary relation) ::= between

(conjunction) ::= and}

Thus, the possible ELICIT expressions generated according
to the new definition of the context-free grammar are: “at
least (si, α)γ”, “at most (si, α)γ” and “between (si, α1)

γ1 and
(sj , α2)

γ2”
A CW approach for ELICIT information has been also

proposed in [1]. Such a CW approach obtains linguistic results
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modeled by ELICIT information from linguistic inputs repre-
sented by CLEs and ELICIT information. To carry out CW
processes, linguistic inputs are transformed into trapezoidal
fuzzy numbers (TrFNs), which are manipulated by means of
fuzzy parametric operations. Whereas CLEs are transformed
into TrFNs by means of the fuzzy envelope, such a transfor-
mation for ELICIT information is carried out by means of the
function ζ−1.

Definition 2: [1] Let xel be an ELICIT expression and
T (a, b, c, d) a trapezoidal fuzzy number. The function ζ−1 is
defined as:

ζ−1 : xel → T (a, b, c, d) (1)

The manipulation of the fuzzy envelopes through fuzzy
parametric operations provides new fuzzy numbers noted as β.
Now, it is necessary a retranslation process to obtain ELICIT
information from TrFNs. This process consists of different
steps:

1) Identify the relation: the relation is determined by the
fuzzy number β̃ and the ζ function, defined as follows:
Definition 3: Let S = {s0, . . . , sg} be a set of linguistic
terms and β̃ a fuzzy number. The function ζ is given by

ζ(β̃) = xel, where





xel = at least (si, α)
γ if β̃ = T (a, b, 1, 1)

xel = at most (si, α)
γ if β̃ = T (0, 0, c, d)

xel = between (si, α1)
γ1and (sj , α2)

γ2

if β̃ = T (a, b, c, d)

Henceforth, for sake of space, it is
assumed that the ELICIT expression is
“between (si, α1)

γ1 and (sj, α2)
γ2”.

2) 2-tuple linguistic terms computation: the process of
obtaining the two continuous primary terms (si, α1)

γ1

and (sj , α2)
γ2 is divided into different steps:

a) Compute linguistic terms: select the linguistic
terms si and sj ∈ S, i, j ∈ {0, . . . g}, whose
distance between the coordinates x of their respec-
tive centroids, xi and xj , and the points b and c
belonging to β̃ is minimal.

i = argmin
h

|b− xh|, h ∈ {0, . . . , g}

j = argmin
h

|c− xh|, h ∈ {0, . . . , g}
(2)

When this step finishes, the ELICIT expression so
far is “between (si, ?)

? and (sj, ?)
?”.

b) Compute symbolic translations: according to [4],
1/2g represents the distance equivalent to a sym-
bolic translation equal to 0.5 in S, where g + 1 is
the cardinality of S:

α1 = g · (b− xi) α1 ∈ [−0.5, 0.5)
α2 = g · (c− xj) α2 ∈ [−0.5, 0.5) (3)

When this step finishes, the ELICIT expression so
far is “between (si, α1)

? and (sj, α2)
?”.

3) Compute adjustments: the adjustment is an additional
parameter included in the ELICIT expression, which
allows to keep information related to the fuzzy number

β̃. This parameter will be used to obtain the fuzzy num-
ber β̃ from an ELICIT expression by using its inverse
function, ζ−1. The steps to compute the adjustments for
the ELICIT expression are:

a) Compute HFLTS: the HFLTS of an ELICIT expres-
sion whose relation is between would be composed
by:

EELICIT (between (si, α) and (sj , α)) = {sk |
(si, α) and (sj , α), si < sk < sj where sk ∈ S}

b) Compute fuzzy envelope: the fuzzy envelope,
TELICIT = T (a′, b′, c′, d′), of the former HFLTS
is computed.

c) Compute adjustments γ1 and γ2: the adjustments
γ1 and γ2 are determined by the subtraction be-
tween the points a and d of β̃ = T (a, b, c, d) and
the points a′ and d′ of T (a′, b′, c′, d′), so that:

γ1 = a− a′ γ1 ∈ [−1, 1]
γ2 = d− d′ γ2 ∈ [−1, 1] (4)

When this step finishes, the ELICIT expression is com-
pleted “between (si, α1)

γ1 and (sj, α2)
γ2”.

II. CONCLUSIONS

The need of a new fuzzy linguistic representation model
that overcomes the existing limitations in previous linguistic
models either from the point of view of interpretability or/and
accuracy has resulted in the ELICIT representation model and
its CW approach. This new linguistic model makes use of the
ELICIT information, CLEs extended to a continuous domain
by means of the symbolic translation concept. In this way, it
is possible to carry out CW processes with high accuracy and
interpretability.

As future works, we will study the definition of new
aggregation operators for ELICIT information. Another aim is
to apply this new type of information to consensus reaching
processes.
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Abstract—In this work we will present some results about
the aggregation of fuzzy (quasi-)metrics that appear in [9].
Concretely, we provide a characterization of functions that merge
a collection of fuzzy (quasi-)metrics into a single one in terms of
∗-triangular triplets, isotonicity and ∗-supmultiplicativity, where
∗ is a t-norm. We also show that, in contrast to the crisp case,
this characterization does not depend on the symmetry of the
fuzzy quasi-metrics. We also stress that these results are not
only interesting from the aggregation theory viewpoint but also
because they allow to generate examples of fuzzy (quasi-)metric
spaces that are not easy to obtain. Moreover, from our results we
can infer others about the aggregation of fuzzy preorders and
indistinguishability operators.

I. I NTRODUCTION

The problem of aggregating several structures of the same
type into a single one has received a lot of attention in the last
years. In this way, we can find results about the aggregation
of: metrics [1]; quasi-metrics [7]; norms [4]; asymmetric
norms [5]; fuzzy binary relations [11], [2]; indistinguishability
operators [6]; etc. In the following, we will present some
results about the aggregation of an important fuzzy structure:
the fuzzy quasi-metrics. This concept has its origins in the
probabilistic metric spaces introduced by Menger [8] in 1942
who gave a probabilistic interpretation of the concept of
distances and proposed to associate a distribution function with
a pair of elements, instead of associating a number.

In some sense, fuzzy binary relations can be considered
as a particular class of fuzzy (quasi-)metrics. We recall its
definition as well as one of its most important classes.

Definition 1 ([10]). A fuzzy binary relationon a nonempty
setX is a mapE : X × X → [0, 1].
If a fuzzy binary relationE on X satisfies for allx, y, z ∈ X :

• E(x, x) = 1 (reflexivity)
• E(x, y) = E(y, x) (symmetry)
• E(x, y) ∗ E(y, z) ≤ E(x, z) (∗-transitivity)

where ∗ is a triangular norm, then it is called an∗-
indistinguishability operator.

In the literature we can find several papers [2], [3], [6],
[11] studying functions which preserve∗-transitivity of fuzzy
binary relations in the following two, a priori, different senses:

Definition 2 (cf. [6], [11]). Let I be a set of indices andF :
[0, 1]I → [0, 1] be a function. We say that:

• F preserves∗-transitivity of fuzzy binary relations on
products if whenever{(Xi, Ei) : i ∈ I} is a family
of nonempty setsXi endowed with∗-transitive fuzzy
binary relations Ei for all i ∈ I, then F ◦ Ẽ is
an ∗-transitive fuzzy binary relation on

∏
i∈I Xi where

Ẽ : (
∏

i∈I Xi)
2 → [0, 1]I is given by

Ẽ(a, b)i = Ei(ai, bi) for all i ∈ I.

• F preserves∗-transitivity of fuzzy binary relations on sets
if whenever{Ei : i ∈ I} is a family of∗-transitive fuzzy
binary relationsEi on a fixed nonempty setX for all
i ∈ I, thenF ◦ E is an ∗-transitive fuzzy binary relation
on X whereE : X2 → [0, 1]I is given by

E(a, b)i = Ei(a, b) for all i ∈ I.

For studying functions which aggregate fuzzy quasi-metrics
it is important to take into account the characterization of
those functions which preserve∗- transitivity of fuzzy binary
relations, since fuzzy (quasi-)metrics satisfy a propertynear to
∗-transitivity. Surprisingly, we can prove that there is no dif-
ference between those functions which preserve∗-transitivity
of fuzzy binary relations on products and those which preserve
∗-transitivity of fuzzy binary relations on sets.

Definition 3. Let ∗ be a t-norm andI be a set of indices.
A triplet (a, b, c) ∈ ([0, 1]I)3 is said to beasymmetric∗-
triangularif ai ∗ bi ≤ ci for all i ∈ I.

Definition 4. Let ∗ be a t-norm andI be a set of indices. A
functionF : [0, 1]I → [0, 1] preserves asymmetric∗-triangular
triplets if (F (a), F (b), F (c)) is an asymmetric∗-triangular
triplet whenever(a, b, c) so is, wherea, b, c ∈ [0, 1]I .

Proposition 5 ([9]). Let F : [0, 1]I → [0, 1] be a function and
∗ be a t-norm. The following statements are equivalent:
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1) F preserves∗-transitivity of fuzzy binary relations on
products;

2) F preserves∗-transitivity of fuzzy binary relations on
sets;

3) F preserves asymmetric∗-triangular triplets.

II. A GGREGATION OF FUZZY QUASI-METRICS

Definition 6. A fuzzy quasi-metric(in the sense of Kramosil
and Michalek) on a nonempty setX is a pair (M, ∗) such
that ∗ is a t-norm andM is a fuzzy set inX × X × [0, +∞)
such that for everyx, y, z ∈ X and t, s > 0 it verifies:

• M(x, y, 0) = 0;
• M(x, y, t) = M(y, x, t) = 1 for all t > 0 if and only if

x = y;
• M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s);
• M(x, y, ·) : [0, ∞) → [0, 1] is left-continuous.

If a fuzzy quasi-metric(M, ∗) also satisfies

• M(x, y, t) = M(y, x, t)

for all x, y ∈ X and all t ≥ 0 then (M, ∗) is said to be a
fuzzy metric onX .
A fuzzy (quasi-)metricspace is a triple(X, M, ∗) such that
X is a nonempty set and(M, ∗) is a fuzzy (quasi-)metric on
X.

Definition 7. A functionF : [0, 1]I → [0, 1] is said to be:

• a fuzzy (quasi-)metric aggregation function on products
if whenever∗ is a t-norm and{(Xi, Mi, ∗) : i ∈ I}
is a family of fuzzy (quasi-)metric spaces then(F ◦
M̃ , ∗) is a fuzzy (quasi-)metric on

∏
i∈I Xi whereM̃ :

(
∏

i∈I Xi)
2 × [0, +∞) → [0, 1]I is given by

(M̃ (x, y, t))i = Mi(xi, yi, t)

for everyx, y ∈ ∏
i∈I Xi and t ≥ 0.

If F only satisfies the above condition for a fixed t-norm∗
then it is said to be an∗-fuzzy (quasi-)metric aggregation
function on products.

• a fuzzy (quasi-)metric aggregation function on setsif
whenever∗ is a t-norm and{(Mi, ∗) : i ∈ I} is
a family of fuzzy (quasi-)metrics on the same setX
then (F ◦ M , ∗) is a fuzzy (quasi-)metric onX where
M : X2 × [0, +∞) → [0, 1]I is given by

(M (x, y, t))i = Mi(x, y, t)

for everyx, y ∈ X and t ≥ 0.
If F only satisfies the above condition for a fixed t-norm∗
then it is said to be an∗-fuzzy (quasi-)metric aggregation
function on sets.

The next result characterizes those functions which merge
an arbitrary family of fuzzy quasi-metrics into a single one.
Surprisingly, these functions are exactly those which merge a
family of fuzzy metrics into a fuzzy metric, which is not true
in the crisp case [7].

Definition 8 (cf. [11]). A functionF : [0, 1]I → [0, 1] is said
to be∗-supmultiplicativefor a t-norm∗ if for all x, y ∈ [0, 1]I

then
F (x) ∗ F (y) ≤ F (x ∗I y)

wherex ∗I y ∈ [0, 1]I is given by(x ∗I y)i = xi ∗ yi for all
i ∈ I.

Theorem 9 ([9]). Let F : [0, 1]I → [0, 1] be a function and∗
be a t-norm. The following statements are equivalent:

1) F is a (∗-)fuzzy quasi-metric aggregation function on
products;

2) F is a (∗-)fuzzy metric aggregation function on products;
3) F is isotone, (∗-)supmultiplicative, left-continuous,

F (0) = 0 and F−1(1) = 1;
4) F (0) = 0, F is left-continuous,F−1(1) = 1 and F

preserves asymmetric (∗-)triangular triplets.

Theorem 10 ([9]). Let F : [0, 1]I → [0, 1] be a function and
∗ be a t-norm. The following statements are equivalent:

1) F is a (∗-)fuzzy quasi-metric aggregation function on
sets;

2) F is a (∗-)fuzzy metric aggregation function on sets;
3) F is isotone, (∗-)supmultiplicative, left-continuous,

F (0) = 0 and if {xn : n ∈ N} ⊆ F−1(1) there exists
i ∈ I such that(xn)i = 1 for all n ∈ N;

4) F (0) = 0, F (1) = 1, F is left-continuous,F preserves
asymmetric (∗-)triangular triplets and if {xn : n ∈
N} ⊆ F−1(1) there existsi ∈ I such that(xn)i = 1 for
all n ∈ N.

More results about this topic can be consulted in [9].
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388 XIX Conferencia de la Asociación Española para la Inteligencia Artificial CAEPIA 20/21



A graded notion of quasi-intents
Manuel Ojeda-Hernndez

Dept. Applied Mathematics
University of Mlaga

Mlaga, Spain
manuojeda@uma.es

Inma P. Cabrera
Dept. Applied Mathematics

University of Mlaga
Mlaga, Spain

ipcabrera@uma.es

Pablo Cordero
Dept. Applied Mathematics

University of Mlaga
Mlaga, Spain

pcordero@uma.es

Abstract—The notion of quasi-closed element is extended to
fuzzy posets in two stages: First, in the crisp style, in which
each element in a given universe either is quasi-closed or it is
not. Second, in the graded style by defining a degree to which
an element is quasi-closed. We discuss the different possible
definitions and compare them with each other. Finally, we show
that the most general one has good properties that can be used
when we have a complete fuzzy lattice as a frame.

Index Terms—Quasi-closed element, fuzzy poset, closure oper-
ator.

I. INTRODUCTION

In this work, the research in [1] is revisited. The goal is to
discuss which is the appropriate generalization of the notion
of quasi-closedness when working on fuzzy posets. In the
classical case, this notion is key to knowledge representation
ensuring non-redundancy. However, obtaining an adequate
generalization for fuzzy environments that guarantees similar
properties, remains an open problem.

A wide variety of generalizations to the fuzzy framework of
the notion of implication (and logics for reasoning about them)
can be found in the literature, see for example [2]. In [3], the
authors include a general framework for these generalizations.
All the results on pseudo-closed elements for the fuzzy case
have been obtained by using a recursive definition of pseudo-
closedness. In the classical case, there exists an equivalent
definition based on the notion of quasi-closed element. In
this paper, we aim to generalize such notion to the fuzzy
framework, which, in the short term, may provide with an
alternative definition of pseudo-closed element, as a starting
point for a new approach in the study of bases in a fuzzy
environment.

As stated in [4], “clearly, in the graded setting, the topics
related to non-redundancy and minimality of bases are con-
siderably more involved than in the classic setting and further
investigation focused on theory, algorithms, and experiments
is needed”.

II. PRELIMINARIES

Throughout this paper, let L = (L,∧,∨,⊗,→, 0, 1) be a
complete residuated lattice. A non-empty set A with a binary
L-relation ρ on A, is said to be a fuzzy poset if ρ is a fuzzy
order, i.e. if ρ is reflexive, antisymmetric and transitive.

The notions of lower (resp. upper) bound and infimum (resp.
supremum) used in this work are the ones presented in [5].

Theorem 1: Let A = (A, ρ) be a fuzzy poset and X ∈ LA.
An element a ∈ A is supremum (resp. infimum) of X if and
only if

ρ(a, x) = Xρ(x) (resp. ρ(x, a) = Xρ(x)).

It is not difficult to see that, if a supremum (resp. infimum)
of X exists, it is unique. We will denote it by

⊔
X (resp.d

X).
Definition 2 ([6]): We say that a fuzzy poset (A, ρ) is a

complete fuzzy lattice if every fuzzy subset X ∈ LA has
supremum and infimum.

We conclude this section with the usual definition of closure
operator on a fuzzy poset.

Definition 3: Given a fuzzy poset A = (A, ρ), a mapping
c : A → A is said to be a closure operator on A if the
following conditions hold:

1) ρ(a, b) ≤ ρ(c(a), c(b)), for all a, b ∈ A (isotony)
2) ρ(a, c(a)) = 1, for all a ∈ A (inflationarity)
3) ρ(c(c(a)), c(a)) = 1, for all a ∈ A (idempotency)
Definition 4: Let c : A → A be a closure operator on a

fuzzy poset (A, ρ) and X be an L-subset of A. The closure
of X wrt c is the L-set defined by

c(X)(a) =
∨

x∈c−1(a)

X(x), for all a ∈ A.

III. GENERALIZING THE NOTION OF QUASI-CLOSED
ELEMENT TO FUZZY POSETS

The aim of this section is to analyse possible generalisations
to fuzzy posets of the classical notion of quasi-closed element.
We begin by recalling the definition in the case of crisp posets
[7]. Throughout this section A = (A, ρ) is a fuzzy poset and
c is a closure operator on A.

There are four equivalent properties that define quasi-
closedness in the crisp case. The direct extensions of each
one these statements to a fuzzy setting are the following.

(I) ρ(a, q) ≤ ρ(c(a), q) ∨ (c(a) ≈ c(q)), for all a ∈ A.
(II) ρ(a, q) ≤ ρ(c(a), q) ∨ ρ(c(q), c(a)), for all a ∈ A.
(III) ρ(a, q)⊗¬ρ(c(q), c(a)) ≤ ρ(c(a), q), for all a ∈ A.
(IV) ρ(a, q)⊗¬ρ(q, a)⊗ρ(c(a), c(q))⊗¬ρ(c(q), c(a)) ≤

ρ(c(a), q), for all a ∈ A.
These relation among these statements are in the following
proposition.
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Proposition 5:

• (I) implies (II).
• (II) implies (III).
• (III) implies (IV).

None of the converses hold.
Proposition 6: Given a closure operator c on a (crisp) poset,

any quasi-closed element with respect to c satisfies condition
(IV).

We adopt the most general of the statements as the definition
of quasi-closed element wrt a closure operator.

Definition 7: Given a closure operator c on a fuzzy poset
(A, ρ), an element q ∈ A is said to be quasi-closed (with
respect to c) if it satisfies statement (IV).

Theorem 8:

1) Every closed element is quasi-closed.
2) There exist quasi-closed elements which are not closed.

IV. QUASI-CLOSED ELEMENTS IN GRADED SETTING

In the previous section, an element either was quasi-closed
or not. In this section, we define the degree to which an
element is quasi-closed. First, to ease the reading of the
definitions and properties, we introduce the following notation.

Notation 1: Given a closure operator c on a fuzzy poset
(A, ρ) and q ∈ A, we use Xq to denote the L-set with
membership function defined as follows:

Xq(a) = ρ(a, q)⊗¬ρ(q, a)⊗ ρ(c(a), c(q))⊗¬ρ(c(q), c(a)).

With this notation, an element q is quasi-closed iff Xq(a) ≤
ρ(c(a), q), for all a ∈ A.

Definition 9: Given a closure operator c on a fuzzy poset
(A, ρ), for any q ∈ A, we define the degree in which q is
quasi-closed as follows

QC(q) =
∧

x∈A
[Xq(x)→ ρ(c(x), q)] .

Theorem 10: Let c be a closure operator on a fuzzy poset
(A, ρ) and q ∈ A. Then, QC(q) = 1 if and only if q is quasi-
closed.

In the classical setting, there is an if-and-only-if condition
for a set to be quasi-closed based on an operator that is usually
denoted by ◦. We can do an analogous characterization here.

Definition 11: Let c be a closure operator on a complete
fuzzy lattice (A, ρ) and q ∈ A. We define the element q◦ as
follows:

q◦ = q t
⊔

c(Xq).

This is not a quasi-closed element in general, not even in
the crisp case.

Theorem 12: Let c be a closure operator on a complete
fuzzy lattice (A, ρ). Then, QC(q) = ρ(q◦, q), for all q ∈ A.

Corollary 13: Let c be a closure operator on a complete
fuzzy lattice (A, ρ). An element q ∈ A is quasi-closed wrt c
if and only if q◦ = q.

V. CONCLUSIONS AND FURTHER WORK

We have presented a fuzzy definition of quasi-closed ele-
ments in the frame of fuzzy posets and checked its properties.
On the other hand, we have extended the definition to graded
setting and we have proved that it extends the classical results
that are necessary for its effective use in the search for bases
of implications or if-then rules in the fuzzy frame.

In a next step, we will study aspects related to the com-
putability of quasi-closed elements looking for necessary and
sufficient conditions to ensure that they can be calculated
efficiently. As further work, we will generalize the notion of
pseudo-closed element and compare the definition obtained
with the recursive one proposed in [4]. In addition, we will
study whether the bases of implications with pseudo-closed
premises have the desired properties of completeness, non-
redundancy and minimality. We will also consider whether
this work can be extended to the multi-adjoint concept lattice
framework [8].
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Abstract—In this paper, we address one of the most important
topics in the field of Social Networks Analysis: the community
detection problem with additional information. That additional
information is modeled by a fuzzy measure that represents the
risk of polarization. Adding this type of information to the com-
munity detection problem makes it more realistic, as a community
is more likely to be defined if the corresponding elements are
willing to maintain a peaceful dialogue. Hereafter, we work in a
real case obtained from Twitter, concerning the political position
against the Spanish government. We analyze how the partitions
obtained change when some additional information related to
how polarized that society is, is added to the problem.

Index Terms—networks; community detection; extended fuzzy
graphs; polarization; fuzzy sets; ordinal variation

I. INTRODUCTION

In this document, we review our paper [1] in which we
addressed one of the hottest problems in the Social Networks
Analysis (SNA) field: the community detection problem. We
go beyond the “classic” approach of this problem, based on
the crisp connections between the elements which are defined
by the edges of the graph. Our main contribution is the
incorporation of some additional information modeled by a
fuzzy measure.

In particular, our background is related to Polarization. In
broader terms, Polarization can be understood as the split
of a given society into two different and opposite groups
with significant size along an attitudinal axis [2]. In this
work, we recall the concept of Polarization based on fuzzy
sets developed in [3], where Guevara et al. introduced a
Polarization measure based on the fuzzy set approach, the
JDJpol. It uses the membership degree of each individual to
the poles and some aggregation operators to measure the risk
of polarization of a group. We consider as an important matter
to include the concept of Polarization into the field of SNA
and to community detection problems due that Polarization
and communication are strongly related. The way in which a
community is detected in a social context should fit reality not
only based on the interactions between their nodes but in its
attitudinal or ideology coherence as well.

On the basis of the JDJpol, we work with (non) polarization
fuzzy measures [4], which allow us to measure the ability for
peaceful dialog of a society.

Then, we introduce the non polarization extended fuzzy
graph (non-polarization EFG). It is characterized on the basis
of the extended fuzzy graph (EFG) [5]. Given a crisp graph
G = (V,E) and a fuzzy measure µ : 2V → [0, 1] defined on
the set of nodes, the triplet G̃ = (V,E, µ) is said to be an
extended fuzzy graph. As it is pointed in [6], fuzzy/capacity
measures are fundamental in modeling dependencies among
the inputs. Then, with the combination of the ability of the
graph to model connections between elements, and the ability
of the fuzzy measures to handle the capacity related to any
set of elements, we can represent situations in which more
than two nodes are implied, independent of the way they are
connected through the graph by using an EFG.

Finally, we work in a specific application of the non-
polarization EFG: the community detection problem. Once
we develop a methodology to find groups in a graph paying
attention to how polarized the society is, we work in a real case
obtained from Twitter and related to the hottest topic in the
last 2020: the Covid-19 pandemic. In particular, we analyze
the position of people against the Spanish government during
this period of crisis.

II. POLARIZATION FUZZY MEASURES AND POLARIZATION
EXTENDED FUZZY GRAPH

Our first goal is the characterization of a fuzzy measure
obtained from the JDJpol, µP− . We emphasize on the fact the
µP− can be re-formulated as a summation which involves the
elements of a matrix P− which is symmetric, non-negative, 1-
normalized and whose main diagonal is null. Because of the
interpretation of JDJpol, P−ij represents the risk of conflict
concerning the elements i and j. So that, µP− represents
the capacity of the elements to argue, to trigger conflict and
arguments. Hence, it is a recommended model to properly
represent the discrepancy or distance between individuals.

Because of the interpretation of the measure JDJpol, its
negation, J̃DJpol can be understood as the minimum risk of
polarization for a given population or community. Then, from
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J̃DJpol, we define the matrix P+, non negative, symmetric,
1-normalized and with main diagonal null. It can be somehow
understood as an “affinity” matrix [5], from which we can
define a measure which represents the capacity of the elements
of a set to peacefully dialogue without risk of Polarization,
µP+ . Because of the properties of P+, we can affirm that
µP+ is a 2−additive non-polarization fuzzy measure [7].

Then, we define a new representation model: the non polar-
ization extended fuzzy graph. It is a crisp graph together with a
non-polarization fuzzy measure, the triplet G̃ = (V,E, µP+).

III. COMMUNITY DETECTION PROBLEM BASED ON
POLARIZATION MEASURES

We approach the community detection problem based on
fuzzy measures including this information inspired by the
idea developed in the Additional Louvain algorithm (see in
[7]), based on the Louvain algorithm [8]. The key point is
to distinguish two different roles within the input parameters:
one of them, to establish the neighbor relations, and the other,
to calculate the variation of the modularity. The first role
will be played by the adjacency matrix of the graph, A, so
that only those nodes that are connected in G can be in the
same group. On the other hand, we suggest to consider a
combination of the two components of the non-polarization
extended fuzzy graph G̃ as basis to calculate the variation of
modularity, in order to incorporate the additional information.
Then, having a crisp graph, the two membership functions,
and a grouping, an overlapping and a negation operators, it
can be obtained a non-polarization EFG, G̃ = (V,E, µP ),
where µP = µ+ . In order to simplify the management of the
synergies between elements, it is characterized the weighted
graph associated with a fuzzy measure, GµP

, particularly, the
one associated with µP . Being ξ an aggregation operator,
Shi(µP ) and Shji (µP ) the Shapley index of i when it is in
a coalition with all the elements of V and V {j} respectively,
the graph GµP

is that whose adjacency matrix is F , where

Fij = ξ
(
Shi(µp)− Shji (µp), Shj(µp)− Shij(µp)

)
(1)

In our specific proposal, we suggest summarizing the non-
polarization fuzzy measure µP into the matrix F , with adja-
cency of its associated weighted graph defining the Polariza-
tion Louvain algorithm to detect communities. We combine
the matrices A and F by means of a linear combination
(θ(A,F ) = γA+(1−γ)F ) using the parameter γ to assign a
weight or importance to each component of the G̃. Note that
when γ = 1 the additional information is not considered.

IV. A REAL CASE: THE IMPACT OF THE COVID-19
PANDEMIC IN THE ORGANIZATION OF THE PEOPLE

The nodes and theirs relations considered in this work have
been obtained from the social network Twitter, particularly
from some posts recorded along the state of alarm imposed by
the central government in Spain. All data downloaded relate
to the COVID-19 pandemic. The experiment design and all

the process are detailed in 1. A random sample of tweets were
labeled by an expert in order to label them as supporters or
detractors towards the Spanish Government. Then, machine
learning algorithms were applied to generalize the knowledge
to all tweets. Support Vector Machines showed the best
performance so we used that probability of being a supporter
or detractor as membership degree values to compute JDJpol.
Due that we labeled tweets but not users we computed the
average probability of all messages posted by a given user in
order to obtain the probability to be a supporter and detractor
of that user. We apply the Polarization Louvain algorithm to
find communities in the non-polarization extended fuzzy graph
G̃ = (V,E, µP ). We vary the parameter γ which allow us to
control the importance of that extra knowledge (Polarization
values between two individuals). The partition which shows
the best modularity value is considered as optimal.

To compare the Polarization Louvain algorithm with the
traditional Louvain algorithm we show an example of how two
pairs of nodes which should belong to the same communities,
respectively, are split into four different communities with the
Louvain algorithm. On one hand, we have nodes “38” and
“115”, both left-wing political parties that teamed back in
march 2019. On the other hand, we have nodes “76” , a right-
wing political party, and “203”, a member of this political
group. After applying the Polarization Louvain algorithm,
those pairs are clustered into the same communities (see the
original paper [1] for illustrations and more details).
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I. INTRODUCTION

The study of the knowledge stored in databases is one of the
most important goals in several research fields. Formal Con-
cept Analysis (FCA) [10] and Rough Set Theory (RST) [8] are
two widely studied mathematical theories, devoted to obtain
information from relational databases that contain uncertainty.

The reduction of size of database is a widely study issue in
both theories, separately. In addition, in the literature, several
papers can be found that stablish the existing connections be-
tween these two mathematical tools, considering the classical
framework [3], [5], [7], [9].

This paper introduces a novel mechanism to reduce the
set of attributes in the fuzzy general framework of multi-
adjoint concept lattices, considering the RST philosophy with
tolerance relations. This study extends the one introduced
in [3] in a fuzzy case, shown that the same properties are
not satisfied. Besides that, the proposed mechanism has been
enriched with other interesting properties, showing that the
new procedure also keeps important features. One of these
properties is that the reduction is directly applied to the
context and the whole concept lattice is not needed to be
computed. Moreover, the main structure, based on the join-
irreducible elements, is preserved including no new join-
irreducible element after the reduction procedure. The notions
and results obtained considering this framework is deeply
studied in [4].

II. REDUCTION IN MULTI-ADJOINT CONCEPT LATTICES

In this section, we will present the proposed reduction
mechanism to multi-adjoint concept lattices, which can also
be applied to any other fuzzy FCA framework. For that, the
RST reduction philosophy and a family of tolerance relations

Partially supported by the State Research Agency (AEI) and the European
Regional Development Fund (FEDER) project TIN2016-76653-P.

will be taken into account. In the following, we explain step
by step how this reduction procedure is carried out.

Reduction in Multi-adjoint Concept Lattices from RST with
tolerance relations

S1. The first step is to consider the associated information
system (B,A), with the mappings ā : B → Va, from
a given multi-adjoint formal context (A,B,R, σ) and a
frame (L1, L2, P,&1, . . . ,&n).

S2. From this context the sets Va will be the poset P and the
mappings ā : B → P will be defined as ā(x) = R(a, x),
for each a ∈ A and x ∈ B.

S3. In this new environment, we consider the tolerance re-
lations for each attribute, which are used to build the
unidimensional E-discernibility function of the associated
information system.

S4. We compute the E-information reducts D1, . . . , Dn.
S5. Considering these reducts we reduce the original

fuzzy context, obtaining the reduced ones
(D1, B,R|D1×B), . . . , (Dn, B,R|Dn×B).

S6. Finally, we build the concept lattices from the reduced
contexts obtaining significant reductions in the context
as well as in the size of the original lattice, preserving
the discernibility among the objects.

From now on, a multi-adjoint frame
(L1, L2, P,&1, . . . ,&n) and a multi-adjoint context
(A,B,R, σ) will be fixed. First of all, different properties
relating the concept-forming operators in the original context
and in the reduced one will be introduced in the following
proposition, which will be needed later on.

Proposition 1: Given a subset D ⊆ A, for any concept
〈g, f〉 obtained from the multi-adjoint context, the following
statements hold:

1) g↑↓ �2 g
↑D↓D

2) g↑↓↑D = g↑D

3) f↓
D↑↓ = f↓

D

The following proposition asserts that if a group of concepts
in the original context are the same concept in the reduced one,
then they have the structure of a join-semilattice.

Proposition 2: Let D ⊆ A be a subset of attributes.
The set RE = {(〈g1, f1〉, 〈g2, f2〉) | 〈g1, f1〉, 〈g2, f2〉 ∈

CAEPIA 20/21 XIX Conferencia de la Asociación Española para la Inteligencia Artificial 393



M(A,B,R, σ), g↑D↓
D

1 = g↑D↓
D

2 } is an equivalence relation
and every class [〈g, f〉]D of M(A,B,R, σ)/RE is a join-
semilattice with maximum element 〈g↑D↓D , g↑D↓D↑〉.

We can think that it is natural that properties presented in [3]
will not be satisfied when fuzzy sets are considered. Concern-
ing the structural properties, one of the most important feature
is related to the join-irreducible elements. As it was proven
in Theorem 3.5 of [3] for the classical framework of FCA,
no new join-irreducible element appears after the reduction
process. This main structural property is also preserved in this
fuzzy framework, as the following result shows.

Theorem 3: Given an E-information reduct D in the corre-
sponding context information system (B,A), if the pair 〈g, f〉
is a join-irreducible concept in the reduced concept lattice built
using the reduct D, then there exists an object b ∈ B and a
truth value x ∈ L2 such that φ↑Db,x = f and φb,x also generates
a join-irreducible concept in the original concept lattice.

III. RELATED METHODOLOGIES

The attribute reduction mechanism based on tolerance rela-
tions proposed in this paper is different from the ones given in
diverse papers. In this section, we will focus our attention on
two general reduction procedures given in [1] and [6], since the
rest of procedures are given in a more restrictive framework
or are based on them.

The philosophy of the reduction presented in [1], consider-
ing similarities, is very different from the proposed one in this
paper. Our reduction is directly applied to the context. This fact
is very important since, for example, it has a direct impact on
the construction of the attribute implications, such as, reducing
the number of implications or creating equivalences among
them. Meanwhile, the factorization presented by Bělohlávek
reduces the concept lattice and it has no impact in the context.
Moreover, the whole concept lattice must be computed before
calculating the factorization, which is not necessary for the
mechanism we propose. Furthermore, the reduction given
in [1] provides a covering instead of a partition, which is the
clustering we obtain from the 1

2 -information reducts.
On the other hand, the reduction presented in [6] consideres

block relations, where the rows of this relation are intents and
the columns are extents. The methodology proposed in this
paper is different, since the tolerance relations are defined on
the set of values of the attributes, and they are independent
of the relation of the context. With our procedure, we try to
group the similar attributes whose separated consideration does
not provide relevant information and so, the main knowledge
of the database is preserved after the reduction. Although
both mechanisms are different, they are compatible. As a
consequence, we can apply both procedures to the same
database in order to obtain a bigger reduction, embedding both
philosophies.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, by means of different results and examples,
we have introduced a mechanism to reduce attributes in
fuzzy FCA, considering the reduction procedure with tolerance

relations introduced in RST [2]. This new method to reduce
attributes provides a significant reduction of the original con-
cept lattice. Some interesting properties of the new procedure
have been presented troughout the paper. The most important
one shows that the structure of the original concept lattice is
partially preserved considering this new mechanism, that is,
no new join-irreducible elements appear after carrying out the
reduction procedure.

Moreover, the paper finishes exposing a comparison among
this new mechanism and other interesting fuzzy reduction
methods.

In the future, we are interested in establishing a comparison
between the attribute reduction process given in multi-adjoint
concept lattices and other multi-adjoint frameworks, as multi-
adjoint property oriented concept lattice and multi-adjoint
object oriented concept lattices. We also want to apply this
study to real examples.
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Abstract—Fuzzy logic has shown to be a suitable framework
to handle contradictions in which, unsurprisingly, the notion of
inconsistency can be defined in different ways. This paper starts
with a short survey of different ways to define the notion of
inconsistency in fuzzy logic systems. As a result, we provide a
first notion of inconsistency by means of the absence of models.
Subsequently, we define two measures of consistency that belong
purely to the fuzzy paradigm; in the sense that both measures
coincide with the crisp notion of consistency when the set of
truth values is {0, 1}. Accordingly, we can state that the two
provided measures of consistence are notions of consistence based
on degrees, bringing back the spirit of fuzzy logic into the notion
of consistency.

Based on the paper A measure of consistency for fuzzy logic
theories, to appear in the journal Mathematical Methods in the
Applied Sciences, 2021.

I. INTRODUCTION

Since its introduction, fuzzy sets and fuzzy logic have
shown to be an interesting research topic. One can find lots
of papers ranging from the development of algebraic theories
of fuzzy structures or the underlying mathematics of fuzzy
logic, to fuzzy modelling or automated control in terms of
sets of fuzzy rules. From the theoretical standpoint; in [1] the
notion of relational Galois connection is extended to be applied
between transitive fuzzy directed graphs in a framework in
which the components of the connection are crisp relations
satisfying certain reasonable properties; from the practical
standpoint, in [7] it is shown how a control application can
leverage (even) from a set of inconsistent rules; and in [2] we
can see a fuzzy logic-based mathematical model of a sequence
of earthquakes using tools from fuzzy reasoning.

Being the fuzzy realm a matter of degrees, a number of
papers have focused on measuring the degree of inconsistency
of a set of fuzzy rules, and a number of different inconsistency
indices have been introduced. For instance [3] introduces the
so-called knowledge-based consistency index for deriving pri-
orities from fuzzy pairwise comparison matrices in multiple-
criteria decision-making problems; other approaches introduce
means for both measuring and repairing inconsistency, for
example [8] presents a family of measures aimed at deter-
mining the amount of inconsistency in knowledge bases with
graded truth and considers minimal adjustments in the truth-
degrees of the propositions necessary to make the knowledge-
base to be consistent within a given frame (in that case the
Łukasiewicz semantics); last but not least [4] deals with the

definition of measures of inconsistency in the residuated-logic-
programming paradigm under the fuzzy answer set semantics
and provides a soft mechanism to control the amount of
information inferred, thus, controlling the inconsistencies by
modifying slightly the truth values of some rules. The number
of possible measures of inconsistency that can be found in the
literature somehow suggests the existence of a problem with
inconsistency in a fuzzy setting, namely, its definition: there is
not a consensus on how to interpret inconsistency in a fuzzy
system.

In this paper we briefly survey the main properties
and equivalent characterisations of inconsistency in classical
(crisp) logic and then, we focus on, under of point of view,
the more natural way to define inconsistency in a logic
theory, namely: the absence of models. This consideration
as definition of inconsistency keeps some of the most im-
portant properties of inconsistency in the fuzzy paradigm,
e.g., explosive reasoning. However, we also lose an important
issue, we lose degrees; which is the soul of fuzzy logic. For
such a reason, we propose a generalization of consistence
by means of two measures of consistency. Specifically, we
define two measures of consistency that belong purely to the
fuzzy paradigm. In other words, both measures coincide with
the crisp notion of consistency when the set of truth values
is {0, 1}. Moreover, we provide a set of properties for both
measures of consistency in order to motivate the use of them
to represent the consistency of fuzzy logic theories.

II. MEASURES OF CONSISTENCY FOR FUZZY LOGIC
THEORIES.

In this section we follow a common procedure in the
definition of measures of (in-)consistency in crisp logic: given
a logic theory Γ, we consider subsets of consistent formulas
contained in Γ. At this point, in crisp logic we can measure
the inconsistency by considering the ratio or the absolute
number of removed formulas. Interestingly enough, in a fuzzy
environment, we can proceed differently: for instance, we can
measure the consistency Mc of the removed formulas with
respect to the remaining ones.

Definition 1: Let Γ be a fuzzy logic theory defined on a
residuated lattice (L,≤, ∗,→) and consider α ∈ L. A formula
ψ is said to be α-feasible w.r.t. Γ if Γ |= ψ → α. If Γ = ∅

The degree of consistency of ψ with respect to Γ is:

Mc(ψ,Γ) = min{α | ψ is α-feasible w.r.t Γ}
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In order to properly understand the rationale in the following
definition, let us consider an arbitrary fuzzy logic theory
of three formulas Γ = {ψ1, ψ2, ψ3}. Assume that Γ is
inconsistent and that ψ1 is non-contradictory. The question
is how consistent are formulas ψ2 and ψ3 in the logic theory
Γ∗ = {ψ1}. One could think about measuring separately the
consistence for both formulas and then aggregate them, but
that is not possible because {ψ1, ψ2} and {ψ1, ψ3} could be
consistent and, then, both measures would be 1. Therefore,
the only reasonable option is to combine ψ2 and ψ3 into one
formula. Note, that the consistency of {ψ1, ψ2, ψ3} is given
by assuming on the one hand ψ1 and, on the other hand, both
ψ2 and ψ3 at the same time; the latter means that we are
assuming ψ2∧ψ3. Therefore, the consistency generated by ψ2

and ψ3 in the logic theory Γ∗ = {ψ1} is Mc(ψ2 ∧ ψ3,Γ
∗).

Definition 2: Let Γ be a fuzzy logic theory defined on a
residuated lattice (L,≤, ∗,→), then we define the measure of
consistency Mc∗(Γ) as

sup



Mc


 ∧

ψi∈Γ\Γ∗

ψi ,Γ
∗


 | Γ∗ ⊆ Γ is consistent



 .

At first sight, the reader may think that considering all the
set of combinations of consistent sub-theories of a fuzzy logic
theory Γ may be unpractical, however, the following result
shows that only one consistent subtheory must be considered
to compute the measure Mc∗, namely, the empty theory.

Theorem 1: Let Γ be a fuzzy logic theory defined on a
residuated lattice (L,≤, ∗,→), then:

Mc∗(Γ) = Mc


 ∧

ψi∈Γ

ψi , ∅


 .

As a direct consequence of the previous theorem, we have
the following corollary that shows that Mc∗ satisfies those
properties of a measure of consistency (i.e., the opposite
properties of a measure of inconsistency).

Corollary 1: Let Γ and Γ′ be fuzzy logic theories defined
on a residuated lattice (L,≤, ∗,→), then:
a) Mc∗(Γ) ≥Mc∗(Γ ∪ Γ′) ;
b) If Γ is consistent then, Mc∗(Γ) = 1;
c) If Mc∗(Γ) 6= 1 then, Γ is inconsistent;
d) If L is finite and totally ordered, then Mc∗(Γ) = 1 implies

Γ is consistent.
The measure of consistency Mc∗ is related to the k-models

which, in turn, are related to the so-called x-consistency [9]
and α-cuts models [6]. The underlying idea in the k-models
is to guarantee the satisfiability of formulas in at least truth-
degree k ∈ L, and it is given in the following definition.

Definition 3: Let Γ be a fuzzy logic theory defined on a
residuated lattice (L,≤, ∗,→) and consider k ∈ L. We say
that an interpretation M is a k-model of Γ if M(ψ) ≥ k for
all ψ ∈ Γ.

The k-models were introduced in the context of Fuzzy Logic
Programming aiming at providing “partial” models to a given
inconsistent logic program (i.e., fuzzy logic theory). Later, it

was proved that the existence of models is guaranteed by very
general requirements in Fuzzy Logic Programming [5] and,
then, k-models faded away. However, in the general context
we are working on in this approach, the existence of models
cannot be guaranteed easily and k-models may be valuable
here. The following result relates the measure Mc∗ with k-
models.

Theorem 2: Let Γ be a fuzzy logic theory defined on a
residuated lattice (L,≤, ∗,→) . If Mc∗(Γ) = α then, there is
not β-model of Γ with β > α.

III. CONCLUSIONS AND FUTURE WORK

We have presented two different measures of consistency.
The first one measures how much compatible a formula is with
respect to a given theory in the sense the closer to 0, the more
inconsistent; and the closer to 1, the more consistent. The
second measure determines a degree of consistency of a logic
theory by means of consistent subtheories. Both definitions
coincide with the standard notion of consistency when we
restrict to crisp logic, and both definitions satisfy convenient
properties in order to be considered measures of consistency.

There are two main lines of future research. On the one
hand it is convenient to keep digging up some measures
of inconsistency in fuzzy paradigms. To have a notion of
inconsistency based on degrees (as the ones proposed in this
paper) may allow to incorporate a paraconsistent reasoning
into inconsistent fuzzy logic theories without leaving the fuzzy
paradigm aside. On the other hand, it is interesting to find out
an application of the measures of consistence. For instance, we
think they can be used to deal with contradictions in databases
obtained from fails or system errors.
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Abstract—This work concerns the research recently published
in R. G. Aragón, J. Medina, and E. Ramı́rez-Poussa. Identifying
Non-Sublattice Equivalence Classes Induced by an Attribute Re-
duction in FCA. Mathematics, 9(5), 2021.

Index Terms—Formal Concept Analysis, equivalence relations,
attribute reduction

I. INTRODUCTION

An appealing goal in different frameworks is detecting
redundant or irrelevant variables (attributes) in data sets, such
as in Formal Concept Analysis (FCA) in which the removal of
redundant data becomes essential. However, the elimination of
such variables may have some impact in the concept lattice,
which is closely related to the algebraic structure of the
obtained quotient set and their classes [4].

In [2], [3], local congruences were introduced as equiva-
lence relations defined on lattices whose equivalence classes
are sublattices of the original lattice. Furthermore, local con-
gruences were intended to complement the attribute reductions
of formal contexts in order to ensure that the equivalence
classes, [C]D, be sublattices of the original concept lattice.
If its infimum Cm =

∧
Ci∈[C]D

Ci belongs to the equivalence
class, we can assert that the class is already a sublattice, since a
join-semilattice with a minimum element is a lattice. As a con-
sequence, in this case, the application of a local congruence, as
a complementary mechanism to attribute reduction, does not
provide any modification in this particular class. Therefore,
it is significant to characterize the required conditions under
which these cases arise.

II. CHARACTERIZING EQUIVALENCE CLASSES

This research line was initiated in [2] and was continued
in [1]. Namely, we determined in this last paper a sufficient
condition to ensure that the equivalence class of Cm is
generated by an attribute-concept and presented the following
enhanced version of the characterization of the infimum of
elements belonging to a non-singleton classes:
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Theorem 1: Given a context (A,B,R), a subset of attributes
D ⊆ A, and a concept C ∈ C(A,B,R) such as its equiva-
lence class [C]D of the induced equivalence relation is not a
singleton. We have that Cm 6∈ [C]D if and only if one of the
following statements is satisfied:
• There exists at least one attribute a ∈ D such that Cm =

(a↓, a↓↑).
• There exists a concept C∗ ∈ C(A,B,R), such as C∗ =

(a∗↓, a∗↓↑) with a∗ ∈ D, C∗ 6∈ [C]D and CM 6≤ C∗.
Moreover, C∗ is in a meet-irreducible decomposition
{Cj ∈MF (D,B,R|D×B) | j ∈ J} of Cm.

In addition, we analyzed Theorem 1 when the considered
subset of attributes does not contain unnecessary attributes.
This fact is the usual case in FCA attribute reduction and
simplifies the detection of equivalence classes which are not
convex sublattices of the original concept lattice. Further-
more, under this consideration, we also proved that when the
original concept lattice is isomorphic to a distributive lattice
the induced equivalence classes by the reduction are always
sublattices.

III. CONCLUSIONS

Consequently, all the results shown in this paper have a
significant importance, for example, in the application of local
congruences, due to characterizing the cases when classes are
not sublattices, we will be useful to know which classes will be
affected when a local congruence be applied after an attribute
reduction mechanism.
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Abstract—This work concerns the research recently published
in M. E. Cornejo, D. Lobo and J. Medina, “Extended multi-adjoint
logic programming”, Fuzzy Sets and Systems, vol. 388, pp. 124–145,
2020. The reader is referred to that source for a full discussion
and examples of the work.

Index Terms—multi-adjoint logic programming, non-
monotonic logic programming, negation operator, stable models

I. INTRODUCTION

Medina et al. introduced multi-adjoint logic program-
ming [8] in order to generalize different non-classical logic
programming frameworks [4], [9]. The foundations of a multi-
adjoint logic program is a complete lattice endowed with
different adjoint pairs, which allow to obtain several general-
izations of modus ponens. Recently, the inclusion of a negation
operator in multi-adjoint logic programming was carried out
in [1], giving rise to a first non-monotonic multi-adjoint logic
approach, which generalizes other current frameworks [6], [7].

In [2], we defined a general non-monotonic logic pro-
gramming language which shares the multi-adjoint philos-
ophy. Besides permitting different adjoint pairs, the syntax
of the so-called extended multi-adjoint logic programming is
characterized by the use of constraints and of a special type
of aggregator operator. Namely, such aggregation enables to
consider, among others, different negation operators in the
body of the same rule of the logic program. In addition to
defining the syntax and the semantics of this logic program-
ming paradigm, a mechanism for obtaining a multi-adjoint
normal logic program from an extended multi-adjoint logic
program has been shown, which entails a correlation between
the semantics of both logic programming languages.

II. EXTENDED MULTI-ADJOINT LOGIC PROGRAMMING

The underlying idea of extended multi-adjoint logic pro-
grams can be stated as follows:
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• On the one hand, constraints simulate the limitation of
a certain property, attribute or characteristic by an upper
bound. Therefore, the inclusion of constraint rules of the
form 〈c ←i B; >〉 in a logic programming language
might be enormously useful in what regards applications,
being c an element of a lattice representing a degree of
limitation.

• On the other hand, as well as the multi-adjoint paradigm
aims at relaxing limitations for modus ponens, it would
be desirable to provide freedom for the non-monotonic
behaviour of propositional symbols. For instance, it could
be advantageous allowing different negations in the body
of the same rule. This can be done by considering ex-
tended aggregators, that is, an n-ary mapping @e defined
as:

@e(x1, . . . , xn) = @e[x1, . . . , xm;xm+1, . . . , xn]

such that it is order-preserving in the first m arguments
and order-reversing in the last n−m arguments.

According to the foregoing remarks, the syntax of extended
multi-adjoint logic programming is defined as follows.

Definition 1: Let (L,�,←1,&1, . . . ,←n,&n,@
e
1, . . . ,@

e
k)

be an extended multi-adjoint lattice with greatest element >.
An extended multi-adjoint logic program is a finite set of
weighted rules of the form

〈p←i @
e[p1, . . . , pm; pm+1, . . . , pn];ϑ〉

and constraint rules of the form

〈c←i @
e[p1, . . . , pm; pm+1, . . . , pn];>〉

where i ∈ {1, . . . , n}, @e ∈ {@e1, . . . ,@ek}, ϑ, c ∈ L and
ps1 6= ps2 , for all s1, s2 ∈ {1, . . . , n} with s1 6= s2.

The semantics of extended multi-adjoint logic programs is
defined similarly to the stable model semantics of multi-adjoint
normal logic programs [1]. Namely, the stable model seman-
tics lies on the principles of the Gelfond-Lifschitz reduct [5].

A detailed procedure to transform an extended multi-adjoint
logic program into a semantically equivalent multi-adjoint
normal logic program was introduced in [2]. Such a procedure
is shown in two steps:

1) Firstly, given an extended multi-adjoint normal logic
program, its constraint rules are converted into regular
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rules, in such a way that the stable models of the original
and the final logic programs coincide.

2) Then, the remaining rules are written in terms of a
single non-monotonic unary mapping, which turns out
to be an involutive negation. It needs to be stressed
that such transformation is carried out by means of
continuous mappings. An interesting outcome of this
fact is the possibility to apply a sufficient condition for
the existence of stable models in multi-adjoint normal
logic programs [1] for constraint-free extended multi-
adjoint logic programs.

III. CONCLUSIONS

The research carried out in [2] enables to make use of a
flexible language like extended multi-adjoint logic programs
in order to model real-world problems, and then translate them
into multi-adjoint normal logic programs to handle compact
simple programs with the same meaning. Furthermore, this
procedure can be complemented with the methods shown
in [3], where a multi-adjoint normal logic program is translated
into a core fuzzy answer set program. As highlighted in [6],
core fuzzy answer set programs are easier to implement and
to reason about from a computational point of view.

The completed transformation considerably increases the
potential of extended multi-adjoint logic programs to model
real-life problems, since modelling the information contained
in a text or in a database by decision rules and the interpre-
tation of those rules will be easier through extended multi-
adjoint logic programs, and its translation into a core fuzzy
answer set program will facilitate the simulation and compu-
tation of the consequences/deductions from the program.
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Benito-Picazo, Jesús, 729
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Canovas-Segura, Bernardo, 812
Carabe, Luis, 209
Carmona, Cristobal J., 227, 231
Carmona, Enrique, 1023
Carmona, Javier, 446
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Garćıa Pardo, Eduardo, 452, 490, 581, 593, 1047
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González Garćıa, Pedro, 41, 227, 231, 661
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Jiménez Merino, Ernesto, 593
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López, Beatriz, 832
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López Vargas, Ascension, 919
Lorenzo-Navarro, Javier, 64
Losada Casado, Adrián, 881
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Melgar-Garćıa, Laura, 639
Menasalvas Ruiz, Ernestina, 804, 834
Mendiburu, Alexander, 405
Mercado Palomino, Elia, 775
Merino, Maŕıa, 1106
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Ortiz, Esaú, 304, 311
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Y
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