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Presentacién de CAEPIA 20/21

Este volumen contiene un conjunto de articulos seleccionados y revisados por pares enviados a CAEPIA 20/21,
la XIX Conferencia de la Asociacién Espanola de Inteligencia Artificial, celebrada en Mélaga, Espania, del 22 al 24
de septiembre de 2021. CAEPIA es un evento bienal espafiol bien establecido sobre Inteligencia Artificial (IA) que
comenz6 en 1985. Ediciones anteriores tuvieron lugar en Alicante, Malaga, Murcia, Gijén, San Sebastidn, Santiago
de Compostela, Sevilla, La Laguna, Madrid, Albacete, Salamanca y Granada.

CAEPIA es un foro nacional abierto a investigadores de todo el mundo para presentar y discutir sus ultimos
avances cientificos y tecnoldgicos en IA. Los autores podian optar por cinco tipos de contribuciones: trabajos
inéditos de investigacién para un volumen en la serie Lecture Notes in Artificial Intelligence de Springer, trabajos
inéditos de investigacién para estas actas, trabajos destacados ya publicados, proyectos de doctorado, desarrollos
de aplicaciones méviles y videos divulgativos. La conferencia acogié tanto investigacion tedrica como metodolégica,
técnica y aplicada.

Dentro de CAEPIA se organizaron varios talleres y congresos federados relacionados con los temas mas re-
levantes de la TA: XX Congreso Espaiiol Sobre Tecnologias y Légica Fuzzy (ESTYLF); XIV Congreso Espanol
de Metaheuristicas, Algoritmos Evolutivos y Bioinspirados (MAEB); X Simposio de Teorfa y Aplicaciones de la
Mineria de Datos (TAMIDA); y seis talleres. También contamos con un Doctoral Consortium (DC). Este es un
foro para que los estudiantes de doctorado interactien con otros investigadores discutiendo sus planes de trabajo y
avances en el doctorado. Como actividad adicional de TA, llevamos a cabo el 4° Concurso de Aplicaciones Méviles
con Técnicas de TA, junto con una nueva edicién del Concurso de Videos de Divulgacién de TA.

Todas las actividades anteriores avalan la TA, y nos esforzamos por alcanzar una alta calidad en los articulos
cientificos, el DC y las competiciones. El programa cientifico de CAEPIA 20/21 también ofrecié una via para difundir
trabajos destacados (Key Works: KW) publicados recientemente en revistas y foros de alto impacto cientifico.
CAEPIA siempre ha tenido como objetivo ser reconocida como una conferencia insignia en IA y, por lo tanto, los
articulos fueron revisados por pares. El nimero total de envios a CAEPIA 20/21 fue de 186 (en este nimero no
se incluyeron ni DC ni concursos ni presentaciones KW, que suman 83 contribuciones adicionales, y que pasaron
por un proceso de evaluacién diferente). Los revisores evaluaron la calidad general de los manuscritos presentados,
junto con la calidad de la metodologia empleada, la solidez de las conclusiones, la importancia del tema, la claridad
de la redaccién y su organizacién, entre otros criterios de evaluacién. A partir de estas revisiones, los responsables
de area, presidentes de congresos y organizadores de talleres y sesiones especiales propusieron un numero final de
articulos que fueron analizados y aprobados por los editores de este volumen.

CAEPIA 20/21 invité a dos investigadores de renombre internacional a impartir una charla plenaria. Nuestros
dos ponentes plenarios fueron Oscar Cordén (Inteligencia Artificial para Antropologia Forense e Identificacién
Humana) y Yaochu Jin (Optimizacién Evolutiva Basada en Datos). Nuestra conferencia se celebré como un gran
evento dentro de uno ain mayor: la Conferencia Espanola de Informdtica (CEDI), que también conté con charlas
plenarias muy interesantes.

AEPIA y los organizadores de CAEPTA 20/21 reconocieron las mejores tesis doctorales y articulos originales
en eventos federados escritos tanto por investigadores consolidados como por estudiantes. CAEPIA 20/21 también
tuvo como objetivo promover la presencia de mujeres en la investigacién de TA. Como en ediciones anteriores, el
premio Frances Allen reconocié las dos mejores tesis doctorales defendidas por una mujer durante los dos tltimos
anos.

Los editores de este volumen quieren agradecer a las numerosas personas que contribuyeron al éxito de CAE-
PIA 20/21: autores, miembros de los comités cientificos y los comités de programa, ponentes invitados, organizadores
de eventos, gestores de medios electronicos, etc. También, agradecer el trabajo incansable del comité organizador,
nuestros patrocinadores (como VRAIN en Valencia), el equipo de Springer y AEPIA por su apoyo.

Por 1ltimo, pero no menos importante, en nombre de los participantes de CAEPIA 20/21, Enrique Alba (presi-
dente) y Francisco Chicano (responsable de este volumen) dan las gracias a la organizacién de CEDI, la Universidad
de Mélaga (sede local de la conferencia) y a toda la comunidad espafiola que trabaja en IA (y sus numerosos cola-
boradores extranjeros) por hacer de este evento un verdadero éxito.

Enrique Alba
Presidente de CAEPIA 20/21
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Presentacion de la Presidenta de la
Asociacion Espanola para la Inteligencia Artificial

Es para mi un inmenso honor presentaros esta nueva edicién en Malaga de la serie de conferencias CAEPIA,
en la que ademas se cierra una etapa en la que he tenido el inmenso privilegio de trabajar como Presidenta de la
Asociacién Espaniola para la Inteligencia Artificial (AEPIA).

Debemos el inicio de estas conferencias bienales en los anos 80 a un pequefio, pero muy entusiasta, grupo de
investigadores espanoles en Inteligencia Artificial (IA). A pesar de que en aquella época la IA estaba en un momento
algido, la situacién no era comparable al momento actual, en el que nuestra disciplina se ha convertido en una de
las més influyentes en la nueva revolucién tecnolégica que estd teniendo lugar. Ademés, hay ciertas diferencias con
entonces que auguran que quizds, y aunque quede mucho camino ain por recorrer, esta vez la primavera puede ser
casi eterna. Hay algunos factores que han confluido para dar este estallido de vida a la IA, como son la disponibilidad
de enormes cantidades de datos (uno de los alimentos de los algoritmos actuales de IA), el abaratamiento de la
computacién en nube o la existencia de plataformas distribuidas y paralelas, que permiten el procesado rapido
y econémicamente viable de esas grandes cantidades de datos. Confluye también un imparable cambio social, ya
que todos interactuamos constantemente con nuestros multiples dispositivos méviles, en un mundo en el que la
interconectividad es imprescindible, y atin lo es més desde la irrupcién de la pandemia CoVid-19 en nuestras vidas.

Nuestra disciplina es la cabeza del cambio, y ello implica no sélo cambios tecnoldgicos y sociales, sino también
de poder econémico y geopolitico. Existe una cierta dindmica de confrontacién entre EEUU y China, en la que esta
ultima ha explicitado que su meta es convertirse en la nacién que domine el mundo en IA en el ano 2030, mediante
una inversiéon masiva en [+D+1 y en politicas de fusion “militar-civil”, aunque por el momento son las empresas
americanas las que van en cabeza. Y en este contexto, la UE se ha decidido por una tercera via, la de intentar
fomentar y mantener su talento investigador en IA, ademds de atraer talento extranjero, y promover asimismo una
TA robusta, transparente, auditable, ética y al servicio de la humanidad, con las personas en el centro. Los diferentes
paises de la UE, entre ellos Espana, han elaborado Estrategias de Inteligencia Artificial. Segun estudios de varias
consultoras, y en palabras del Presidente del Gobierno en la presentacién de la Estrategia Nacional de TA (ENTA)
recientemente este 2 de Diciembre, la IA ha contribuido en 2018 con unos 1700 millones de euros al PIB mundial,
y en 2030 se estima que aportara ocho veces mas, alrededor de 14 mil millones de euros, una cifra cercana a todo el
PIB actual de la UE. Es indudable que la disciplina tiene una enorme capacidad de transformacién en la economia.

Nuestra ENTA es mas modesta que las estrategias de otros paises europeos en inversion, asi que es mandatorio
para hacer valer nuestras fortalezas como pais. Y es en este esfuerzo colectivo donde contribuimos los cientificos
que trabajamos en los diferentes campos de la TA. En esta conferencia estardn representados muchos de los grupos
espanoles mas relevantes, aportando nuestra investigacién y nuestra capacidad de transferencia, parte de la cual
se plasma en los trabajos que se presentan tanto en las conferencias plenarias como en las diferentes sesiones, Key
notes, Workshops, etc. incluidos en esta XIX CAEPIA, que es co-ocurrente con las conferencias del XX Congreso
Espanol de Tecnologias y Légica Difusa (ESTYLF), el XIV Congreso Espanol de Metaheuristica y Algoritmos
evolutivos y bioinspirados (MAEB), y el X Simposium de Teoria y Aplicaciones de Mineria de Datos (TAMIDA),
todos ellos co-celebrandose ademds junto con el Congreso Espafiol De Informatica (CEDI). La conferencia también
se implica con el talento emergente, incluyendo programas para los estudiantes y los jévenes investigadores, como
es el caso del Doctoral Consortium, los Premios a los Jévenes investigadores autores de los mejores articulos, o a
las mejores Apps y videos divulgativos de IA. En AEPIA también contribuimos con acciones de género positivas
mediante los premios Frances Allen a las mejores tesis doctorales realizadas por mujeres, en un intento de reducir
la significativa brecha de género e incorporar mas talento a la disciplina, en esta ocasién agradecemos su patrocinio
en este Premio al Instituto Valenciano de Investigacién en Inteligencia Artificial (VRAIN).

Tenemos un tejido investigador del que sentirnos orgullosos, debemos trabajar para mantener, retener y atraer
talento, una de las materias primas fundamentales para abrazar el futuro. En esta XIX CAEPIA aportamos una
muestra de nuestra contribucién a esa apuesta de futuro.

Amparo Alonso Betanzos
Presidenta de AEPIA
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Ponentes Plenarios

Oscar Cordén
Instituto Andaluz Interuniversitario en Ciencia de Datos e Inteligencia
Computacional (Instituto DaSCI)

Oscar Cordén fue el Director Fundador del Centro de Ensenanzas Virtuales (2001-
05) y Delegado de la Rectora para la Universidad Digital (2015-19) de la Universidad de
Granada (UGR). Fue uno de los investigadores fundadores del European Centre for Soft
Computing (2006-11), siendo luego contratado como Investigador Afiliado Distinguido
hasta diciembre de 2015. En la actualidad es Catedratico de Universidad en la UGR.
Durante mas de 25 anos, ha impulsado programas de investigacion y transferencia en
fundamentos y aplicaciones de inteligencia computacional con un gran reconocimiento
internacional. Ha publicado mas de 380 contribuciones cientificas, incluyendo un libro
de investigacién sobre Genetic Fuzzy Systems (con més de 1400 citas en Google Scholar)
y 112 articulos de revista JCR-SCI (68 en Q1 y 38 en D1), ha dirigido 19 tesis doctorales .
y coordinado 37 proyectos y contratos de investigacién (con un presupuesto global de mas de IM€). A fecha de
mayo de 2021, sus publicaciones han recibido 5422 citas (H-index=39), estando incluido en el 1% de investigadores
més citados en el mundo (fuente: Web of Science); con 14687 citas y H-index=58 en Google Scholar. También tiene
una patente internacional en explotacion sobre un sistema inteligente para identificacién forense, comercializada en
México y Sudafrica.

Ha recibido el Premio de Jévenes Investigadores de la UGR (2004), el Premio IEEE CIS Outstanding Early
Career Award (en su primera edicién, 2011), el Premio Nacional de Informética ARITMEL (2014) por la Sociedad
Cientifica de Espana, el IEEE Fellow (2018) y el IFSA Fellow (2019). Fue miembro del Grupo de Expertos que
desarrollé la Estrategia Espafiola de I+D+I en Inteligencia Artificial para el Ministerio de Ciencia, Innovacién
y Universidades (2018-19). Es o ha sido Editor Asociado de 19 revistas internacionales, siendo reconocido como
Outstanding Associate Editor de IEEE Transactions on Fuzzy Systems (2008) y de IEEE Transactions on Evolu-
tionary Computation (2019). Desde 2004, ha ocupado distintos puestos de representacién en EUSFLAT e IEEE
Computational Intelligence Society.

En la actualidad investiga en inteligencia artificial para identificacién forense (en colaboracién con el laboratorio
de Antropologia Fisica de la UGR y varios laboratorios forenses y cuerpos y fuerzas de seguridad internacionales)
y en modelado basado en agentes y andlisis de redes sociales para marketing (en colaboracién con ROD Brand
Consultants en proyectos para CAPSA, Mercedes, Jaguar-Land Rover, El Corte Inglés, Telefénica, Samsung, Coca
Cola Europa, Cola Cao, WiZink,...).

Inteligencia Artificial para Antropologia Forense e Identificacion Humana

Los métodos de identificacién forense basados en el esqueleto empleados por antropdlogos, odontélogos y patélo-
gos representan el primer paso en cualquier proceso de identificacién humana (ID) y la dltima oportunidad de
identificacion de la victima cuando no puede aplicarse el analisis de ADN o de huellas dactilares. Incluyen métodos
como la estimacién del perfil biolégico (BP), la radiografia comparativa (CR), la superposicién craneofacial (CFS) y
la comparacion de registros dentales. La BP implica el estudio de restos dseos para encontrar rasgos caracteristicos
(edad, sexo, estatura y ascendencia) que ayuden a determinar la identidad del individuo. Desempetia un papel
crucial en la reduccién del rango de coincidencias potenciales durante el proceso de ID, antes de la confirmacion
mediante una o mds técnicas de ID. La CR considera la comparacién ante-mortem (AM) y post-mortem (PM) de
diferentes huesos y cavidades (senos frontales del craneo, claviculas, rétulas,. ..) que han demostrado ser utiles para
la identificacién positiva por su individualidad y singularidad. La CFS tiene como objetivo superponer un craneo
con algunas imagenes AM de un candidato para determinar si corresponden a la misma persona.

Sin embargo, los profesionales todavia emplean un paradigma de observacién utilizando métodos subjetivos
introducidos hace muchas décadas basados en la descripcién oral y documentacion escrita de los hallazgos obteni-
dos y la comparacién manual y visual de los datos AM y PM. El diseno de métodos sistematicos, automaticos y
confiables para apoyar al antropdlogo forense en la aplicaciéon de BP, CFS y CR, evitando el uso de procedimientos
manuales subjetivos, propensos a errores y que consumen mucho tiempo, es una necesidad para mejorar la iden-
tificacion forense. El uso de inteligencia artificial, en particular inteligencia computacional (algoritmos evolutivos,
conjuntos difusos y aprendizaje profundo), visién por ordenador (registrado de imdgenes 3D-2D y procesamiento de
imdgenes) y aprendizaje automaético explicable es una forma muy adecuada para lograr este objetivo. En esta charla
presentaremos tres sistemas inteligentes para CFS, CR y estimacién de la edad de la muerte a partir del esqueleto,
desarrollados en colaboracion con el Laboratorio de Antropologia Fisica de la Universidad de Granada en el marco
de un proyecto de investigacion desarrollado en los tltimos quince anos. Uno de estos sistemas estd protegido por
una patente internacional explotada por Panacea Cooperative Research y estd comercializado en diferentes paises.
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Yaochu Jin
Universidad de Surrey, Reino Unido

Yaochu Jin se licencid, estudié y se doctoré en la Universidad de Zhejiang (Hangz-
hou, China) en 1988, 1991 y 1996, respectivamente, y obtuvo el titulo de ingeniero de
la Universidad del Ruhr (Bochum, Alemania) en 2001.

En la actualidad es profesor distinguido de Inteligencia Computacional en el Depar-
tamento de Informédtica de la Universidad de Surrey, Guildford, Reino Unido, donde
dirige el Grupo de Computacion e Ingenieria Inspirada en la Naturaleza. Ha sido “Fin-
land Distinguished Professor”de la Universidad de Jyvaskyla (Finlandia), “Changjiang
Distinguished Visiting Professor”de la Universidad de Northeastern (China) y “Distin-
guished Visiting Scholar”de la Universidad Tecnoldgica de Sydney (Australia). Recien-
temente, el Ministerio Federal de Educacion e Investigaciéon de Alemania le ha conce-
dido la “Cétedra Alexander von Humboldt de Inteligencia Artificial”. Sus principales
intereses de investigacién son la optimizacién evolutiva asistida por datos, el aprendi- ¢
zaje automatico fiable, el aprendizaje evolutivo multiobjetivo, la robdtica de enjambre y los sistemas evolutlvos de
desarrollo.

El Dr. Jin es actualmente editor jefe de IEEE Transactions on Cognitive and Developmental Systems y de
Complex & Intelligent Systems. Fue conferenciante distinguido del IEEE y vicepresidente de la Sociedad de Inteli-
gencia Computacional del IEEE. Ha recibido el premio al mejor articulo de 2018 y 2020 de IEEE Transactions on
Evolutionary Computation, el premio al mejor articulo de 2014, 2016 y 2019 de IEEE Computational Intelligence
Magazine y el premio al mejor articulo del Simposio de IEEE sobre Inteligencia Computacional en Bioinformatica
y Biologia Computacional de 2010. Estd reconocido como Investigador Altamente Citado en 2019 y 2020 por el
Grupo Web of Science. Es miembro de IEEE.

Optimizacion Evolutiva Basada en Datos

Muchos problemas de optimizacion del mundo real no tienen funciones objetivo analiticas y las evaluaciones
de los objetivos deben basarse en costosos calculos o experimentos fisicos. Estos problemas de optimizacion se
conocen como problemas de optimizaciéon basados en datos. Esta charla ofrece una visiéon general de la optimizacion
evolutiva asistida por datos de sistemas complejos. Comenzamos con una breve introduccién a las ideas bésicas de la
optimizacién evolutiva basada en datos, seguida de estrategias avanzadas de gestién de sustitutos que hacen uso de
técnicas avanzadas de aprendizaje automatico como el aprendizaje semisupervisado, el aprendizaje de transferencia
y el aprendizaje de conjunto. Se expondran ejemplos del mundo real, desde la optimizacion del diseno de ingenieria
hasta la bisqueda de arquitecturas neuronales.
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Multiple fuzzy Sugeno \-measures in networks.
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Abstract—In this paper we take up the community detection
problem based on fuzzy measures. We focus on the existence of
a family of vectors which define some additional information
about the individuals of a network, from which we obtain
multiple fuzzy Sugeno A\-measures. We introduce a new knowl-
edge representation model, which combines the information of
those fuzzy measures with a crisp graph: the multi-dimensional
extended vector fuzzy graph. We suggest a particular application
of it, devoted to the community detection problem. To solve
it, we define a method, based on the consideration of the
multi-dimensional weighted graph associated with multiple fuzzy
measures.

Index Terms—Fuzzy measure, Sugeno \-measure, Community
detection problem, Extended vector fuzzy graph, Weighted graph
associated with a fuzzy measure

I. INTRODUCTION

The community detection problem is one of the most important
topics in the field of Social Networks Analytics (SNA). Clas-
sical methods have their basis on the structure of the graph,
an assumption which has provided good results. Nevertheless,
in the last years, some authors have agreed on the impor-
tance of adding some additional information apart from the
graph when dealing with SNA problems, particularly, when
finding communities in a network. Different approaches can
be found. Particularly, Gutierrez et al. have been working in
the incorporation of some additional information modeled by
fuzzy measures to enrich the process [1]-[3].

We take up the idea introduced in [4] of finding com-
munities by considering the additional information modeled
by a vector, for example, the ratings of a film given by a
group of people connected among them. Several synergies
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among individuals may appear from the ratings, modeled by a
fuzzy Sugeno A—measure [5], [6], so the community structure
may be affected. Draw from this initial assumption, now we
suggest the management of multiple vectors. For example,
imagine each vector represents the interest of a group of people
regarding an activity, so that one vector is about sports, another
about music or literature, and so on. From these interests, there
may appear different synergies among the people, which will
be represented by a multi-dimensional family of fuzzy Sugeno
A-measures, obtained from mentioned vectors. To handle these
fuzzy Sugeno A-measures, it is defined the multi-dimensional
weighted graph associated with them (vector MAGW). It
represents the synergies among individuals regarding the infor-
mation given by the vectors. This tool has a many application
in any SNA problem. Particularly, we will use it to address a
community detection problem with additional information.

On the other hand, as a generalization of the extended vector
fuzzy graph [4], we define the multi-dimensional extended
vector fuzzy graph (MEVFG), which combines the knowledge
of a crisp graph with that of multiple fuzzy Sugeno A-measures
obtained from vectors. On its basis, we approach a community
detection problem based on fuzzy measures. We define an
algorithm inspired by the Louvain method. It is based on
modularity optimization [7] and local moving [8]. We also
propose a specification of it to deal with 1-additive measures,
situation in which the proposed algorithm is polynomial-time
complexity.

The remainder of the paper is organized as follows. In
Section II we provide several useful definitions which will be
used later. Then, in Section III we address an scenario in which
there are multiple fuzzy measures defining some information
about a graph. The starting point is the existence of a family
of vectors, each of which defines an evidence about the
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individuals of the graph, i.e. the nodes. After that, we propose a
particular application of the multi-dimensional extended vector
fuzzy graph devoted to the community detection in Section IV.
We conclude the work in Section V with some conclusions and
future research lines.

II. PRELIMINARIES

In this section we show several definitions which set the
basis of this paper. We start with the definition of a graph
or network, a tool which set the basis of this work.

Definition 1. Graph / Network [9].

A graph or network is a pair G = (V,E) where V =
{1,2,...,n} is a set of individuals named nodes or vertices,
and E = {{i,4} | ¢,j € V} is a non ordered set of pairs of
nodes, named edges or arcs.

Another way to characterize a graph is by means of its ad-
jacency matrix. This matrix, usually denoted by A, represents
the direct connections between the nodes, in the sense that
A;; =1if {i,j} € E, and A;; = 0, otherwise.

On the other hand, we will consider non-weighted graphs,
(and edge exists or not, so A;; = 1 or A;; = 0), and weighted
graphs. In this case, there is a weight function defined on the
set of edges, w : ' — R, so there is a weight or value assigned
to each edge. In this scenario, A;; = w;;, where w;j is the
weight of the edge {i,j} € E.

Besides the graphs, the cornerstone of this paper is the
use of fuzzy Sugeno A-measures [4], functions to which we
force to be fuzzy measures [6] and Sugeno A-measures [5].
Particularly, we focus on this type of functions when they are
obtained from a vector.

Definition 2. Fuzzy Sugeno M\-measure obtained from a
vector (lix,p) [4].

Let x = (x1,...,x,) denote a vector defining any evidence
about the elements of the n-set V, where x; > 0 Vi. Let p €
(0,1] denote a parameter. The function fiyp is fuzzy Sugeno
A\-measure obtained from a vector, and it is characterized as
follows:

an
ﬂz,p(A UB) = ﬂr,p(A) + /Ll‘,p(B) + )‘/lz-,p(A),“z,p(B)’
VA,B CV, with AN B = () and
A+ 1 =TT (4 Ma p (9))

To simplify the visualization and understanding of the
relations defined by . ;,,, we will suggest the definition of the
weighted graph associated with it. To characterize this graph,
we consider the Shapley value. It is an essential tool in the

frame of Game Theory which was also adapted to the fuzzy
measures background.

Definition 3. Shapley value [10].

Let p1: 2V — [0,1] denote a fuzzy measure, where |V| = n.
For every ¢ € V its Shapley index is calculated as:

$ w (WK U{i}) — u(K))

KCV\{i}

Shi (p) =

The Shapley value of the fuzzy measure p : P(V) — [0, 1]
is defined by the vector Sh (i) = (Shy (1), ..., Shy (1)).

Hence, on the basis of the Shapely value and considering an
aggregation operator, we recall the concept of weighted graph
associated with a fuzzy measure [11], adapted for the scenario
in which the fuzzy measure is obtained from a vector [4]. This
graph is a tool which represents the synergies and relations
between every pair of elements of the set 1/, according to the
knowledge modeled by iz p.

Definition 4. Weighted graph associated with jix ,,G,,,
(AWG of vector) [4].

Let V denote a n-set, and let x denote a n-vector defining
any evidence about the elements of V. Let u,, denote the
fuzzy Sugeno \-measure obtained from x. The weighted graph
associated with (i, G, ., (AWG of vector) is that whose
adjacency matrix is:

Xig = & (Shilstap) =SB (ta.p), Shyhtay) — SH (1) )
ey
being ¢ : [—1,11> — [0,1] a bi-variate aggregation
operator [12]; Sh;(uz,p) and Sh)(us,) the Shapley values
of © on p, when it is in a coalition with all the elements of V
or V\{j}, respectively [10].

For every pair of elements of V', the AWG represents how
each individual is affected by the absence of the other in a
coalition regarding (i p.

The calculation of the Shapely value may be hard for
general fuzzy measures; nevertheless it is much easier for
additive fuzzy measures. In [4] it was demonstrated that p,
is a fuzzy Sugeno A-measure. Particularly, when p = 1, it is
1-additive [13] (denoted by p2). To facilitate the calculation of
the Shapley value when defining the weighted graph associated
with p, ,, we focus on this scenario.

To end this section, we present another tool which plays
an essential role to address the community detection problem
based on fuzzy measures is the extended fuzzy graph, firstly
introduced in [11] and then adapted to the particular case of
fuzzy Sugeno A-measures in [4].
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Definition 5. Extended vector fuzzy graph (EVFG) [4].

Let G = (V,E) denote a crisp graph and let © denote a
vector, so that [y, is the fuzzy Sugeno A\-measure obtained
from z. The triplet éz = (V,E, jisp) is an extended vector
fuzzy graph, (EVFG).

III. MULTIPLE FUZZY SUGENO A- MEASURES IN A GRAPH

In the framework of networks analysis, we assume the ex-
istence of several information sources about the nodes of the
graphs, given by a family of vectors, (azl, ey 30’“), so that each
of them defines (independently) an evidence about the indi-
viduals of a set. From these family of vectors, we characterize
the fuzzy Sugeno A-measures [4] pip1 p1, ..., fher pr.

For a proper understanding and visualization of these fuzzy
measures, we suggest the definition of the corresponding
multi-dimensional weighted graph associated with them. It is
a generalization to a multi-dimensional scale of the weighted
graph associated with a fuzzy Sugeno A-measure obtained
from a vector (AWG of vector).

Definition 6. Multi-dimensional weighted graph associated
with a family of fuzzy Sugeno \-measures (vector MAWG).

Let (ml, e ,acT) denote a family of vectors; each one defines
an evidence about the elements of a set V with |V| = n.
(’walvpl, e 'Ll,xr’p'r‘) denote the fuzzy Sugeno A-measures ob-

tained from these vectors. The multi-dimensional weighted
graph associated with ({1 1, ..., igr pr) is that whose ad-
Jjacency matrices are (Xl, e ,XT), being X' the adjacency
matrix of the AWG of piye e, where, V0= 1,...,r,Vi,j €V,

Xty = 0" (Shilitge o) =SB (gt ) Shy (e o) = S (10 p0) )

(@)
being ¢ : [—1,1]> — [0,1] a bi-variate aggregation operator
[12]; Shi(pap) and Shl(uy,p) the Shapley indices of i on i,
when it is in a coalition with all the elements of V or V\{j},
respectively [10].

Then, we define a knowledge representation model which
combines the information provided by a crisp graph with some
additional information independent of its structure which is
modeled by some vectors.

Definition 7. Multi-dimensional extended vector fuzzy graph
(MEVFG).

Let G = (V, E) denote a crisp graph, and let (acl, . ,a:r)
denote a family of vectors so that each of them defines any
evidence about the elements of V. Let (/LmlJ,l, .. ‘7/,Lmr7p7‘)
denote the family of fuzzy Sugeno \-measures obtained from
vectors (xl, e 7ac7'). Then, G = (V, E (ﬂml’p17 e ,Mzr,pr))
is a multi-dimensional extended vector fuzzy graph, (MEVFG).

Let us note that the MEVFG goes further than other existent
tool: it allows the characterization of several synergies among
the individuals, regardless their connections in the crisp graph.
Furthermore, due to the properties of the fuzzy Sugeno A-
measures, some relations between elements can be inferred
from the knowledge about some individual evidence.

IV. COMMUNITY DETECTION PROBLEM IN A
MULTI-DIMENSIONAL EXTENDED VECTOR FUZZY GRAPH

The MEVFG has numerous applications. In this paper we take
up the idea introduced in [4] related to community detection
in graphs according to the existence of a fuzzy Sugeno A-
measure. Now we work with the multi-dimensional extended
vector fuzzy graph G = (V, E, (pz1 p1, - - ., Har pr ) ) Obtained
from the combination of a crisp graph G = (V,E) and a
family of vectors (z',...,") defining additional information
about the elements of V, from which we define the fuzzy
Sugeno A—measures (uz1’p1, e ,uxrypT). We agree that, the
more information is analyzed, the more cohesive and realistic
are the groups detected.

The proposed methodology, named Multi-dimensional
Sugeno Louvain, is based on the Louvain Algorithm [14]. The
main point of our algorithm is to summarize all the knowledge
of the MEVFG into two matrices: the adjacency matrix of the
crisp graph, A, represents the direct connections between the
nodes (edges), and X summarizes the additional information
given by the family of vectors (z!,...,2").

« Step 1: definition of the vector MAWG. Given the fuzzy
Sugeno A-measures (,Lézl,pl, RN N'ac"',p") obtained from
(«',...2"), matrices (X',..., X") have to be defined
according to equation (2).

o Step 2: information aggregation. Matrices X!, ... X"
are aggregated to obtain the matrix X. The aggregation
function ® : II" — II is used, being II the set of
quadratic n-matrices. Particularly, we suggest the use
of a matrix aggregator based on the classical aggrega-
tion operators with “element to element” transformation:
X=o (X' ..., X").

After this aggregation process, the method Duo Louvain,
summarized by its pseudo-code in the Algorithm 1, has to
be applied (see [15], [16] for more details), considering the
matrix M = 6(A,X), being # : TI> — II an aggregation
function. That method can consider the information of two
matrices when finding communities in a graph (A is used to
find “feasible” communities, and any other matrix to calculate
the maximum of modularity). Note that the notion of group
and its size depend on the operator ¢ considered [16]. The
new community detection method defined to find groups in a
multi-dimensional extended vector fuzzy graph is summarized
in the Algorithm 2 and it is named Multi-dimensional Sugeno-
Louvain.
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Algorithm 1 Duo Louvain

Algorithm 2 Multi-dimensional Sugeno-Louvain

1: Input: (A, M),

: Output: P;

: Preliminary

C; «+ {i},Vi € V' (echnode i is an isolated community);

P+ (1,2,...,n) (initial partition);

: end Preliminary

Phase 1

: Take 0 = (o',...,0%,...

. stop «+ 0;

: while (stop == 0) do

stop + 1

for (i =1) to (n) do
(e1,...,en) < H(0")
A);

14: for (j =1) to (h) do

15: Calculate AQ,i(e;) in M;

16: end for

m e {e 1 8Qu() =
18: if (AQ,i(5*) > 0) then

;o) em(V);

—_ = = =
W NN = O

(find the neighbours of o’ in

By 12Qu o}

19: Cp(oi) — Cp(oi)\{Oi};
20: Cp(j*) — Cp(j*) @] {Oi};
21: P (0') « P (j*);

22: stop + 0;

23: end if

24:  end for

25: end while

26: end Phase 1

27: Phase 2

28: Calculate A* from A (nodes of A* are the communities
previously found in A);

29: Calculate M* from M (nodes of M™ are the communities
previously found in M);

30: if (A* # A) then

31 A<+ A%,

32: M+ M*,

33:  Apply Phase 1 and Phase 2;
34: end if

35: end Phase 2
36: return(P);

1: Input: (A, ( xl,...,x’”) , ( pl, ...

G=(V,E);

Output: P;

Preliminary

for ({ =1) to (r) do
Calculate pize e (fuzzy Sugeno A-measure from zb);
X5 8 (Shilkye o) = Sk Gupe ) Shy (e ) =SB (e o) )
Vi,j €V

end for

8 X+ @ (X!, X");

9 M <+ 0 (A,X);

10: end Preliminary

11: P < Duo Louvain(A, M);

12: return(P);

,p")), A represents

AR i

.

The exponential complexity concerning the Shapley value
may be avoid by considering additive fuzzy measure.
Then, we suggest a specific application of the Multi-
dimensional Sugeno-Louvain Algorithm, named [-additive
Multi-dimensional Sugeno Louvain, which involves a par-
ticular 1-additive characterization of jie ¢, denoted by
pge- On this basis, the calculation of the Shapley in-

dex is immediate from vector z* as follows: Sh;(u%,) =

£ . 4 a IZ,,; .
ﬁ and Shi(u%,) = ST Then, the complexity

of the method I-additive Multi—%rjnensional Sugeno-Louvain
(its pseudo-code is showed in Algorithm 3), whose only
difference with respect to the Multidimensional-dimensional
Sugeno-Louvain is the calculation of X* (line 6) in pseudo-
code is equal to the Louvain Algorithm.

Algorithm 3 [-additive Multi-dimensional Sugeno Louvain
1: Input: (A, (xl, N

,xr)), A is a representation of G =

(V. E);
2: Output: P;
3: Preliminary
4 for ({ =1) to gr) do ) , ,
YoM edlgm g st s s
k#j ki

6: end for

7 X @ (X .. X");

8 M+ 6 (A,X);

9: end Preliminary

10: P < Duo Louvain(A, M);
11: return(P);
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Example 1.

We consider graph G = (V, E) whose nodes are connected as
a chain of size 12, as it can be seen in matrix A.

o 1 0 0 0 0 0O 0O O O O O
1 0 1.0 000 0 0 0 0 O
o1 0 1 0 0 0 0 O O 0 O
00 1 01 0 0 0 O0O0O0O0
00 0 1 01 0 0 0 O0O0O0
A= o o0 0 01 0 1 0 O O 0 O
o o0 0 0 0 1 0 1 0 0 0 O
o o0 0 0 0 0 1 0 1 0 0 O
o0 0 0 0 0 0O 1 0 1 00
o 0 0 0 0 0 0 0O 1 0 1 O
o 0 0 0 0 0 0 0 0 1 0 1
o 0 0 0 0 0 0 0 0 O 1 O
Fig. 1. Adjacency matrix of graph G = (V, E)

There exist 4 vectors of additional information,
some evidences about the elements of 'V,

defining

e 21 =(9,9.5,10,1,0.5,1,9.5,8,10,1,1.5,1)

e 72 =(10,9.5,9,1,0.5,1,9,9,9.5,1.5,2,0.5)

e 23=(9.5,8.5,10,1.5,1,1,10,9.5,9.5,0.9,1,1)
e 24 =1(9,9.5,10,1,1,1,10,9.5,9,0.5,1,1)

Each vector represents the opinion (ratings) of 12 people
about a films.

From vectors (z',2? 2% 2%), we define the family of
1—additive fuzzy Sugeno A\—measures (ugl,ugz,uzg,u;4).
The adjacency matrices of the corresponding vector MAWG
are (X1, X2, X3, X*), showed in the Figure 2.

there are more synergies between
those people who have similar preferences. Any
classical community detection algorithm based
on modularity  optimization provides the partition
P = {{1,2,3,4},{5,6,7,8},{9,10,11,12}}. Nevertheless,
if the additional information is considered, the partition
provided by the Multi-dimensional Sugeno-Louvain 1-additive
is P* = {{1,2,3},{4,5,6},{7,8,9},{10,11,12}}, which
respect the synergies between the elements (showed in
matrices X', X% X3, X%, whose highest values are bold),
as well as the structure of the crisp graph established by the
edges.

We accept that

260 274 260 215 274
260 292 277 227 292
274 292 292 239 310
Xl=_1_
w00 [ 260 277 292 227 292
215 227 239 227 239
274 292 310 292 239
287 269 269 269 287
287 256 256 256 272
269 256 242 242 256
Ko 1 26
10000 [ 269 256 242 242 256
269 256 242 242 256
287 272 256 256 256
232 278 278 264 264
232 244 244 232 232
278 244 295 278 278
X3 = 1
10000 278 244 295 278 278
264 232 278 278 264
264 232 278 278 264
256 269 269 256 242
256 287 287 272 256
269 287 305 287 269
x4 _1
10000 {269 287 305 287 269
256 272 287 287 256
242 256 269 269 256

Fig. 2. Adjacency of the vector MAGW of (#;1 K2y M3, ,u;4)

V. CONCLUSIONS

In this paper we address a new perception of the community
detection problem in networks. In a multi-dimensional scale,
we suggest the inclusion of some additional information de-
fined by a family of vectors to the process of finding groups in
a crisp graph. We assert that, the more information is analyzed,
the more realistic the results obtained.

In the particular context of fuzzy Sugeno A-measures, we
introduce two new tools which facilitates the handling of a
family of them. The first one is the multi-dimensional weighted
graph associated with multiple fuzzy Sugeno A-measures, a
representation tool which shows the synergies between every
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pair of elements regarding the knowledge modeled by the
measures considered.

On the other hand, for an scenario modeled by a crisp
graph G = (V,E), about whose nodes there is some
additional information defined by vectors (xl, . ,xr), we
define the multi-dimensional extended vector fuzzy graph
G = (V, E, (‘ltwlwl, e /,I/wr’p'r‘>), being (ux17p1, ooy P pr
the fuzzy Sugeno A-measures obtained from those vectors [4].

On the basis of this tool, we approach the community
detection problem based on multiple fuzzy measures. We
define a new algorithm, Multi-dimensional Sugeno Louvain,
which has two main points: (1) an aggregation process to
summarize all the knowledge modeled by G into two matrices;
(2) the application of the Duo Louvain Algorithm. We suggest
a particular application of that algorithm to use 1-additive
fuzzy measures, so that the calculation of the Shapley value
is immediate. So, we can affirm that the complexity of the
1-additive Multi-dimensional Sugeno Louvain Algorithm is
equal to the Louvain Algorithm.

At the moment, we are currently working on the evaluation
and testing of the proposed methodology. To carry on with it,
we will differentiate two different steps. The first one, will
be devoted to the consideration of synthetic networks. We
will apply our algorithm in several benchmark models [17],
then we will consider the Normalized Mutual Information
(NMI) [18] to evaluate the results obtained. After that, we
will work with some real cases. We are particularly interested
in analyzing the data obtained from Social Networks, such as
Twitter or Facebook.

The testing process is still in early stage, but the preliminary
results we have obtained are very promising on the goodness
of the proposed method.
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Resumen—Los algoritmos de clasificacion actuales han alcan-
zado una gran popularidad debido a su eficiencia para generar
modelos capaces de resolver problemas de alta complejidad. En
particular, son los algoritmos denominados de caja negra los
que mejores resultados ofrecen, ya que se benefician de esta
enorme cantidad de datos para aprender modelos cada vez mas
precisos. Sin embargo, su principal desventaja frente a otros
algoritmos mas simples, p.e. un arbol de decision, es la pérdida
de interpretacion tanto del modelo como de las clasificaciones
individuales, lo que supone un grave inconveniente de cara a
muchas aplicaciones en las que proveer una explicacion es hoy
dia recomendable, e incluso obligatorio. Una practica habitual es
construir un modelo explicable que mimetice el comportamiento
del clasificador mas complejo en la zona circundante a la
instancia a explicar.

Sin embargo, la generacion de explicaciones en estos modelos
de caja blanca tampoco es trivial, lo que ha generado una intensa
investigacion en torno a ellos. Es habitual generar dos tipos de
explicaciones, factuales y contrafactuales, que se complementan
para informar al decisor por qué se ha clasificado la instancia en
una determinada clase o categoria. En este trabajo proponemos la
definicion de explicaciones factuales y contrafactuales en el marco
de los arboles de clasificacion difusos, en los que al contrario
de su contraparte crisp una instancia puede disparar mas de
una rama. Nuestra propuesta se centra en definir explicaciones
factuales que contienen mas de una regla, en contraposicion al
estandar habitual que se limita a incluir una inica regla en la
explicacion factual. Ademas, introducimos la idea de explicacion
factual robusta y la generacion de explicaciones contrafactuales
a partir de la clasificacion realizada y la explicacion factual
generada, que puede tener mas de una regla.

Index Terms—Inteligencia artificial explicable (XAI); Légica
difusa; Arboles de decision difusos; Explicaciones factuales;
Explicaciones contrafactuales; Robustez.

I. INTRODUCCION

La gran capacidad de decisién de los algoritmos modernos
de clasificacién ha originado un enorme incremento en la
variedad de campos en los que se estdn aplicando dichos
algoritmos. Problemas que hasta recientemente necesitaban
obligatoriamente la intervencién de un experto (o un sistema
experto, con la complejidad y especificidad que este requiere)
se estan resolviendo mediante la aplicacion de técnicas que se
aprovechan de la gran cantidad de datos que se pueden recoger
para aprender de manera automdtica un clasificador capaz de
resolver el problema.

Sin embargo, a pesar de que estos algoritmos estidn alcan-
zando cotas de precisién cada vez mds altas, lo hacen a costa
de la interpretabilidad final para el usuario. El razonamiento

que realizan estos sistemas es cada vez mds complejo, lo
que crea una necesidad de tener una creencia ciega en estos
sistemas. En ciertos dmbitos criticos, esta creencia ciega no es
suficiente para motivar el uso de este tipo de clasificadores.
Este hecho se ve también refrendado por la legislacion, p.e. el
derecho a la explicacion, incluido en la Regulacion General
de Proteccion de Datos aprobada por la Unién Europea [1],
que no solo afecta a humanos sino también a técnicas de
inteligencia artificial y sistemas informaticos.

Para atender las necesidades comentadas, surje la Inteli-
gencia Artifical Explicable (XAI), una linea de investigacion
en auge que se centra en explicar aquellos modelos y siste-
mas que por sus caracteristicas no resultan interpretables por
un usuario. Dado que normalmente este tipo de algoritmos,
denominados de caja negra, son los que mejores resultados
obtienen en los distintos problemas, es especialmente intere-
sante desarrollar sistemas capaces de explicar sus decisiones.
En este sentido, los métodos agndsticos [2]-[4] explican la
decisién realizada por un modelo complejo (habitualmente
de caja negra) mediante la construcciéon de un modelo mas
sencillo de explicar que mimetiza al modelo complejo en la
vecindad de la instancia cuya clasificacion debe ser explicada.

Sin embargo, incluso cuando se construyen modelos de caja
blanca, la generacién de la explicacion no es trivial, si no
que es habitual generar explicaciones de distinto tipo: que
indican por qué se ha clasificado en una determinada categoria
(explicaciones factuales) y que indican por qué no ha sido cla-
sificada en otra categoria (explicaciones contrafactuales) [5].
Existen distintas definiciones para este tipo de explicaciones
en funcién del formalismo utilizado: arboles de decision [4],
[6], regresion [2], clasificadores probabilisticos [7], [8], etc.

En este trabajo nos centramos en el uso de clasificadores
basados en drboles de clasificacion difusos [9], en los que al
contrario de sus homénimos crisp, una instancia puede dispa-
rar mas de una regla. Parece razonable que si p.e. dos reglas
difusas (extraidas del 4rbol) se disparan con similar grado
de importancia (activacién), ambas puedan ser usadas para
explicar la clasificacion, en lugar de seleccionar tnicamente
una de ellas. Partiendo de esta premisa nuestra contribucioén
en este articulo se centra en la definicién de explicaciones
factuales que puedan contener, en caso de necesidad, mas de
una regla difusa. A partir de estas definiciones planteamos el
concepto de robustez de una explicacién factual y la genera-
cién de explicaciones contrafactuales a partir de la instancia
a clasificar y la explicacion factual (posiblemente no unitaria)
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generada.

II. DEFINICION DEL PROBLEMA

Consideremos un problema de clasificacion supervisada,
que consiste en asignar una clase c¢; perteneciente a un
conjunto predefinido C' = {cy, ..., ¢y} a una instancia . Sea
esta instancia x = (x1,...,x,) una configuracién de valores

sobre n variables predictoras, X1, ..., Xn.
Asumamos que asociada a cada variable predictora X; hay
una variable difusa (lingiiistica) F; = {v;1...,v;, } definida

mediante una particion de Ruspini de k; conjuntos difusos
ordenados. Utilizaremos v; ; para referirnos indistintamente
tanto al conjunto difuso como a la etiqueta lingiiistica asociada
al mismo. Dado un valor ¢ € dom(X;), sea

1i(6) = (p,1(6)s s i k: (0))

el vector de grados de pertenencia de § a los k; conjuntos
difusos de F;. Notese que Z§=1 pij(6) = 1 (Figura 1).
Definimos

f(8) = arg méx 11,(9),

como el indice correspondiente al conjunto difuso al que &
tiene mayor grado de pertenencia. En concreto, y; ., (d) es el
grado de pertenencia del valor § en F; para el conjunto v; ., .

Muy Bajo Bajo Medio Alto Muy Alto
1

Vit Vi2 Vis Vis

Figura 1. Ejemplo de particion de Ruspini con 5 conjuntos difusos para
la variable i-ésima. Se muestran los conjuntos difusos v; ; y las etiquetas
lingiiisticas.

Por dltimo, sea T un arbol de decisiéon difuso aprendido
a partir de un conjunto de datos de entrenamiento T'R =
{(a1,...,2},¢7)}L,, donde N es el nimero de instancias
y ¢ € C es la clasificacion (categoria o clase) asociada a
cada instancia.

Nuestro objetivo es obtener una explicacién e = (Ry, R.y)
para la instancia x a partir de las reglas! que se extraen del
arbol T', donde R es una explicacién factual y R.; es una
explicacioén contrafactual.

III. ESTADO DEL ARTE

III-A.  Explicaciones factuales y contrafactuales para clasifi-
cadores difusos

En [6] se propone un método para generar explicaciones
factuales y contrafactuales a partir de drboles de decision
tanto crisp como difusos. En ambos casos la explicacién
factual contiene una Unica regla y se genera una explicacion
contrafactural por cada categoria distinta a la predicha como
clasificacion.

'De forma mds general se podria extender a un conjunto de reglas difusas.

A la hora de extraer los factuales, los autores consideran el
arbol como una serie de nodos unidos por aristas pesadas. En
un drbol crisp, la arista tendrd un peso binario, mientras que
en un arbol difuso tendrd un valor real entre 0 y 1 (segtin el
grado de activacién de la instancia con el nodo). Estos nodos
y aristas generan caminos desde la raiz hasta las hojas, cada
uno con un peso asociado segin el valor de las aristas que
lo compongan. Finalmente, para obtener el factual los autores
utilizan un a-corte en los caminos generados, de tal manera
que todos los caminos con un peso menor que « se eliminen.
Asi, garantizan que sélo existe un unico factual en un arbol
difuso, de igual manera que en el caso crisp existe un tnico
camino desde la raiz hasta la hoja que clasifica un ejemplo.

En cuanto a las explicaciones contrafactuales, existen m — 1
explicaciones donde m es el nimero de clases. En particular,
una explicacion contrafactual es un camino desde la raiz del
arbol hasta una hoja que tenga una clase distinta a la de la
instancia a explicar.

HI-B. Arboles de Decisién Difusos

En [9] se describe un método que primero genera de manera
automatica los conjuntos difusos que se utilizardn y poste-
riormente el proceso de aprendizaje del drbol usando dichos
conjuntos. En este trabajo consideramos los arboles producidos
por este algoritmo como clasificadores cuya inferencia se
pretende explicar.

Dado un arbol 7' ya entrenado, cada rama tiene la forma

bl [b] ALy [b] A+ ALy, [B] A B[D]

donde

= 4, es el niumero de literales en el antecedente de la regla
que se deriva de b.

w [;[b] : (Fy,v; ) es un literal compuesto por la variable
difusa F; y la etiqueta v; ,,, con 1 < z; < k;.

m Ab] : {1 = wi[b],ca = walb],. .., cm = wy[b]} es un
nodo hoja, donde se registra la importancia w;[b] para

m

cada clase en esta hoja, con ) ;" w;[b] = 1.

De cada rama b y cada clase ¢; con w;[b] > 0 obtenemos
una regla

T‘Z[b] : l“[b] N 112[1)] VANEEIWAN lzb[b] — Cq,

con peso asociado w(r;[b]) = w;[b].

Denotaremos como R(c;) el conjunto de todas las reglas
que se pueden extraer del arbol con consecuente c;.

Llamamos regla de peso maximo para la rama b a

r[b] = arg méx w; [b].

En caso de empate se elige una tnica regla de manera arbitraria
o aleatoria.

Al realizar la inferencia, una instancia z dispara p(z) >
1 reglas (posiblemente de distintas ramas). Denotemos por
R(z) = {ri(z),...,mp@)(x)} el conjunto de reglas dispa-
radas.

Se define el grado de emparejamiento de una regla r(x) €
R(x) compuesta por 4 literales I; : (F;,v; »,) con la instancia
x=(x1,...,%,) COMO
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md(r(x)) = min Wi,z (T4 AD AD(r.
(r(z)) i€{it, ib}( (z:)) _AD(rq(2)) >14+X A Mél‘f*)\
AD(rg11(x)) AD(rjy1(2)) 3)

Por otra parte, se define el grado de activacién AD(r(x))
de una instancia x para la regla r(x) € R(x) como

AD(r(z)) = md(r(z)) - w(r(z))

Dado un conjunto de reglas I'(x) C R(z), obtenemos la
clase asociada a I'(x) mediante el método weighted vote como

>
r(z) € I'(x)
c(r(z)) = ¢

AD(r(z)), (1)

c(I'(z)) = arg méx

con ¢(r(z)) la clase asociada a la regla r(x). En caso de empa-
te, este se rompe aleatoria o arbitrariamente. En particular, la
clase c¢(x) predicha por el conjunto de reglas R(x) se obtiene
como c¢(z) = ¢(R(x)).

IV. METODOLOGI{A

En este trabajo, proponemos una definicién de explica-
cién factual que expande las encontradas hasta ahora en la
literatura. Si bien las explicaciones factuales contienen una
Unica regla y esto es razonable en entornos crisp, en el caso
difuso es posible disparar mas de una regla con grados de
activacion similares, por lo que elegir tinicamente una de ellas
puede suponer una pérdida de informacién imporante en la
explicacion facilitada. Proponemos una serie de definiciones
que contemplan la posible inclusiéon de mas de una regla en
la explicacién factual.

IV-A. Explicaciones factuales

Las reglas factuales son aquellas que nos ayudan a explicar
la clasificacion de una instancia en una determinada categoria.
Dada una instancia x, y ¢(z) su clasificacion, sea R'(c(z)) el
subconjunto de reglas de peso mdximo en R(x) N R(c(x)),
es decir, las reglas de peso médximo activadas por x con
consecuente c¢(x). Entonces, se define un factual Ry(z) de
como un subconjunto de R'(c¢(x)) que explica la clasificaciéon
para la instancia z. Como caso particular, cuando R’'(c(x))
sOlo tiene una regla, esta serd el factual.

IV-Al. Definiciones de factual: Sea x una instancia, y
|R'(c(x))| = p'(x). Sean r1(x),r2(x), ... ,Tp () (z) los ele-
mentos de R’ (c(z)) que suponemos ordenados de mayor a me-
nor grado de activacién, es decir, AD(rq(z)) > AD(ro(z)) >
-+ > AD(rp (g)(x)). A continuacién proponemos tres formas
de obtener un factual de x:

» Definimos el factual asociado a la media, m-fact(z),

como el subconjunto Ry(x) = {ri(z),...,re(x)} for-
mado por las ¢ reglas de R'(c(z)) para las que se cumple

_ X AD(r ()

- P (z)

» Dado A\ € (0,1], definimos el factual asociado al -
cociente, c(\)-fact(x), como el subconjunto Ry(x) =
{ri(z),...,rq(x)} formado por las primeras g reglas de
R'(c¢(x)) para las que se cumple

AD(T](‘%.)) V) € {177Q} 2)

Vie{l,...,q—1}

= Dados A € (0,1] y 8 € (0,1], definimos el A-cociente
de masa minima S, ¢(\, 3)-fact(z), como una variante
de ¢(N)-fact(zx) en la que exigimos que el sumatorio de
todos los grados de activacién de las reglas en el factual
sea mayor que un umbral 8. Es decir, el subconjunto
Ry(x) ={ri(z),...,rq(x)} formado por las primeras ¢
reglas de R/(c(x)), para las que se cumple:

AD(rq(x))

— 2 >14+ N 4
AD(rga(ay) ~ AW

> AD(ry(z)) 2 8

IV-B.  Robustez de una explicacion factual

Sea
Ry(c;) ={r € R(z) : ¢(r) = ¢;} = R(z) N R(¢;),

el conjunto de reglas activadas por la instancia x con conse-
cuente ¢;. Definimos

Rj(z) = Ry(z)U U
i=1,...,m

¢i # c(x)

como el conjunto de reglas del factual y las disparadas por la
instancia para el resto de las clases (independientemente de
que sean 0 no de peso maximo).

Consideramos que un factual Ry(x) es robusto cuando:

c(Rj(z)) = c(Ry(x))

En la literatura, la mayoria de métodos consideran la expli-
cacion factual para c¢(z) como una tnica regla. Sin embargo,
existen casos en los que esto podria no resultar robusto si
el proceso de inferencia utiliza varias reglas para determinar
la clasificacién de la instancia. Este es otro motivo para la
definicion de explicaciones factuales que admitan mudltiples
reglas, aumentando asi la robustez de la explicacién.

Rx (Cz)

IV-C. Explicaciones contrafactuales

Una explicacion contrafactual para una instancia x es aque-
lla que nos muestra los cambios minimos que habria que
realizar a x para que cambie de clase. Se generard una explica-
cion contrafactual por cada clase alternativa. Proporcionamos
distintos métodos.

1. Contrafactual con respecto a la instancia x y una clase
¢ # c(x), Rey(z,¢). Dada una clase ¢ € C, denotaremos por
R’ (%) el conjunto de todas las reglas del drbol de peso maximo
y consecuente c.

Definimos la distancia de r a la instancia z como

dra) = > [(1ui,zi(wz-)) : w& 5)

FiEV(T)
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donde V (r) es el conjunto de variables difusas que aparecen
en la regla 7 y v; ,, el conjunto difuso asociado al literal de
la variable Fj en 7.

El factor (1 — p; »,(x;)) considera el grado de pertenencia
de la instancia a cada uno de esos conjuntos difusos, de tal
manera que no solo se tiene en cuenta la distancia al conjunto
sino también si z pertenece al mismo.

En cuanto al cociente ‘Z*]fcw’ tiene en cuenta la distancia
entre el indice del conjunto lviﬁzi del literal y el indice del
conjunto al que la instancia x tiene mayor grado de pertenencia
para la variable F;.

Definimos la explicacién contrafactual R.s(x,¢) como

arg TEHIRI’I(IE) d(r,x)
2. Contrafactual con respecto al factual R;(x) y una clase
¢ # c(z), Ref(z, Ry(x), ). Nuestro objetivo ahora es generar
una explicacién contrafactual que se diferencie lo minimo
posible de la explicacién factual, pero clasifique la instancia
T en c.

Comencemos definiendo la distancia entre una regla contra-
factual r y una regla p del factual R¢(z) con V(r) = V(p)
como

dractripn) = 3 [0 @) - E 2]
F,eV(r)
con vjz,. (resp. Ui,zpi) el conjunto difuso asociado al literal
de la variable F; en r (resp. p).

Por otra parte, dado S C V(r), denotamos por r*+ la
simplificacion de la regla r resultante de eliminar en el
antecedente los literales asociados a las variables que no
aparecen en el subconjunto S.

Definimos entonces la distancia entre r y Ry(z) =

[P+ pq} como
d(r,Re(x)) = Y [(1=md(p;(x))) - cf_dist(r, pj, )] (7)
pjERy ()
con

cf _dist(r, pj,x) =|V(r) UV (p;)| — [V(r) N V(p;)|+
dmle(rw(r)mv(pj)’ rliV(r)ﬂV(pj)’ z)

donde |V (r) U V(p;)| — |V (r) N V(p;)| es el nimero de
variables difusas diferentes entre las reglas r y p;

Es decir, d(r, Ry(x)) es la suma de la distancia contrafactual
cf_dist (Ecuacién 8) de r a cada p; € Ry(x), ponderadas
por el grado de emparejamiento md de estas reglas p; a la
instancia x. De este modo tendrd mas influencia una regla
contrafactual que esté muy cerca de la “mejor” regla del factual
que una que esté muy cerca de la “peor”).

Al calcular este tipo de distancias, se puede interpretar de
manera distinta qué significa “realizar el minimo nimero de
cambios”. Hay dos tipos de cambios diferenciados entre dos
reglas: una modificacién de una variable que ya existe; y una
adicion o substraccién de una variable que no existe. En este
trabajo, se le ha dado mds importancia a afiadir o eliminar
variables, haciendo que su contribucién a la distancia sea
mayor. El razonamiento detrds de esta decision es que dada
una regla, la modificacion de una variable que ya existe en la

regla es una menor perturbaciéon que considerar una variable
nueva, haciendo asi que la longitud de la regla se modifique.

Finalmente, definimos la explicacién contrafactual
Re¢(z, R¢(x),€) como

in d(r, Rs(z)).
arg min (r, Ry(x))

V. EIJEMPLO ILUSTRATIVO
V-A.
Para ilustrar los conceptos introducidos se ha entrenado
un arbol de decision difuso usando el método propuesto en
[9] para el conjunto de datos wine [10], definido median-
te 13 atributos numéricos y una clase con tres categorias
({type 0, type 1,type 2}. Para el ejemplo hemos seleccionado
una instancia que mostramos a continuacién indicando el
grado de pertenencia a las variables difusas aprendidas para
la construccién del arbol (se le han asignado etiquetas del
conjunto (Muy Bajo, Bajo, Medio, Alto, Muy Alto)). Por
claridad, solo se muestran las variables que aparecen en las
reglas disparadas y explicaciones generadas. Se usa el formato:
Fi : {“1)1"1”: ,Umi,l(xi)f o ,“Ui,ki”: ,uvi,k_l (ccz)} para los kz
conjuntos difusos de cada variable, y se muestran sélo las
variables que aparecen en las reglas por claridad:

Instancia a través del drbol difuso

flavanoids : {“muy bajo” : 0.14, “bajo” : 0.86,
“alto” : 0, “muy alto” : 0},

{“bajo” : 0.357, “medio” : 0.643,
“alto” : 0},

{“muy bajo’ : 0, “bajo” : 0.616,
“alto” : 0.384, “muy alto” : 0},

color_intensity :

alcohol :

hue : {“bajo” : 0.45, “medio” : 0.55,
“alto” : 0},
proanthocyanins : { “bajo” : 0.64, “medio” : 0.36,
“alto” : 0}
0d280/0d315 : {“bajo” : 0.274, “medio” : 0.726,
“alto” : 0}

class : type 2

V-B. Factual

Utilizando la Ecuacién 2 para obtener el factual Ry(z),
resultan cuatro reglas (consecuente = type 2):

r1:  (flavanoids bajo) A (color_intensity medio)A
(alcohol bajo) A (hue bajo), w(ri) =1
AD(r1(z)) = 0.45

ra:  (flavanoids bajo) A (color_intensity medio)A
(alcohol alto) A (proanthocyanins bajo), w(rs) =1
AD(r2(z)) = 0.38

r3: (flavanoids bajo) A (color_intensity bajo)A
(alcohol alto) A (0d280/0d315 medio), w(rs) = 1
AD(r3(z)) = 0.36

ra: (flavanoids bajo) A (color_intensity medio) A

(alcohol alto) N (proanthocyanins medio), w(rs) = 0.92

AD(ry(z)) = 0.33
Se muestra ademads el grado de activacién (Seccion III-B).
A modo de ejemplo, para r4 seria
AD(ra(z)) = md(ra(z)) - w(ra(z))
= min(0.86,0.643,0.384,0.36) - 0.92 = 0.33
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Podemos ver que las cuatro reglas son ciertamente parecidas
y con un grado de activacién similar. En funcién de una
ligera variacion de alcohol y color_intensity, la variable
que explicaria la clasificacion de la instancia cambia (hue,
proanthocyanins u 0d280/0d315).

Probablemente para el usuario sea més interesante tener esta
informacién mds completa que Unicamente la regla ;.

V-C. Robustez

Para comprobar la robustez del factual, el primer paso es
comprobar si existen reglas del arbol que se disparan para el
resto de clases (type 0 y/o type 1). En este caso, se disparan
suficientes reglas de la clase type 1 para alcanzar un grado de
activacion acumulado igual a 1.22. Este hecho provocaria que
si inicamente incluyéramos 11 como explicacion factual, dicho
factual no seria robusto. Sin embargo, el factual formado por
{r1,r2,73,74} si lo es puesto que Z?zl AD(r;(z)) = 1.52.

V-D. Contrafactual

Dado que el clasificador obtiene el valor type 2 para la
clase, pueden existir explicaciones contrafactuales para las
clases type 0 y type 1. Usaremos la segunda definicién
propuesta en la Seccién IV-C.

V-DI. Clase type 1: Consideramos todas las reglas de
peso maximo con consecuente type 1. Las dos mds cercanas
al factual en funcién de la distancia definida son:

re1 :(flavanoids bajo) A (color_intensity medio) A
(alcohol alto) A (proanthocyanins alto)
d('f’cl7 Rf(:c)) = 12.98

re2 :(flavanoids bajo) A (color_intensity medio) A
(alcohol muy alto) A (proanthocyanins alto)
d(re2, R (z)) = 14.68

De estas dos reglas, seria r.; el contrafactual para la clase

type 1.
V-D2. Clase type 0: Razonando igual, las dos reglas que

minimizan la distancia a la explicacién factual son
re1 :(flavanoids alto) A (alcohol muy alto)
d(re1, Ry(z)) = 24.18
re2 :( flavanoids muy alto) A (alcohol alto)
d(rcz, Rf(l’)) = 24.72

Igual que antes, 7.; serd el contrafactual para la clase type 0.

VI. EVALUACION
VI-A. Conjuntos de datos

Los experimentos se han realizado con los conjuntos de
datos iris [10], [11], wine [10], [12] y beer [13]. Los dos
primeros conjuntos de datos se utilizan cominmente en pro-
blemas de clasificacion y el tercero se ha usado en XAI [?].

VI-B. Metodologia experimental

Para cada conjunto de datos se ha entrenado un darbol
de decision difuso usando holdout como metodologia de
validacién (70 % entrenamiento y 30 % test). Asi, las instancias
cuya clasificacién debe ser explicada son las del conjunto de
test.

VI-C. Recursos computacionales

Todos los algoritmos han sido programados en Python 3.8,
debido a la potencia de librerias como scikit-learn [14] que
ayudan con el tratamiento de datos y las estructuras necesarias.
Para el algoritmo de aprendizaje del arbol de clasifiacién
y la definicién de las variables difusas se ha seguido [9],
en particular, la implementacion del arbol FMDT (Fuzzy
Multiway Decision Tree). Posteriormente, se han afiadido los
métodos necesarios para calcular las explicaciones factuales
y contrafactuales propuestas en este articulo. Para garantizar
la reproducibilidad de las pruebas realizadas, tanto el codigo
como (el acceso a) los datos se publicard en un repositorio
abierto en Github.

VI-D. Explicaciones factuales y robustez.

En la Tabla I se muestra informacién sobre las explicaciones
factuales obtenidas y su robustez. En el caso de los criterios
que dependen de umbrales (A, ) se han probado varios
valores. Las columnas de la tabla representan:

= Config: Método para obtener la explicacion factual (Sec-

cién IV-Al) y pardmetros utilizados.

= ¢ > 1: Proporcién de instancias (del conjunto de test)

para las que la explicacion factual incluye mds de una
regla.

= NR-Fact: Proporcién de instancias (del conjunto de test)

cuya explicacién no es robusta.

= Len: Longitud media de las explicaciones factuales (me-

dida en nimero de reglas).
Ademas, se calculan las siguientes constantes, que son inde-
pendientes del método considerado para generar la explicacion
factual:
= ExistCF: Proporcién de instancias (del conjunto de test)
para las que R(x) contiene reglas con consecuente dis-
tinto a la clase predicha (c(z)).

= NR-Rule: Proporcién de instancias (del conjunto de test)
para las que la explicacién factual inicamente por la regla
con mayor grado de activacién no es robusto.

Tabla I
EXPERIMENTOS SOBRE LA ROBUSTEZ
Iris  ExistCF: 0.6 NR-Rule: 0.13 Wine  ExistCF: 0.677  NR-Rule: 0.1 Beer  ExistCF: 0.625  NR-Rule: 0.1
Configuracion q>1 NR-Fact Len | g>1 NR-Fact Len | g>1 NR-Fact Len

m-fact(z) 0.2 0.06 122 | 0559 0.025 205 | 0475 0.1 158

;(,A?]'C“"“’) 006 0.06 11| 00508 0075 1033 | 0175 0.1 12

;(,A)'“f"”“’) 0.12 0.06 122 | 0237 0.025 1.644 | 0225 0.08 1325

0.06 0.06 L1 | 0.0508 0.075 1033 | 0188 0.1 1213

0.28 0.03 134 0.13 0 1.305 03 0.04 14

).
Fact(z)
8 0.12 0.06 122 | 0237 0.025 1644 | 0225 0085 1.325

A:0.25 8:0.5
<%, B)fact(z)

X025 8507 | 034 0.03 164 | 0254 0 1711 | 0325 0.04 1.475

En la Tabla I se puede observar que la media suele
ser el método que obtiene reglas mds largas, sin que ello
necesariamente implique que sean mds robustas. Los otros
dos métodos, que tienen en cuenta la similaridad entre las
reglas del factual, obtienen unas reglas algo mds cortas y
ademas suelen ser mas robustas. Ademas, en todas las bases
de datos se ve que existen mds reglas que no son robustas
a factuales, independientemente de cémo estén construidos.
Asi, se demuestra una necesidad de buscar esta robustez con
multiples reglas en el factual.
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VI-E. Explicaciones contrafactuales
Evaluaremos los siguientes pardmetros:
= Numero de contrafactuales (NumCF). El nimero de
posibles contrafactuales por clase. Un mayor niimero de
posibles contrafactuales representa un mayor factor de
ramificacién del arbol.

= Mejor distancia minima (BestMinDist). La distancia

del mejor contrafactual a la explicacion factual.

= Longitud del Contrafactual (CFLength). Calculada

como el nimero medio de literales que contiene el
contrafactual.

En la Tabla II se muestran estos datos para los distintos
métodos propuestos para calcular la explicacién contrafactual
(Configuracion (Config)). Se empleard una unica configura-
cion de pardmetros.

Tabla II
EXPERIMENTOS SOBRE LOS CONTRAFACTUALES.

Iris  NumCF: 3.73 Wine  NumCF: 3.73 Beer  NumCF: 9.37
Configuracion CFLen BestMinDist | CFLen BestMinDist | CFLen BestMinDist
CF de = 1.69 2.42 3.86 8.97 2.62 0.95
CF de m-fact(z) 1.53 0.391 2.61 1.93 2.203 0.721
gF 831”(’\” act(z) 1.53 0.339 279 0767 | 2.191 0.477
CF de c(X, B)-fact(x)
X:018:07 1.53 0.72 2.56 2.11 22 0.93

De los resultados podemos observar que en general los
contrafactuales que se extraen con respecto a la instancia
tienen una longitud ligeramente superior que lo generados
con respecto a la explicacién factual. Esto se debe a que al
estar la instancia definida sobre todos los atributos, no penaliza
necesariamente que la regla contrafactual tenga mads literales,
sino que tenga menor distancia a sus valores (conjuntos
difusos). Por otro lado, la gran diferencia de distancia entre los
contrafactuales m- fact y los contrafactuales c-fact se debe a
que las explicaciones factuales c-fact contienen mds reglas.
Al calcularse la distancia como la suma de la distancia a todas
las reglas del factual, cuanto mayor sea el factual (como se
observa en la Tabla I) mayor serd la distancia.

VII.

Partiendo de la hipdtesis de que en un entorno de ra-
zonamiento difuso generar explicaciones factuales con una
unica regla puede suponer una pérdidad de informacidn, se
han propuesto definiciones alternativas que permiten incluir
multiples reglas. Como se ha comprobado en los experimen-
tos, en la mayoria de los casos esto no es necesario, pero
si en un porcentaje nada despreciable. Se ha introducido
ademads el concepto de robustez para la explicacién factual,
comprobdndose en la evaluacién realizada la mejoria que en
este sentido supone introducir més de una regla (en los casos
mads inciertos). Finalmente se han propuesto definiciones de
explicacion contrafactual ligadas a las proporcionadas para las
explicaciones factuales.

Por tratarse de un primer trabajo en esta linea de investiga-
cién, es obvio que existen distintas vias de ampliacion, como
es su experimentacién/integracion en métodos agnosticos de
explicacion. Concretamente, pretendemos generalizar el estu-
dio presentado en [4] al caso de los arboles de clasifiacién

CONCLUSIONES Y TRABAJO FUTURO

difusos. Consideramos ademds de interés estudiar métodos
de simplificacién de las explicaciones factuales generadas, de
forma que estas sean lo mds compactas posible, mejorando asi
su comprension por parte de los usuarios.
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Comparando variabilidades de conjuntos aleatorios
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Resumen—Los conjuntos aleatorios son modelos de probabili-
dad destacados en Probabilidades Imprecisas. Un problema que
nos ocupa es el de establecer alguna decision en un ambiente
de incertidumbre. Aqui, los ordenes estocasticos juegan un
papel fundamental, ya que suponen técnicas de decision en este
contexto. En esta contribucién introducimos un nuevo orden
dispersivo para conjuntos aleatorios. Es decir, un método de
preferencia entre dos conjuntos aleatorios que esta basado en la
variabilidad de los elementos aleatorios. Ademas, estudiaremos
brevemente las propiedades mas destacadas que presenta este
orden.

Index Terms—conjunto aleatorio, orden dispersivo, decision
bajo imprecision

I. INTRODUCCION

Los 6rdenes estocdsticos son herramientas muy utiles en
Estadistica (véanse las referencias [4] y [6], por ejemplo).
Dentro de estos 6rdenes nos encontramos los 6rdenes disper-
sivos, que son aquellas herramientas que permiten comparar
dos elementos aleatorios en términos de sus variabilidades.

Asi, encontramos en primer lugar al orden dispersivo usual.

Definicion 1. [6, Sec. 3.B] Dadas dos variables univariantes
X e Y, el orden dispersivo usual elige X sobre Y si

Fxl(a) — FX'(B) < Fy'(a) — Fy 1 (B)

donde F'y Ly Fy Y denotan las funciones inversas continuas
por la derecha de las funciones de distribucion Fx y Fy de
X e Y, respectivamente.

El principal escollo que presenta esta técnica es su dificultad
para ser extendida a un punto aleatorio de un espacio métrico
arbitrario.

Por otro lado encontramos el orden dispersivo débil.

Definicion 2. [2] Dados dos puntos aleatorios X e Y de un
espacio métrico (M, d), diremos que X es preferido a Y en
el orden dispersivo débil si se satisface

P{d(X,X) <r} <P{d(Y,Y') <r}

Este trabajo ha sido parcialmente financiado por el proyecto PGC2018-
098623-B-100 del Ministerio de Ciencia, Innovacién y Universidades. Los
autores quieren agradecer dicha financiacién.

Susana Montes
Departamento de Estadistica e 1.0. y D.M.
Universidad de Oviedo
Oviedo, Espana
montes @uniovi.es

para todo r > 0, donde X' e Y' son puntos aleatorios
idénticamente distribuidos a X e Y, respectivamente y P
denota la medida de probabilidad subyacente.

Una dificultad que presenta esta otra técnica es que no
produce comparacion en numerosas ocasiones.

Otros 6rdenes dispersivos se basan en contracciones. Sin
embargo, tales aplicaciones pueden no tener sentido para
algunas clases de espacios topolégicos (véase [5]).

Finalmente nos encontramos con el orden dispersivo por
bolas.

Definicion 3. [5] Dados dos puntos aleatorios X e Y de un
espacio métrico (M, d), se dice que X es preferido a Y en
el orden dispersivo por bolas si para todo punto p existe otro
punto q tal que

P{X €B,(r)} >P{Y € B,(r)}

se satisface para todo r > 0, donde B, (r) denota la bola
(cerrada) de centro x y radio r.

Podemos interpretar este orden diciendo que, para todo
punto p, la distribucién de d(Y,p) estd mds dispersa que
la distribucién de d(X,q) para algin punto ¢. Es decir,
controlamos la variabilidad de los puntos aleatorios a través de
bolas geométricas. Esta dltima técnica tiene la gran ventaja de
ser lo suficientemente maleable como para poder extenderse a
otros esquemas de trabajo.

Por otro lado, conviene notar que en numerosas ocasiones la
informacion disponible es difusa, vaga o imprecisa en general.
Este es el punto de partida de lo que se ha convenido en
llamar teoria de Probabilidades Imprecisas (véase [7]). En
lineas generales, esta rama de la Estadistica estudia modelos
de probabilidad bajo imprecision e incertidumbre. En este es-
quema de trabajo, los conjuntos aleatorios, en su interpretacion
disyuntiva u dntica, son modelos destacados de probabilidades
imprecisas (véase [1]).

En este contexto, necesitamos alguna herramienta que nos
permita elegir como preferido un conjunto aleatorio frente a
otro en términos de sus variabilidades. En esta contribucion
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presentaremos un orden dispersivo nuevo para conjuntos
aleatorios. Este orden dispersivo estd basado en una com-
paracién de las funciones de plausibilidad de los conjuntos
aleatorios, con lo que se puede entender como una extension
del orden dispersivo por bolas anteriormente comentado.

Recuérdese que la funcién de plausibilidad caracteriza al
conjunto aleatorio, tal y como se recoge en el celebrado
teorema de Choquet (véase [3] y las referencias alli citadas).
En este sentido contemplamos la informacién estadistica que
poseen los conjuntos aleatorios a comparar.

II. UN NUEVO ORDEN DISPERSIVO PARA CONJUNTOS
ALEATORIOS

Recordamos en primer lugar la nocién de conjunto aleatorio
cerrado. Para ello, comencemos fijando un espacio topolégico
Hausdorff, segundo-contable y localmente compacto M, al
que le dotaremos de una distancia d. La distancia nos permite
considerar las bolas (geométricas); asi, denotaremos por B, (1)
a la bola de centro p y radio 7. Al mismo tiempo denotemos
a la clase de conjuntos cerrados de M por F.

Definicion 4. [3] Un Aconjunto aleatorio (cerrado) X sobre
M es una aplicacion X : (Q,0,P) — F tal que

{weQ:X(w)ﬂK#(B}EJ

donde K es un conjunto compacto de My (,0,P) es un
espacio de probabilidad completo.

De la definicion anterior se deduce inmediatamente
que estd bien definida la aplicacion Plg que
asocia a cada compacto K de M la probabilidad
Plg (K) = P{w eN: X(w)NK # (Z)}. Esta aplicacion se
llama funcion de plausibilidad (del conjunto aleatorio).

El celebrado resultado de Choquet establece que todo
conjunto aleatorio queda caracterizado por su funcién de
plausibilidad (véase [3]).

En este trabajo estamos interesados en obtener una técnica
de comparacién entre dos conjuntos aleatorios en términos
dispersivos. Para tal fin, extenderemos en este sentido el orden
dispersivo que se da en [5] para puntos aleatorios.

Definicion 5. Sean X e Y dos _conjuntos aleatorios de M.
Diremos que X es preferido a Y en el orden dispersivo de
plausibilidad si para todo punto p existe otro punto q tal que

Plg (By(r)) = Ply (Bp(r)) (D

se satisface para todo v > 0, donde Plg y Ply denotan las
funciones de plausibilidad de X e Y, respectivamente.

Es claro observar que el orden introducido solo tiene en
cuenta el grado de dispersiéon de los conjuntos aleatorios.
De hecho, recoge la informacién acerca de como se aleja el

conjunto aleatorio respecto de puntos. Si un conjunto aleatorio
es preferido a otro, entonces podemos decir que, en algin
sentido, se acerca mas a un punto el primero que el segundo.

Las propiedades mds destacables de esta nueva técnica se
recogen a continuacién. Antes de ello, recordemos el concepto
de isometria, que generaliza a las traslaciones y rotaciones de
un espacio euclideo. Dado un espacio métrico (M, d), una
isometria ¢ es una aplicacién ¢ : M — M biyectiva que
conserva distancias, es decir, que para cualesquiera puntos
Py ¢ se tiene: d(p,q) = d(¢(p), #(¢)). Dado un conjunto
aleatorio X definimos el conjunto aleatorio ¢ o X como:
(gbo)?) (w) gzﬁ()?(w)) para todo w del espacio de
probabilidad subyacente.

Proposicion 1. El orden dispersivo de plausibilidad presenta

las siguientes propiedades:

(a) Es transitivo. De forma mds precisa, sean XY y 7 tres
conjuntos aleatorios de M. Si X es preferido a YeY
es preferido a Z, entonces X es preferido a Z.

(b) Es reflexivo y, por tanto, un preorden, pero no es un
orden.

(c) Es compatible con isometrias. De forma mds precisa,
sea ¢ una_isometria de (M,d). Entonces, el conjunto
aleatorio X es preferido al_conjunto aleatorio Y si y
solo si (bOX es preferido a Y si y solo si X es preferido
aopo Y.

Idea de la demostracion.- Para demostrar este resultado hay
que tener en cuenta:

(a) La propiedad de transitividad se obtiene a partir de la
transitividad que se hereda de la comparacién de las
correspondientes funciones de plausibilidad, y haciendo
uso de las definiciones.

(b) Es trivial que es reflexivo, sin mds que considerar como
g el valor de p. Sin embargo se pueden encontrar dos
conjuntos aleatorios distintos tales que cualquiera de los
dos sea preferido al otro.

(c) Se puede deducir a partir del siguiente hecho:

Ply,z By(r) = P{w ¢ o X (w)NB,(r) £ (z)}:
P{w:gt (60 X(w) NBy(r)) £0} =

P w:)?( YN ¢t oIB%()#@}

Plw: X(w w) NBy-1,)(r) # }
Ply.g (Bdfl(p) (7’)>

En este sentido, la isometria ¢ conserva la funcién de
plausibilidad.

Por un lado, la propiedad de transitividad es una propiedad
muy importante que un buen orden debe presentar. Por otro
lado, que el orden sea compatible con las isometrias estd
asociado a su cardcter de ser un orden dispersivo, puesto
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que no tiene en cuenta “posiciones” del conjunto aleatorio,
sino como puede alejarse o acercarse a un punto dado. De
hecho, recuérdese que el concepto de isometria generaliza
propiamente al grupo de traslaciones y rotaciones de un
espacio euclideo. En particular, esta propiedad indica que
el orden es invariante frente a estas transformaciones de un
espacio euclideo.

El orden que estamos introduciendo ha de proveer argu-
mentos logicos y de peso para el/la decisor/a. A continuacién
daremos un argumento para tal fin.

Dado que estamos trabajando en términos de probabilidades
imprecisas, el conjunto aleatorio se puede interpretar como un
modelo que engloba un conjunto de modelos de probabilidad
exacta. En concreto, una selecciéon no es sino un modelo de
probabilidad exacto que es compatible con la informacién dada
por el conjunto aleatorio, tal como se deduce de la siguiente
definicién.

Qeﬁnicién 6. [3] Una seleccion X de un conjunto aleatorio
X sobre (M, d) es un punto aleatorio de M tal que X (w) €
X (w) casi seguro.

Podemos dar el siguiente resultado, que se particulariza para
conjuntos aleatorios discretos (en esta contribucién, aquellos
cuyo espacio de probabilidad es discreto, por definicion).

Teorema 1. Sean X e Y dos conjuntos aleatorios discretos
sobre (M,d). Si X es preferido a Y en el orden dispersivo
de plausibilidad, entonces para todo punto p y para toda
seleccion 'Y de A? podemos encontrar un punto ¢ y una
seleccion X de X tal que

E[d*(Y,p)] > E[d*(X, q)]-

En particular, para toda seleccion de Y se puede encontrar
una seleccion de X con menor o igual varianza.

Idea de la demostracion.- Por reduccién al absurdo.
Asumamos que existe un punto p’ y una seleccién Y’ de
Y tales que E[d2(Y’,p')] > E[d*(X,q)] se satisface para
todo punto ¢ y seleccién X de X. Esto implica que ex-
iste un real no-negativo r para el cual P{d(Y’,p’) <r} >
P{d(X,q)} se satisface para todo punto ¢ y seleccién X
de X. Notese que la funcién de plausibilidad satisface
Pl (By (r)) = P{dQ”,p’) < r}. El siguiente paso es usar
que X es preferido a Y para deducir que debe existir un punto
q' tal que Plg (B, (1)) > P{d(X,q") <r} se satisface para
toda seleccién X de X. La contradiccién se encuentra con
el hecho de que se puede obtener una seleccion X de X
satisfaciendo Pl (B,(r)) = P{X € B,(r)}, y para ello basta
definir X como sigue: X (w) € argmindg (X (w), p), donde
dy denota la distancia Hausdorff (que X es punto aleatorio
se deduce inmediatamente a partir de la propiedad de que X
es discreto).

La ultima afirmacién de este teorema se deduce inmediata-
mente de la anterior.

El argumento entonces es claro: el/la decisor/a estd
eligiendo el conjunto aleatorio con el que es posible extraer
un modelo exacto con menor varianza. Este es un argumento
de peso que soporta la técnica que hemos introducido.

Ejemplo 1. Consideremos R dotado de su distancia usual d.
Consideremos los conjuntos aleatorios X = [X —r, X +r]e
Y =[Y —5,Y + 5|, donde X estd normalmente distribuida
con media |1, y desviacion tipica o,, Y también estd nor-
malmente distribuida con media ., y desviacion tipica o, y
T es una constante estrictamente mayor que cero. Podemos
interpretar estos conjuntos aleatorios como modelos exactos
de probabilidad a los que se les afiade un error o incertidum-
bre de valor r. Es fdcil probar que X es preferido a Y si
o, < 0y. Obsérvese que esta decision estd en consonancia con
el teorema anterior, dado que en este caso seremos capaces
de extraer una seleccion, un modelo exacto, de X con menor
varianza que cualquier seleccion de Y.

III. CONCLUSIONES

En general, un problema de decisién en un ambiente im-
preciso acarrea una dificultad extra respecto a los problemas
clasicos de teorfa de la probabilidad. En esta contribucién
hemos introducido un nuevo orden dispersivo para conjuntos
aleatorios. Este orden estd basado en comparar las funciones
de plausibilidad sobre la familia de bolas centradas en un
punto.

Seria interesante seguir estudiando las propiedades que
presenta este nuevo orden, y cémo simplificar el proceso de
decision. En este sentido, cabe estudiar qué particularidades
presenta el orden para los casos en los que el espacio métrico
sea bien finito o bien tiene la estructura de un espacio vectorial
o afin euclideo.

Por otro lado, también cabe extender este orden para otros
modelos destacados en Probabilidades Imprecisas, como las
variables aleatorias fuzzy.
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Abstract—In this paper we propose a fuzzy modal logic for
conditional probability that allows to represent and reason about
the probability of not only basic conditional expressions of the
form “y given 1, written (¢ | 1), but also compound conditional
sentences such as “p given v and ~ given x”, written (¢ | 1) A
(7 | x), and more in general, any Boolean combination of basic
ones. In order to formalize compound conditional formulas we
will adopt the recently defined Logic for Boolean Conditionals
(LBC) and hence formalize conditional probability as a simple
(unconditional) probability of conditional sentences. In addition
to such basic fuzzy modal logic for the probability of compound
conditionals, we will also present some extensions and prove that
each of them is sound and complete w.r.t. to a suitable class of
probabilistic models. Furthermore, we will prove how to recover
the usual interpretation of conditional probability, showing that,
under minimal requirements, in these logics the probability of a
basic conditional (¢ | 1)) can be safely taken as the conditional
probability of ¢ given 1, i.e. as the ratio P(o A ¢)/P(¢).

Index Terms—Conditional probability; Compound conditional;
Fuzzy logic; Fuzzy modal logic.

I. INTRODUCTION

Fuzzy sets-based models and numerical uncertainty models,
although sharing the feature of evaluating sentences in a totally
ordered scale, usually the real unit interval [0, 1], account for
radically different notions of gradualness. From a formal point
of view, these differences can be easily grasped if we consider
their corresponding logics: fuzzy logics and uncertainty logics
(in particular probability logics), respectively. In fact, while the
former are truth-functional, i.e. the truth-value of a compound
formula like ¢ V ¢ only depends on the truth-values of its
components ¢ and 1, the latter are not, since, for instance,
the probability of ¢ V ¢ cannot be computed only from the
probability of ¢ and the probability of v (it is also needed to
know what is the probability of ¢ A 1)).

Despite these differences, however, probability logics can
be properly handled in a fuzzy logical setting by expanding
the language of a fuzzy logic with a unary modality P(-) and
interpreting, for every classical formula ¢, the modal formula
P(y) as “yp is probable”. Clearly, P(y) is a fuzzy proposition,
whose truth-degree can be taken as the probability of . More
precisely, the fuzzy modal logic FP(L), as firstly introduced
in [11] and improved in [10], extends the language of Lukasi-
ewicz logic L by the modal operator P(-) and uses the ground
logic L. to express the basic properties of a probability function.

Lluis Godo
IIIA — CSIC
08193 Bellaterra, Spain
ORCID 0000-0002-6929-3126
godo@iiia.csic.es

In particular, it is worth to recall that the finite additivity
of P can be expressed in FP(L) by using the Eukasiewicz
connective & whose standard interpretation is the truncated
sum: for all z,y € [0,1], x®y = min{1, x+y}. Very recently,
in [1] the authors have studied in depth the relationship of
this fuzzy logic-based approach to more traditional probability
logics after Halpern et al. see e.g. [13].

In addition to simple probability, the paper [8] presents the
logic FP(LII) to deal with conditional probability by consider-
ing, instead of L, the stronger logic L.II. Such formalism can be
roughly regarded as the expansion of Lukasiewicz logic by the
connectives of product conjunction ® and product implication
—11. The standard semantics of ® and —y interprets them, re-
spectively, by the usual product - and the function z —g y = 1
if £ <y and © =1 y = y/x otherwise. Thus, if P () is not
zero, the conditional probability P(y | ¢) can be written in
FP(LII) as P(¢) =11 P(¢ A ) and hence interpreted in its
semantics as P(@Av)/P(1). A related approach can be found
in [9], where Popper conditional probabilities are formalised
in a similar setting.

In this paper we propose a fuzzy modal logic FP(LBC, LIT)
for conditional probability that extends FP(LII) in the expres-
sive power. In particular, FP(LBC, LIT) formalizes conditional
events by the recently defined logic LBC (Logic of Boolean
Conditionals) for conditional events. The latter allows to
represent not only basic conditional expressions “p given ¢”,
written (¢ | 1), but also compound conditional sentences such
as “p given 1) and ~y given x”, written in LBC as (¢ | ¥)A(y |
X), or more in general, any Boolean combination of basic
ones [5]. For each of such (basic and compound) conditional
sentences, FP(LBC, LIT) permits to represent and reason about
their probability. Thus, the conditional probability of “¢ given
¢” is treated in FP(LBC, LII) as the unconditional probability
of the basic conditional formula (¢ | ¥).

In addition, we will present extensions of FP(LBC,LII)
that capture a more refined notion of probability functions. For
FP(LBC, LII) and each of its extensions, we prove soundness
and completeness results w.r.t. suitable classes of probability
models.

This paper is organized as follows. Section II gathers
extensive preliminaries: on the Logic for Boolean Conditionals
(LBC) in Subsection II-A; on the ground propositional logic
LIT in Subsection II-B; and on the fuzzy modal logic for
conditional probability FP(EIT) in Subsection II-C. In Section
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III we will define the probability logic for compound condi- (CPL)

tionals FP(LBC, LII). In the same section we will consider the
class of separable models and prove completeness. Moreover,
we will show that, for every basic conditional (¢ | )
such that ¢ has positive probability, the logic FP(LBC, LII)
proves that the modal formula P(¢ | %) is equivalent to
P(1)) =1 P(p A1) and hence, in every separable model,
P(¢ | ¢) is interpreted as the ratio u(¢ A ¥)/u(v). A first
extension of FP(LBC, LII), namely the logic FP(LBC, LII)™,
will be defined in Section IV and there we will show it
to be complete w.r.t. to a subclass of separable models
called positive separable models. Section V deals with the
logic FP(LBC, LIT)}, a further extension meant to capture
the behavior of the so-called canonical extensions to C(A)
of positive (unconditional) probabilities on A in [5]. For
FP(LBC,LII)F we prove soundness and completeness w.r.t.
to the proper subclass of positive separable models that will be
called canonical in that section. Conclusions and future work
on this subject will be discussed in the final Section VI.

II. PRELIMINARIES

A. The logic LBC

In this section we recall from [5] the Logic of Boolean
Conditionals (LBC). The idea is to consider basic conditional
formulas of the form (¢ | ¥) as primitive objects that can be
freely combined with Boolean connectives. A difference with
the so-called measure-free conditionals is that the combination
of two basic conditionals need not be another basic condi-
tional, only in some special cases specified in the axioms of the
logic. Indeed, formulas of LBC correspond to Boolean combi-
nations of basic conditional formulas (¢ | ¥), where ¢, ) are
classical propositions. In more detail, let L be a propositional
language built from a finite set of propositional variables
P1,D2, .-, Pk and classical logic connectives A, V, 7, —, .
We will denote by ¢ pr, derivability in Classical Propositional
Logic. Based on L, we define the language LBC of conditionals
by the following stipulations:

- Basic (or atomic) conditional formulas, expressions of the
form (¢ | ¢») where o, € L and such that t/opr, —),
are in LBC.

- Further, if ®, ¥ € LBC, then -®, ® A U € LBC.! Other
connectives like V, — and <+ are defined as usual.

Note that we do not allow the nesting of conditionals, as
usually done in the vast literature on the modal approaches
to Conditional Logics Actually, purely propositional formulas
from L can also be considered to be part of LBC since, as
a matter of fact, any proposition ¢ can be identified with
the conditional (¢ | T), where T is an abbreviation for ¢V —.

Definition 2.1: The Logic of Boolean conditionals (LBC for
short) has the following axioms:

'We use the same symbols for connectives in L and in LBC without danger
of confusion.

For any tautology of CPL, the formula resulting from a
uniform replacement of the variables by basic condition-
als.

(¥ | )

(e [¥) < (=e | ¥)

() A@|P) < (pNd]Y)

(e ¥) & (@AY ]Y)

(e [ 9) < (o] x)A K| ¥).if Fepr ¢ — x and
FopL x — ¥

from Fopr o — 1 derive (¢ | x) = (¥ | x)

from Fepr x <> ¢ derive (¢ | x) < (¢ | ¥)
Modus Ponens: from ® and & — ¥ derive ¥

(AD)
(A2)
(A3)
(A4)
(A5)

(RD)
(R2)
(MP)

The notion of proof in LBC, k15, is defined as usual from
the above axioms and rules.

In [5] it is shown that the Lindenbaum algebra correspond-
ing to LBC, that is, the algebra of LBC-formulas modulo
logical equivalence, is a certain type of Boolean algebra,
called Boolean algebra of conditionals, which is finite if the
set propositional variables is so, that is our case. Then, the
algebra is atomic and its set of atoms are conjunctions of basic
conditionals of length n — 1, where n = 2™ with m being the
number of propositional variables, of the following form:

(011 ‘ T) A (042 | ﬁCll) VANIAN (Oénl | Ni=1,n—2 Oéi),

where «y,...,a,_1 are propositional atoms of the Linden-
baum algebra of the underlying propositional language L.

The semantics of the LBC logic is based on sequences
w = {ws,...,w,) of pairwise different propositional inter-
pretations for the underlying language L, in such a way that
w satisfies a conditional (¢ | ¥), written W =rpc (¢ | ¥), if
w; Ecpr ¢ for the lowest index 4 such that w; = .

B. The logic £I1

The LII is a powerful fuzzy logic system that suitably
combines the connectives from Lukasiewicz logic with the
connectives of Product fuzzy logic [4]. The language of
the LII logic is built in the usual way from a countable
set of propositional variables, three binary connectives —p,
(Lukasiewicz implication), ® (Product conjunction) and — g
(Product implication), and the truth constant 0. A truth-
evaluation is a mapping e that assigns to every propositional
variable a real number from the unit interval [0, 1] and extends
to all formulas as follows:

e(0)=0,  elp@y)=c(p) e(¥)

e(p =1 ¢) = min(1 —e(p) + fif(w(L ;), )
_ 1, if e(p) <e

el “ny) = e(y)/e(p), otherwise ‘

The truth constant 1 is defined as ¢ —1, . In this way we
have e(1) = 1 for any truth-evaluation e. Moreover, many
other connectives can be defined from those introduced above:

Ly is © =L 6

-y is ¢ —n0,
A is p&(p =1L ),
eV is mp(tpe Ay,
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pdY is —pe =L,
e is  —p(ope ® -LY),
poy is  p&pip,
oLy is (¢ =L P)&(Y =L ),
Ap is —mre,
Vo is —n-ne,
with the following interpretations:
e(Lp) = 1—e(yp), »
_ 1, ife(p)=0
e(tup) = 0, otherwise
elpAY) = min(e(p),ee)),
elpVy) = max(e(p),e()),
e(p@®v) = min(l,e(p)+e(y)),
e(p®1p) = max(0,e(p) +e(yh) — 1),
e(por) = max(0,e(p) —e(v)),
e(perpy) = 1- |€(<Pf) —(6)(¢)|»
_ 1, ife(p)=1
e(Ap) = 0, otherwise
_ 1, ife(p) >0
e(Vy) = 0, otherwise

The logic LIl is defined Hilbert-style as the
system whose axioms and rules are the following:?

logical

(i) Axioms of Lukasiewicz Logic:
(i) Axioms of Product Logic
(iii) The following additional axioms relating Lukasiewicz
and Product logic connectives:

(=) Y —L LY
(A) Al =L v¥) =Ale = )
(LI) oo @Wox)=(p0Y)o(poXx)

(iv) Deduction rules of LII are modus ponens for —;, (modus
ponens for —yy is derivable), and necessitation for A:
from ¢ derive Ap.

C. The probability logic FP(LII)

This final section on preliminaries is on the probability
logic FP(LIT) (FP for Fuzzy Probability), introduced in [8] and
defined as a sort of modal extension with a unary operator P(-)
over the fuzzy logic LII described in the previous section. This
logic allows for reasoning about the probability of classical
propositions.

Actually, the propositional language L is extended by a
fuzzy unary modal operator P. If ¢ is a proposition of L,
then Py is a modal proposition whose intended reading is
that “p is probable”, and whose truth-degree will be taken as
the probability of .

The language of FP(LII) is defined as follows. Formulas of
FP(LII) are of two types:

« Non-modal: they are exactly the (classical) formulas of L,
i.e. those built from a set Var of propositional variables
{p1,p2,--.Pn,-..} using the classical binary connectives
A and —. Other connectives like VV and — are defined
from A and — in the usual way. We shall denote them by
lower case Greek letters ¢, 1, etc.

2This definition, proposed in [3], is actually a simplified version of the
original definition of LII given in [4].

e Modal: they are built from elementary modal formulas of
the form Py, where ¢ is a non-modal formula, using the
connectives of LII (—, ®, —). We shall denote them
by upper case Greek letters ®, U, etc.

These are all the formulas of FP(LII). Notice that nested
modalities, among other things, are not allowed.
Axioms and rules of FP(LBC, LII) are as follows:

(CPL) All axioms and rules of classical propositional logic
restricted to classical, non-modal, formulas;
(LII) All axioms and rules of LII for modal formulas;
(P)  The following axioms and rules for the modality P:
for all propositions ¢, € L,
(P P(p =) =1 (P(p) =1 P(¥))
(P2) P(—¢p) <+ =P(p)
(P3) P(p V) <p [P(p) @ (P(Y) © P(p Av))]
(Nec) if Fepr o, derive P(p).
Models of FP(LII) are probability Kripke structures K =
(W, e, u), where:

o W is a non-empty set of possible worlds;

e ¢:V xW — {0,1} provides for each world a Boolean
(two-valued) evaluation of the proposition variables, that
is, e(p,w) € {0,1} for each propositional variable p €
Var and each world w € W; and

o 1 :2"W —[0,1] is a finitely additive probability measure
on a Boolean algebra of subsets of W such that for each
p, the set {w | e(p, w) = 1} is measurable (cf. [10] 8.4.1).

A truth evaluation e is extended to non-modal formulas in the
classical way, to elementary modal formulas as follows:

e(Pp,w) = p({w € W | e(p, w) = 1}),

and to compound modal formulas by using the truth-functions
of the LII logic.

Soundness and completeness of the logic FP(EIT) w.r.t. to
the class of probability Kripke models is proved in [8]: if
T U{®} is a finite set of FP(LII)-formulas, then T" proves ®
in FP(LII) iff for any probability Kripke model K = (W, e, 1)
and any world w € W, e(®,w) = 1 whenever e(V,w) = 1
for all U € T.

III. PROBABILITY LOGIC OVER CONDITIONALS

In this section we define a logic to reason about the
probability of basic and compound conditionals over the fuzzy
logic LII. In the same line as with the logic FP(LII) described
in Section II-C, we extend the language of LBC with a fuzzy
(unary) modal operator P, so that, for every basic conditional
(¢ | ¥), the intended meaning of a formula P(y | 9) is that the
conditional “p given 1) is probable, and that the truth-degree
of P(y | 1) is the probability of the conditional “(¢ | 1))”. The
relation of this probability to the usual notion of conditional
probability of ¢ given 1) will become clear later.

The logic FP(LBC,LII) is obtained by replacing, in the
definition of FP(LII), classical logic for events by the con-
ditional logic LBC defined as in Section II-A. Formulas of
FP(LBC, LII) are of two types:



= XIX Conferencia de la Asociacién Espanola para la Inteligencia Artificial

259

- Conditional formulas are formulas of the logic LBC,
that is, basic conditionals of the form (¢ | ) for all
classical formulas ¢ and v such that v is not a classical
logic contradiction (in other words, F/cpr, —)) and compound
conditional formulas obtained as Boolean combinations of
basic ones. Compound conditional formulas will be denoted
as ¢, U ..

- Modal formulas: for every (basic or compound) condi-
tional formula ®, P(®) is an atomic modal formula. Com-
pound modal formulas are combinations of atomic ones by
means of the LII connectives.

Thus, for instance, P(y | ¢), P((¢ | ¥) A (y | §)) and
P((¢ | ) A (v ] 6)) —r P(x | ) are compound modal
formulas for all classical formulas ¢,,~,d, x, 7 such that
V=, t/ =6, I/ —7. However, neither (¢ | ¥) —p P(v | §)
nor P((p | ¥) ® P(x | 7)) are well formed formulas in this
language.

Axioms and rules of FP(LBC, LII) are as follows:

(LBC) All axioms and rules of LBC restricted to conditional

formulas;

(LIT) All axioms and rules of LII for modal formulas;

(P)  The axioms and rules for the modality P are those for

FP(LII), but now for all conditional formulas ®, ¥ €
LBC, plus a new rule (Sep):
(P1) P(® — ) =y, (P(D) -1, P(W));
(P2) P(=®) ¢, —P(®);
(P3) P(®VVU) <, [P(P)® (P(¥)S P(®ATD));
(Nec) if Frppe @, derive P(P);
(Sep) if Fepr (0 = x) A (x — ¥), derive
P(e | x) AN (x[¥) <L Ple | x) ©P(x | ).
The notion of proof according to these axioms and rules will
be denoted g p. The axioms and rules of FP(LBC, LII) are
meant to capture the behavior of an unconditional, separable
probability measure on the Lindenbaum algebra of the logic
LBC. In fact, let us recall from [5] that, in particular, a
probability 1 on a Boolean algebra of conditionals C(A) is
separable if for all a,b,c € A\{L} such that a < b < ¢, then
w((a|b)A(b]c)) =p(a]d): u]|ec). As we will show later
on, separability is captured by the rule (Sep) above.

In what follows € will denote the set of Boolean interpre-
tations for the variables Var, and Seq, (2) will denote the set
of sequences of n pairwise different interpretations from (2.

Definition 3.1: A probability LBC-Kripke model is a struc-
ture C = (W, e, u) where

e W is a set of worlds;

o ¢: W — Seq, () maps every world w € W to a LBC-

evaluation e(w) = w € Seq, ();

o ju is a probability on 2" where e[W] = {e(w) | w €

W} C 9Seqn ()

Each LBC-Kripke model C = (W, e, ) induces a probabil-
ity on LBC formulas in the natural way, in particular for each
basic conditional (¢ | ¥) we define:

1(“(e [ ¥)") = p({w € Seqn(Q) |w e W@ = (¢ | ¥)},°

3Without danger of confusion, we will write u(ip | ) for u(“(v | ¥)”)).

and similarly for every compound conditional. Notice that,
when e[WW] = Seq, (), the Boolean algebra 2¢I"1 on which
1 is defined, actually is the Lindenbaum algebra of LBC. It
was proved in [5, Theorem 7.3] that such Lindenbaum algebra
is isomorphic to C(L), that is, the conditional algebra gener-
ated by L, the Lindenbaum algebra of classical propositional
logic. Thus, every LBC-Kripke model determines a probability
measure p on C(L).

Definition 3.2: A probability LBC-Kripke model C =
(W, e, u) is called separable when

p((p [L) AN X)) = ule | ) w@ | x) €]

for every ,1, x such that Fopr (¢ = ¥) A (¥ — Xx) and
Vorr —¢.

An immediate consequence of the definition above is that
every u of a separable model, satisfies (e | T) = u((¢ |
B)A (W | T)) = plp | ) - u(e | T) for all ¢, such that
Fopr ¢ — ¥ and I/ —). Note that the first equality is due to
Axiom (AS5) of LBC.

Given a formula F' of FP(LBC, LII) and a separable model
S = (W,e,u), the evaluation of F in § at w € W is
inductively defined by the following stipulations:

o If F is a conditional formula @, then ||®||s,., = w1(P) €

{0, 1}, where e(w) = (w1, wa,...);

o If F = P(®) is atomic modal, then |P(®)||s,, = u(P);

o If F' is compound modal, then |F| s, is computed

by evaluating its atomic components and then by using

the truth-functionality of the connectives of LII in the

standard algebra [0, 1].

Notice that if F' is modal, then ||F'||s,,, does not depend on
the world w. Finally, the truth-degree of F' in C is defined as
1Flls = infuew [Flls.u-

Definition 3.3: It T'U ® is a set of modal formulas, ®
logically follows from T, written T' |=gpp ®, when for all
separable probability LBC-Kripke model S, if ||F'||s = 1 for
every F' € T, then | ®||s =1 as well.

Next, we prove that FP(LBC, LII) is sound and complete
with respect to the class of separable models. Its proof, a main
part of which will follow from a general result we will recall
below, is based on the fact that the logic for events, LBC is
locally finite. This means that the Lindenbaum algebra CL
over a finite set of variables is finite. Indeed, as proved in
[5, Theorem 7.3], CL is isomorphic to C(L) to the Boolean
algebra of conditionals of the Lindenbaum algebra of classical
logic, on the same set of variables.

Theorem 3.1: The logic FP(LBC,£II) is sound and com-
plete for deductions from probabilistic modal formulas w.r.t.
to the class of separable models.

Proof: Soundness of (P1), (P2), (P3) and (Nec) follows
directly from [10, Lemma 8.4.5.]. Thus, let us show that (Sep)
holds in every separable model. If (¢ — x) A (x — ¥) is a
theorem of classical logic and v is not a contradiction, then
1P((e [ x)A X [)lls =11P(e [ X)lls- [1P(x | ¥)l|s in any
separable model S = (W, e, u), because p satisfies Equation
(1) above, and hence S satisfies P((¢ | x) A (x | %)) <L

P(e|x)© P(x | v¥).
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As for completeness, we will show that /pp F' implies
tspp F, for any modal formula F. By either adapting the
completeness proofs in [8], [11] or adapting the general result
proved in [6, Theorem 20 (1)], together with the fact that LBC
is locally finite and LI is finitely strong standard complete, we
can show that deductions in FP(LBC, LIT) can be translated to
deductions in LII by considering atomic modal formulas P
as new LII propositional variables pg. Indeed, it holds that,
for any modal formula G, Fpp G iff T by G*, where G* is
the translation of G with the new variables, and T" consists of
the following three sets of formulas:

(i) To = {H* : H is an instance of axioms (P1), (P2), (P3)}
()i Th = {py : ¢ is an LBC-theorem}, that translates the
rule (Nec), and
(i) T2 = {Pohonedu) €L Polx © Pyjy : Fepr (9 = X) A
(x = %) and Vopr —x}, that translates the rule (Sep).
Then by the finite-strong completeness of LITL* if F is not a
theorem of FP(LBC, LII), there is a LII-evaluation v, model
of the sets Tp,T1,T> and v(F) < 1. Then one can define
the probability Kripke model & = (W, e, ), where W =
Seqn (), e(w,p) = w1(p) for any propositional variable p,
and p(®) = v(®) for any conditional formula ®, and show
that ||F'||s = v(F) < 1, that is, S is a countermodel of F.
Thus, it is left to prove that p is separable. Indeed, in particular
v is a model of T5, that means v(pyjy © Pyjy) = V(Py|y) -
V(pyjw) = e | x) - pu(x | ), for all those conditionals
(¢ | x), (x| ¥) such that Fepr (¢ — x) A (x — ) and
Heopr —x. Thus, p is separable and the claim is settled. M

We end this section by noticing that in a separable LBC-
Kripke model, a formula P(¢ | ) is evaluated by its
corresponding conditional probability.

Corollary 3.1: For every basic conditional (¢ | 1), the
following deduction holds in FP(LBC, EII):3

VP@ | T)bpp P(p | ) <r (P | T) = PleAy | T))

IV. POSITIVE SEPARABLE MODELS

In this section we will consider a first extension of the logic
FP(LBC,LII) that allows to deal with positive probabilities on
basic conditionals of the form (¢ | T).

Definition 4.1: The logic FP(LBC,LII)™T is the schematic
extension of FP(LBC, LII) obtained by adding the rule

(Pos) if epr —p, derive VP(o | T).

The effect of axiom (Pos) is to force the probability of
non-contradictory classical propositions ¢ (once identified as
conditionals (¢ | T)) to be strictly positive. Therefore, it is
relatively easy to see that the following holds.

Theorem 4.1: The logic FP(LBC,LII)* is sound and com-
plete w.r.t. the class of positive separable LBC-Kripke models,
i.e. models S = (W, e, ) in which p is a positive probability

4For our purposes, 1" can be considered to be finite, because the Linden-
baum Boolean algebra of LBC is finite, that is, there are only finitely-many
non-logically equivalent basic conditionals (¢ | %), and hence only finitely-
many non-logically equivalent formulas in 7".

SRecall from Section II-B that the interpretation of the connective V is
V(z) =1if x > 0, and V(z) = 0 otherwise.

measure, that is to say, such that u(®) > 0 for all conditional
formula ® # 1.

Let us call basic modal formulas any combination of atomic
modal formulas of the form P(yp; | ¢;) with £IT connectives.
If we restrict ourselves to this sublanguage of FP(LBC, LII),
we can in fact consider simpler probabilistic models.

Definition 4.2: A positive simple model is a pair P = (Q, o)
where () is the set of Boolean interpretations for the base
language L, and ¢ is a positive probability measure on 2.

Given a basic modal formula B and a positive model P =
(Q, o), we interpret B in P as follows:

« It B=P(p | ¢), then |P(p | §)]p = Z54);
o If B is compound use again the truth functionality of LII

connectives interpreted in [0, 1].

Theorem 4.2: (1) For every positive separable LBC-Kripke
model S there exists a positive simple model P such that
| Blls = || B||» for every basic modal formula B.

(2) Vice-versa, for every positive simple model P there exists
a positive separable LBC-Kripke model S such that || B||p =
| B||s for every basic modal formula B.

Proof: As for (1), let us prove the clam for B = (p | ).
The case of compound conditional formulas, indeed, follows
by truth-functionality of the connectives of LII. Given a
positive separable LBC-Kripke model S = (W, e, 1), define
o(p) = ule | T) = p{w € W | w = (¢ | T)}. This is
a probability on Boolean formulas that can be identified as a
probability on 2. Since s is positive and separable, we have

(AP |T) _oleAd)

_H _
Mol == = o)

On the other hand, (2) follows by adapting to our logical
setting a main result in [5, Theorem 6.13] stated in algebraic
terms. Indeed, in that theorem it is proved that, for any positive
probability P on an algebra of events A, there is a (plain)
probability 11p on the algebra of conditional events C(A) such
that pup(a | b) = 2% whenever b # L. The proof is rather

(@)
involved and we réffer the reader to [5] for full details. [ |

V. A LOGIC FOR (CONDITIONAL) CANONICAL EXTENSIONS

As proved in [5] the atoms of a Boolean algebra of
conditionals C(A) can be fully characterized by the atoms
of the original algebra A and, in particular, if a4, ..., a, are
the atoms of A, those of C(A) are conditional expressions of
the form

wi = (ai, | T)A (i, | mei) A A, |\ —os)).
j<n—2
Since the atoms of the Lindenbaum algebra of classical logic
(with, say, k variables x1,...,x;) are writable as minterms
a; = Azf, for xf € {z;,—x;}, the atoms of C(L) are
expressible as above. To ease the reading, we will denote them
by w1, ws, . ... Recall form [5] that, if classical logic is defined
on k propositional variables, there are (2¥)! atoms of C(L).
Although not every probability measure on C(A) satisfies
all the axioms of a conditional probability, every positive
probability o on the original algebra A, has an extension to
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a positive probability p, on C(A). These measures, called
canonical in [5] are such that, for every atom w; of C(L),
to(wi) = o(aiy | T)o(as, | oy, ).. o
Jj<n—2

In this section we will show how to further extend the logic
FP(LBC,LII)" in order for its models to be defined by
canonical extensions u, of this kind. In order to do that, let
us consider the following FP(LBC, LIT) " -formulas:

(Can;) P(w;) < Plas, | T)®...0P(ai,_, | [\ —a),
j<n—2

where w; = (@i, | T) Ao A (s, | Aj<pg 7o), with
Qi - - ., 0y, being minterms of the propositional language L.

Definition 5.1: Let L be a propositional language with &
variables. Then, the logic FP(LBC,LII)T is the schematic
extension of FP(LBC,LII)T obtained by adding the axioms
(Cany) for all i = 1,...,(2%)!

A separable model S = (W, e, p) is canonical if there exists
a positive probability ¢ on €2 such that u = p,, i.e., p is the
canonical extension of some positive o on (.

Finally, we can prove that FP(LBC,LII)} is sound and
complete w.r.t. to canonical models.

Theorem 5.1: The logic FP(LBC,LII)T is sound and com-
plete with respect to the class of canonical models.

Proof: Following the lines we sketched in the proof of
Theorem 3.1, it is enough to show that a positive separable
model satisfies all the axioms (Can;) iff the model is canonical.

(Left-to-Right). Let S = (W, e, 1) be positive separable and
satisfying (Can;) for all . Thus, ||P(w;)|s =
1P(as, [ T) @ © Pl | Ay, —05)ls =
1P (i, | Tlls - oo 1P,y | Ajsi,, mi)lls =
e, | T) - ldots - p(ev,, , | /\jgin_Q —ag).

Since S is positive and separable, by Theorem 4.2 there
is a positive simple model P = (€, 0) such that, for every

basic conditional (¢ | ¥), p(e | ) = %ﬁ))‘!’)_ In particular,
i o, Aoy

ey | T) e plei, oy | Njey,, m0g) = = (3'(2—\70(31)

7t Mgiap ") S L

Az —a i) us, (t = i and S is canonical

(nght to- Left) Conversely, if S is canonical, then (Can;)
holds in S by the very definition of canonical model and the
way formulas are interpreted in separable models. |

In the light of the above argument, we can hence slightly
improve the result of Corollary 3.1 as follows.

Corollary 5.1: The following formulas are theorems of
FP(LBC, LII)7:

D P(p | ) &0 (P@W | T) = Plo A | T));

2) P(w) <p [P(T) = Play,) © P(ooy, ) = Pla,)
©...0 P(\;<,_, ) =n Plag, )], for w = (i, | T)
(i | =)Ao oA (i, | N\j<po @iy), Where the oy ’s are
pairwise different minterms of the propositional language L.

VI. CONCLUSIONS

In this paper we have introduced fuzzy modal logics for
reasoning about the probability of compound conditionals,
the latter being Boolean combinations of basic conditionals

(ain,—1| /\ jaij)'

(¢ | ¥) and formalized within the recently introduced Logic
for Boolean Conditionals LBC [5]. For each of the logics we
define, we have proved completeness w.r.t. suitable classes of
probability models, where a formula of the kind P(p | ¢) is
evaluated by a (plain) probability p(“(¢ | ¢)”) of the condi-
tional formula (¢ | v). We have shown that, if ¥ opr L,
this probability is in fact a conditional probability, and thus
evaluated by the ratio u(“(p A | T)?)/u(“(¥ | T)").

There are a number of issues on this subject left for future
work. Among them, we plan to investigate the relationship
of our probability logics for compound conditionals with
the approach developed by Sanfilippo et al. to probabilistic
inference with conjoined and iterated conditionals based on
a different notion of conditional, see e.g. [14], [15]. Another
topic of interest is the application of these logics to reason with
(semi-) fuzzy quantifiers [2]. In addition, we plan to investigate
complexity bounds for the SAT problem for FP(LBC, LII).
Although it seems reasonable to conjecture that logic to be
decidable, while the logics LII and FP(LII) are known to be
in PSPACE [12], the complexity of the logic LBC is not known
yet, and this latter non-trivial fact needs to be solved first.
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Resumen—El objetivo principal de este trabajo es utilizar
los contextos L-fuzzy para mejorar la eficiencia del disefio
de materiales biodegradables de origen renovable fabricados
mediante la valorizacion de residuos con buenas propiedades para
su utilizacion en el sector de los envases alimentarios. El uso de
los contextos L-fuzzy permitira mejorar la eficacia en el proceso
de disefio mejorando la eficiencia en la utilizacion de recursos.
Ademas, mediante la utilizacion de los mencionados contextos
L-fuzzy se pretende optimizar las propiedades de los materiales
desarrollados y estimar la composicion de los materiales para los
requisitos que cumplir en servicio.

Palabras Clave—Contextos L-fuzzy, extraccion de conocimien-
to, materiales renovables, diseiio de materiales

I. INTRODUCCION

Cuando se disefia un nuevo material, la selecciéon de la
formulaciéon es uno de los principales factores que afecta
a las propiedades funcionales del material. En el proceso
usual del disefio de nuevos materiales, se varia la cantidad
de los componentes de la formulacién y se estudia la in-
fluencia de esas variaciones en las propiedades del material.
Dicho proceso implica un elevado coste de materias primas,
energia y recursos humanos. Cuando un/a ingeniero/a disefia
un nuevo material, los requerimientos del material en servicio
dependiendo de su aplicacion determinan las propiedades
funcionales que el material debe poseer. Habitualmente, existe
un conocimiento existente por parte del equipo investigador
que ayuda a establecer unos rangos iniciales de los valores
de la formulacién con el objetivo de obtener las propiedades
deseadas. Muchas veces, el investigador no busca un valor
exacto para una propiedad concreta, sino que desea que esté
dentro de un intervalo determinado o entorno a un valor
exacto. Los valores de esas propiedades pasan a ser difusas, lo
que posibilita el estudio mediante variables borrosas [1], [2].

La inexistencia a priori de reglas de asociacién que re-
lacionen la composicién con las diversas propiedades del

Trabajo parcialmente subvencionado por el Gobierno Vasco (Proyecto KK-
2019/00006)

San Sebastian
c.alcalde @ehu.eus

Koro de la Caba
Dep. Ing. Quimica y Medio Ambiente
Universidad del Pais Vasco - UPV/EHU Universidad del Pais Vasco - UPV/EHU
San Sebastian
koro.delacaba@ehu.cus

San Sebastidn
marta.urdanpilleta@ehu.eus

Ana Burusco
Dep. Estadistica, Infor. y Matemdticas
Universidad Piiblica de Navarra
Instituto de Smart Cities
Pamplona
burusco@unavarra.es

material hace que el uso de herramientas difusas basadas en
reglas de asociacién no parezca la mejor opcidn, siendo el
empleo de contextos borrosos para la extraccion de informa-
cién una herramienta prometedora para la estimacién de la
composicion del material para unas propiedades determinadas.
Las propiedades requeridas van cambiando en funcién de las
aplicaciones. Es decir, segtn el alimento que se quiera envasar,
los requerimientos en servicio del material de envasado varian.
El deseo de obtener una modificacién en alguna de las
propiedades obtenidas o en alguna variable de la formulacién
conlleva un coste inmenso de recursos debido al proceso
de prueba y error que se utiliza actualmente. El empleo de
contextos borrosos con informacién incompleta puede ayudar
en la fase de disefio del material agilizando el proceso y
ahorrando recursos de todo tipo que dicho disefio conlleva.

II. DESCRIPCION DEL PROBLEMA

1I-A.  Descripcion de las condiciones de disefio de materiales

En el disefio de nuevos materiales, la formulacién y las
condiciones de procesamiento desempefian un papel funda-
mental en el comportamiento en servicio de dichos materiales.
Estas propiedades estdn relacionadas con distintas magnitudes
(quimicas, fisicas, mecdnicas, térmicas, Opticas. .. ). Para cada
aplicacién, sabemos qué valores de salida de estas magnitudes
deberfa tener el material para un desempefio Optimo, y la
cuestion es encontrar la formulacién que lo permita.

Con vistas a alcanzar este objetivo, no s6lo se debe iden-
tificar las especies quimicas que optimizan las propiedades,
sino también sus cantidades. Estas cantidades serédn los valores
de entrada que se han de determinar en la optimizacion.
Usualmente, existe un conocimiento previo que permite al/la
disefiador/a fijar los rangos aproximados en donde es probable
que estén los valores de entrada ideales, para obtener los
valores de salida asociados al comportamiento que son los
deseados.
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A la hora de encontrar esos valores de entrada ideales, la
aproximacién tradicional de prueba y error puede requerir
un gran coste de energia, tiempo y materias primas. Hay
tantas combinaciones y variaciones a estudiar que éste es
un procedimiento ineficiente para analizar la influencia de
cada pardmetro en el comportamiento del material disefiado.
Ademas de esto, normalmente el andlisis se realiza con una
variable de cada vez, que no considera las interacciones cru-
zadas entre distintas variables de entrada en la formulacién. A
menudo, estas entradas y salidas son borrosas: el/la disefiador/a
aceptaria valores de entrada alrededor de ciertos valores de
entrada, porque estaria dispuesto/a a admitir valores salida
cerca de ciertos valores de salida.

En este caso, les podemos asociar valores borrosos de
deseabilidad, y realizar un estudio basado en los conceptos
de la teoria borrosa. Dentro de esta aproximacién, y con un
analisis estricto de las variables implicadas, se puede lograr
un conjunto de variables de entrada adecuadas, de una manera
eficiente y reduciendo el consumo de tiempo y recursos. Asi,
se evita un procedimiento ineficiente y sus costos afiadidos.

II-B.  Propiedades requeridas para aplicaciones del material

Los films basados en gelatina muestran caracteristicas que
los hacen indicados para ser aplicados en envasado [3]-
[5]. Las propiedades barrera, el comportamiento mecanico y
las propiedades opticas son de vital importancia al disefiar
materiales para envasado de alimentos [6].

Teniendo esto en mente, se proponen las siguientes propie-
dades de salida para un andlisis posterior:

. Angulo de contacto (CA)

= Tasa de transmision de vapor de agua (WVTR)

= L*y b* (en lo que respecta a propiedades de color)
= Tension a traccién (TS)

= Elongacién a rotura (EB)

= Brillo

Considerando la experiencia en el campo del grupo de in-
vestigacion BIOMAT - biopolymeric materials del que forman
parte varios de los autores del presente trabajo, se propuso un
conjunto de propiedades salida objetivo para esta aplicacion.
Este set tiene en cuenta las especificidades de los films basados
en gelatina. Este es el punto de partida para lanzar el andlisis
de conceptos L-fuzzy [7]-[9]. Estas propiedades objetivo estan
listadas en la Tabla L.

Tabla I
REQUERIMIENTOS PARA MATERIALES DE ENVASADO DE ALIMENTOS
GRASOS
CA(°) L* b* TS (MPa) EB (%) Brilloggo
(Unidad de brillo)
90 95 40 60 5 50

En el caso de la tasa de transmision de vapor de agua, no
se seleccionaron valores objetivo por no ser una propiedad
clave para la aplicacién de envasado de comida grasa. Puede
ser que las propiedades objetivo no se puedan alcanzar si-
multidneamente para un material dado, debido a la interaccién

entre ellos. En este caso, el método de estimacidn propuesto
proporciona una solucién de compromiso en el que las pro-
piedades estimadas estdn cerca de las propiedades objetivo.

En la siguiente seccién se discuten los conceptos basicos
de la teoria de contextos L-fuzzy y la forma de aplicarlos a
la seleccién de formulaciones de materiales.

III. MODELADO DE LOS EXPERIMENTOS UTILIZANDO
CONTEXTOS L-FUZZY

III-A.  Andlisis de contextos L-fuzzy

El andlisis formal de conceptos es una herramienta ma-
temdtica desarrollada por R. Wille en 1982 [10], [11] con el
objetivo de procesar datos conceptuales y representarlos de
una manera formal. Con el objetivo de reconocer diferentes
grados de pertenencia entre objetos y atributos Burusco y
Fuentes-Gonzilez extendieron los conceptos formales de Wille
al caso difuso con la definicién de contextos L-fuzzy [7]-[9].
Un contexto L-fuzzy se define como una tupla (L, X,Y, R)
donde L es un reticulo completo, X e Y son respectivamente
el conjunto de objetos y atributos, y la relacién R € LX*Y
toma valores en el reticulos (L, <).

Para extraer informacion de estos contextos L-fuzzy, el
operador derivacién se define para todos los conjuntos A € LX
y B € LY mediante las siguientes expresiones [9]:

Auly) = ig{({f(/l(%), R(z,y))},Vy €,
By(z) = ig{I(B(y),R(x,y))}Nx € X.

Siendo I un operador implicacién difuso definido en L.

Los conceptos L-fuzzy constituyen una herramienta que
permite visualizar la informacion almacenada en el contexto.
Estos conceptos son pares (M, M) donde el conjunto M €
LX es un punto fijo del operador constructor ¢, que se define
usando los operadores de derivacién ¢(A) = (A1)2 = Aio
para todo A € LX.

De manera equivalente, los conceptos L-fuzzy se pueden
definir desde el punto de vista de los atributos como pares
(N3, N) siendo N € LY un punto fijo del operador construc-
tor ¢ que se define como ¢(B) = (Bz2); = B2 para todo
BelLY.

Dado un subconjunto de objetos A € LX (o, un subconjunto
de atributos B € LY), es posible calcular el concepto L-fuzzy
asociado aplicando repetidamente el operador constructor ¢
(o, equivalentemente, el operador ¢) hasta que un punto fijo
es obtenido. Podemos obtener un punto fijo simplemente
aplicando el operador derivaciéon dos veces si el operador
de implicacién usado es residuado [12], [13]. Asi, si I es
residuado, entonces el par (A2, A1) es el concepto L-fuzzy
asociado a A. De manera similar, el concepto L-fuzzy asociado
a B e LY serd el par (B3, Ba1).

El concepto L-fuzzy asociado a un subconjunto de objetos
A (o atributos B) proporciona la situacién “estable” en el
contexto que sea mds cercana a las condiciones iniciales fijadas
por A (o B). En este trabajo, y con el fin de simplificar los
célculos, el operador de implicacion elegido para obtener los
conjuntos derivados fue la implicacién de Lukasiewicz.
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III-B. Metodologia propuesta para extraer informacion de
los datos experimentales

La metodologia propuesta en este trabajo aprovecha el
potencial que tiene el andlisis de contextos L-fuzzy para
extraer informacién de tablas de relaciones con doble entrada,
y se puede describir en los siguientes pasos:

1. Determinar los conjuntos de objetos y atributos que for-
man parte del problema. La relacién entre ellos vendra
dada por los datos experimentales.

2. Normalizando los valores experimentales, construir el
contexto L-fuzzy relacionado con las propiedades del
material a analizar.

3. Establecer el conjunto de atributos que representa la
situacién que queremos estudiar. Para las propiedades
para las que no tenemos requerimientos iniciales se
tomard el valor de 0.

4. Calcular el concepto L-fuzzy mds cercano a la situacién
de partida, que vendrd dada por el punto fijo del operador
constructor.

5. Interpretar los valores obtenidos para extraer la informa-
cion requerida.

El Algoritmo 1 describe los célculos a realizar para obtener
los valores estimados de las propiedades de los materiales.

IV. DETERMINACION DE LA FORMULACION DEL
FILM BASADO EN GELATINA

IV-A. Disefio experimental para la optimizacion de la for-
mulacion

Los valores de entrada de la formulacion a ajustar elegidos
fueron el contenido de glicerol, pH y contenido de 4cido
gélico. Los datos para poder aplicar la metodologia difusa
propuesta, fueron distintas muestras donde los valores de
contenido de glicerol analizados fueron 0%, 5% y 10 %, los
valores de pH seleccionados 4.5, 7.25 y 10, mientras que
los valores de contenido de acido gélico fueron 5%, 10 %
y 15%. Los valores experimentales de las propiedades de
salida obtenidas para alimentar los cédlculos se muestran en
la Tabla II.

IV-B.  Construccion del contexto L-fuzzy que representa los
valores experimentales

Con el objetivo de modelar el proceso de disefio de ma-
teriales construimos un contexto L-fuzzy (L, X,Y, R) en el
reticulo (L = [0, 1]100, <), considerando el conjunto de
objetos X = {x1,x2,...,x13}, donde z; representa la i-ésima
formulacién. El conjunto de atributos Y = {y1,¥2,...,y10}
estuvo formado por las diferentes propiedades que se analiza-

ron en cada formulacion:

| yl:
" Y2l
" Ys:
" Ygl
" Ys:
" Ye:
" Yr:

Contenido en glicerol

Contenido en 4cido gélico

pH de la solucién

Angulo de contacto de agua

Tasa de transmisién de vapor de agua
Valor de color L*

Valor de color b*

Algoritmo 1 Estimacion de las propiedades de los materiales
Entradas:

1: {z1,22,...,2,}: conjunto de objetos X.
2: {y1,Y2,...,Ym}: conjunto de atributos Y.
3. E(x;,y;) paratodo (z;,y;) € X x Y valores experimen-
tales.
4 {r1,ro,...,m}: requerimientos para los atributos
{yjl’yj2’ ""yjk}'
Salida:
{e1,€2,...,em}: valores estimados para los atributos.
Pasos:

» Construccion de la relacion del contexto.

1: fori=1ton do
2. for j=1tom do )
E(wi,y;) — min {E(wn,y;)}

3: R(z;,y;) +
() mag {E(xn,y5)} — min {E(en, y;)}
4:  end for
5: end for
» Construccién del conjunto inicial de atributos para represen-
tar la informacidn requerida.

6: for j =1 to m do

7: iij{ijQ,--.,jk} then ]
rj — min {E(zn,y;)}

s Bly) N

jmaz {E(wn,y;)} = min {E(zn,y;)}
9: else
10: B(y]) ~—0
11:  end if
12: end for

» Célculo del concepto asociado.
13: while B # ¢(B) do
14 B+ ¢(B)
15: end while
» Obtencién de los valores estimados para las propiedades.
16: for j =1 to m do
17 ej + Jmn {E(zn,y;)}+
+B(y;) - ({gggn{E(xh, yj)} — min {E(zn, yj)}>
18: end for

= yg: Tension a traccion.

= yo: Elongacién a rotura

= y;0: Valor de brillo a un 4dngulo de incidencia de 60°

La relacién entre objetos y atributos R € LX*Y se calculd
normalizando los elementos de la matriz £ formada por
los valores experimentales promedio que se muestran en la
Tabla II de la siguiente manera:

E(lvj) - 1min {E(hv.])}

R(z,y;) = hels
1y J] - . 7 . .
12}%5813{15(1173)} énhgg{E(hJ)}

La relacion obtenida se muestra en la Tabla III.
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Tabla II
VALORES EXPERIMENTALES DE LAS PROPIEDADES FUNCIONALES PARA DIFERENTES FORMULACIONES DE MATERIALES DE ORIGEN RENOVABLE

Formulacion Propiedades de los materiales
GLY (%) GA (%) pH CA () WVTR L* b* TS (MPa) EB (%) Brillogoo
ﬁ) (Unidades de brillo)
0 10 4.50 74.8 + 4.2 1057.7 £ 11.5 953 +£0.5 54 +04 78.7 £125 38 £ 15 1254 £ 3.2
5 15 4.50 74.6 £ 7.8 11473 £ 165 955+02 54+0.38 834 +£84 27+£06 155.4 + 10.3
5 10 7.25 528 £23 1272.1 £ 134 502 + 66 446+69 798 +£37 3.1 +04 101.6 £+ 8.5
5 5 4.50 589 £ 2.2 1097.3 £8.0 957 +04 48 +0.5 80.5 £+ 2.1 39+ 04 148.0 + 9.9
0 10 10.00 | 383 +25 1256.3 £ 102 325+ 13 20718 563 +54 274+ 0.4 50.1 = 5.6
10 10 10.00 | 446 =19 1198.0 £223 266+ 05 8805 579 +£12 26 +02 29.6 + 3.7
5 5 10.00 | 44.7 £ 4.6 1227.0 £ 10.6  69.6 £57 59.1 £32 708 +56 3.1 +04 235 + 2.6
0 5 7.25 56.7 + 1.8 1206.0 + 8.5 472 +0.7 386+0.7 779+ 104 35405 28.6 + 2.5
10 15 7.25 99.3 £ 2.5 13103 £ 194 466+ 18 428+ 15 721 +62 27404 100.0 + 6.4
5 15 10.00 | 40.8 £ 2.5 1001.7 £ 153 238 +£09 40+0.8 623 +40 26=+03 709 £+ 3.2
10 10 4.50 101.0 £3.7 9603 £225 9524+02 65409 81.8 £80 3.1+06 1484 + 6.1
10 5 7.25 68.2 + 4.7 1220.0 £20.7 528 +39 486+ 13 775+ 4.1 3.6 +£04 97.6 £ 1.6
0 15 7.25 67.7 £ 4.2 13043 £93 541 +1.0 498 £ 1.5 864 +79 32+06 100.0 = 7.0
Tabla III
RELACION DEL CONTEXTO L-FUZZY

R Y1 Y2 Y3 Y4 Y5 Y6 Y7 ys Yo Y10

x1 0.00 050 0.00 058 028 099 003 0.66 052 0.77

T2 050 1.00 0.00 0.58 053 1.00 002 0.80 0.02 1.00

3 050 050 050 023 089 037 074 070 021 0.59

T4 050 0.00 0.00 033 039 100 00l 072 056 094

5 000 050 1.00 0.00 085 0.12 030 0.00 0.02 0.20

6 1.00 050 1.00 0.10 068 004 0.09 0.04 0.00 0.05

7 050 0.00 1.00 0.10 076 064 100 043 021 0.00

g 0.00 0.00 050 029 070 032 063 0.64 035 0.04

g .00 1.00 050 097 100 032 070 047 0.02 0.58

1o 050 1.00 1.00 004 0.12 0.00 0.00 0.18 0.00 036

r11  1.00 050 0.00 1.00 000 099 0.04 076 0.19 095

z12 1.00 0.00 050 048 074 040 0.81 063 040 056

z13  0.00 1.00 050 047 098 042 0.83 0.89 024 058

IV-C. Conceptos L-fuzzy asociados a los requerimientos
iniciales

Una vez definido el contexto L-fuzzy (L, X,Y, R), se esti-
maron las caracteristicas del material a partir de los conceptos
L-fuzzy asociados con el conjunto de atributos que representan
los requisitos deseados que se muestran en la Tabla L.

Los valores requeridos para las propiedades se normalizaron
para obtener valores en L, y se supuso inicialmente que los
valores de pertenencia de los atributos que representan las
propiedades desconocidas eran O.

Por lo tanto, las propiedades del material para la aplicacién
de envases de alimentos grasos fueron representadas por el
siguiente conjunto difuso de atributos:

B :{y1/07 y2/07 yB/Ov y4/0827 95/07 y6/0997
y7/0.65,ys/0.11, yo /1, 410/0.20}

Y, después calcular el concepto L-fuzzy asociado, nos centra-
mos en su intension:

BQ1 :{y1/0.63,y2/0.60,y3/0.63,y4/0.89,y5/0.81,
Y6/0.99,y7/0.65,ys/0.98,y9/1,y10/0.70}
La intensién de un concepto se puede interpretar como un

conjunto de atributos que siempre se encuentran juntos en el
contexto. Por lo tanto, el conjunto de atributos Bo; obtenido se

puede interpretar como el conjunto de atributos mas cercano
al conjunto requerido B que se dan al mismo tiempo.

A partir de los valores de pertenencia de la intensién de
los conceptos L-fuzzy obtenidos, invirtiendo el proceso de
normalizacidn, se estimd que, para el envasado de alimentos
grasos, las propiedades del material deberfan ser las que se
muestran en la Tabla IV.

V. RESULTADOS Y DISCUSION

Teniendo en cuenta los datos experimentales para el andlisis
de contexto L-fuzzy, las formulaciones estimadas para un
rendimiento 6ptimo son las dadas en la Tabla IV. Para la
aplicacién de envasado de alimento graso, la metodologia
sugiere valores alrededor del 6.3 % de contenido en glicerol,
11 % de contenido en 4cido gélico, y un pH de 8.

Con estos valores se realizaron medidas experimentales de
las propiedades funcionales en el laboratorio, obteniéndose los
valores presentados en la Tabla V.

Como puede observarse en la Tabla V, los valores estimados
fueron muy similares a los valores objetivo de las propiedades
funcionales, excepto para los valores de brillo y tensién a trac-
cion, y los valores propuestos por el andlisis de conceptos L-
fuzzy fueron mayores que los valores objetivo seleccionados.
En lo que respecta a valores de brillo, no es posible obtener
valores cercanos a 50 teniendo en cuenta las restricciones
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Tabla IV
FORMULACION Y PROPIEDADES ESTIMADAS PARA LOS MATERIALES DE ENVASADO DE ALIMENTOS GRASOS
GLY (%) GA (%) pH CAQ WVTR L* b* TS (MPa) EB (%) Brilloggo
() (Unidades de brillo)
6.28 10.96 7.95 93.94 1243.66 95.00  40.00 89.38 5.00 116.27
Tabla V
VALORES REQUERIDOS PARA EL MATERIAL, ESTIMACION, VALORES EXPERIMENTALES Y ERROR OBTENIDO.
Formulacién Propiedades de los materiales
GLY (%) GA (%) pH | CA (°) WVTR L*¥  b* TS (MPa) EB (%) Brilloggo
T (Unidades de brillo)
Valores requeridos 90 95 40 60 5 50
Valores estimados 6.3 11 8 93.9 1243.7 95 40 89.4 5 116.3
Valores experimentales 74.3 1370.3 609 421 83.3 4.8 95.3
Error( %) 20.9 10.2 359 53 6.7 4.9 18

en el resto de propiedades; esto indica que los valores de
brillo deben ser mayores. Como los valores de brillo estan
relacionados inversamente con la rugosidad de la superficie
del film [14], valores mayores de brillo indican superficies
mds lisas. Algo similar sucedié con los valores de tension a
traccion: los valores estimados fueron mayores que el objetivo.
Es interesante sefialar que el comportamiento mecédnico del
material propuesto por el método de estimacion es incluso
mejor que el de la especificacion, pues tiene mayor tension a
traccion, sin disminuir los valores de la elongacién a rotura.
Para envasado de alimentos grasos, la tasa de transmisién de
vapor de agua no es una propiedad crucial, y es por ello que
no se selecciond ningtn valor objetivo; pero el concepto L-
fuzzy estima un valor de 1243 % para esta propiedad.
Para verificar el método de estimacién empleado, se desarrolld
un material con la formulacién propuesta, y se midieron
las propiedades funcionales respuesta del mismo. Como se
muestra en la Tabla V, para la mayoria de propiedades, los
valores propuestos por el contexto L-fuzzy son razonable-
mente similares a los valores experimentales. Los errores
obtenidos son menores al 21 % en todos los casos, excepto
para el valor de color L*, para el que el error es mayor y
el valor experimental obtenido es menor que la estimacion.
Esto produce una luminosidad mayor para el film, mayor que
la requerida en la especificacion, lo cual es adecuado para
la aplicacién de envasado de alimentos. Ademds, se puede
confirmar, tal y como predijo el contexto L-fuzzy, que los
valores de brillo fueron mayores que los valores objetivo y el
comportamiento mecdnico del material es incluso mejor que
el requerido para la formulacién estimada.

VI. CONCLUSIONES

En el presente trabajo, se empled el andlisis de conceptos
L-fuzzy como una herramienta de toma de decisiones para
obtener una formulacién del material con las propiedades
funcionales requeridas en envasado de alimentos grasos. Los
resultados obtenidos después de implementar la metodologia
propuesta revelaron que los valores predichos por los con-
ceptos L-fuzzy fueron muy similares a los valores objetivo

en la mayoria de propiedades. Ademads, después de analizar el
comportamiento de las formulaciones estimadas, los resultados
experimentales resultaron ser muy cercanos a los valores
aproximados propuestos. El error entre valores estimados por
los conceptos L-fuzzy y los valores experimentales de las
formulaciones propuestas fue inferior al 20 % en la mayoria
de propiedades funcionales. Por otro lado, en los casos en que
la diferencia entre valor predicho y valor experimental fue
mayor del 20 %, la prediccién proporciona una mejora de las
propiedades requeridas, obteniendo un mejor comportamiento
del material.

Definitivamente, las formulaciones propuestas por el andlisis
de conceptos L-fuzzy son el mejor punto de partida para
estudiar el efecto de cada pardmetro en las propiedades
funcionales del material. En vez de tener una enorme ma-
triz de formulaciones que estudiar, utilizar este método de
estimacion ayuda a identificar aproximadamente los valores
de los parametros de la formulacién que llevan a obtener las
propiedades deseadas, y permite saber si es posible conseguir
las propiedades funcionales para un sistema especifico.
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Una version ternaria del algoritmo de Quine
McCluskey para la minimizacion de base de reglas
difusas
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Resumen—Los sistemas de clasificacion basados en reglas
difusas permiten en muchos casos obtener un conocimiento facil
de interpretar, pero esto no siempre ocurre. El objetivo de
este trabajo consiste en mejorar la interpretabilidad de estos
sistemas, utilizando procesos de minimizacion de conjuntos de
reglas difusas basados en una modificacion del método de Quine
McCluskey, que permite trabajar con valores ternarios. De este
modo, se pretende mejorar la capacidad de eliminacion de
variables irrelevantes en los antecedentes de las reglas y por
lo tanto, mejorar la interpretabilidad del modelo sin alterar en
gran medida la precision.

Palabras Clave—Reglas difusas, Clasificacion, Interpretabili-
dad, Simplicidad, Minimizacion.

I. INTRODUCCION

Tradicionalmente la gran ventaja de los sistemas de clasifi-
cacion basados en reglas difusas es que son capaces de obtener
un conocimiento interpretable a la vez que consiguen buenos
niveles de precision. Sin embargo, esto no es siempre asi, y
en algunos casos el conocimiento obtenido no es tan facil
de interpretar. Este punto es importante ya que un algoritmo
que obtenga conocimiento interpretable permite al usuario
entender el proceso seguido en la toma de decisiones. La
interpretabilidad es un tema de discusion frecuente [1] y existe
una gran cantidad de estudios y métricas que nos permiten
comparar modelos. Uno de los pardmetros frecuentemente
utilizado para estudiar la interpretabilidad de un sistema es
el nimero de reglas, de forma que cuanto mayor sea menor
es la interpretabilidad.

Existen estudios que buscan mejorar la interpretabilidad de
la base de reglas como el CFM-BD [2] que utiliza técnicas de
probabilidad e induccién de reglas, creando asi una base de
reglas mas compacta. También tenemos los que buscan reducir
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el nimero de reglas difusas utilizando los mapas de Karnaugh
[3]. El mapa de Karnaugh es un método grifico que se
utiliza para simplificacion de funciones algebraicas de forma
candnica. El principal inconveniente con esta técnica radica
en que solo puede usar un maximo de 6 variables binarias,
las cuales solo pueden representar dos variables difusas con 3
etiquetas lingiifsticas, lo que limita bastante su uso.

Este problema también lo encontramos en uno de los
algoritmos de clasificacion de reglas difusas basados en el
algoritmo de Wang y Mendel para clasificacion [4], conocido
como el algoritmo de CHI [5]. Este algoritmo tiene como
ventaja el ser muy eficiente en el proceso aprendizaje a la
vez que obtiene niveles de precisidon aceptables, pero como
inconveniente genera un gran ndimero de reglas difusas [6], lo
que dificultad la interpretabilidad del modelo obtenido.

Debido a estos inconvenientes se propuso un nuevo método
para minimizar la base de reglas difusas [7], basado en el
algoritmo de Quine McCluskey [8], en donde se consiguieron
buenos resultados, pero sus principales inconvenientes se en-
contraban en la adaptacion de las etiquetas lingiiisticas a una
codificacion binaria, lo que creaba tablas de la verdad muy
extensas y no lograba eliminar variables.

Quine McCluskey es un método de minimizacién de funcio-
nes booleanas ampliamente utilizado para la minimizacién de
circuitos 16gicos, debido a que obtiene el minimo valor de una
funcién booleana con un método tabular. La l6gica binaria es
eficiente y potente, pero es uno de los inconveniente para cierto
tipo de problemas como el propuesto en este trabajo donde
queremos trabajar con un numero de tres etiquetas lingiiisticas.

En este trabajo proponemos el uso de una ldgica ternaria
[9] que reemplaza los valores de O y 1 de la l6gica binaria por
valores 0, 1 y 2, lo que nos permitird realizar una reduccién
mads eficiente del conjunto de reglas y poder mejorar por tanto
la interpretabilidad del sistema.

Este documento los dividimos de la siguiente forma, en
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la siguiente seccion describimos las herramientas prelimina-
res del trabajo, en la seccion III se explicard en detalle el
funcionamiento del algoritmo. La seccién IV muestra los
resultados obtenidos con el método de minimizacién ternario
comparandolo con el modelo de minimizacién binario, y por
ultimo en la seccién V se realiza un anélisis de la experimen-
tacion realizada.

II. PRELIMINARES

Describimos en esta seccién las herramientas bdsicas que
se requieren en la realizacion de nuestra propuesta.

II-A. Modelo de regla

La propuesta de minimizacién que realizamos en este traba-
jo parte de un conjunto de reglas difusas bdsicas que podrian
obtenerse de multiples formas, sin embargo, con la idea de
poder realizar una experimentacién completa del modelo,
asumiremos que el conjunto de reglas inicial se ha obtenido a
partir del algoritmo Chi.

La estructura habitual de un conjunto de reglas difusas
utilizando el algoritmo Chi es [10]:

Rule R; : If z; is Aj; and ... and z,, is Aj, then

Class = C; with RW; W

Donde R; es la etiqueta j-ésima de la regla, = (21, ..., Zn)

es un vector n dimensional que representa un ejemplo, A;; es

conjunto difuso representado por una funcién de pertenencia

triangular, C; es la etiqueta de la clase y RW) es el peso de la

regla. El peso de la regla utilizado en este trabajo es el factor
de certeza penalizado [11] PCF:

RW; = PCF =
Z:cPGClasst HA,; (.’L'p) - Zx,,&Classt HA; (1'1;) 2

Z:l pa, (zp)

Donde p4;(xp) es el grado de pertenencia del ejemplo z,,
con la parte del antecedente de la regla difusa R; y se calcula
como sigue.

pa, (Xp) = T L s, (Xpi) (3)
i=1

En donde p14,,(X,:) es el grado de pertenencia del valor
Xpi del conjunto difuso Aj; de la regla R;.

Denominaremos modelo de reglas difusas extendido [12]
al modelo de regla difusa que permite que el valor asignado
a una variable sea un subconjunto de las etiquetas difusas
de su dominio. Este modelo de regla es interesante, ya que
cuando una variable toma todas las etiquetas de su dominio,
la variable se puede considerar irrelevante y puede eliminarse
del antecedente de la regla. En la propuesta realizada en este
trabajo, las reglas resultantes de la simplificacion serdn de este
tipo.

II-B. Método de Quine McCluskey

En esta seccién presentamos las definiciones bdsicas y los
pasos para aplicar el método Quine McCluskey [6].

Definiciones

= Literal: Es una variable 16gica o su negacién (q or q).

= Minterm: es una expresion algebraica booleana de n
variables booleanas, que solamente se evalia como ver-
dadera para una tnica combinacién de esas variables.

= Implicante Primo: es el producto que no se puede com-
binar con otro término para eliminar una variable y una
mayor simplificacién.

= Implicante Primo esencial: es un implicante primo que
es capaz de cubrir una salida de la funcién que no esta
cubierta por ninguna combinacién de implicantes primos.

El método de Quine McCluskey (QM) utiliza las siguientes
tres leyes basicas de simplificacion.

» ¢+ ¢ = 1 (Complemento)
» ¢+ q = q (Idempotente)

= g(w+ z) = qw + gz (Distributiva)

Donde g, w y z son literales.
El método QM tiene los siguientes pasos:

= Encontrar el implicante primo: En este paso, se sustituye
el literal en forma de O y 1 y generamos una tabla. Inicial-
mente el nimero de filas de la tabla es igual al nimero
total de minterms de la funcién original no simplificada.
Si dos términos solo se diferencian en un bit, una variable
aparece en ambas formas (variable y negacion), entonces
se podra utilizar la ley del complemento. Iterativamente,
se comparan todos los términos y se genera el implicante
primo.

= Encontrar el implicante primo esencial: Usando los impli-
cantes primos del paso anterior, se genera una tabla para
encontrar los implicantes primos esenciales. Algunos
implicantes primos pueden ser redundantes y pueden ser
omitidos, pero si aparecen s6lo una vez, no pueden ser
omitidos y proporcionan implicantes primos esenciales.

= Encontrar otro implicante primo: No es necesario que el
implicante primo esencial cubra todos los términos mini-
mos. En ese caso, se considerara otros implicantes primos
para asegurarnos de que todos los términos menores han
sido cubiertos.

» Cuando no podemos obtener ni un implicante primo
esencial estamos ante un problema de cobertura ciclica,
que puede ser resuelto analiticamente por el método de
Petrick’s [13].

En general, el método QM proporciona un método mejor
para la simplificacién de una funcién booleana que el mapa
de Karnaugh, pero sigue siendo un problema NP-Duro, por lo
que la complejidad de vuelve exponencial.
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III. METODO PROPUESTO PARA LA
MINIMIZACION DE REGLAS

En [7] se propone una técnica que toma como base el
modelo de minimizacién de circuitos digitales de Quine Mc-
Cluskey para la simplificacién y reduccién de bases de reglas
difusas para clasificacién. Dicha técnica considera que los
antecedentes de todas las reglas que describen una clase se
pueden considerar como un Unico circuito y la idea es aplicar
los criterios de reduccién que se describen en el modelo de
Quine McCluskey. En las conclusiones del trabajo, los autores
describen que el uso de la base binaria produce unos resultados
de reduccién aceptables, pero que el sistema tiene problemas
para eliminar variables completas en el antecedente de la regla
y eso limita la capacidad de simplificacién y por tanto la
mejora en la interpretabilidad del modelo resultante.

En este trabajo proponemos un método de minimizacion de
conjuntos de reglas difusas extendiendo el algoritmo Quine
McCluskey de minimizacién de funciones booleanas para
trabajar con légica ternaria. El algoritmo se extiende para
trabajar con tablas de verdad ternarias. Al trabajar con l6gica
ternaria y con conjuntos de reglas difusas que codifican sus
variables difusas usando 3 etiquetas, se mejora la capacidad
de eliminacion de variables completas en el antecedente de la
reglas.

El proceso que se sigue es el siguiente: (A) partimos de un
conjunto de reglas difusas. En general, entenderemos que las
reglas siguen el modelo conocido como "Mamdani”, como se
describe en la ecuacién (1). Ademds, vamos a suponer que el
dominio asociado a cada variable difusa estd compuesto por
3 etiquetas uniformemente distribuidas sobre el universo de
discurso de la variable. (B) Se transforma el antecedente de
cada una de las reglas en un vector con codificacion ternaria y
a cada uno de estos vectores se le asocia la clase de la regla.
(C) Se toma una de las posibles clases C; y todos los vectores
transformados asociados a esa clase y se aplica sobre ellos
el algoritmo de minimizacién de Quine McCluskey ternario.
(D) El nuevo conjunto de vectores obtenidos, asociados a la
clase C}, son transformados en reglas y sustituyen a las reglas
originales para esa clase. (E) El proceso vuelve al paso 3 hasta
que el método se aplica a todas las clases.

Cada variable lingiiistica tiene un dominio difuso asociado
y el algoritmo de CHI utiliza 3 etiquetas lingiiisticas impares,
en este caso usaremos las siguientes, small, medium y large
que se observan en la Figura 1.

III-A.  Codificacion de la base de reglas.

Como dijimos anteriormente, para utilizar el método de
Quine McCluskey es necesario transformar la base de reglas
en un formato compatible con el método de Quine McCluskey,
donde se utilizan tablas de la verdad binarias. En este trabajo,
adaptamos el método utilizando una codificacién ternaria
y trabajaremos con conjuntos de reglas que usan variables
difusas que tienen asociados dominios difusos con 3 etiquetas.

Teniendo como referencia general las tres etiquetas difusas
small, medium, large, se usard la codificacién que se observa
en la Figura 2.

Small Medium

Large

Figura 1. Dominio difuso de una variable lingiiistica z1, ..., Zn.

Etiqueta Caodigo
small 0

medium 1
large 2

Figura 2. Codificacion ternaria

III-B.  Método de minimizacion Quine McCluskey ternario

En esta seccion describimos la extensién a base ternaria
del método de Quine McCluskey. Dicha extensién se puede
describir con los siguientes pasos:

1. Convertimos el antecedente de cada regla de la base
de reglas a una fila de una tabla de verdad de valores
ternarios tomando el sistema de codificacion de la Figura
2. Se construye una tabla distinta para cada clase.

2. Sumamos los valores de todas las variables correspon-
dientes a cada fila de esa tabla (cada fila representa el
antecedente de cada una de las reglas) y se reordenan
las filas en orden ascendente.

3. Creamos una columna con los minterms asociados al
ndmero de fila a la que pertenece cada regla.

4. Comparamos reglas cuya suma solo difiera en una
unidad para buscar elementos redundantes. Si tres reglas
difieren en una unidad entre si y tienen la misma variable
con distintas etiquetas difusas, marcaremos esta variable
con el simbolo “*” que significa que dicha variable es
redundante. Asociamos la nueva regla con los minterms
pertenecientes a las reglas combinadas.

5. Los términos que no se pueden combinar con tres reglas
donde solo una variable tiene las tres etiquetas difusas,
se analizan en pares. Comparamos reglas cuya suma
difiera en una unidad para buscar elementos redundantes.
En caso de que 2 reglas cuya suma difiera en una
unidad y tengan una misma variable con distinta etiqueta
lingiifstica, marcaremos esta variable como la unién de
las etiquetas difusas. Asociamos la nueva regla con los
minterms pertenecientes a las reglas combinadas. Los
nuevos valores codificados se muestran en la Figura 3.

6. Los términos que no se pueden combinar, los apartamos
en otra tabla como implicantes primos con su respectivo
minterm asociado.
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7. Eliminamos los duplicados en la columna del minterm.

8. Repetimos el proceso 4,5,6 y 7, agregando las nuevas
variables correspondientes a la redundancia “*” del paso
4 y la unién de las etiquetas difusas correspondiente
al paso 5, hasta que ninguna fila se puede combinar.
Creando asi una tabla con los implicantes primos.

9. Para encontrar los implicantes esenciales creamos una
tabla de cobertura. Donde las filas corresponden a los
minterm de las reglas combinadas denominadas impli-
cantes primos del paso 8 y las columnas corresponden a
los valores individuales de cada minterm. Los minterms
correspondientes a las reglas redundantes son omitidos
en este paso, no se colocan en las columnas. En la tabla
de cobertura los minterms cubren los implicantes pri-
mos. Un implicante primo esencial es aquel implicante
primo que cubre un minterm y ningin otro implicante
primo cubre el mismo minterm.

10. Si los implicantes primos no esenciales no tienen un
minterm en comin con los implicantes primos esencia-
les, se vuelve a crear la tabla de cobertura del paso 9 de
modo a extraer los nuevos implicantes primos esenciales,
Esto se repite hasta no obtener mds implicantes primos
esenciales.

11. En el caso de que no exista ninglin implicante primo
esencial se aplica el método de Petrick’s.

Etiqueta Cadigo
Small 0
Meédium 1
Large 2
Small + Medium + Large *
Small + Medium 01
Medium + Large 12
Small + Large 02

Figura 3. Codificacion ternaria ampliada.

Veamos un ejemplo para aclarar como funciona el método.
Supongamos el siguiente conjunto de reglas difusas, todas de
la clase Cy,

Ry: If 1 is SMALL and x5 is SMALL and z3 is MEDIUM
and x4 is LARGE then Class = Cj

Ro: If 1 is SMALL and x5 is MEDIUM and x3 is MEDIUM
and x4 is LARGE then Class = Cj

Rs: If 21 is SMALL and z5 is LARGE and z3 is MEDIUM
and x4 is LARGE then Class = Cj

Ry4: If ;7 is SMALL and x5 is SMALL and x3 is SMALL
and x4 is LARGE then Class = Cj

Rs5: If 21 is MEDIUM and x5 is SMALL and z3 is SMALL
and x4 is LARGE then Class = Cy

Rg: If 1 is MEDIUM and x5 is SMALL and z3 is SMALL
and x4 is MEDIUM then Class = C

Convertimos la base de reglas en una tabla de codificacion
ternaria.

Regla | Minterm | Variable 1 | Variable 2 | Variable 3 | Variable 4| Suma | Clase
Ra 1 0 0 0 2 2 0
Rq 2 0 0 1 2 3 0
Rs 3 1 0 0 2 3 0
Re 4 1 0 0 1 3 0
Rz 5 0 1 1 2 4 0
Rs 6 0 2 1 2 5 0

Podemos apreciar que las reglas correspondientes a los
minterm 2, 5 y 6 tienen todas las etiquetas difusas posibles en
la variable 2, por lo que podemos simplificar las reglas 2,5 y
6. Al igual que las reglas 1 y 3 que tienen 2 etiquetas difusas
en la variable 1.

Minterm Variable 1 Variable 2 Variable 3 Variable 4 Clase
2,56 0 * 1 2 0
13 0-1 0 0 2 0
4 2 0 0 1 0

En la tabla ya no se pueden realizar agrupaciones, a esta
tabla la denominamos implicantes primos. Completamos la
tabla de cobertura con la idea de encontrar los implicantes
primos esenciales.

Minterm 1 2 3 4 5 6

2,56 X X X

1,3 X X

4 X

Podemos apreciar que cada implicante primo tiene un unico
valor en alguna columna correspondiente a los minterms. Por
esto todos los implicantes primos son esenciales y la base de
reglas simplificada queda de la siguiente forma.

IF z; is SMALL and z3 is MEDIUM and z, is LARGE
then Class = C)
IF x¢ is SMALL or MEDIUM and z5 is SMALL and x3 is
SMALL and z, is MEDIUM then Class = Cy
IF z1 is LARGE and x5 is SMALL and z3 is SMALL and
x4 is MEDIUM then Class = C

donde en la primera regla eliminamos la variable =5 y en la
segunda regla usamos el modelo de reglas difusas extendidas
en la variable x;.

IV. ESTUDIO EXPERIMENTAL

En esta seccién queremos comprobar si el método propuesto
permite reducir el nimero de reglas difusas, manteniendo el
nivel de precision, con respecto a los resultados obtenidos por
el algoritmo de CHI original, y a la vez si permite obtener
reglas mas simples que las obtenidas con la propuesta descrita
en [7]. Para ello utilizamos las bases de datos descritas en la
Tabla I obtenidas del repositorio de la UCI [14]. Usaremos
el algoritmo de CHI [5] para generar los conjuntos de reglas.
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Serdn esos conjuntos de reglas los que usaremos para evaluar
el comportamiento de la propuesta y serdn comparados con
los obtenidos por el método usando codificacion binaria [7].

La implementacién del cédigo se ha hecho en Python y se
han utilizamos dominios difusos compuestos por 3 etiquetas
difusas con funcién de pertenencia triangular simétrica.

El estudio se centra en la comparacién de tres parametros:
capacidad de prediccién P, niimero de reglas #R y la simplici-
dad de cada base de conocimiento Simp en el caso binario BIN
y en el caso ternario TER. En este trabajo se ha considerado
la simplicidad como la reduccién en las condiciones en los
antecedentes de las reglas. Los resultados que se muestran
son los obtenidos tras realizar una validacién cruzada de 10.

final (queddndose aproximadamente en un 58 % del tamafio
del conjunto de reglas original). Comparando los métodos
binario y ternario en su capacidad de reduccién de reglas,
se puede observar que no aparecen diferencias significativas
entre ambos métodos. Ambos métodos reducen en valores muy
parecidos los conjuntos de reglas como se puede observar por
los valores medios obtenidos sobre este pardmetro. En cuanto
a la capacidad de prediccidn, podemos observar en la Tabla II
que los valores medios de P en CHI con respecto a (CHI +
BIN) y (CHI + TER), presentan una minima variabilidad.

Tabla II
RESULTADOS OBTENIDOS

Tabla I

BASES DE DATOS UTILIZADAS EN EL ESTUDIO

Base de datos Ejemplos | Atributos | Niimero de Clases
Shuttle 57999 9 9
abalone 3756 8 28
iris 150 4 3
newthyroid 215 5 3
banana 5300 2 2
heart 270 13 2
saheart 462 9 2
bupa 345 6 2
led7digit 500 7 10
page-blocks 5472 10 5
mammographic 830 5 2
flare 1066 11 6
pima 768 8 2
phoneme 5404 5 2
australian 690 14 2
crx 653 15 2
balance 625 4 3
german 1000 20 2
thyroid 7200 21 3
magic 19020 10 2
wine 178 13 13
cleveland 297 13 5
automobile 159 25 6
bands 365 19 2
ionosphere 351 33 2
spectfheart 267 44 2
sonar 208 60 2
movement-libras 360 90 15
penbased 10992 16 10
vehicle 846 18 4
vowel 990 11 11
segment 2310 19 7
winequality-white 4898 11 11
spambase 4597 57 2
ring 7400 20 2

CHI CHI + BIN CHI + TER
Base de Datos P #R P #R P #R
Shuttle 0,801 28,7 0,302 17,5 0,802 16,7
abalone 0,231 69,4 0,230 42,5 0,228 41,5
iris 0,926 14,7 0,940 7,9 0,940 7,9
newthyroid 0,846 20,4 0,810 7,9 0,833 9,5
banana 0,602 7,9 0,580 4 0,558 4
heart 0,515 217,2 0,493 165,3 0,504 156,9
saheart 0,727 168,7 0,721 78,5 0,721 74,6
bupa 0,578 433 0,573 21,8 0,570 20,9
led7digit 0,670 93,9 0,618 92,9 0,676 50,2
page-blocks 0,918 49,7 0,918 26,7 0,916 24.5
mammographic 0,808 45,5 0,812 19 0,816 17
flare 0,567 127,6 0,580 81 0,492 62,2
pima 0,725 101 0,695 43,9 0,697 41,8
phoneme 0,718 50,1 0,712 17,5 0,709 17,5
australian 0,798 313,9 0,783 179 0,783 139,6
crx 0,813 258,2 0,808 154,6 0,805 113,8
balance 0,893 82 0,340 23,6 0,851 24,1
german 0,196 885,2 0,196 836,1 0,196 824,8
thyroid 0,920 463,6 0,910 268,8 0,919 190,8
magic 0,764 313,1 0,744 103,7 0,744 95,4
wine 0,926 124,3 0,921 86 0,926 81,8
cleveland 0,380 239,2 0,354 194,2 0,374 186,7
automobile 0,611 109,7 0,602 86,4 0,577 81,4
bands 0,686 258,2 0,683 194 0,680 197,9
ionosphere 0,652 228.,8 0,655 215,6 0,655 213,3
spectfheart 0,663 235,2 0,663 235,2 0,663 235,2
sonar 0,595 187,2 0,596 185,6 0,596 185,6
movement libras 0,733 260,6 0,731 2573 0,731 2573
penbased 0,975 3281 0,973 1352,7 | 0,972 1427,5
vehicle 0,630 378,6 0,617 211,8 0,618 2184
vowel 0,639 285,9 0,628 193,9 0,622 189,3
segment 0,843 318,5 0,849 139,3 0,852 136,8
winequality-white | 0,495 294 0,494 133,4 0,481 132
spambase 0,728 357 0,693 210,2 0,688 211,1
ring 0,552 573 0,545 428,1 0,536 423,9
Media 0,689 | 299,580 | 0,679 | 180,454 | 0,678 | 174,626

En la Tabla IIT podemos observar una comparacion de los

La Tabla II muestra una comparativa de las bases de reglas
obtenidas por el algoritmo de aprendizaje (CHI) y los dos
métodos de simplificacién estudiados, la minimizacién de la
base de reglas utilizando el método de Quine McCluskey
Binario (CHI + BIN) y la minimizacién de la base de reglas
utilizando el método de Quine McCluskey Ternario (CHI +
TER). Donde P representa la precision y R la cantidad de
reglas generadas por el algoritmo.

En esta tabla podemos observar que ambos métodos pro-
porcionan una reduccién importante en el nimero de reglas

métodos de minimizacién binario y ternario, donde la columna
eliminadas corresponde a la cantidad media de variables irrele-
vantes que fueron detectadas por el algoritmo de minimizacién
ternario y las columnas Simp BIN y Simp TER muestran la
medida de simplicidad de cada base de datos para los métodos
binario y ternario respectivamente de acuerdo a la ecuacién

.

B (variables.reglas prnrER)) — eliminadas

“

variables.reglas cun
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pero no permite, de forma fécil, la deteccién de variables
irrelevantes en los antecedentes de las reglas. Este problema se
debe al uso de la codificacién binaria. Cambiado a codificacién
ternaria y tomando los dominios con tres etiquetas lingiiisticas,
la técnica no sélo reduce las reglas, sino que adquiere mayor
capacidad para reducir las condiciones en el antecedente de la
regla.

Se ha realizado un estudio experimental, usando el algorit-
mo de CHI como método para extraer las reglas y comparando
la version binaria con la ternaria que se ha propuesto en este
trabajo. Los resultados muestran que la nueva propuesta reduce
el nimero de reglas a niveles semejantes a como lo hacia
la binaria. Ademads, frente a la binaria, las bases de reglas
obtenidas usando la minimizacion ternaria presentan un mayor
grado de simplicidad cuando se combina la reduccién de las
reglas y el nidmero de condiciones en el antecedente de las
reglas.

Tabla III
ESTUDIO DE INTERPRETABILIDAD
Base de datos Eliminadas | Simp BIN | Simp TER
Shuttle 1,0 0,610 0,578
abalone 0,9 0,612 0,596
iris 0,0 0,537 0,537
newthyroid 1,8 0,387 0,448
banana 1,0 0,506 0,443
heart 0,7 0,761 0,722
saheart 7,1 0,465 0,438
bupa 2,3 0,503 0,474
led7digit 0,0 0,989 0,535
page-blocks 3,1 0,537 0,487
mammographic 6,5 0,418 0,345
flare 8,0 0,635 0,482
pima 8,7 0,435 0,403
phoneme 7,6 0,349 0,319
australian 8.4 0,570 0,443
crx 10,3 0,599 0,438
balance 25,0 0,288 0,218
german 0,7 0,945 0,932
thyroid 13,1 0,580 0,410
magic 16,1 0,331 0,300
wine 1,6 0,692 0,657
cleveland 0,0 0,812 0,781
automobile 0,1 0,788 0,742
bands 2,8 0,751 0,766
ionosphere 1,6 0,942 0,932
spectfheart 0,0 1,000 1,000
sonar 0,0 0,991 0,991
movement libras 0,0 0,987 0,987
penbased 29,2 0,412 0,435
vehicle 6,4 0,559 0,576
vowel 0,5 0,678 0,662
segment 10,6 0,437 0,428
winequality-white 14,2 0,454 0,445
spambase 19,6 0,589 0,590
ring 234 0,747 0,738
Media 6,6 0,626 0,579

En esta dltima tabla se observa que el método ternario
efectivamente es capaz de detectar variables irrelevantes en
los antecedentes de las reglas, aunque esa deteccidon no es
homogénea. En bases de datos como iris o cleveland o sonar
no es capaz de encontrar ninguna variable irrelevante. La razén
de esto puede deberse a que el método prioriza la reduccién
en el nimero de reglas que la eliminacion de variables a
la hora de realizar las agrupaciones. Por otro lado, podemos
observar que la simplicidad medida como nimero medio de
condiciones, es mejor la aportada por el método ternario. Se
han comparado ambos modelos usando el test de Wilcoxon
para probar que le simplicidad del modelo (CHI + TER) es
mayor que (CHI + BIN), obteniéndose un p-value de 0.9999
y por tanto aceptindose la hipdtesis. Este resultado pone de
manifiesto que el método ternario permite detectar con mas
facilidad variables irrelevantes.

V. CONCLUSIONES

En este trabajo se ha presentado una extensién de una
técnica para la minimizacion de conjuntos de reglas difusas
basado en la técnica de simplificacion de circuitos digitales
de Quine McCluskey. Tomando como base una version previa
que trabaja con circuitos binarios. Dicha versién ofrece un
buen resultado en cuanto a la reduccién del nimero de reglas,
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Abstract—Prometheus is an interpretable model which is
suitable for the generation of visual and textual explanations
grounded in common sense knowledge. This model can be seen
as a special case of generalized additive models, which can be
also interpreted as a list of (fuzzy) rules. The goodness of the
model is illustrated with one benchmark dataset from the medical
domain. Reported results are encouraging. They suggest that
Prometheus exhibits a good balance between understandability
and classification performance in comparison with other well-
known models (e.g., linear models, decision trees or fuzzy rule-
based classifiers) which are deemed as interpretable.

Index Terms—Explainable Artificial Intelligence, Interpretable
Machine Learning, Shapley Values, Generalized Additive Models,
Fuzzy Rule-based Classifiers

I. INTRODUCTION

In Greek mythology, Prometheus was a semi-god who
stole a spark of fire from the gods and created humanity
from clay [1]. Moreover, he is said to have brought fire
(intelligence) to humankind. In this paper, we introduce a
new Artificial Intelligence (AI) modelling method whose name
takes inspiration from this myth, in that it constitutes a step
ahead towards the creation of self-explaining AI models in
real-world applications.

Given a classification or regression task, the objective
of machine learning has been to mathematically formalise
algorithms for maximising some accuracy measure for the
given data. A wide variety of models have been created, some
of them achieving impressive performance on benchmarking
datasets. However, there is a class of problems for which
having good performance metrics is not enough. In particu-
lar, a system that supports decision-making for fault-critical
situations, or where someone has to take responsibility for the
action, has limited utility if it does not provide any meaningful
insight into its reasoning process. For example, if an advanced
Al in a hospital suggests a diagnosis and a cure, the well-
being of the patient is ultimately the responsibility of the
doctor in charge and he/she is the person who in the end will
have the final word about the diagnosis and treatment. Thus a
doctor is going to use such an Al-based diagnostic system only
if its recommendations are transparently explained, allowing

Albert Gatt
Institute of Linguistics and
Language Technology, University of Malta (UM)
Msida, Malta
albert.gatt@um.edu.mt

the professional to evaluate their soundness and possibly
communicate them to the patient.

It is within this frame of responsibility, trust, fairness,
accountability and liability that eXplainable Al (XAI) plays
a key role [2]. An Al system that can explain its reasoning
is more likely to inspire trust in decision-makers. Recently,
XAI has received lots of attention, with proposals for different
approaches and tools aimed to answer different questions.
In this context, if we want to lower the barrier to access
to these tools, then the use of the verbal modality and
textual generation can sparkle an interactive communication
between humans and Al that will help understandability and
the transfer of knowledge [3]-[5]. This is because humans tend
to vastly favour the modality of language when explaining their
decisions and the reason behind them.

In this paper, we introduce Prometheus, an interpretable-
by-design Al model that supports both visual explanations
and textual descriptions of its reasoning. We have evaluated
Prometheus with the Breast Cancer benchmark dataset [6].
Moreover, we have shown how Prometheus works in com-
parison with alternative methods in an illustrative example.
The rest of the manuscript is organized as follows. Section II
introduces related work. Section III describes how to build
and interpret Prometheus XAI models. Section IV presents our
experimental settings and reports achieved results. Section V
concludes the paper and points out future work.

II. RELATED WORK

One important feature that distinguishes between different
XAI approaches [7] is whether an explanation is generated
after the prediction is done (post-hoc), or whether one tries to
design an interpretable model in the first place.

A. Interpretable by design models

In the literature we find three broad classes of interpretable
models; several variations exist within each class.

+ Rule-based Systems (RBSs): a list of rules in the form

IF X THEN Y. The more rules there are, the harder it
becomes to understand the model.
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o Decision Trees (DTs): a list of rules nested into a tree
structure. At each step of the reasoning process, the model
is looking at just one “test” at a time and based on the
result decides which branch to descend along the tree
until it reaches a leaf that corresponds to the prediction.

o Generalized Additive Models (GAMs): a class of mod-
els that are only concerned with first-order interactions
between the features and the target. This allows the study
of the effect of each feature one at a time.

Both RBSs and DTs are relatively easy to interpret and
describe in natural language [8], [9]. However, as far as
we know, it is rare to find linguistic explanations associated
with GAMs (see e.g., [10]). GAMs are models of the form
g(y) = >, fi(z;) where z; represents the i-th feature of x and
g(+) is the link function (e.g., logistic sigmoid for classification
tasks). Each f; is called a shape function [11]. GAMs are
interpretable due to the additive nature of the modelling,
allowing a user to focus on the contribution of each feature
without accounting for interaction effects. In other words, they
are a class of models for which partial dependency plots and
their generalisation, Individual Conditional Expectations [12],
can be computed exactly, they let users follow the process of
computation in a sequential manner, and they are not subject
to variation effects (because interactions are restricted to first-
order, by design, but see below for details on GA2Ms which
incorporate interaction terms). The main types of GAM are:

« Linear Models (LMs): where fi(z) = §; and j; is a
static coefficient.

o Scoring Systems: similar to LMs, but where 3 coeffi-
cients are discrete and small [13].

« Spline Systems: each partial f; is estimated with a spline.

o« GA2M: introduces additional terms that explicitly deal
with second-order interactions f;(x;,z)) which are de-
scribed by heatmaps [14].

« Explainable Boosting Machine (EBM)': combines
small trees and also deals with second-order interactions.

« GAMs with Neural Networks: each f; is estimated with
a neural network. They were first proposed by [15].

B. Post-hoc explanations

With black-box models, it is possible to some extent to
generate post-hoc explanations of their behaviour, using dif-
ferent techniques. For example, LIME [16] makes a linear
approximation to the black-box so that it is locally equivalent.
On the other hand, SHAP [17] is inspired by the game-
theoretic Shapley Values that assign to the feature z; a
contribution ¢;(x;) such that

() = B [f(x)] = 3 i)

SHAP is in general NP-hard to compute, but for some
models (like tree ensembles [18]) can be computed efficiently.
Moreover, it is accessible and usable thanks to its open-source
implementation.”

! Available at https://github.com/interpretml/interpret
2 Available at https://github.com/slundberg/shap

The interpretation of these methods must nonetheless be
conducted carefully as they have been shown to be potentially
vulnerable to some adversarial attacks [19].

III. DESCRIPTION OF THE PROMETHEUS XAI MODEL

The architecture of Prometheus is depicted in Fig. 1. This
is another step toward a human-centric approach to knowl-
edge discovery and human-machine interaction. The user can
benefit from flexibility in the customisation of the processing
of data according to common-sense expert knowledge. Also,
he/she can exploit the insights learnt from the model commu-
nicated with visualisations and textual explanations.

The first component of Prometheus is a discretiser that
discretises continuous variables into k-bins (using a k-means
or quantiles strategy) transforming the original instance into
a wider vector of Os and 1s (this can be interpreted as a way
of building rules IF x; IS IN BIN j). Each bin has a semantic
meaning that can be linguistically refined by an expert, just
by tuning the associated strong fuzzy partition. As an example
let’s imagine the task of recommending a certain movie to
someone given that we have a feature that represents their
age: the discretiser would produce a tuple of features stating
whether age is low, medium or high. This initial partition can
be semantically refined later by the user with personalized
labels like young, mid-age or old.

The output of the discretiser is then combined linearly by
an LM with zero bias (regularised by an L1 penalty as it
incentives a sparse representation)®. In this way, a partial
score is attributed to each partition and the final prediction
(in log-odds space) will be the global aggregation (sum) of
the fired partial scores. Going back to our example, a young
person could contribute with a score of +1.2 (thus representing
evidence of the class “Do recommend’) while an old one could
contribute with -1.1 (thus being counter-evidence for the class,
thus “Do not recommend”). If the mid-age contributes with 0,
then it can be omitted for the sake of reducing the cognitive
load to the user.

The generated model can be seen both as a GAM where
each f; is piece-wise constant, and as a fuzzy rule list
aggregated by the sum operator (e.g., “R;: IF feature; is
labels THEN output; with w = s”). This means that we
can use the visualisations typically used for GAMs but also
the linguistic explanations associated with fuzzy rule-based
systems. In particular, the interpretation of the model as
a rule list can support the generation of simple linguistic
explanations. This can be achieved for example by ad-hoc
mapping rules to templates of the form “Instance ¢ has a high
value of feature f and this contributes s to the total log-odd
score of class C.”” Naturally, the language generated could also
be tailored to the user, or made more or less precise depending
on the context. Thus, we can produce a textual description of
the process that leads to the final prediction.

We adopt a relatively simple generation strategy for textual
descriptions in the present work, noting that more sophisticated

3The number of bins and the coefficient for regularisation are automatically
chosen with cross-validation on the training data.
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Fig. 1. A pictorial description of the proposed architecture.

methods have been developed in the field of Natural Language
Generation [20]. Here, the textual generation process follows
a template-based approach. Contributions are first divided into
evidence and counter-evidence for the target class. They are
then presented in an ordered way sorted by the absolute
magnitude of their partial score so that more important features
are presented first (see an illustrative example in Fig. 4, which
will be described in depth in the next section). Then, the
discretiser component gives us the option of using semantic
labels to give a qualitative description of the magnitude of
the feature. For example, if a feature had three bins (like in
Fig. 1) we could establish that for that particular feature we
assign one semantic label out of [low, medium, high]; with
the meaning of this semantic label tied to the distribution of
data. However, a given explanation can be excessively long due
to many features contributing very little to the overall score.
Accordingly, to keep the explanation shorter and relevant for
the user, we have implemented a compression algorithm that
groups small partial scores into a score called “other reasons”.
The values are sorted by absolute value and then are progres-
sively accumulated, until a threshold is met (while ensuring
that the absolute magnitude of the resulting aggregation is
smaller than the smallest remained partial score). The rate of

compression can be set by the user, allowing the user to focus
first on what is most relevant and then giving him/her the
option of delving into the details if needed.

It is important to note that even though the additive nature
of the Prometheus model might qualitatively resemble SHAP,
it is significantly different from it. This is because additive
coefficients in Prometheus constitute in themselves the inter-
pretable model. By contrast, SHAP provides these coefficients
as a post-hoc explanation. Moreover Shapley values describe
f(x)—Evy;[f(x)] while for Prometheus they describe precisely
f(x). It is nonetheless possible to make use of the visualisation
toolbox provided by the SHAP package (while keeping in
mind that we are visualising something radically different).

IV. EXPERIMENTS

We have empirically assessed both the accuracy and com-
plexity (as a proxy for explainability) of the Prometheus XAI
model. As humans we have a limited cognitive capacity, thus
between two systems of equal performances we would tend
to find more interpretable a simple one. We considered the
Breast Cancer dataset (taken from the UCI machine learning
data repository [21]). This is a relatively small dataset (569
instances, 30 features) where explainability, as is expected in
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medical diagnosis, is an important concern. All features are
numerical and there are no missing values. The task consists
of predicting if a given cancer is benign (357 instances) or
malign (212 instances) [6].

For comparison purposes, in addition to Prometheus, the
following models are generated*: (i) EBMs; (ii) LM-L1 (with
L1 regularisation chosen with 4-fold cross-validation); (iii)
J48 decision tree; (iv) REPTree; (v) RandomTree; (vi) Fuzzy
Hoeffding Decision Tree (FHDT) (vii) Fuzzy Unordered Rule
Induction Algorithm (FURIA); and (viii) Random Forest (RF).

Figures 2 and 3 show the interpretability-accuracy trade-off
of models which are deemed as interpretable’. Every measure
is estimated with stratified 10-fold cross-validation. Classifi-
cation performance is measured in terms of the area under the
receiver operating characteristic curve (ROC AUC) in Fig. 2.
Classification performance is measured in terms of F1 Score
in Fig. 3. In both cases, the structural complexity of models
is computed as the total rule length (TRL)®. In these figures,
Prometheus emerges as the most accurate model, at the cost of
higher structural complexity. Moreover, it performs reasonably
well (ROC AUC = 0.988; F1 Score = 0.949) compared to
the black-box model RF (ROC AUC = 0.991; F1 Score =
0.968). However, EBM (ROC AUC = 0.992; F1 Score = 0.971)
achieves even better performance, which can be attributed to
its higher flexibility due to the high number of shallow trees,
which allow the modelling of a more complex shape function,
and to the capability of modelling higher-order interactions. In
addition, this high performance comes at the cost of increased
model complexity (TRL=7680), i.e., the user has to deal with
a more complex shape function representation for inspecting
the model, what in practice jeopardizes intelligibility.

Regarding explainability, the prediction of a single instance
consists of the summation of partial scores activated when a
feature lies in a certain bin. This can be displayed in different
ways (see Fig. 4). For example, the list of activated rules is
given on top, a waterfall plot is given in the centre, and a
linguistic explanation is given at the bottom. In addition, Fig. 5
shows the same example with a higher compression rate, i.e.,
with a less detailed and rougher explanation.

On the other hand, Figs. 6, 7, and 8 show the Shapely values
associated with models LM-L1, RF, and EBM, respectively.
These graphs provide similar information to that given by
Prometheus: the final output is laid down as a sum of terms.
The main difference is that this sum of terms amounts to the
difference between the expected value of the function and the
specific value of the instance in SHAP, while the sum directly

4We use the implementation of EBMs and LM-L1 in Python InterpretML
and scikit-learn packages, respectively. We use the implementation of J48,
REPTree, RandomTree, FHDT, FURIA and RF in ExpliClas [8], [9].

SEBM is not included in the figures because it uses a discretiser with
128 bins what yields huge structural complexity (TRL=7680) and makes
impossible any linguistic interpretation of the model.

OTRL counts the number of premises and conclusions in a rule list like
the one provided by FURIA or FHDT; TRL counts the number of nodes in
a tree (like J48, REPTree or RandomTree); TRL counts the number of non-
zero coefficients multiplied by 2 in an LM; TRL equals 2 x number of bins
x number of features in Prometheus and EBM.
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Fig. 2. The trade-off between classification performance (ROC AUC) and
complexity (TRL); computed using stratified 10-fold cross-validation.
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Fig. 3. The trade-off between classification performance (F1 Score) and

complexity (TRL); computed using stratified 10-fold cross-validation.

explains the f(z) in Prometheus. Moreover, it is important
to notice how SHAP is a post-hoc method, thus it does not
directly reflect the underlying computation. The explanation
of Prometheus is instead exactly the description of its internal
rationale. The explanations given by these different models
show some inconsistencies, and this can be misleading and
jeopardise user confidence. For example, worst perimeter is
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Activated Rules

R1l: IF high worst concave points THEN malign with weight 2.4

R2: IF medium radius error THEN malign with weight 1.3

R3: IF medium worst area THEN malign with weight 1.1

R4: IF high mean radius THEN malign with weight 0.4

R5: IF medium mean area THEN malign with weight 0.2

R6: IF high mean smoothness THEN malign with weight 0.06

R7: IF low mean texture THEN benign with weight 0.7

R8: IF low worst texture THEN benign with weight 0.9
i -~ final prediction

high worst concave points

medium radius error

medium worst area

high mean radius

medium mean area

high mean smoothness

low mean texture

low worst texture

The instance is classified as malignant with probability
98.68 %. This is because high worst concave points, medium
radius error, medium worst area, high mean radius, medium

mean area and high mean smoothness is evidence of malignant.
The evidence of benign (low worst texture and low mean
texture) is not strong enough.

Fig. 4. A full local factual explanation provided by Prometheus.

Activated Rules

R1l: IF high worst concave points THEN malign with weight 2.4
R2: IF medium radius error THEN malign with weight 1.3

R3: IF medium worst area THEN malign with weight 1.1

R4: IF other reasons THEN benign with weight 0.9

final prediction

high worst concave points
medium radius error
medium worst area
others

N

Score

The instance is classified as malignant with probability
98.68 %. This is because high worst concave points, medium
radius error and medium worst area is evidence of malignant.
The evidence of benign (other reasons) is not strong enough.

Fig. 5. Illustrative example of compressed explanation.

evidence for benign in case of LM-L1 but it is for malign in
case of RF and EBM. Moreover, this feature is not highlighted
among the most relevant ones by Prometheus.

In addition, the linguistic explanations provided by
Prometheus can be compared to those given by ExpliClas:

o J48: Diagnosis is malign because mean concavity and
worst area are medium.

« REPTree: Diagnosis is malign because worst perimeter
is medium.

« RandomTree: Diagnosis is malign because mean area,
mean smoothness, area error and worst concavity are
medium.

« FHDT: We have a high confidence in the classification
result. It is very likely that diagnosis is malign. There
is also a medium chance that it is benign. On balance
malign is more likely, because in accordance with rule 7
concavity error is low and worst concave points is high.

o« FURIA: We have a high confidence in the classification

21.16 = worst area

. +2.09

—0.24‘

11.42 = mean area
15.34 = worst perimeter

19.69 = mean perimeter

26 other features

-15 -10 50 5
ElfX)] = 1644

Fig. 6. Local explanation given by SHAP for LM-L1 model.
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Fig. 7. Local explanation given by SHAP for RF model.

result. It is very likely that diagnosis is malign because
worst concave points is high and worst radius is medium.

As we can see above, different models are supported
by different rationale and provide consistent but different
complementary explanations. In the case of fuzzy classifiers
(FHDT and FURIA), ExpliClas begins explanations with a
sentence related to the confidence in the classification result
which emerges from the rule firing degree associated with the
winner rule. This is similar to how Prometheus begins each
textual explanation (see Fig. 5) with a sentence verbalising the
probability associated with the given classification.

ExpliClas also provides users with factual explanations
of the inferred class but nothing is said about alternative
classes. This is because explanations verbalise the information
contained in the activated branch of a tree or the winner rule in
a fuzzy classifier. On the contrary, Prometheus provides users
with contrastive explanations, which verbalise which features
are evidence for and against the inferred class.

Another commonality shared by ExpliClas and Prometheus
is that they provide users with a graphical output along with
the list of related rules. In the case of the illustrative example
under consideration, FURIA fires rules:
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15.34 = worst perimeter
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Fig. 8. Local explanation given by SHAP for EBM model.

e R1: IF worst radius in [16.25, 16.82, inf, inf] and
worst concave points in [0.1452, 0.1456, inf, inf] THEN
Diagnosis is malign with CF = 0.99

e R2: IF worst area in [947.9, 967, inf, inf] and worst
fractal dimension in [0.06469, 0.06515, inf, inf] THEN
Diagnosis is malign with CF = 0.99

However, FURIA rules are not easily verbalised, so they
need to be linguistically approximated by ExpliClas as:

e R1: IF worst radius is medium and worst concave points
is high THEN Diagnosis is malign

o R2: IF worst area is medium and worst fractal dimension
is medium THEN Diagnosis is malign

In the case of ExpliClas, explanations only pay attention to
the winner rule (R1 in this example; because the two rules
are activated with the same degree and then the first rule is
selected). On the contrary, all listed rules contribute to the
explanation elaborated by Prometheus.

V. CONCLUSIONS

In this paper, we have introduced Prometheus, an inter-
pretable model that can produce both textual and visual
explanations related to tabular data. This model can be seen as
a weighted RBS with sum aggregation at inference level. We
measured reasonable performances on classification metrics,
beating LMs and DTs. In addition, the model compares
favourably to RFs and EBMs, though its accuracy is slightly
lower. Prometheus was designed for supporting linguistic
explanations with different degrees of details. As future work,
we plan exhaustive experimentation with more benchmark
datasets. In addition, we plan to explore more sophisticated
natural language generation techniques, multiclass classifica-
tion and measuring the impact of explainability with intrinsic
and extrinsic human evaluation. For the sake of reproducibility,
Prometheus (as well as other related XAI tools) is available
at https://gitlab.citius.usc.es/jose.alonso/xai.
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Resumen—Los modelos basados en agentes (ABM) son un
paradigma de simulacién para modelar sistemas complejos me-
diante la definicion del comportamiento heterogéneo de cada
uno de sus individuos en una aproximacion bottom-up. En este
trabajo, se presenta un ABM para marketing donde las per-
cepciones de los consumidores son modeladas usando el modelo
lingiiistico 2-tuplas. Estas variables representan las opiniones que
los consumidores tienen sobre las diferentes caracteristicas de
cada producto, las cuales guian sus decisiones (p. ej., precio
o calidad). Al contrario que los valores exactos, las variables
lingiiisticas difusas son una representacion realista de estos aspec-
tos cualitativos. En nuestro ABM, los agentes usan una heuristica
de toma de decisiones para seleccionar un producto, la cual esta
basada en estas percepciones y en una regla probabilistica de
maximizacion de utilidad. Este proceso requiere una agregacion
difusa de las percepciones de cada producto, guiada por una
serie de pesos asociados a los drivers del agente consumidor e
implementada mediante el operador promedio ponderado de 2-
tuplas. Adicionalmente, hay productos en el mercado que no
son conocidos por algunos consumidores. En nuestro ABM, esta
informacién se modela aplicando un filtro de conocimiento de
marca en la heuristica de toma de decisiones. De esta manera, los
agentes consumidores solo pueden elegir aquellos productos que
les son conocidos. Los resultados de nuestro analisis experimental
muestran que nuestra representacion realista de las percepciones
del consumidor es mas precisa que otros métodos existentes.

Index Terms—comportamiento del consumidor, marketing,
heuristicas de compra, reconocimiento de marca, informaciéon y
toma de decisiones lingiiistica difusa, 2-tuplas, modelos basados
en agentes.

I. INTRODUCCION

El principal objetivo cuando se modela un mercado es enten-
der las reglas que lo gobiernan, para analizar posteriormente el
resultado de posibles escenarios. Por tanto, es crucial entender
y predecir las compras de los consumidores. En los enfoques
clasicos, estas decisiones se infieren cominmente de variables
globales en un esquema top-down. El principal inconveniente
de este paradigma es la incapacidad de representar compor-
tamientos heterogéneos de los consumidores, y los eventos
emergentes de éstos. Por esta razdn, estos enfoques cldsicos
normalmente resultan en representaciones imprecisas de la
realidad del mercado [1], [2].

Un enfoque alternativo a estos enfoques cldsicos consiste
en estudiar el comportamiento complejo del mercado como
resultado de una agregacion bottom-up de las decisiones de
cada uno de sus consumidores [2], [3]. Para ello, los modelos
basados en agentes (ABM) [4], [5] proveen una infraestructura
adecuada. ABM es una técnica de modelado descriptivo (una
agregacion de muchas decisiones individuales de cada agente)
que ayuda al disefiador y al profesional de marketing a en-
tender mejor el mercado y su comportamiento. En la mayoria
de los casos, modelar comportamientos individuales es mas
simple y mds preciso que modelar el comportamiento del
sistema completo por reglas globales. Los ABM se han apli-
cado con €éxito en otras areas tan diversas como economia [6],
politica [7] y sistemas de confianza social [8].

La mayoria de los ABM para marketing existentes repre-
sentan las opiniones del consumidor usando valores numéri-
cos [9]. Esta es una representacién poco realista de este tipo de
informacion cualitativa. Ademads, las opiniones del consumidor
se definen normalmente usando datos de cuestionarios disponi-
bles para la compaiiia, los cuales son comtinmente respondidos
en términos lingiiisticos. Por tanto, manejar valores numéricos
requiere el preproceso adicional para transformar las respues-
tas lingiiisticas de los cuestionarios en datos exactos, con lo
que el disefio del modelo es mds complejo y suele provocar
una pérdida de informacién en la representacion.

En este trabajo, se desarrolla un ABM para modelar mer-
cados virtuales con una representacién realista de las per-
cepciones del consumidor, la cual estd basada en variables
lingiiisticas difusas [10]-[12]. Esta informacién permite dar
valores difusos (p.ej., a cada una de las caracteristicas de los
productos (p.ej., precio, calidad o gusto) [13]. En concreto,
representamos estas percepciones usando el modelo lingiiistico
2-tuplas [14], que consisten en un par formado por una
etiqueta lingiiistica y un desplazamiento simbdélico. Como se
explica en [13], esta representacion solventa los inconvenientes
de otros enfoques lingiiisticos difusos ordinales [15] ya que
permite asignar valores diferentes a dos variables que tengan
la misma etiqueta lingiiistica (teniendo dos valores diferentes
en el desplazamiento simbdlico). Ademds, esta representacion
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es sustancialmente mds realista que otras representaciones
existentes y estdndares como los valores numéricos u otro tipo
de valores exactos.

Dado que cada agente tiene una percepcién sobre cada
caracteristica de los productos del mercado, se propone una
heuristica de toma de decisiones difusa que agrega dichas
percepciones lingiiisticas difusas para calcular una valoracion
global de cada producto para el consumidor y elegir uno de
ellos, lo cual simula el proceso de compra de los consumido-
res. Dado que las percepciones del consumidor se representan
con variables lingiiisticas difusas y tienen un vector de pesos
asociado a cada variable (driver), su agregacion se puede rea-
lizar con el operador promedio ponderado para 2-tuplas [14].

De este modo, el ABM para el anélisis de comportamiento
de consumidor con representacion lingiifstica difusa presenta-
do en [13] representa adecuadamente varias caracteristicas del
comportamiento real del consumidor, pero no considera meca-
nismos mds complejos como procesos de boca a boca en redes
sociales u otro tipo de interacciones complejas entre agentes.
Para avanzar en el disefio de un ABM realista para marketing,
en este trabajo se introducen dos importantes modificaciones
con respecto a dicho modelo. Primero, las decisiones del
consumidor raramente son completamente deterministas. En
nuestro sistema, este comportamiento se modela por medio
de una funcioén probabilistica de maximizacién de la utilidad
proporcional a las valoraciones agregadas de los productos,
a diferencia de la estrategia plenamente determinista usada
en [13]. Segundo, los consumidores no siempre conocen todas
las marcas en el mercado. En el ABM propuesto en este
trabajo, se incluye esta informacién definiendo las marcas de
las que cada agente tiene conocimiento. Este tipo de infor-
macién estd disponible normalmente en datos de encuestas
sobre el consumidor facilitado por agencias de marketing.
Nuestra heuristica de toma de decisiones implementa un
filtro de conocimiento de marca, de forma que los agentes
consumidores s6lo pueden comprar productos que conocen.

El modelo propuesto se evaliia nuestro sistema en un caso
de estudio de marketing real, comparando su rendimiento con
el de otras representaciones tradicionales de las percepciones
del consumidor, analizando su precision con respecto a datos
reales que representan las ventas en este mercado. El andlisis
experimental muestra que nuestro modelo es mds preciso.

El resto de este trabajo se organiza asi: en la Sec. II
se describen conceptos preliminares; el ABM propuesto se
presenta en Sec. III; en la Sec. IV se presenta una evaluacion
experimental del modelo; y finalmente se concluye en la
Sec. V.

II. CONTEXTO

II-A.  Representacion numérica de las preferencias del con-
sumidor usando datos de encuestas

Los sistemas ABM para marketing normalmente requieren
de una definicién de las percepciones del consumidor para
cada marca del mercado, con el fin de simular un mercado
virtual realista. Estas percepciones se obtienen de datos de
encuestas y estudios de salud de marca de consumidores

reales, facilitados por renombradas consultoras de marketing
como Kantar Millward-Brown [16]. Estos datos se estructuran
en forma de encuestas incluyendo conjuntos de respuestas a
una seria de preguntas sobre las marcas [17].

En algunos casos, las respuestas de las encuestas se recogen
directamente en la misma escala requerida por el ABM, un
valor real en el intervalo [0, 10], representando 0 la percepcién
mas negativa, 5 una percepcién neutral, y 10 la percepcién
mds positiva. Sin embargo, la situacién mds habitual es
que las respuestas de las encuestas muestren una naturaleza
lingiiistica. En estos casos, se requiere un preprocesado manual
de las respuestas para traducirlas a la escala [0,10], con la
consecuente pérdida de informacion. Por tanto, este problema
se aborda mejor trabajando directamente con las valoraciones
lingiiisticas siguiendo un enfoque lingiiistico difuso en lugar
de transformarlas a valores numéricos.

II-B.  Variables lingiiisticas

Las variables lingiiisticas [10]-[12] toman como valores
palabras o frases en el lenguaje natural. Se usan en enfoques
lingtiisticos difusos, donde el problema requiere manejar as-
pectos cualitativos [15]. Este es un requerimiento tipico en
muchos contextos, donde la representacion de la informacién
mds directa y realista es claramente el lenguaje natural.

En el enfoque lingiiistico difuso ordinal, un caso especial de
enfoques lingiiisticos difusos, las variables lingiiisticas toman
valores de un conjunto predefinido y totalmente ordenado de
etiquetas lingiiisticas S = {so, ..., 8¢} de tamafio finito |S| =
g + 1. Se considera la definiciéon convencional de conjunto
ordenado donde Vs;,s; € S.s; <55 &1 <.

En este trabajo, consideramos funciones de pertenencia
triangulares para las variables lingiiisticas. En la Figura 1 se
representa un ejemplo de esta pertenencia difusa. En concreto,
se usa una funcién de pertenencia triangular definida en el
intervalo [0, 1] para un conjunto de 5 etiquetas lingiiisticas
{muyMala, mala, neutra, buena, muyBuena} de la varia-
ble lingiifstica.

El manejo de variables lingiiisticas difusas normalmente
requiere agregar su informacién, es decir, los valores de
estas variables. Un enfoque comun es aproximar estos va-
lores lingiiisticos con valores numéricos correspondientes a
su indice en el conjunto ordenado de etiquetas {0,1,...,g},
agregarlos con métodos comunes, obteniendo un valor real
intermedio 8 € [0,¢], y finalmente aproximar este valor
intermedio a una etiqueta lingiiistica del conjunto original [18].
Para ello, se definen dos operadores para aproximar variables
lingiiisticas a nimeros y vice versa:

Definicion 1 (Aproximaciones Numérico-Lingiiisticas del mo-
delo simbdlico lingiiistico computacional ordinal). Dado un
niimero real 8 € [0, 9] y una etiqueta lingiiistica sy, siendo
k la posicion de la etiqueta s; en el conjunto ordenado
de etiquetas lingiiisticas S = {so,...,sq4} del que la va-
riable lingiiistica v toma valores, se definen las siguientes
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<high, -0,44>
2N
0 0.25 0.75 1
Figura 1.  Funcién de pertenencia triangular para variables lingiifsticas en el intervalo [0,1] para el conjunto de etiquetas lingiifsticas

{muyMala, mala, neutra, buena, muyBuena}. Se incluye también la 2-tupla correspondiente a la aproximacion A(2,56) = (buena, —0,44).

aproximaciones numérico-lingiiisticas A’ : S — {0,....,g} y
A:[0,g9] = S como:

A/(Sk) =k
AB) = sk st Vs,esnizr A (sk) — Bl < |A'(si) — Bl V
Js,esni=kt1 | A (sk) — B] = |A'(s;) — B

En resumen, el valor numérico asociado a una etiqueta
lingiiistica sj corresponde con su posicién en el orden del
conjunto y la etiqueta asociada al valor numérico /3 es la mas
cercana de acuerdo a los valores numéricos de las etiquetas en
la escala [0, g]. En el caso de que 8 quede justo en el punto
medio entre dos etiquetas, por convenio se asigna a la menor
en el orden.

1I-C. El operador de agregacion promedio ponderado para
variables lingiiisticas

Existe una amplia variedad de operadores de agregacion
en la literatura que han sido adaptados para trabajar con
variables lingiiisticas [18], destacando el operador OWA [19]
debido a su gran versatilidad. En nuestro caso, cada agente
consumidor tiene un peso asociado a cada driver, previamente
especificado, que representa sus preferencias de compra, por
lo que emplearemos el operador promedio ponderado.

Definicion 2 (Promedio ponderado para variables lingiiisti-
cas [18]). Sean (a1,...,an) una serie de etiquetas lingiiisti-
cas a agregar, con a; € S,y sea W = {wy,...,w,} el
conjunto de pesos asociado. El operador promedio ponderado
de variables lingiiisticas se define como:

B(A, W) = A(M

donde las funciones A y A’ son las aproximaciones numérico-
lingiiisticas definidas anteriormente.

En nuestro caso el vector de pesos W cumple que w; €
[0,1] y > ,w; = 1, por lo que tenemos una combinacion
lineal y el denominador vale 1.

II-D. El modelo de representacion de 2-tuplas lingiiisticas

Un inconveniente del enfoque anterior es la pérdida de in-
formacién causada por la agregacion de etiquetas lingiifsticas.
Para resolver este problema, en [14] se propuso la represen-
tacion de 2-tuplas lingiiisticas.

Definicion 3 (2-tupla lingiiistica [14]). Una 2-tupla lingiiistica
es un par (S, ), en el que s, € S es una etiqueta lingiiistica
y a € [-0,5,0,5) es un desplazamiento simbdlico que especi-
fica la traslacion de la funcion de pertenencia que representa
la etiqueta lingiiistica s, mds cercana si la informacion
lingtiistica resultante de un cdlculo simbdlico no corresponde
exactamente con una etiqueta del conjunto. El conjunto de 2-
tuplas asociado con S se define como S = S x [-0,5,0,5).

Definicion 4 (Aproximaciones Numérico-Lingiiisticas de 2-tu-
plas lingiiisticas [14]). Dado un niimero real 8 € [0,g] y
una etiqueta lingiiistica sy, € S, se definen las siguientes
aproximaciones numérico-lingiiisticas A’ : S — {0,...,g} y
A:[0,g] = S como:

Al((sp ) =k +a
A(B) = (sg,a),donde k = round(B) y a=8—k

La funcién round devuelve el entero k € {0,...,g} mds
cercano a .

De este modo, una 2-tupla lingiiistica se vincula a un valor
numérico equivalente 3 en el intervalo de granularidad de S,
[0,g], y ese valor se obtiene a partir del valor numérico de
la etiqueta y el del desplazamiento. Por otro lado, un valor
numérico [ se asocia a una 2-tupla compuesta por la etiqueta
lingiifstica mds cercana segin los valores numéricos de las
etiquetas en la escala [0, g] y al desplazamiento necesario para
hacer coincidir el valor de dicha etiqueta con el de (.

Por tanto, el operador de agregacién promedio ponderado
de la Definicién 2 se puede aplicar directamente a 2-tuplas
lingiifsticas usando las aproximaciones numérico-lingiiisticas
de la Definicién 4 [14]. Un ejemplo de estas aproximaciones
se muestra en la Figura 1, donde se ve como A(2,56) =
(buena, —0,44).

III. MODELO BASADO EN AGENTES CON INFORMACION
LINGUISTICA DIFUSA Y CONOCIMIENTO DE MARCA

En esta seccion se define el ABM que simula el compor-
tamiento de un mercado con percepciones del consumidor
lingiifsticas y una heuristicas de toma de decision lingiiisti-
ca. En nuestro modelo, usamos variables lingiiisticas difusas
para representar los diferentes aspectos de cada marca o
producto (p.ej., precio, calidad, confort, ...). A estos aspectos
se les llama drivers dado que guian las elecciones de los
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consumidores. En concreto, usamos 2-tuplas lingiiisticas para
almacenar las percepciones sobre los drivers que gobiernan el
comportamiento del mercado.

En nuestro modelo, los agentes representan consumidores
que llevan a cabo un proceso de toma de decisiones para
seleccionar un producto entre las marcas disponibles. Este
proceso se lleva a cabo segilin sus propias percepciones y la
valoraciéon que le dan a cada marca. La poblacion de agentes
se organiza en segmentos, grupos de agentes muy similares en
términos de comportamiento. Todo ello nos permite simular
el comportamiento del mercado y realizar predicciones en €l.

III-A. Marcas

En nuestro ABM, las estrategias de toma de decision
de los consumidores unicamente se llevan a cabo entre un
conjunto finito B = {by,...,b,} de n marcas disponibles
en el mercado. Para modelar los atributos de cada marca,
se considera también un conjunto D = {di,...,d;,} de m
drivers. Estos drivers son fijos para todas las marcas en el
mercados.

III-B.  Percepciones del consumidor

Todo consumidor estd representado por un agente en el
sistema. Cada agente tiene sus propias percepciones (positiva,
neutra o negativa) sobre cada driver de cada marca. Para
representar las preferencias de los drivers, se define para cada
agente z un vector de pesos W* = [wf,...,w%], tal que
todos los pesos deben estar en el intervalo [0, 1] y su suma
debe ser igual a 1. Estos pesos representan la importancia
de cada driver cuando un agente consumidor x realiza una
decisién de compra.

Las percepciones del consumidor se modelan definiendo,
para cada agente x del ABM, una matriz de percepciones
P¥* de dimensiones n X m, donde cada elemento pf_J» e p*
representa la percepcion del agente x sobre el driver d; € D
de la marca b; € B. En nuestro modelo, estas percepciones se
representan usando 2-tuplas lingiiisticas, todas ellas tomando
valores de un conjunto ordenado de etiquetas lingiiisticas
comun (ver la Definicién 3). Esto nos permite representa la
vision cualitativa del consumidor sobre cada marca.

III-C. El conocimiento de marca del consumidor

En un mercado real, cada consumidor puede no tener cono-
cimiento de ciertas marcas. Para modelar esta informacion, se
define en nuestro modelo el conocimiento de marca de cada
agente. En concreto, para cada agente x, se define un vector
A" de n variables Booleanas, donde af € A” representa si el
agente z tiene conocimiento de la marca b; € B.

III-D. Agentes consumidores

Basados en la caracterizacion de las marcas y de los consu-
midores presentada anteriormente, ahora pasamos a definir los
agentes consumidores. Notese que esta definicion representa el
estado mental de los consumidores, es decir, su conocimiento
sobre el mercado y sus percepciones sobre los productos
disponibles.

Definicion 5 (Agente consumidor). Un agente consumidor x
se define como la tupla (A, W* P*), donde A*, W* y P*
son respectivamente el vector de conocimiento de marca, el
vector de pesos de drivers y la matriz de percepciones en
2-tuplas lingiiisticas descritos anteriormente.

III-E. Heuristica de toma de decision

El proceso de toma de decision difusa de cada agente
consiste en seleccionar una de las marcas disponibles en el
ABM en funcién de sus percepciones sobre los drivers. Estas
decisiones simulan decisiones de compras de los consumido-
res en el mercado. El proceso se divide en dos pasos: (i)
la agregacién de las valoraciones de cada marca, y (ii) la
seleccion de una marca. En el primer paso, el agente necesita
agregar las percepciones de todos los drivers de cada marca.
Esta agregacién se calcula usando el operador de agregacion
promedio para 2-tuplas de la forma:

Definicion 6 (Valoracion de marca). Dados un agente con-
sumidor x y una marca b;, se define la valoracion de marca
as(x,b;) como la agregacion de sus percepciones para este
marca calculadas con el operador de agregacion promedio ¢:

as(z,b;) = o(P7,W*) = A(W?® - A'((PF)T))

donde PP = [pfy,...,pf,,] es la fila i-ésima de la matriz
P*, W7 es el vector de pesos de drivers del agente x, y Ay
A’ son las funciones de aproximacion numérico-lingiiisticas
para 2-tuplas de la Definicion 4 1.

El segundo es la seleccion de una marca en funcién de
la valoracién que el agente hace sobre cada marca. En este
trabajo se usa una funcién de maximizacién de la utilidad
probabilistica mazUtil”’, que asigna a cada marca una proba-
bilidad proporcional a su valoracion y elige aleatoriamente una
marca utilizando una ruleta probabilistica. Se usa esta funcién
no determinista inspirada por trabajos previos en andlisis de
marketing y comportamiento del consumidor [20]-[22].

Definicion 7 (Maximizacién de la utilidad probabilistica).
Para un agente consumidor x, la funcion de maximizacion de
utilidad probabilistica maxUtilY es la funcién probabilistica
de seleccion de marca que elige aleatoriamente una marca
usando una ruleta probabilistica con las siguiente probabili-
dades p, para cada marca b; € B:

Da(by) = €2/ (@s@b0) — WA (P))

Sin pérdida de generalidad, estas probabilidades no norma-
lizadas se pueden normalizar simplemente como p,(b;) =

Pe(bi)] 4, e Dlby).

IV. EVALUACION EXPERIMENTAL DEL MODELO

En esta seccién se presenta una evaluacién experimental
del ABM para marketing con representacion lingiiistica difusa
en un caso de estudio real. En concreto, se presenta una
comparativa entre nuestro ABM y otros dos modelos que

Por simplicidad, se han sobrecargado las funciones A y A’ para vectores
de la forma: A(B) = [A(bi)]1<i<n ¥ A'(A) = [A'(ai)]1<i<n.
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unicamente difieren en la representacion de las percepciones
(el resto del modelo se mantiene sin ninglin otro cambio).

Por una parte, se compara nuestro ABM frente a un modelo
con representacion numérica de las percepciones, en el inter-
valo [0,10]. Por otra, se compara nuestro ABM frente a un
modelo simbdlico lingiiistico ordinal donde las percepciones
se representan usando etiquetas lingiiisticas (usando el mismo
conjunto de etiquetas que en las 2-tuplas).

Los resultados de estos tres modelos se validan usando datos
reales que representan las ventas en un mercado concreto y
se analiza el rendimiento de los tres modelos midiendo su
precision en términos de prediccion en ventas (agregadas para
todos los agentes consumidores en el ABM).

IV-A. Descripcion de las condiciones de simulacion del ABM

Para la inicializaciéon de los agentes se usan segmentos
de consumidores, es decir, grupos de consumidores con un
comportamiento similar. En nuestro ABM, todos los agentes
del mismo segmento se caracterizan por los mismos pesos
W* y similares percepciones P*, generadas aleatoriamente si-
guiendo una distribucién normal con media igual al promedio
del segmento y pequefia desviacién estindar.> Los segmentos
no introducen ningtin cambio en el ABM, dnicamente afectan
a las percepciones de los agentes.

Para reducir la influencia de valores atipicos producidos por
la inicializacién aleatoria de las percepciones, cada ejecucion
del ABM estd compuesta por un nimero de simulaciones
Monte Carlo (MC). 3

IV-B. Validacion en un caso de estudio real para marketing

En esta subseccion se presentan los resultados de la eje-
cucién del ABM. Los resultados representan el niimero de
elecciones en los que cada marca es elegida, considerando
que cada agente tnicamente lleva a cabo un tnico proceso de
toma de decision.

En este caso de estudio, se ejecuta nuestro ABM con 1000
agentes, inicializando sus pesos de drivers y sus percepciones
usando estudios de marketing existentes. En los dos enfoques
lingiiisticos difusos, se usan como etiquetas lingiiisticas el
conjunto S = {mala, neutra, buena}. Este caso de estudio
contiene 5 marcas y 6 drivers.*

En nuestro estudio, se realizan dos experimentos diferentes,
uno usando el filtro de conocimiento de marca en la heuristica
de toma de decisiones y el otro sin usarlo. Cuando este
filtro estd activo, un agente s6lo es capaz de elegir aquellas
marcas sobre las que tiene conocimiento. Para desactivarlo,
sencillamente se establece al 100 % el conocimiento de marca
para todos los agentes y todas las marcas.

La Figura 2 muestra la comparativa de los tres modelos sin
usar el filtro de conocimiento de marca (izquierda) y usédndolo
(derecha). Para ello, se presentan los diagramas de caja don-
de se representan los valores maximo, minimo, mediana, y

2En nuestros experimentos, se usa una desviacién estandar de 1,5.
3Cada ejecucién del ABM estd compuesta de 100 simulaciones MC.
4Los nombres de las marcas se han omitido por razones de anonimato.

cuartiles primero y tercero del nimero de elecciones de cada
marca.

Se observa que los resultados en ambos experimentos son
diferentes, para cualquier representacion de las percepciones
del consumidor. Se puede ver, por ejemplo, el nimero de
ventas de la marca2 usando la representacion lingiiistica 2-
tuplas. Cuando no se considera el conocimiento de marca,
este nimero es mucho mayor que el nimero de ventas cuando
este filtro de conocimiento de marca esta activo. Ademas, se
pueden observar diferencias en los resultados de los tres mode-
los. Son especialmente significativas las diferencias de nuestro
ABM con respecto al modelo con etiquetas lingiiisticas. Por
ejemplo, el nimero de consumidores que eligen la marca5 es
mucho menor en el ABM que modela las percepciones con
etiquetas lingiifsticas (con y sin conocimiento de marca).

Para medir la precision de cada modelo, se calcula como
estimadores del error el Error Absoluto Medio (MAE, Mean
Absolute Error) y la Raiz del Error Cuadratico Medio (RMSE,
Root Mean Squared Error) con respecto a datos reales (es
decir, ventas reales).

Cuadro 1
MAE Y RMSE DE LOS TRES MODELOS CON RESPECTO A DATOS REALES,
CON Y SIN CONOCIMIENTO DE MARCA. MEJOR RESULTADO EN NEGRITA.

Estimador | Conocimiento | Representacién de las percepciones
del error de marca Numérica | 2-tuplas | Et. ling.
No 2.83 2.95 5.25
MAE St 1.78 1.60 2.46
No 3.08 3.20 6.23
RMSE S 214 195 2.8

Los valores de los estimadores MAE y RMSE para los
tres modelos se reportan en el Cuadro 1. Se puede observar
que los modelos con representaciones de las percepciones
del consumidor en formatos numéricos y 2-tuplas son mucho
mds precisos que el modelo con etiquetas lingiiisticas. Esto
es consecuencia de la representacion menos expresiva usada
en el modelo lingiiistico difuso ordinal. Se hace énfasis en
que este problema no aparece en nuestro ABM basado en la
representacion lingiifstica 2-tuplas. Ademads, se puede observar
que el rendimiento de cada modelo es mucho peor cuando el
filtro de conocimiento de marca no estd activo. Esto sugiere
que el concomiendo de marca es otra componente fundamental
para simular un mercado con precision. De hecho, el modelo
mds preciso para ambos estimadores del error (MAE y RMSE)
es aquel que representa las percepciones del consumidor
usando 2-tuplas lingiiisticas y usando el filtro de conocimiento
de marca, es decir, el modelo presentado en este trabajo.

V. CONCLUSIONES Y TRABAJO FUTURO

En este trabajo se ha presentado un modelo lingiiistico
difuso para representar las percepciones de los consumidores,
asi como una heuristica de toma de decisiones que las maneja
y que se usa para simular las compras de los consumidores.
Todo ello se integra en un ABM para el andlisis en marketing,
donde los agentes representan a los consumidores del mercado.
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Figura 2. Comparacion de las representaciones de percepciones sin usar el filtro de conocimiento de marca (izquierda) y usandolo (derecha).

Las percepciones de los consumidores son normalmente
aspectos cualitativos. En nuestro modelo, se usan 2-tuplas
lingiiisticas, las cuales no sufren ninguna pérdida de informa-
cién, incluso en el proceso de agregacion de la informacion.
En la vida real, los consumidores tienen un conocimiento
de marca limitado, por lo que hemos incorporado también
esta informacion en nuestro sistema para hacerlo mas rea-
lista. Hemos definido una heuristica no determinista basada
en las valoraciones que cada consumidor realiza sobre cada
producto para simular el proceso de toma de decisiones de
compra. Se han analizado experimentalmente los resultados
de nuestro ABM en un caso de estudio de marketing real a
gran escala, mostrando diferencias notables en los diferentes
escenarios donde tnicamente se modifica la representacién de
las percepciones del consumidor (sin alterar sus valores), y
ademds se ha estudiado la influencia de incluir informacién
sobre el conocimiento de marca del consumidor en el modelo.

Como trabajo futuro, se planea extender este ABM para
marketing basado en 2-tuplas lingiifsticas en dos direcciones.
Por una parte, se planea investigar otras heuristicas de tomas
de decision en nuestro sistema [20]-[22], adaptdndolas para
manejar informacién lingiiistica difusa. Por otra, se planea
extender nuestro ABM para marketing incorporando compor-
tamiento temporal para construir simulaciones con eventos
discretos [3]-[5]. De esta forma, las percepciones de cada
consumidor pueden cambiar a lo largo del tiempo, y por tanto,
se puede analizar como esto afecta a los resultados de la toma
de decisiones.
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Juan Moreno-Garcia
Escuela de Ingenieria Industrial y Aeroespacial
Universidad de Castilla-La Mancha
Toledo, Spain
juan.moreno@uclm.es

Abstract—Uno de los mayores problemas que preocupan a la
sociedad actual es la contaminacion, distinguiéndose diferentes
tipos, por ejemplo, acidstica, ambiental, térmica, etc. Entre
ellas, la contaminacion acistica causa serios problemas a los
ciudadanos porque es continua durante gran parte del dia, debido
a que en su mayoria es causada por el trafico. Por otro lado, las
grandes ciudades aportan una gran cantidad de datos obtenidos
diariamente gracias a la sensorizacion derivada del concepto de
“ciudades inteligentes”, lo que permite visualizar la informacién
de las zonas sensorizadas y alertar a las instituciones de los
problemas y, a los ciudadanos, conocer la situacion de la contam-
inacion acistica en base a datos para poder realizar las quejas
y denuncias pertinentes a las instituciones. Una forma univer-
salmente comprensible de mostrar la informacion contenida en
los datos capturados es la generacion de descripciones lingiiisticas
que sinteticen la informacion que reside en los datos. Este trabajo
presenta un método para generar descripciones lingiiisticas a
partir de los datos de contaminacion acistica capturados por
las estaciones de mediciéon de ruido. Se presentara un método
de generacion de descripciones de un dia que considera los
periodos diarios en los que se estructuran los datos tomados de las
estaciones (diurno, vespertino, nocturno y diurno completo). Para
probar el método propuesto, se han utilizado los datos disponibles
de la ciudad de Madrid para generar descripciones que permitan
analizar la influencia de Covid-19 en la contaminacion acustica.

Index Terms—descripcion lingiiistica, logica difusa, contami-
nacion acustica, Covid-19

I. INTRODUCCION

Hoy en dia existe una gran concienciacioén sobre los proble-
mas medioambientales y esto hace que las instituciones lleven
a cabo iniciativas para mejorar la situacién. La contaminacién
es uno de los problemas ambientales que mds atencion recibe
debido a su impacto en la salud de las personas y otros seres
vivos. Entre ellos se encuentra la contaminacion acustica, que
llamaremos ruido, y que puede definirse como el exceso de
sonido que altera las condiciones ambientales de una zona
determinada. El ruido tiene graves consecuencias de todo tipo
para quienes lo padecen, siendo los problemas mas destacados:
los problemas auditivos por estar sometidos de forma habitual
a un exceso de ruido en el ambiente, los problemas de
suefio (alteracion del ciclo del suefio, insomnio, somnolencia

Este trabajo ha sido financiado por el Departamento de Tecnologias y
Sistemas de Informacién de la Universidad de Castilla-La Mancha, por la
Escuela de Ingenieria Industrial y Aeroespacial de Toledo y por la Escuela
Superior de Informatica de Ciudad Real.

Luis Jimenez-Linares
Escuela Superior de Informaética
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Ciudad Real, Spain
luis.jimenez@uclm.es

Luis Rodriguez-Benitez
Escuela Superior de Informaética

Ciudad Real, Spain
luis.rodriguez@uclm.es

durante el dia, cansancio, etc.), los problemas psicolégicos
(irritabilidad, estrés, ansiedad, etc.) y los fisiolégicos (aumento
del ritmo cardiaco y respiratorio o de la presién arterial). En
las grandes ciudades, las fuentes de ruido son muy diversas,
siendo las mds importantes el trafico y la construccion, aunque
también se debe a la actividad de las personas en la ciudad.
La Organizacion Mundial de la Salud (OMS) recomienda no
superar los 65 decibelios durante el dia y los 55 durante la
noche.

Ademads, las ciudades estdn aplicando el concepto de
“ciudades inteligentes” para lograr una mayor sostenibilidad
econdmica, social y medioambiental mediante el uso de las
tecnologias de la informacién y la comunicacién (TIC). La
aplicacién de las TIC crea infraestructuras que pretenden
garantizar un desarrollo sostenible, un aumento de la calidad
de vida de los ciudadanos, una mayor eficiencia de los recursos
disponibles y una participacién ciudadana activa. Por ello,
las ciudades disponen de datos diarios procedentes de muy
diversas fuentes, entre las que se encuentran las estaciones
de medicién de ruido, que pueden utilizarse para lograr la
sostenibilidad deseada. A partir de ellos, se puede obtener
informacion sobre el ruido de las zonas sensorizadas, lo que
permite alertar a las instituciones para que tomen las medidas
oportunas, y se puede informar a los ciudadanos de la situacion
de la contaminacién acustica en base a los datos para que
puedan realizar protestas ante las instituciones en base a
informacion contrastada.

Para que la informacién contenida en los datos sea com-
prensible para cualquiera, se utilizan descripciones lingiiisticas
generadas automadticamente. La légica difusa se puede utilizar
para el tratamiento de los datos de ruido, encontrando en
la literatura trabajos que evalian el riesgo [1], [2], realizan
un andlisis del ruido [3], [4], predicen el ruido [5], crean
disefios tratando de evitar el ruido [6], etc. Este trabajo
presenta un método para generar descripciones lingiiisticas
diarias a partir de los datos de ruido captados por las estaciones
de medicién que considera los cuatro periodos diarios para
los que se dispone de informacién (dia, tarde, noche y dia
completo). Para probar el método propuesto, se han utilizado
los datos disponibles de la ciudad de Madrid para generar
descripciones que permitan analizar la influencia de Covid-19
en la contaminacién acustica.
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El resto del documento estd organizado como sigue: la
Seccién II describe algunos conceptos relevantes en relacion
con el sonido y el ruido. La Seccién III presenta el proceso
llevado a cabo para representar y clasificar el ruido utilizando
conjuntos difusos. La Seccién IV muestra nuestra propuesta
para generar descripciones lingiiisticas de un dia. La Seccién
V presenta algunas pruebas realizadas con datos de ruido en
cinco zonas de Madrid para realizar una primera aproximacion
a la deteccion del efecto del encierro domiciliario debido a
Covid-19. Finalmente, las conclusiones y los trabajos futuros
se detallardn en la Seccién VI.

II. CONTAMINACION ACUSTICA

Las definiciones de sonido, acustica y ruido [7] que se dan
a continuacion son necesarias para la correcta comprension de
este trabajo. El sonido se define como la variacién de presion
producida en un medio (sélido, liquido o gaseoso) por un
elemento vibrante que puede ser detectado por el oido humano.
La acustica puede definirse como la ciencia que se ocupa
de la produccién, control, transmisién, recepcién y efectos
del sonido. El ruido se define como un conjunto de sonidos
inarmonicos o desafinados que resultan desagradables para el
oido humano, es decir, un sonido molesto.

La medicién del ruido estd influida por la distancia a la
fuente de ruido, que puede ser una fuente puntual, una fuente
espacial o una fuente lineal. En las ciudades, la principal fuente
de ruido es el trafico, por ejemplo, en Espaia es la causa del
99% del ruido urbano. El estudio del ruido utiliza las mismas
magnitudes que para el sonido, que en su expresion mds simple
produce la formacién de una onda sinusoidal con las siguientes
magnitudes: velocidad, longitud de onda, periodo y amplitud.

Dos conceptos importantes en la medicién del ruido que a
veces se confunden, probablemente porque ambos se miden
en decibelios (dB), son el “nivel de potencia sonora” y el
“nivel de presién sonora”. El nivel de potencia sonora emitido
por una fuente sonora determina la cantidad de ruido que
produce, mientras que el nivel de presién sonora determina
la cantidad de sonido que llega a un punto determinado. El
nivel de presién sonora depende de factores como la distancia
de la fuente al foco, la direccidn o la existencia de otros ruidos
en el entorno (ruido de fondo).

Las estaciones de medicion de ruido, conocidas como esta-
ciones NMT, suelen utilizar el nivel de presién sonora ponder-
ado A (dBA) para medir el ruido en una zona. En este trabajo
hemos utilizado datos de ruido extraidos de la pagina web del
“Portal de datos abiertos del Ayuntamiento de Madrid”!. Los
conjuntos de datos proporcionan seis mediciones de presién
sonora para cada uno de los cuatro periodos de tiempo en los
que se puede dividir un dia. El primer periodo corresponde al
dia completo (1") mientras que los otros tres periodos dividen
el dia en el periodo diurno (D) de 7:00 a 19:00, el periodo
vespertino (£) de 19:00 a 23:00 y el periodo nocturno (V)
de 23:00 a 7:00. Para cada periodo, la medida L 4., es el
nivel de presiéon sonora continuo equivalente ponderado A

Uhttps://cutt.ly/Lj6O0xP

determinado a lo largo de todo el dia (periodo 7"). Ademas,
se proporcionan otras cinco medidas de presién sonora con
ponderacién de frecuencia A y ponderacion de tiempo lento
para indicar el nivel que se supera durante un tiempo de
observacion. Estas medidas son L 4501, Lasi0, Lasso, Lasgo
y Lasge para indicar el ruido superado durante 1%, 10%,
50%, 90% y 99% respectivamente. Los valores de Laso1 ¥
L as99 se aproximan al ruido minimo y maximo alcanzado
durante el periodo estudiado respectivamente. En la Tabla I
se detalla una muestra correspondiente al 9 de abril de 2020
de la estacion situada en la Plaza del Emperador Carlos V de
Madrid, donde se muestran los cuatro periodos en las filas y
las seis mediciones para cada uno de estos periodos en las
columnas.

TABLA 1
MUESTRAS DE UN DIA EN LA ESTACION NMT CARLOS V DE MADRID
Periodo | Laeq | Lasor | Lasio | Lasso | Lasoo | Lasoy
D 62.1 69.5 64.8 58.4 52.6 48.7
E 63.5 71.2 66.8 60.2 54.3 50.6
N 59.5 68.0 61.7 54.1 46.4 43.0
T 61.7 69.8 64.8 57.5 50.2 44.0

III. DESCRIPCION LINGUISTICA DEL RUIDO

En esta seccién se muestra como se pueden representar los
datos de ruido para ser utilizados en la generacion de de-
scripciones, también se detallan algunos conceptos utilizados
por el método presentado para generar las descripciones. En
concreto, se utiliza la 16gica difusa, ya que permite representar
lingtiisticamente valores numéricos interrelacionados, como es
el caso de las mediciones de presion sonora. Para representar
los valores de un periodo se utiliza un conjunto difuso con
una funcién de pertenencia gaussiana (Seccién III-A). Para
categorizar estos conjuntos difusos, hemos creado un con-
junto de etiquetas lingiiisticas con una funcién de pertenencia
gaussiana que representa las clases en las que se clasifica el
ruido (Seccién III-B). Finalmente, para clasificar el ruido de
un periodo, se compara el conjunto difuso gaussiano con las
etiquetas del conjunto de etiquetas (las clases) seleccionando
la clase que ofrece la mayor intersecciéon con el conjunto
(Seccién III-C).

A. Obtencion de un conjunto difuso con funcion de pertenen-
cia gaussiana a partir de datos con ruido

Las medidas L4s01, Lasio, Lasso, Lasoo y Lasgg se
utilizardn para generar un conjunto difuso que represente
una muestra de un periodo. La informacién obtenida de las
estaciones permite conocer la distribucién de los valores que
superan un umbral durante un 1%, 10%, 50%, 90% y 99%
que pueden ser representados por un conjunto difuso con una
funcién de pertenencia gaussiana. La funcién gaussiana estd
definida por la Ecuacién 1.

(=)
a*e  2ee? (1)




288

XIX Conferencia de la Asociacién Espafiola para la Inteligencia Artificial &=

donde a, b y c son constantes reales y ¢ > 1. a es el
valor maximo que toma la funcién, b es la posicién
central de la funcién y c la desviacion tipica que rige
la amplitud de la funcién.

En este trabajo se han utilizado los siguientes valores para
estos tres pardmetros: a = 1 (una funcién de pertenencia
da valores de salida en el intervalo [0,1]), b = p (media
aritmética) y ¢ = ¢ (desviacion estandar). Como puede verse,
la funcién gaussiana estd determinada por la media y la
desviacion estdndar. Por tanto, para obtener el conjunto difuso
que la representa, hay que calcular estos dos valores para
L aso1, Lasio. Lasso, Laseo y Laseg. Por ejemplo, para el
dia completo que se muestra en la ultima fila de la Tabla I (pe-
riodo T') se utiliza como entrada [69.8,64.8,57.5,50.2, 44.0],
entonces p = 57.26 y o = 9.38, aplicando la ecuacién se
obtiene el conjunto difuso mostrado en la Figura 1. Como se
puede observar, establece el centro en 57.26 y para x =44 y
x = 69.8 tiene valores muy bajos.

1.0 A

0.8 1

0.6

0.4

0.2 A

0.0 A

20 30 40 50 60 70 80 920

Fig. 1. Conjunto obtenido para el periodo 7" mostrado en la tltima fila de la
Tabla I.

B. Clasificacion de la contaminacion ambiental mediante con-
Jjuntos difusos

Para clasificar los conjuntos difusos obtenidos en el apartado
anterior, se necesita un conjunto de etiquetas lingiiisticas
que definan las clases a considerar, que se denominardn
CLASSES. El proceso para obtener las etiquetas que rep-
resentan las clases es el mismo que el utilizado para calcular
los conjuntos difusos. Con la ayuda de un experto, se han
definido los valores LASOL LASIO, LASSO’ LASQO y LAsgg
para cada etiqueta del conjunto que definen la clase (Tabla II),
generando posteriormente la etiqueta con funcién de pertenen-
cia gaussiana mediante el método mostrado anteriormente. Se
han seguido las directrices de la OMS, definiendo el “ruido
molesto” en un valor cercano a 60 dBA y clasificando el “ruido
perjudicial” en 70 dBA o superior, mientras que las otras tres
etiquetas dividen el ruido no molesto para el oido humano
en tres clases (nulo, imperceptible y aceptable). La Figura 2

muestra graficamente las etiquetas obtenidas para cada clase.
Obsérvese que las etiquetas podrian hacer uso de cualquier
otro tipo de funcién de pertenencia, por ejemplo, trapezoidal,
triangular, etc.

TABLA 1T
VALORES DE L 4501, L as10, Lasso, LLasoo Y L asgg UTILIZADOS PARA
DETERMINAR LAS CLASES

Periodo Lasor | Lasio | Lasso | Lasgo | Lasoe
nulo 20.0 25.0 30.0 35.0 40.0
imperceptible 30.0 35.0 40.0 45.0 50.0
aceptable 40.0 45.0 50.0 55.0 60.0
molesto 50.0 55.0 60.0 65.0 70.0
perjudicial 60.0 65.0 70.0 75.0 80.0
— null
unnoticeable
1.0 4 —— acceptable
—— annoying
harmful
0.8 1
0.6 1
0.4 4
0.2 4
0.0 1
6 2'0 4'0 6'0 8'0 160
Fig. 2. Conjunto de etiquetas lingiiisticas para clasificar el ruido
(CLASSES).

C. Clasificacion de un conjunto difuso mediante el conjunto
de etiquetas que clasifica el ruido

Una vez que la informacién de entrada se puede repre-
sentar como un conjunto difuso y se dispone del conjunto
CLASSES para su clasificacién, queda detallar la forma
en que se realiza el proceso de clasificacién, que se basa
en el concepto de interseccion entre conjuntos difusos. La
interseccion entre dos conjuntos difusos A y B se define
como otro conjunto difuso C' cuya funcién de pertenencia es
pe(z) = pa(z)Npp(z). La Figura 3 muestra varios ejemplos
de la interseccion de un conjunto difuso y una etiqueta con
el conjunto de interseccion resultante entre los dos conjuntos
resaltados en verde.

Para clasificar un conjunto difuso se realiza la interseccién
de las etiquetas CLASSES con el conjunto difuso, seleccio-
nando la clase que ofrece la mayor interseccién de todas, es
decir, se asigna la clase de CLASSFES cuya interseccion con
el conjunto difuso cubre el mayor porcentaje de la funcién
de pertenencia del conjunto difuso a comparar. Por ejemplo,
en la Figura 3 se muestra la comparacién del conjunto difuso
T con las etiquetas de clase aceptable, molesto y perjudicial.
Dado que la interseccion cubre 58%, 73% y 38% del drea
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de la funcién de pertenencia de 7' para estas tres clases se
determina que la clase del conjunto difuso 7' es molesto. De
este modo, la clase de un ruido puede obtenerse mediante un
conjunto de etiquetas.

— T
acceptable

0.6

0.4

0.2

0.0

Zb 3‘0 4‘0 Sb 5'0 7‘0 8‘0 Qb
(a) y perjudicial T" y aceptable (58%)

—T
annoying

0.8

0.6

0.4

0.2

0.0

20 30 40 50 60 70 80 90

(b) Interseccién entre 7"y molesto (73%)

—_T
harmful

0.6

0.4

0.2

0.0

2‘0 Bb db 5‘0 éﬂ 7b éO 9‘0 160
(c) Interseccion entre T' y perjudicial (38%)

Fig. 3. Ejemplos de seleccién de clases de un conjunto difuso T

IV. GENERACION DE DESCRIPCIONES LINGUISTICAS

A continuaciéon se presenta el método propuesto para
generar una descripcién de los datos diarios que hace uso de
los conceptos mostrados en el apartado anterior. Para generar
las descripciones diarias se utilizaran los cuatro periodos diar-
ios (D, E, N, T) y las cinco medidas L 4501, Las10, LAss0,
Lasoo y Lasogg de cada periodo. El Algoritmo 1 muestra los
pasos seguidos para la generacion de la descripcion. Necesita
como entrada un vector que contenga las medidas del dia para
cada periodo, llamado DAT A. Las sentencias que componen
el algoritmo son las siguientes:

e Linea 1: calcula el conjunto de etiquetas que representan
las clases como se muestra en la seccién III-B y genera

Algorithm 1 Descripcion del comportamiento de un dia

1. CLASSES <+ ObteniendoClases() {Seccién III-B. }
{El siguiente bucle calcula las gaussianas (Seccién
I-A).}

2: for period(p) in [T, D, E, N| do

32 GAUSS|p] <CalcularGaussiana(DAT A[p]) {DAT A

es un vector que contiene los datos de entrada. GAU S'S
es un vector que contiene las gaussianas de cada peri-
odo.}

4: end for
{El siguiente bucle calcula los vectores LABEL vy
PERC.}

5. for period(p) in [T, D, E, N| do

. LABEL[p] « SelecClass(GAUSS[p], CLASSES)

{Secci6én MI-C}

7. PERC[LABEL[p]] <« Interseccion(GAUSS|[p],
CLASSES[LABEL[p]])
8: end for
{description es la descripcién generada utilizando
MAXIMA.}

9: description < GenerarPlantilla(M AX I M A)

el conjunto de etiquetas CLASSES que contiene las
etiquetas de las clases (Figura 2).

o Lineas 2-4: Este bucle obtiene los conjuntos difusos con
funcién de pertenencia gaussiana que representan los
datos para cada uno de los periodos de las mediciones del
nivel de presién sonora (DAT A) y almacena el resultado
en el vector GAU S'S. El método para completar este paso
se describi6 en la Seccién III-A.

o Lineas 5-8: Este bucle calcula la clase que representa
cada uno de los periodos junto con el porcentaje de
area que cubre la funcién de pertenencia del conjunto
difuso de entrada por esa clase. Esto se hace realizando
la interseccion entre cada conjunto difuso en GAUSS
con las etiquetas en CLASSES. Se selecciona la clase
que cubre el mayor porcentaje del drea de la funcién de
membresia del conjunto difuso (Seccién III-C).

o Linea 6: obtiene la clase asignada al conjunto difuso
para ese periodo (GAUSS]class]) almacendndola en
LABEL.

e Linea 7: calcula el porcentaje del conjunto
GAUSS|class]  que  cubre la  interseccién
con la etiqueta seleccionada de CLASSES

(CLASSES[LABELIperiod]]) y lo almacena en
el vector PERC.
o Linea 9: genera la descripcién lingiiistica utilizando
LABEL y PERC para completar la siguiente plantilla:
En general, fue un dia con ruido LABEL[T]
durante el PERC[T|% del tiempo. Durante el
dia hubo un ruido LABEL[D] que ocupé el
PERC|[D]% del tiempo. Por la noche, durante
el PERC[E]% del tiempo, se produjo un ruido
LABELIE]. Por iiltimo, fue una noche con un ruido
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LABEL[N] durante PERC[N]% de su tiempo
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Fig. 4. Ubicacién de las zonas de medicion utilizadas en las pruebas.

V. TESTS

Para probar el método presentado se han generado descrip-
ciones para cinco dreas de Madrid situadas en zonas con
diferentes caracteristicas identificadas en la Figura 4. Situadas
en el centro de Madrid se encuentran las estaciones de Plaza
del Carmen (circulo verde) y Carlos V (circulo azul), que
son zonas con bastante vida urbana y trafico, especialmente la
Plaza del Emperador Carlos V, cercana al nudo de comunica-
ciones de Atocha. Algo alejadas del centro estdn las estaciones
de El Barrio del Pilar (circulo rojo), situada en la Avenida de
Monforte Lemos junto al Parque de la Vaguada, y Campo de
las Naciones (circulo granate), con la estacidn situada en la
rotonda del monumento a Don Juan de Borbdn, que tiene un
trafico constante. Lejos del centro esta la estacion de El Pardo
(circulo naranja), un barrio situado en un bosque, una zona
muy tranquila. Se han elegido dos miércoles para generar las
descripciones, concretamente el 5 de febrero de 2020 y el 1
de abril de 2020. El dia 5-2-2020 corresponde a una fecha
anterior a la del encierro domiciliario de Espafia por Covid-
19 (15 de marzo de 2020), es decir, representa la actividad
normal, mientras que el dia 1-4-2020 es un dia de encierro
domiciliario. De este modo, las descripciones nos permitirdn
evaluar el efecto del confinamiento domiciliario en la contam-
inacién acustica, aunque en el futuro se deberd realizar un
estudio mds amplio para poder extraer conclusiones validas.
En el apartado de bibliografia, existen algunos estudios sobre

el efecto del Covid-19 en la contaminacion acustica en grandes
ciudades, como Dublin [8], Roma [9] o Madrid [10].

TABLA III
DESCRIPCION LINGUISTICA DE LA ESTACION DE MEDIDA CARLOS V

Carlos 5 (1-02-2020)

En general, fue un dia con ruido perjudicial durante el 71,0% del
tiempo. Durante el dia hubo ruido perjudicial el 98,0% del tiempo. Por
la tarde, durante el 99,0% del tiempo, se alcanzé un ruido perjudicial.
Por dltimo, por la noche hubo ruido molesto durante el 84,0% del
tiempo.

Carlos 5 (5-04-2020) - confinamiendo domiciliario

En general, fue un dia con ruido molesto durante el 80,0% del tiempo.
Durante el dia hubo ruidos molestos que ocuparon el 84,0% del
tiempo. Por la tarde, durante el 94,0% del tiempo, se alcanzé un ruido
molesto. Por tltimo, por la noche hubo ruido molesto durante el 75,0%
del tiempo.

Tabla III muestra las descripciones obtenidas para la
estacion situada en Carlos V. Como se puede observar, se trata
de una zona muy ruidosa en dia laborable, obteniendo una
clasificaciéon de “ruido perjudicial” durante todos los periodos
y persistiendo durante la mayor parte del tiempo. Se observa
que durante el encierro recibe una clasificaciéon de ruido
menor, aunque se siguen manteniendo valores superiores a las
recomendaciones de la OMS durante casi todos los periodos
completos. Esto puede deberse a la concentracion de trafico
continuo e intenso en la zona.

TABLA IV
DESCRIPCION LINGUISTICA DE LA ESTACION DE MEDIDA DE LA PLAZA
DEL CARMEN

Plaza del Carmen (1-02-2020)

En general, fue un dia con ruido molesto durante el 76,0% del tiempo.
Durante el dia hubo ruido molesto el 91,0% del tiempo. Por la tarde,
durante el 95,0% del tiempo hubo ruido molesto. Por dltimo, por la
noche hubo ruido molesto durante el 68,0% del tiempo.

Plaza del Carmen (5-04-2020) - confinamiento domiciliario

En general, fue un dia con un ruido aceptable durante el 73,0% del
tiempo. Durante el dia hubo un ruido aceptable durante el 60,0% del
tiempo. Por la tarde, durante el 75,0% del tiempo, se obtuvo un ruido
aceptable. Por ultimo, por la noche hubo un ruido aceptable durante
el 76,0% del tiempo.

En la Tabla IV se detallan las descripciones obtenidas
para la estacion situada en la Plaza del Carmen. Durante
un dia laborable es una zona con ruido molesto durante
todo el dia, aunque se observa que por la noche el ruido
molesto se mantiene durante menos tiempo que el resto del
dia. El confinamiento causé un efecto positivo en esta zona
obteniendo un ruido aceptable durante mas del 60% del tiempo
de todos los periodos.

La Tabla V muestra las descripciones de la estacion situada
en el Barrio del Pilar. En un dia laborable es un barrio ruidoso
todo el tiempo en los periodos diurnos y vespertinos, pero por
la noche se consigue un ruido aceptable. En confinamiento
la calidad de vida mejoré con respecto a la contaminacién
acustica, convirtiéndose en un barrio con un ruido aceptable
durante todo el dia. En este caso, esto se debe al fuerte des-
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TABLA V
DESCRIPCION LINGUISTICA DE LA ESTACION DE MEDIDA DEL BARRIO
PILAR

Barrio Pilar (1-02-2020)

En general, fue un dia con ruido molesto durante el 66,0% del tiempo.
Durante el dia hubo ruido molesto el 100,0% del tiempo. Por la tarde,
durante el 100,0% del tiempo, hubo ruido molesto. Por tdltimo, durante
la noche hubo un ruido aceptable durante el 93,0% del tiempo.
Barrio Pilar (5-04-2020) - confinamiento domiciliario

En general, fue un dia con un ruido aceptable durante el 63,0% del
tiempo. Por la mafiana hubo un ruido aceptable durante el 74,0% del
tiempo. Por la tarde, el ruido fue aceptable el 67,0% del tiempo. Por
ultimo, fue una noche con un ruido aceptable durante el 66,0% de su
tiempo.

censo del trafico en la zona provocado por el confinamiento,
ya que los residentes no pueden circular libremente.

TABLA VI
DESCRIPCION LINGUISTICA DE LA ESTACION DE MEDIDA DE CAMPO DE
LAS NACIONES

Campo de las Naciones (1-02-2020)

En general, fue un dia con un ruido aceptable durante el 63,0% del
tiempo. Durante el dia hubo un ruido molesto que ocupé el 100,0%
del tiempo. Por la tarde, durante el 91,0% del tiempo, hubo ruido
molesto. Por ultimo, por la noche hubo un ruido aceptable durante el
70,0% del tiempo.

Campo de las Naciones (5-04-2020) - confinamiento domiciliario
En general, fue un dia con un ruido aceptable durante el 76,0% del
tiempo. Durante el dia hubo un ruido aceptable durante el 76,0% del
tiempo. Por la tarde, durante el 77,0% del tiempo, se obtuvo un ruido
aceptable. Por tltimo, por la noche hubo un ruido aceptable durante
el 80,0% del tiempo.

La estacién de Campo de las Naciones estd situada en una
rotonda con tréfico, lo que provoca un nivel de ruido molesto
durante el dia y la tarde, con un nivel de ruido aceptable por
la noche (Tabla VI). Cuando se produjo el confinamiento, se
alcanz6 un nivel de ruido aceptable durante mds del 75% de
las veces.

TABLA VII
DESCRIPCION LINGUfSTICA DE LA ESTACION DE MEDICION DE EL PARDO

El Pardo (1-02-2020)

En general, fue un dia con un ruido aceptable durante el 54,0% del
tiempo. Durante el dia hubo un ruido molesto que ocupé el 76,0%
del tiempo. Por la tarde, durante el 72,0% del tiempo, hubo un
ruido aceptable. Por tltimo, por la noche hubo un ruido imperceptible
durante el 58,0% del tiempo.

El Pardo (5-04-2020) - confinamiento domiciliario

En general, fue un dia con un ruido aceptable durante el 56,0% de
su tiempo. Durante el dia hubo un ruido aceptable durante el 64,0%
del tiempo. Por la tarde, durante el 63,0% del tiempo, se obtuvo un
ruido aceptable. Por dltimo, por la noche hubo un ruido imperceptible
durante el 64,0% del tiempo.

Por dltimo, se ha comprobado que en general El Pardo es
una zona con un nivel de ruido aceptable, destacando que el
confinamiento ha modificado a mejor los niveles de ruido de
la mafiana, manteniendo el descanso. Se puede concluir que
es una zona sin mucho ruido de forma habitual, por lo que el

confinamiento no ha tenido tanto impacto como en las otras
zonas estudiadas.

VI. CONCLUSIONES

En este trabajo se ha presentado un método para generar
descripciones lingiiisticas de la contaminacién acustica, mas
concretamente, se ha detallado un método para generar de-
scripciones de un dia que considera cuatro periodos diarios
(dfa, tarde, noche y dia completo). Para probar el método
propuesto, se han utilizado los datos disponibles de la ciudad
de Madrid, seleccionando cinco zonas con diferentes carac-
teristicas y considerando dos dias, uno con actividad normal
y otro con confinamiento domiciliario debido a la Covid-
19. De las descripciones obtenidas se puede concluir que el
confinamiento ha reducido la contaminacién acustica, excepto
en un lugar donde ya era aceptable (El Pardo). También se
ha comprobado que estas descripciones son vdlidas para el
estudio de la contaminacién actstica, ya que son mas féciles
de analizar que los datos brutos.

Como trabajo futuro estamos considerando el uso de otros
tipos de funciones de pertenencia, tanto para el conjunto
de etiquetas lingiiisticas como para los conjuntos difusos
utilizados para representar los datos tomados de las estaciones.
También pretendemos investigar la descripcion de intervalos
de tiempo mads largos, como semanas, meses O afos.
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lenguaje natural de graficas de sectores: aplicacion
en datos de calidad del aire

Andrea Cascallar-Fuentes®, Javier Gallego-Fernandez*, Alejandro Ramos-Soto*, Anthony Saunders’, Alberto Bugarin-Diz*

*Centro Singular de Investigacién en Tecnoloxias Intelixentes (CiTIUS), Universidade de Santiago de Compostela, Spain
javier.gallego.fernandez @rai.usc.es, {andrea.cascallar.fuentes, alejandro.ramos, alberto.bugarin.diz} @usc.es

TMeteoGalicia, Xunta de Galicia, Santiago de Compostela, Spain
{calidadedoaire.cma} @xunta.es

Resumen—En este trabajo presentamos un modelo basado en
la generacion de lenguaje natural y en la légica borrosa para
la generacion automatica de descripciones lingiiisticas a partir
de datos numéricos y su aplicacién real en el ambito de la
informacion ambiental. Basado en dicho modelo, describimos
el sistema ICA2Text, que genera automaticamente descripciones
en lenguaje natural sobre el indice de calidad del aire (ICA),
que es un indicador estandar utilizado por todas las agencias
meteorologicas a nivel mundial. ICA2Text es una aplicacion real
que opera sobre los datos del ICA proporcionados por la Red
de Calidad del Aire de la Agencia de Meteorologia de Galicia
(MeteoGalicia). Siguiendo la metodologia estandar de evaluacion
en el campo de la generacion de lenguaje natural, presentamos
los resultados de evaluaciéon manual del sistema por parte de
tres expertos meteorologos. Los resultados de dicha evaluacion
fueron muy satisfactorios, confirmando empiricamente que las
descripciones en lenguaje natural que se generan a partir de
los datos resultaron muy adecuadas, tanto en su contenido como
en su calidad lingiiistica. Por ello, el sistema estara operativo
en breve como servicio publico para los usuarios de la web de
MeteoGalicia.

Index Terms—descripciones lingiiisticas de datos, sistemas
data-to-text, generacion de lenguaje natural.

I. INTRODUCCION

Obtener informacién relevante a partir de grandes cantida-
des de datos plantea varios retos que no pueden abordarse Uni-
camente con las técnicas tradicionales basadas en la estadistica
y las visualizaciones gréficas. En general, estos enfoques son
muy utiles para obtener informacién basica de los datos, pero
para que los usuarios comprendan la informacién realmente
relevante que hay detrds de los datos, es necesario emplear
técnicas que se adapten mejor a las necesidades especificas
de cada dominio y que puedan escalar a medida que aumenta
la cantidad de datos. En este sentido, la Inteligencia Artifi-
cial proporciona a los usuarios herramientas de andlisis de
conjuntos de datos para extraer informacién ttil, asi como
herramientas de procesamiento del lenguaje que permiten una
comunicacién mds fluida entre humanos y maquinas.

Una técnica prometedora para este propdsito es la Gene-
racion de Lenguaje Natural (NLG, por sus siglas en inglés),
que permite generar texto a partir de varias fuentes de datos
(principalmente numéricos y textuales).

Dentro de este campo, la arquitectura [1] mas empleada en
la literatura es la siguiente (Figura 1):

= Determinacioén de contenido: esta fase se centra en deci-
dir qué informacion serd comunicada en el texto.

= Planificacién del discurso: en esta etapa se decide el
conjunto de mensajes que serdn verbalizados y se les
asigna un orden y una estructura.

= Planificacion de la sentencia: en esta fase se agrupan los
mensajes segin sea necesario y se eligen las palabras y
expresiones que deben ser utilizadas.

= Realizacién linglifstica: en esta etapa se lleva a cabo
el proceso de generar el texto resultante, que debe ser
morfolégica y ortograficamente correcto.

Determinacion de omponentes de! Planificacion del Estructura del
contenido modelo discurso texto

Planificacion de la Reglas de Realizacion exto en lenguaje
sentencia generacion lingiiistica natural

Figura 1. Arquitectura NLG propuesta en [1]. Los rectingulos muestran las
fases mds importantes mientras que las elipses muestran la salida de cada una
de ellas.

Dentro del NLG, los sistemas data-to-text (D2T) [2] generan
automdticamente textos a partir de grandes conjuntos de da-
tos numéricos o simbdlicos, proporcionando una informacién
comprensible que no podria producirse de otro modo. Los
sistemas D2T incluyen: i) una etapa de andlisis de datos en
la que se extrae la informacidn relevante de los mismos y ii)
una etapa de generacion en la que se transmite la informacién
en lenguaje natural.

Ademads, también relacionado con el NLG, desde el campo
de la 16gica difusa se propusieron varios enfoques para generar
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descripciones lingiiisticas de datos (LDD, por sus siglas en
inglés), basadas en el uso de términos lingiiisticos modelados
como conjuntos difusos. Siguiendo este enfoque, algunas
aproximaciones [3] resumen en una forma lingiiistica una o
mads variables numéricas y sus valores, utilizando la nocién
general de protoforma [4] y de forma mads especifica, senten-
cias cuantificadas borrosas que pueden seguir varios tipos de
estructura (por ejemplo, “En algunos puntos la temperatura es
alta”™).

Las LDD carecen, en general, de la expresividad de los
textos reales, pero no por ello dejan de ser elementos de infor-
macién ttiles que pueden utilizarse como entrada de alto nivel
para los sistemas NLG en general y D2T en particular [5], [6].
Se han propuesto aplicaciones de descripciones lingiiisticas en
diversos campos como en el de la salud [7], negocios [8],
ahorro de energia [9] o meteorologia [10].

En este trabajo proponemos el sistema ICA2Text, que tiene
como objetivo la generacion de descripciones lingiiisticas a
partir de datos sobre el Indice de Calidad del Aire (ICA),
que es un indicador estdndar de la calidad del aire utilizado
por todas las agencias meteoroldgicas y medioambientales del
mundo [11]. Nuestro sistema genera descripciones en lenguaje
natural a partir de datos de distribucién del ICA en las esta-
ciones de la red de observacién meteoroldgica proporcionadas
por la Agencia Meteoroldgica de Galicia, MeteoGalicia [12].

En el campo de la meteorologia existen varios enfoques a
lo largo de los afos para generar descripciones a partir de
los datos de calidad del aire. [13] es un prototipo del sistema
TEMSIS centrado en describir si se han superado o no los
umbrales (diarios, mensuales...) de alerta temprana para cada
contaminante. También el sistema MARQUIS [14] de series
temporales de indice de calidad del aire numéricas incluye
referencias temporales simples (horas o intervalos especificos)
para describir el dltimo valor del ICA y los contaminantes
(concentracidn, informacién de archivo y previsién). En [15]
se propone una solucién centrada en la generacién de descrip-
ciones del indice de calidad del aire para una ventana temporal
que incluye tres valores diarios.

Este trabajo estd estructurado de la siguiente manera: en
primer lugar, en la seccién II presentamos el contexto del
problema gestionado en este trabajo y la arquitectura de
nuestro enfoque. En la Seccién IIT describimos en profundidad
los detalles del modelo para la descripcion en lenguaje natural
de la distribucién del Indice de Calidad del Aire. En la seccién
IV se presenta la validacién por expertos humanos y sus
resultados. Por dltimo, en la secciéon V ofrecemos algunas
observaciones finales y una discusién sobre trabajo futuro.

II. CONTEXTO DEL PROBLEMA

La presencia de contaminantes en el aire y, por lo tanto, el
deterioro de la calidad del aire, pueden tener efectos nocivos
para la salud de las personas.

El Indice de Calidad del Aire (ICA) es una variable simbdli-
ca del tiempo que representa la calidad del aire en cada
momento midiendo la presencia y densidad de diversos tipos
de particulas contaminantes en la atmésfera, utilizada por las

agencias meteoroldgicas y los gobiernos para informar a la
poblacién sobre la calidad del aire.

En concreto, los datos con los que trabajamos describen
el Indice de Calidad del Aire en la red de 50 estaciones
meteoroldgicas (Figura 2) que envian datos actualizados cada
hora en tiempo real en Galicia. Se trata de datos oficiales
proporcionados por Meteogalicia, que es la agencia de meteo-
rologia oficial de la Xunta de Galicia [12].

Figura 2. Mapa de las estaciones meteoroldgicas de MeteoGalicia.

Este servicio se ha actualizado recientemente debido a un
proceso de unificacién del indice de Calidad del Aire por parte
de diferentes agencias meteoroldgicas, basado en los criterios
de la Agencia Europea de Medio Ambiente [11]. Actualmente,
cuenta con seis etiquetas con una percepcidn positiva, neutra
o negativa (Tabla I).

Estas etiquetas estdn representadas por un cédigo de colores
en el que, por ejemplo, el color morado significa “pésima”
mientras que el amarillo significa “buena”.

Para determinar el valor de calidad del aire adecuado
para una situacion, este servicio mide cinco contaminantes
diferentes: dioxido de azufre (SO-), diéxido de nitrégeno
(NOy), particulas en suspensién con un didmetro menor o
igual a 2.5 micras (PM25), particulas en suspension con un
didmetro entre 2.5 y 10 micras (PM10) y ozono (O3).

A partir de los datos obtenidos de las estaciones meteo-
rolégicas, MeteoGalicia proporciona representaciones graficas
de la distribucién de cada valor de calidad del aire en tiempo
real para todas las estaciones gallegas. MeteoGalicia represen-
ta estos valores a través de un gréfico de sectores que incluye
una leyenda con la lista de estaciones con indice de calidad del
aire “malo” o “muy malo” junto con el contaminante causante
de esa situacién. En la Figura 3 se muestra un ejemplo de
la distribucion de las etiquetas del ICA, donde el 58 % de
las estaciones tiene una calidad del aire “muy buena” y el
38 % de las estaciones tienen una calidad “buena”. Por otro
lado, una estacién tiene una calidad del aire “moderada” y
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Tabla I
ETIQUETAS DEL INDICE DE CALIDAD DEL AIRE CON SUS PERCEPCIONES E {NDICES NUMERICOS ASOCIADOS.

Percepcion Positivo Neutro Negativo
Etiqueta Buena Regular Muy mala
Indice 0 2 4
también una tdnica estacion tiene una situacién “mala” debido
. u
al contaminante PM10.
Pocas Algunas A?‘l:'i)l:l la Muchas Casi todas
Mala Ninguna Todas
Buena
38%
20 45 55 75 100% g

Mala: 2%
A Corufia—Torre Hércules
(PM10)

Figura 3. Distribucién en tiempo real de los valores de calidad del aire.

III. DESCRIPCIONES LINGU{STICAS DE LA DISTRIBUCION
DEL INDICE DE CALIDAD DEL AIRE

Los cuantificadores lingiiisticos en el lenguaje son una
herramienta muy potente para representar y describir el cono-
cimiento sobre la cantidad de elementos que cumplen determi-
nadas propiedades, cuyo nimero, al menos desde el punto de
vista pragmadtico, suele encontrarse entre una (cuantificadores
unarios) y cuatro (cuantificadores cuaternarios). Las sentencias
cuantificadas unarias tienen la siguiente estructura: “Q X son
S” donde Q es un cuantificador (por ejemplo, “la mayoria”),
X es un conjunto referencial (por ejemplo, “dias”), y S es un
valor lingiiistico (por ejemplo, “lluvia”). Asi, un ejemplo de
enunciado cuantificado unario es “La mayoria de los dias son
luviosos”.

En el caso de MeteoGalicia, se recogen en tiempo real
datos de valores del indice de calidad del aire (ICA) de
las 50 estaciones meteoroldgicas que componen su la Red
[16]. Debido a la importancia que tiene esta informacién
ya que puede afectar a la salud de las personas, surge el
interés en proporcionar descripciones en lenguaje natural sobre
los datos del ICA, que normalmente se presentan de forma
gréfica. Por lo tanto, hemos definido en colaboracién con los
expertos de MeteoGalicia los requisitos de las descripciones
lingiifsticas que luego se proyectaron en las diferentes etapas
de la arquitectura NLG.

III-A.  Determinacion de contenido

A partir de los datos del ICA de los que disponemos, surge
el interés de generar descripciones en cuanto a la distribucién
de sus etiquetas a lo largo de la red de estaciones utilizando los
porcentajes. Sin embargo, generar descripciones incluyendo
porcentajes puede no ser atractivo para los usuarios, por lo tan-
to, para describir la distribucion de las etiquetas del indice de

Figura 4. Representacion grafica de la definicién de los cuantificadores para
la descripcién de la distribucién del indice de calidad del aire (porcentaje de
estaciones en la red meteorolégica).

calidad del aire, utilizamos la particién de siete cuantificadores
“Ninguna”, “Pocas”, “Algunas”, “Aproximadamente la mitad”,
“Muchas”, “Casi todas”, “Todas” representados en la Figura 4,
lo que permite verbalizar de forma imprecisa el porcentaje de
estaciones que cumplen una etiqueta determinada. Esto resulta
mas amigable para los usuarios que un porcentaje, puesto que
para este sistema no se demanda una descripcion precisa.

Siendo Q los cuantificadores previamente definidos, X las
estaciones de la red y S las etiquetas del ICA, generamos
descripciones unarias, como, por ejemplo, “Muchas estaciones
tienen una calidad del aire mala”.

A modo de ejemplo, partiendo de un conjunto de datos
formado por la dupla ID de estacién y valor del ICA para
las 50 estaciones (p.e., 2, 3, 52, 1, 85, 1, 107, 2, 164, 2, ...),
en esta fase se determinan las piezas de informacién que se
van a incluir en la descripcién textual:

= Muchas estaciones tienen calidad del aire muy mala.
= Muchas estaciones tienen calidad del aire mala.

= Rodis tiene calidad pésima debido al NO2.

= Marraxén tiene calidad pésima debido a SO2.

= Pastoriza tiene calidad pésima debido a PM10.

= Magdalena tiene calidad pésima debido a O3.

= Rio Cobo tiene calidad muy buena.

= Laza tiene calidad muy buena.

= Mourence tiene calidad muy buena.

III-B.  Planificacion del documento

Las descripciones en lenguaje natural estin formadas por
las siguientes partes:

= Descripcion general que resume globalmente la situacion,
con una proposicién cuantificada como “Muchas de las
estaciones tienen una calidad del aire muy mala o mala”.
= Intensificacion, que destaca las estaciones que presentan
valores de calidad del aire que cumplan en mayor medida
con la misma percepcion que la descripcion general. Esta
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parte solo se incluye si hay alguna estaciéon que cumpla
esta condicion. Por ejemplo, “Destaca Rodis, con una
calidad del aire pésima debido al NO2”.

= Excepcidn, que destaca las estaciones que tienen valores
de calidad del aire cuya percepcion es contraria a la de la
descripcion general. Esta parte solo se incluye si existe
alguna estacion con un valor destacable. Por ejemplo,
“Por el contrario, Laza tiene una calidad muy buena”.

En el ejemplo anterior:

= Muchas estaciones tienen calidad del aire muy mala o
mala.

= Rodis tiene calidad pésima debido al NO2.

= Marraxon tiene calidad pésima debido a SO2.

= Pastoriza tiene calidad pésima debido a PM10.

= Magdalena tiene calidad pésima debido a O3.

= Rio Cobo tiene calidad muy buena.

= Laza tiene calidad muy buena.

= Mourence tiene calidad muy buena.

III-C. Planificacion de la sentencia

Estas reglas de planificacién estdn basadas en las maximas
de Grice [17], que pueden resumirse como sigue:

= Calidad: las normas deben estar descritas con precision.

» Cantidad: las reglas deben contener suficiente informa-
cién para ser comprensibles sin proporcionar més infor-
macién de la necesaria.

= Relevancia: las reglas deben contener las reglas impor-
tantes para este modelo.

= Forma: las reglas deben estar claramente definidas evi-
tando descripciones ambiguas y deben estar ordenadas
en funcion de la estructura de la descripcién lingiiistica.

Las reglas para la descripcién general consisten en:

= Resaltar si hay un valor del ICA mayoritario cuando
cubre un porcentaje de estaciones superior a un umbral
definido, por ejemplo “Muchas de las estaciones tienen
una calidad del aire muy mala” !.

= Destacar si hay dos etiquetas del ICA con la misma
percepcién que cubren un porcentaje de estaciones por
encima de un umbral fijo, por ejemplo “‘Muchas de las
estaciones tienen una calidad del aire muy mala”.

= Si no hay un ICA predominante, se resaltan los peores
valores, por ejemplo “Ourense tiene una calidad del aire
extremadamente mala debido al contaminante PM10”.

Para la intensificacion y la excepcion, la descripcion debe
seguir estas reglas:

= Una vez que se ha descrito el ICA predominante en la
parte general de la descripcién, el resto de valores se
consideran intensificaciones si son etiquetas con la misma
percepcién o excepciones en caso contrario. Ademds, los
valores con percepciones negativas incluyen los conta-
minantes que las producen. Por ejemplo “Todas las esta-
ciones tienen una calidad del aire buena, especialmente

'El sistema ICA2Text genera descripciones en lenguaje natural bilingiies
en espaflol y gallego, pero en este trabajo mostramos los ejemplos solo en
espaiol para facilitar la lectura.

Ourense con una calidad del aire muy buena. Por el
contrario, Paiosaco tiene una calidad del aire muy mala
debido al contaminante O3”.

= Si dos 0 mas estaciones tienen el mismo ICA y causante
se agrupan, por ejemplo “Laza y Santiago-Campus tienen
una calidad del aire muy mala debido al contaminante
PM10”.

Siguiendo el ejemplo, en esta fase obtenemos:

= Muchas estaciones tienen calidad del aire muy mala o
mala.

= Rodis tiene calidad pésima debido al NO2.

= Marraxén tiene calidad pésima debido a SO2.

= Pastoriza tiene calidad pésima debido a PM10.

= Magdalena tiene calidad pésima debido a O3.

= Rio Cobo, Laza y Mourence tienen calidad muy buena.

III-D. Realizacion

En una descripcion es tan importante el contenido como la
forma de presentarlo, por lo que, con el objetivo de facilitar su
lectura, se incluyen reglas de realizacion relacionadas con la
estructura tanto para los casos de intensificacién como para los
de excepcion: si el nimero de casos destacados es superior a
2, se dispondrdn como una lista, en caso contrario se incluirdn
ambos como texto plano.

Debido a que la web de MeteoGalicia ofrece informacién
tanto en castellano como en gallego, hemos elaborado las
descripciones en ambos idiomas utilizando SimpleNLG-ES
[18] y SimpleNLG-GL [19], que son versiones extendidas de
SimpleNLG [20] para el castellano y el gallego, respectiva-
mente.

La descripcion textual completa resultante en el ejemplo
anterior es:

Muchas estaciones tienen calidad del aire muy mala o mala.
Destacan 4 estaciones:

= Rodis tiene calidad pésima debido al NO2.

» Marraxon tiene calidad pésima debido a SO?2.

» Pastoriza tiene calidad pésima debido a PM10.

» Magdalena tiene calidad pésima debido a O3.

Por el contrario, Rio Cobo, Laza y Mourence tienen una
calidad muy buena.

IV. VALIDACION

Para la validacion de los sistemas de Generacion de Len-
guaje Natural se ha definido una metodologia estindar que
considera diferentes dimensiones [21]. En cuanto al objeto de
la validacién, tenemos: i) la validacién intrinseca, que mide el
rendimiento de un sistema en términos de su efectividad con
respecto a los usuarios; y ii) la validacion extrinseca, enfocada
en medir la efectividad de un sistema a la hora de conseguir un
determinado fin u objetivo. En cuanto a la forma de realizar la
validacién, tenemos: 7) la validacién manual, realizada a cargo
de evaluadores humanos, que pueden ser tanto expertos como
no expertos, en funcién del objetivo final del sistema, y ii)
la validacién automatica, utilizando métricas de rendimiento,
que son de uso undnime en sistemas de generacion neuronal
profundo.



296

XIX Conferencia de la Asociacién Espafiola para la Inteligencia Artificial &=

Teniendo en cuenta estas consideraciones, y dadas las
caracteristicas del sistema ICA2Text optamos por una vali-
dacion intrinseca manual realizada por expertos [22]. Asi,
tres meteordlogos expertos de la Red de Calidad del Aire de
la Agencia de Meteorologia de Galicia [12] (MeteoGalicia)
participaron en la evaluacién de la calidad de los descripciones
en lenguaje natural en este ambito y su adecuacién para la
descripcion de la distribucién del ICA. En la validacién se les
present6 al grupo de tres expertos un cuestionario compuesto
por 25 ejemplos de casos reales de datos proporcionados
por 20 estaciones meteoroldgicas diferentes, que evaluaron
de forma conjunta, consensuando una Unica respuesta para
cada {tem de cada caso. En la Figura 5 mostramos uno de
los casos, donde se da una situacion de ICA mala. Cada caso
estd compuesto por un diagrama de sectores y la descripcion
textual correspondiente generada por ICA2Text, acompaiiado
de cinco {tems (mostradas en la Tabla II), que debian responder
utilizando una escala Likert [23] de 5 puntos en el rango [1,
5] donde 1 indica acuerdo total del grupo de expertos con el
item del cuestionario y 5 indica desacuerdo total. Los items
hacen referencia a dos dimensiones principales: contenido de
la descripcién (Q1, Q2) y su forma (Q3, Q4, Q5). El equipo de
expertos consensud en todos los casos la evaluacién numérica
conjuntamente de la correspondencia entre las descripciones
en lenguaje natural y la informacién proporcionada por el
gréfico.

Tabla IT
ITEMS QUE COMPONEN EL CUESTIONARIO PARA LA EVALUACION POR
PARTE DE LOS EXPERTOS.

Codigo  Cuestion

Ql Indicar el grado de concordancia entre la descripcion lingiifstica
proporcionado y los datos representados en la figura

Q2 Indicar el grado de concordancia entre la descripcion lingiifstica
proporcionado y cémo describirfas los datos

Q3 Indicar el grado de conformidad con el uso correcto del
vocabulario

Q4 Indicar el grado de acuerdo con la organizacion de la descrip-
cién lingiiistica para facilitar su comprensién

Q5 Indique el grado de acuerdo con la ortografia, la puntuacién y

la estructura

Ninguno de estos expertos habia participado en la definicion
del sistema ICA2Text ni de su modelo subyacente, puesto
que todos los requisitos fueron definidos con la ayuda de un
cuarto experto diferente, perteneciente también a la Red de
Calidad del Aire de MeteoGalicia. Por lo tanto, se realizé una
evaluacidén totalmente ciega, puesto que no se proporcionaron
detalles de ningln tipo acerca de cémo se generaron las
descripciones en lenguaje natural.

En la Tabla III se presenta un resumen de los resultados
tras la evaluacién por parte de los expertos de las dimensiones
de contenido (Q1, Q2) y disefio (Q3, Q4, Q5) y el resultado
global.

Los resultados muestran que los expertos estdn de acuerdo
con las descripciones en lenguaje natural generadas, ya que
la media de las puntuaciones es de 4.80 con una desviacién
tipica de 0.51. Ademds, en todos los items la moda la maxima
puntuacién posible.

N

Muchas de a5 estaciones tienen una calided del aire muy mala o
mala.
Destacan 4 estaciones:

= Marraxén, con calidad pésima debido al S02.

= Rodis, con calidad pésima debido al NO2.

*  Pastoriza con calidad pésima debido al PM10.

= Magdalena con calidad pésima debido al 03
Por el contrario, Rio Cobo, Laza y Mourence tienen una calidad muy
buzna

Preguntas
Indique el grado de acuerdo o desacuerdo entre la descripcion textual
proporcionada y los dat: atos en |a figura
Indique el grado de acuerdo o desacuerdo entre la descripcion textual
proporcionada y |z Gue harfa usted misma para describir la distribucién del
IcA
Indique el grado de acuerdo o desacuerdo en que se utiiza el vocabulario
Correctamente
Indique el grado de acuerdo o desacuerdo en que el contenido es
correctamente agrupado para facilitar la c 6n de la descripcion
Indique el grado e acuerdo o desacuerdo con la ortografia, Ia puntuacion y
el formato (maguetacion) utilizados

[ Puntuacién |
:[Totalmente |
de acuerdo [
En desacuerdo

Ni de acuerdo ni en desacuerdo
De acuerdo
Totalmente de acuerdo

Totalmente
de acuerdo

Figura 5. Ejemplo extraido del cuestionario disefiado para la validacién de
expertos.

Tabla III
RESULTADOS DE LA EVALUACION POR EXPERTOS.
Media Desviacion tipica Moda
Ql 4.76 0.52 5
Q2 4.68 0.69 5
Q3 4.88 0.33 5
Q4 4.76 0.60 5
Q5 4.92 0.28 5
Contenido 4.72 0.61 5
Disefo 4.85 0.43 5
General 4.80 0.51 5

En general, podemos concluir que estas descripciones
lingtiisticas generadas son muy adecuadas tanto en contenido
como en forma, con medias de 4.72 y 4.85 respectivamente,
para describir la distribucién del indice de calidad del aire en
las 20 estaciones.

A partir de los resultados tan positivos obtenidos en la
validacion por expertos, este sistema estd actualmente en
produccién y serd proximamente desplegado en la pagina web
oficial de MeteoGalicia como un nuevo servicio publico para
los usuarios que consulten la informacién sobre la calidad del
aire.

V. CONCLUSIONES

En este trabajo presentamos un modelo de generaciéon de
lenguaje natural empleando cuantificadores borrosos para la
generacién automadtica de descripciones lingtiisticas a partir de
datos numéricos obtenidos de un caso real de aplicacién en
el campo de la informacién medioambiental, proporcionando
explicaciones textuales sobre la distribucién de los valores del
indice de calidad del aire (ICA), que es un indicador muy
conocido proporcionado por todas las agencias meteoroldgicas
del mundo. Basado en este modelo, describimos ICA2Text, un
sistema D2T para la generacién automdtica de descripciones
en lenguaje natural sobre los datos del ICA proporcionados
por la Agencia de Meteorologia de Galicia.
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Los resultados de la validacion manual por parte de los
expertos meteor6logos muestran que las descripciones en
lenguaje natural generadas son muy adecuadas, puesto que
en media calificaron las descripciones en lenguaje natural
generadas por el sistema ICA2Text con un 4.72 sobre 5 en
una escala Likert en cuanto a calidad del contenido y un 4.85
sobre 5 en cuanto a calidad lingiifstica (disefio).

Actualmente, ICA2Text se ha integrado en la web de
produccién de MeteoGalicia, de modo que tras un periodo de
pruebas, como trabajo futuro se plantea el despliegue como
servicio publico en la seccién de calidad del aire de la pagina
web de MeteoGalicia.
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Resumen—En este trabajo presentamos un estudio empirico
orientado a poner en evidencia posibles inconsistencias que
pueden producirse cuando utilizamos expresiones en lenguaje
natural con cuantificadores imprecisos, y éstas son evaluadas con
modelos de cuantificacion borrosa que incumplen dos propieda-
des de interés que se han definido en la bibliografia para dichos
modelos (antonimia y efecto acumulativo). La experimentacion
considera el modelo de cuantificacion de Zadeh en el contexto
de un agente conversacional que realiza recomendaciones. Los
resultados muestran que hay diferencias significativas en la
percepcion de la consistencia y la utilidad de las conversaciones
mantenidas entre una persona usuaria y el agente conversacional,
relacionadas con el modelo de cuantificacion utilizado.

Index Terms—Cuantificadores borrosos, Generacion de len-
guaje natural, Evaluacion humana, Agentes conversacionales

I. INTRODUCCION

La presencia de la cuantificacion en el uso del lenguaje
natural humano es continua y juega un papel fundamental
tanto en términos de significado como de expresividad. A
menudo empleamos expresiones imprecisas como “algunos
de los alumnos sacaron buenas notas”, “en la mayor parte
de los ayuntamientos gallegos la incidencia de coronavirus es
baja” o “habrd pocos dias con cielos nublados esta semana”,
que nos permiten manejar la vaguedad del lenguaje y resumir
la informacién de forma natural. Debido a esta constante
aparicion de expresiones cuantificadas en el lenguaje natural,
su modelado se ha convertido en un problema de gran interés
en multiples campos relacionados con la Inteligencia Artificial.

El objetivo principal de los cuantificadores es permitirnos
caracterizar y describir propiedades cuantitativas sobre un
conjunto de elementos (un colectivo, denominado referencial),
en lugar de tener que hacerlo sobre cada elemento individual.
La forma en que los datos son agregados y resumidos en
una sentencia cuantificada depende directamente del modelo
de cuantificacién que se utilice para procesar la informacion.
En caso de no seleccionarse un modelo adecuado, podria
presentarse un resultado que no fuera representativo de los
datos o, directamente, incorrecto.

Para caracterizar el comportamiento de un modelo de
cuantificacién, en el sentido de que los resultados obtenidos
supongan una interpretacién coherente y apropiada de los
datos descritos, varios autores han propuesto una serie de
propiedades intuitivas y plausibles que, en principio, cualquier
modelo deberfa satisfacer [1]-[3]. Sin embargo, la mayor parte
de los modelos de cuantificacién mds conocidos y utilizados

(por ejemplo, Zadeh [4], Yager [5], etc.) incumplen algunas
de estas propiedades, por lo que presentan un comportamiento
alejado del adecuado, y no deseado en algunos casos.

A pesar de que los modelos de cuantificaciéon borrosa son
bien conocidos desde hace tiempo (principio de los afios 80
del siglo pasado), y que en diversos trabajos posteriores se ha
llevado a cabo un andlisis de las propiedades que cumplen a
nivel tedrico [1], [2], existen muy pocos estudios empiricos
que, desde una perspectiva pragmdtica, midan el alcance o
impacto del incumplimiento de dichas propiedades a nivel
practico en ambitos concretos [6]. Este aspecto pragmaitico
es de especial relevancia y actualidad, especialmente a partir
del uso de cuantificadores en las descripciones lingiiisticas de
datos [7]-[9] y en los sistemas de generacién de lenguaje
natural [10], puesto que la pragmadtica es esencial en el
lenguaje humano y el incumplimiento de algunas propiedades
relevantes por parte de los cuantificadores puede dar lugar a
inconsistencias en la operativa interna de las aplicaciones en
estos u otros ambitos que conviene hacer aflorar. La principal
aportacién de este trabajo se centra precisamente en aportar
evidencias que ilustren el alcance del incumplimiento de estas
propiedades y, de alguna manera, hagan transparente hacia los
usuarios o desarrolladores su existencia.

Asi, en este trabajo presentamos un estudio empirico que
evidencia las posibles inconsistencias que pueden producirse
en la practica debido al incumplimiento de ciertas propiedades
por parte del modelo de cuantificacién utilizado. En concreto,
nos centramos en el modelo de cuantificaciéon escalar de
Zadeh [4], para el cual estudiamos el alcance del incum-
plimiento de la propiedad de antonimia y el problema del
efecto acumulativo, en un escenario de aplicacién concreto.
Para ello, hemos creado el asistente virtual Quanversa' [11],
que desarrolla conversaciones breves sobre la prediccién me-
teoroldgica en lenguaje natural a partir de datos [10], [12] que
incluyen expresiones cuantificadas borrosas. Con fragmentos
de estas conversaciones hemos realizado un estudio basado
en cuestionarios, que nos ha permitido evaluar el impacto
que tiene el efecto acumulativo y el incumplimiento de la
propiedad de antonimia por parte del modelo de cuantificacién
de Zadeh en cuanto a la coherencia del didlogo mantenido
entre el asistente y una persona usuaria, cuando se utilizan en
él expresiones cuantificadas imprecisas.

Thttps://demos.citius.usc.es/Quanversa/
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El resto del trabajo estd organizado en cuatro secciones.
La seccién II introduce brevemente los modelos de cuantifi-
cacién borrosa considerados. La seccién III presenta el nuevo
modelo de cuantificacién propuesto. La seccion IV describe
los experimentos realizados. Finalmente, la seccién V resume
las principales conclusiones.

II. MODELOS DE CUANTIFICACION BORROSA

En el lenguaje natural, es comtn encontrar términos vagos
o imprecisos como “alto”, “joven” o “pequeiio”, que expresan
alguna propiedad sobre uno o mas objetos y que pueden ser
modelados mediante conjuntos borrosos. Ademads, la introduc-
cién de este tipo de términos dentro de expresiones cuanti-
ficadas es habitual (por ejemplo, “muchos trabajadores son
Jjovenes”, “la mayor parte de los jugadores son altos”, etc.),
dénde no solo la propiedad descrita presenta incertidumbre,
sino que también lo hace el cuantificador lingiiistico utilizado.

Asi, en el modelado de la cuantificacion lingiiistica, el
manejo de la vaguedad presente en el lenguaje es fundamental.
Fue Zadeh el primero en modelar el problema de la cuantifi-
cacion en el lenguaje natural utilizando la teoria de conjuntos
borrosos [4]. Para ello, distingui6 dos tipos de cuantificadores
lingiiisticos (ver ejemplos en la figura 1): cuantificadores
borrosos absolutos, los cuales denotan una cantidad imprecisa
absoluta (“aproximadamente cinco”, “un niimero grande”,
“alrededor de diez”, etc.) y cuantificadores borrosos relativos
(o proporcionales), que referencian cantidades relativas (“la
mitad”, “casi todos”, “una pequeiia parte”, etc.). Ademads,
propuso identificar ambos tipos de cuantificadores con un
conjunto borroso que represente la semantica del cuantificador.

Horer

0
0 0.7 09 1

(a) Cuantificador relativo Q..c;: casi todos.

HQaps

0
0 7 10 13 R

(b) Cuantificador absoluto Qups: alrededor de diez.

Figura 1: Ejemplos de cuantificadores.

Zadeh se centr6 en el estudio de dos tipos de expresiones:
(1) las expresiones de tipo I, que siguen el esquema (o

protoforma) “Q de E son A”; y (2) las expresiones de tipo 11,
que responden a “@) de (EE) son A”, dénde F es el conjunto
referencial, A y D dos conjuntos borrosos que representan
alguna propiedad de E, y () un cuantificador borroso absoluto
o relativo. Un ejemplo de expresion de tipo I es “la mayoria
de estudiantes de matemdticas son altos”, mientras que un
ejemplo de expresion de tipo I podria ser “la mayoria de los
buenos estudiantes de matemdticas son altos”, identificando en
ambos casos E con el conjunto de estudiantes de matematicas,
Q con el cuantificador borroso relativo “la mayoria”, A y D
con los conjuntos borrosos que representan las propiedades de
“ser alto” y “ser buen estudiante”, respectivamente.

En lo que sigue, si Aesun conjunto borroso que representa
una propiedad borrosa acerca de los elementos de un referen-
cial E = {e1,...,e,}, escribiremos p4(E) = {a1,...,an},
cona; = pj(e;) parai € {1,...,n}, representando los grados
de cumplimiento de la propiedad A sobre los elementos de E.

Siguiendo la aproximacién propuesta por Zadeh, un modelo
de cuantificacion es un método que permite combinar el
conjunto borroso que representa la semantica del cuantificador
@ con los conjuntos borrosos que modelan las propiedades A
y D, de forma que sea posible obtener una medida de la vera-
cidad o grado de cumplimiento de la expresion cuantificada. El
modelo de cuantificacién escalar propuesto por Zadeh en [4] es
uno de los métodos mds conocidos y utilizados en la préctica
para la evaluacion de expresiones cuantificadas. En el caso de
expresiones de tipo I, se define, para cuantificadores borrosos
absolutos, mediante la expresion:

2u.(A) = G | D_ai | s 1)

i=1
y, para cuantificadores borrosos relativos, como:

n

20,0 (A) = pau | D_ai/n . 2)

i=1

En el caso de expresiones de tipo II se define, para
cuantificadores borrosos absolutos, como:

ZQabs (A/D) = HQaps Z ml’n{a‘iv dl} ) €))
=1

y, para cuantificadores borrosos relativos, como:

>oi, min{a;, dl})
Z;Lzl d;

A partir de este primer método introducido por Zadeh,
surgieron nuevas propuestas para la evaluacién de expresiones
cuantificadas [5], [13], [14], de forma que cada uno utiliza
un esquema diferente para obtener el grado de verdad de una
expresion cuantificada. Con el objetivo de poder comparar y
evaluar el comportamiento de cada uno de estos modelos, en
relacion a la obtencion de resultados coherentes y apropiados,
varios autores han propuesto una serie de propiedades que, en
principio, deberfan satisfacer todos aquellos modelos que ten-
gan un comportamiento consistente, intuitivo o plausible [1].

Zo,..(A/D) = o ( @)
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Entre ellas, se encuentran, por ejemplo, la continuidad, la mo-
notonia, las relacionadas con la negacién o la antonimia. Sin
embargo, muchos de los modelos mas utilizados en la practica
no verifican algunas de estas propiedades fundamentales. En
concreto, el comportamiento tedrico no adecuado del modelo
de Zadeh debido al incumplimiento de ciertas propiedades
matematicas ha sido estudiado en profundidad en la biblio-
grafia [1], [2]. En este trabajo, nos centraremos Unicamente
en dos de sus principales problemas: el incumplimiento de la
propiedad de antonimia y el efecto acumulativo.

Debido a su continuo uso en el lenguaje natural, es funda-
mental que los modelos se comporten correctamente respecto
a las negaciones. En este sentido, la propiedad de antonimia
establece que todo modelo de cuantificaciéon I' debe verificar:

Lo(A) =Tq,.(A) 'y (5)

Tq(4/D) =Tq,,.(Ac/D), ©)
siendo /Nlc el complementario de /Nl, definido por:
pg (e) =1—pz(e) paratodo e €

y Qant €l anténimo de @, que se define, si () es un cuantifi-
cador borroso absoluto, como:

HQans () = pio(n — x) para todo z € [0, n).
y, si @ es un cuantificador borroso relativo, como:
PQun: () = po(1 — x) para todo x € [0, 1].

La violacién de la propiedad de antonimia puede tener
consecuencias importantes en la evaluacion de expresiones
cuantificadas. Por ejemplo, dos expresiones como “todos los
dias del fin de semana habrd temperaturas altas” y “no
habrd dias este fin de semana en los que las temperaturas
no sean altas”, que semanticamente son equivalentes, podrian
obtener grados de verdad diferentes al ser evaluadas sobre
un mismo referencial. Este comportamiento poco intuitivo no
deberia ocurrir en ningin caso, puesto que ambas expresiones
en lenguaje natural realmente significan lo mismo.

El modelo de Zadeh no verifica la propiedad anterior,
como se demuestra con el siguiente contragjemplo; sean E
el conjunto de los préximos 4 dias, A y D los conjuntos
borrosos que representan las propiedades “tener temperatura
alta” y “pertenecer al fin de semana”, de forma que p ;(E) =
{0.5,1,1,0.5} y pp(E) = {0.5,1,1,0.5}. Definiendo el
cuantificador V :="“todos” como:

1six=1,

“\’(z)_{o siz#l,

se tiene que:

zwcﬁ/b>=:ﬂv(

mientras que:
L 0.5+0+0+4+0.5
,amwaﬂn=ﬂwM(mm4+4+o5>

= W, (1/3) = pv(1 —1/3) = 0.

05+1+1+0.5
>=M%U=L

05+1+1+0.5

Por otro lado, el modelo de Zadeh puede provocar un
efecto acumulativo poco intuitivo, ya que es posible que varios
elementos con un grado de pertenencia bajo alcancen el mismo
valor acumulado que un udnico elemento con un grado de
pertenencia alto. Por ejemplo, supongamos que F y E’ son
los conjuntos de temperaturas para los préximos 5 dias en dos
ayuntamientos diferentes y A es el conjunto borroso que repre-
senta la propiedad de “ser una temperatura baja” de forma que
pi(E) ={0.2,0.2,0.2,0.2,0.2} y p;(E") = {1,0,0,0,0}.
Definiendo el cuantificador absoluto “al menos uno” como:

0six<l1,
1siax>1,

H<“al menos uno'’ (‘T) -

“«

y utilizando la férmula (1), la evaluacién de la expresion “al
menos una temperatura serd alta” mediante el modelo de
Zadeh devolverd el mismo resultado para ambos conjuntos
referenciales E'y F’, pero la situacion en cada ayuntamiento
es diferente.

A pesar de los problemas evidenciados a nivel tedrico, no
se conoce el impacto que puede tener el uso de un modelo
de cuantificacién que presente estas deficiencias durante la
interaccion entre un agente conversacional y sus usuarios.

III. MODELO DE ZADEH MODIFICADO

Hemos propuesto una modificaciéon del modelo de Zadeh
para corregir los potenciales efectos indeseados asociados a
la antonimia y el efecto acumulativo [11], y de este modo
disponer de dos modelos de cuantificacién muy similares que
permitiesen evaluar qué impacto tiene el incumplimiento de las
propiedades mencionadas en un contexto de aplicacion real.
Se realizaron las modificaciones imprescindibles para abordar
directamente las dos propiedades citadas.

Por un lado, a la hora de realizar una agregacion, el modelo
modificado solo considera los elementos que tengan un grado
de pertenencia suficientemente alto. Esto significa que, en las
definiciones (1)—(4), son excluidos aquellos términos de los
sumatorios en los que los valores de a; o d; no alcancen el 0.5,
evitando la acumulaciéon de pequefios grados de pertenencia
en la agregacion. Se ha escogido el valor 0.5 por ser el
umbral que determina la pertenencia al conjunto cuando la
variable es desborrosificada. Asi, los datos incluidos en la
agregacion serdn aquellos considerados en todo momento
como pertenecientes al conjunto.

Por otro lado, el incumplimiento de la propiedad de an-
tonimia se debe a la incorrecta evaluacién de una expresion
cuantificada cuando ésta se formula en términos de /ic. Dado
que semanticamente las expresiones “() de (DE) son A" y
“Qant de (EE) son A” son equivalentes, el modelo modi-
ficado realiza un procesamiento previo a la evaluaciéon para
transformar la primera en la segunda, cuando es necesario.
Asi, las expresiones de (5) y (6) se cumplen trivialmente y el
modelo verifica la propiedad de antonimia.

En el estudio empirico que describimos en la siguiente sec-
cién utilizaremos este modelo de Zadeh modificado junto con
el original para la evaluacién de proposiciones cuantificadas
borrosas sobre un mismo referencial. Se plantean escenarios de
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conversacion entre el agente conversacional Quanversa [11] y
una persona usuaria en los cuales las propiedades de antonimia
y efecto acumulativo juegan un papel relevante. Ello nos
permitird comparar, desde el punto de vista pragmaético, el
comportamiento del modelo modificado frente al original,
y valorar experimentalmente la importancia en un escenario
concreto del incumplimiento de las propiedades mencionadas.

1V. EsTubIO EMPIRICO

De un modo mds formal, el estudio plantea un experimento
que permita verificar la siguiente hipétesis de investigacion:
“La interaccion con un agente conversacional resulta mds
consistente y de mayor utilidad para los usuarios cuando los
datos son procesados mediante un modelo de cuantificacion
que supera los problemas de la antonimia y el efecto acumu-
lativo propios del modelo de cuantificacion escalar propuesto
originalmente por Zadeh [4]”.

Con el fin de validar esta hipdtesis, se construyé un
cuestionario que permitié que los participantes en el estudio
pudieran valorar la consistencia y la utilidad de una serie de
conversaciones reales entre el agente conversacional Quan-
versa y una usuaria ficticia, Maria, mostradas mediante una
captura de pantalla (véase una muestra de un escenario en la
figura 2). El cuestionario incluye 6 escenarios distintos, que
nos permiten considerar las diferentes situaciones o contextos
de estudio en base al modelo considerado, tamafio de la
muestra, y la propiedad a analizar (ver la figura 3). Se somete
a los participantes a dichos escenarios (o estimulos), sin
permitir interaccion en tiempo real con el asistente, para evitar
efectos de otros factores no controlados que no son objeto de
estudio, y asi dar respuesta a nuestra hipétesis de partida. El
cuestionario se distribuy6 a través de listas de distribucién y
redes sociales, y se mantuvo abierto desde el 6 hasta el 26 de
abril de 2021. Durante este tiempo, fue completado por 132
personas, de forma totalmente voluntaria y anénima.

La figura 4 muestra la relacién entre el modelo de cuanti-
ficacién utilizado por Quanversa durante la conversacion y la
consistencia en sus respuestas apreciada por los participantes.
Las conversaciones asociadas al nuevo modelo se consideraron
mds consistentes que en el caso del modelo original.

La figura 5 representa la relacién entre el modelo de cuan-
tificacion y la utilidad de la conversacion para la resolucién
de la tarea propuesta en el escenario, segtin los participantes
en el estudio. De nuevo, se observan diferencias entre ambos
modelos, aunque menos acentuadas que para el caso de la
consistencia.

Para contrastar la hipétesis de investigacion planteada (con
un nivel de significacién de 0.01), basta con comprobar la
dependencia o independencia entre las variables respuesta y
el modelo de cuantificaciéon. Las hipétesis nula y alternativa
para los contrastes de independencia entre el modelo de
cuantificacién y la consistencia/utilidad en cada contexto de
estudio (véase Ci, con i € {1,2,3}, en la figura 3) son:

Hy: La variable respuesta consistencia/utilidad es indepen-
diente del factor modelo de cuantificacion en C;.

H,: El factor modelo de cuantificacion influye en la variable
respuesta consistencia/utilidad en C;.

Teniendo en cuenta lo anterior, se ha seleccionado el test
de McNemar [15], un test de independencia no paramétrico
utilizado como la alternativa a los test x? de Pearson cuando
los datos son pareados. El test de McNemar estudia si la
probabilidad de evento positivo para una variable (en nuestro
caso, conversacion consistente o conversacion util) es igual
en los dos niveles de otra variable (en nuestro caso, para
los dos modelos de cuantificacién). Su estadistico sigue una
distribucién x? con 1 grado de libertad.

El test de McNemar aplicado a los tres contextos de estudio
revela que existen diferencias significativas, que soportan
rechazar Hj en favor de que si existe relacion entre el modelo
de cuantificacion y la consistencia de las respuestas dadas por
Quanversa (C1: x2 = 73.11, p-valor< 0.01; C2: x? = 81.01,
p-valor< 0.01; C3: x2 = 100.08, p-valor< 0.01).

Andlogamente, comprobamos la independencia de la varia-
ble utilidad respecto al modelo de cuantificacién. De nuevo,
para los tres contextos estudiados, el test de McNemar arroja
diferencias significativas, rechazando H, en favor de que si
existe relacion entre el modelo de cuantificacién y la utilidad
de la conversacion mostrada entre Quanversa y la usuaria
Maria (Cl: x¥?> = 24.32, p-valor< 0.01; C2: x? = 37.21,
p-valor< 0.01; C3: % = 39.2, p-valor< 0.01).

V. CONCLUSIONES

La aplicacién del test no paramétrico de McNemar revela
que las diferencias encontradas son significativas tanto en
la percepcién de la consistencia como en la percepcion de
la utilidad respecto al modelo de cuantificacién considerado.
Junto con la informacién recogida en las figuras 4 y 5, se
puede afirmar que un porcentaje significativo de participantes
encontrd las interacciones con el agente conversacional mas
consistentes y de mayor utilidad cuando este proceso los datos
mediante el modelo de cuantificaciéon de Zadeh modificado
(que cumple la propiedad de antonimia y supera el problema
del efecto acumulativo). Por lo tanto, el experimento realizado
valida la hipdtesis de investigacién planteada.

Como trabajo futuro nos planteamos ampliar el estudio a
contextos de tipo conversacional en otros dmbitos y a otros
modelos de cuantificacién, de modo que se pueda extender
la base experimental del presente estudio y generalizar las
conclusiones que hemos presentado en este trabajo. Asimismo,
estudiaremos con mayor profundidad dos aspectos pragmati-
cos que hemos observado en el andlisis de resultados, y cuyo
alcance merece atencién y requiere investigacion adicional.
Por un lado, el hecho de que, con cierta frecuencia, los
usuarios fueron capaces de tomar una decision en relacion a la
tarea propuesta incluso en escenarios donde habian detectado
inconsistencias en la conversacion. Por otro, el hecho de que
un buen nimero de participantes tardaron mas en responder a
los escenarios que involucraban al modelo de Zadeh, lo cual
puede ser debido a la inconsistencia en la conversacién que
producia dicho modelo.
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Escenario 6 de &

Maria y sus amigos planean pasar &l fin de semana en la localidad gallega de Noia v, si hubiera algtn dia en el que las temperaturas maximas fueran altas,
les gustaria disfrutar de la playa.

Con el objetiva de llevar el equipaje adecuade, antes de realizar los preparatives, Maria decide consultar €l tiempo mediante &l asistents virtual Quanversa, La
conversacidn entre Maria y Quanversa se muestra en la siguiente imagen.

Quanversa:
Hola, ;en qué puedo ayudarte?

Maria:

Pasaré el fin de semana en Noia, ;como van a ser las temperaturas maximas?

Quanversa:

En general, las temperaturas madximas en Noia el fin de semana serdn normales res-
pecto a lo esperado para esta época del afio.

Muy alta
Viernes Sabado Domingo Lunes

Temperatura 18 18 18 | 18

maxima (°C)

Maria:

Entonces, ;jno va a haber temperaturas maximas altas?

Quanversa:

No, las temperaturas maximas serdan normales todos los dias del fin de
semana en Noia.

Pregunta 1

sCrees que las respuestas de Quanversa son consistentes entre si? »
Si.
0 nNo.

Explica, de forma breve, qué te ha llevado a dar |a valoracién anterior: =

Tu respuesta

Pregunta 2

Atendiendo Unicamente 2 la informacion contenidz en la conversacion anterior, si fueras Marfa, jcrees gue podrias tomar 12 decisién de ir o no 2 |2 playa? »

Si.
Q No.

#Qué te impide poder tomar una decision? =

Tu respuesta

Figura 2: Ejemplo de escenario a evaluar en el cuestionario.
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Modelo de Zadeh Modelo modificado
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Abstract—Robust model estimation is a recurring problem in
application areas such as robotics and computer vision. Taking
inspiration from a notion of distance that arises in a natural
way in fuzzy logic, this paper modifies the well-known robust
estimator RANSAC making use of a Fuzzy Metric (FM) within
the estimator main loop to encode the compatibility of each
sample to the current model/hypothesis. Further, once a number
of hypotheses have been explored, this FM-based RANSAC
makes use of the same fuzzy metric to refine the winning
model. The incorporation of this fuzzy metric permits us to
express the distance between two points as a kind of degree
of nearness measured with respect to a parameter, which is
very appropriate in the presence of the vagueness or imprecision
inherent to noisy data. By way of illustration of the performance
of the approach, we report on the estimation accuracy achieved
by FM-based RANSAC and other RANSAC variants for a
benchmark comprising a large number of noisy datasets with
varying proportion of outliers and different levels of noise. As
it will be shown, FM-based RANSAC outperforms the classical
counterparts considered.

Index Terms—Model estimation, RANSAC, Fuzzy metric, 2D
straight line estimation
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Analisis de distintos tipos de tendencias en
sucesiones de contextos L-fuzzy

Cristina Alcalde
Dep. Matemdtica Aplicada
Universidad del Pais Vasco - UPV/EHU
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Resumen—En este trabajo estudiamos el crecimiento, decreci-
miento o ausencia de tendencias en las relaciones entre objetos y
atributos en una sucesion de contextos L-fuzzy. Estas tendencias
nos permitirin ordenar los objetos, atributos y conceptos aten-
diendo a su crecimiento o decrecimiento a lo largo del tiempo.
Finalmente, ilustraremos nuestros resultados con una aplicacién
practica.

Palabras Clave—Conceptos L-Fuzzy, sucesiones de contextos
L-Fuzzy, analisis de tendencias.

I. INTRODUCCION

El Analisis de Conceptos L-Fuzzy [1], [2] es una herra-
mienta matemadtica para el andlisis y la representacion del
conocimiento conceptual. Esta teoria utiliza los conceptos L-
fuzzy para extraer informacién de un contexto L-fuzzy. Re-
cordemos que un contexto L-fuzzy es una tupla (L, X, Y, R),
donde L es un reticulo completo, X e Y son conjuntos de
objetos y atributos, y R € LX*Y es una relacién L-fuzzy
entre los objetos y los atributos. Podemos entender el Andlisis
de Conceptos L-fuzzy como una extensiéon del Andlisis de
Conceptos Formales de Wille [3], [4] que permite trabajar con
relaciones entre los objetos y atributos que toman valores en
un reticulo L, en lugar de valores binarios.

Para trabajar con estos contextos L-fuzzy, hemos definido
los operadores derivacién 1 y 2 por medio de las expresiones:

Para todo A € LX, para todo B € LY

Ai(y) = inf {I(A(z), R(z,y))},Vy € Y
By(w) = Inf {I(B(y), R(x,y))}, Vo € X

con [ un operador de implicacién fuzzy definido en el reticulo
(L. <).

La informacién almacenada en el contexto se visualiza por
medio de los conceptos L-fuzzy, que representan a un grupo
de objetos que comparten, ellos y sélo ellos, un grupo de
atributos. Estos conceptos son pares (M, M;) € L* x LY,
donde el conjunto M € fiz(p) es un punto fijo del opera-
dor constructor ¢, que se define a partir de los operadores
derivacién 1y 2 como ¢(M) = (M) = Mis.

Trabajo parcialmente subvencionado por el Gobierno Vasco (Proyecto
IT1256-19), y por el Grupo de Investigacion “Inteligencia Artificial y Ra-
zonamiento Aproximado” de la Universidad Publica de Navarra.

Ana Burusco
Dep. Estadistica, Informdtica y Matemdticas
Universidad Piiblica de Navarra
Instituto de Smart Cities
Pamplona
burusco@unavarra.es

Ademds, fijado un conjunto de partida A € LX (o B € LY),
podemos obtener el concepto L-fuzzy asociados aplicando
sucesivamente los operadores derivacién hasta encontrar un
punto fijo.

Para el caso de utilizar implicaciones residuadas, tal y como
haremos en este trabajo, obtendremos un punto fijo en la
segunda aplicacién de los operadores derivacion, con lo que
el célculo del concepto L-fuzzy asociado a un conjunto de
partida se simplifica enormemente. Asi, dado un conjunto de
objetos A € LX (o un conjunto de atributos B € LY), el
concepto L-fuzzy asociado serd (Ajz2, A1) (0 (Ba, Ba1)).

En este trabajo trataremos de estudiar en qué medida las
relaciones entre los objetos y los atributos mejoran o empeoran
con el paso del tiempo. Representaremos estas situaciones
mediante una secuencia de contextos L-fuzzy en la que pro-
fundizaremos en el estudio de las tendencias tanto crecientes
como decrecientes. También estudiaremos los casos en los que
no haya tendencia.

Existen trabajos en la literatura que analizan la evolucion
temporal en un contexto formal, por ejemplo, [5], [6]. En
particular, en [6], Wolff introduce un Sistema de Tiempo
Conceptual para definir el Andlisis de Conceptos Temporales.
En este Sistema de Tiempo Conceptual, el estado y la fase
se definen como reticulos de conceptos que representan el
significado de los estados con respecto a la descripcion elegida
del tiempo. Ademds, otros autores definen tendencias de
evolucion en [5], utilizando temporal matching en el caso del
Andlisis de Conceptos Formales.

II. TENDENCIAS TEMPORALES

En [7] presentamos un primer estudio de sucesiones de
contextos L-fuzzy considerando el reticulo L = [0, 1]. Co-
menzaremos este apartado recordando cémo definiamos estas
sucesiones:

Definicion 1: Una sucesion de contextos L-fuzzy es una
sucesién de tuplas (L, X,Y,R;), i € {1,2,...,n}, siendo
L un reticulo completo, X e Y dos conjuntos de objetos y
atributos respectivamente y para cada valor i € {1,...,n}
R; € LX*Y representa la relacién entre los conjuntos X e Y’
en el instante ¢, la cual toma valores en el reticulo L.

Posteriormente, con el objeto de estudiar la evolucién de
la relacién entre los objetos (o atributos) respecto de uno o
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varios atributos (u objetos), en [8], [9] realizamos un andlisis
de tendencias temporales para identificar la evolucién con el
tiempo de la sucesién de contextos L-fuzzy (L, X,Y, R;),i €
{1,...,n}.

Una buena herramienta para analizar la evolucién en el
tiempo de un objeto o un atributo es el estudio de sus
conceptos L-fuzzy asociados en los diferentes contextos L-
fuzzy de la sucesién. Esta es la idea en la que se basan las
siguientes definiciones:

Definicion 2: Consideremos el objeto zp € X. Sean
(Aifzoys Bifzo}) los conceptos L-fuzzy asociados a {zo} en
la sucesién de contextos L-fuzzy (L,X,Y,R;) con i < n.
Denotamos por [Trend(zp) al conjunto de atributos cuya
relacién con el objeto zy se va fortaleciendo en la sucesion
de contextos, y lo definimos como:

ITrend(zo) ={y € Y | Bizo}(¥) # Bufzo}(¥)
A Bitzo}(Y) < Big1{ao) (y), Vi < n}

Andlogamente, dado el atributo yg € Y, y los conceptos
L-fuzzy (A;{y,}, Bigy,}) asociados a {yo} en la sucesién de
contextos L-fuzzy, definiremos el conjunto I7Trend(yp) que
representa el conjunto de objetos que estdn cada vez mas
relacionados con el atributo yo de la siguiente manera:

ITrend(yo) ={z € X | Al{yo}(x) + An{yo}(x)
A Aifyoy () < Aip1gyoy(2), Vi < n}

En el caso de tendencias decrecientes, podemos definir los
conjuntos de objetos o atributos cuyos grados de relacién con
un determinado atributo u objeto sea cada vez menor.

Definicion 3: Fijado el objeto o € X definimos el conjunto

DTrend(zo) ={y € Y | Bifso}(¥) # Bufazo} ()
A Bifzoy(Y) 2 Biyi{ao)(y), Vi < n}

formado por los atributos cuyo grado de relaciéon con dicho
objeto va disminuyendo con el paso del tiempo.

Del mismo modo, para el atributo yy € Y obtenemos el
conjunto de objetos cada vez menos relacionados con él:

DTTend(yO) :{I = X | Al{yu}('r) 7é An{yu}(x)
A Aifyoy () = Aig1gyey (), Vi < n}

Finalmente, tendremos que tener en cuenta que podria haber
situaciones en las cuales no se observe una tendencia creciente
ni decreciente. Para representar estos casos definimos los
siguientes conjuntos:

Definicion 4: El conjunto de objetos que no muestran
ninguna tendencia en relacién con el objeto zp € X es el
siguiente:

NTrend(zy) ={y € Y/y ¢ ITrend(xo) U DTrend(xo)}

Para el atributo yy € Y, el conjunto de objetos sin ningin
tipo de tendencia se define como:

NTrend(yy) = {x € X/x ¢ ITrend(yo) U DTrend(yo)}

Es sencillo demostrar que, dados un objeto y un atributo
cualesquiera del contexto L-fuzzy, se cumple la siguiente
propiedad.

Proposicion 1: Para todo par de elementos (z,y) € X x Y
se verifica que:

I. x € ITrend(y) < y € ITrend(z)
2. z € DTrend(y) <=y € DTrend(x)

Estas definiciones de conjuntos de objetos (o de atributos)
que presentan algiin tipo de tendencia en su variacién en
el tiempo respecto de un atributo (o de un objeto) dado,
permitirdn establecer pares de objetos y atributos que pueden
ser usados para un andlisis mas completo de la evolucién de la
sucesién de contextos L-fuzzy (L, X,Y, R;),i € {1,...,n}.

A partir de esta idea, se construyen las matrices de tenden-
cias en el contexto L-fuzzy que indican la relacién entre un
objeto y un atributo cuando se observa algin tipo de tendencia
relacionada con ellos.

Definicion 5: La matriz de tendencia creciente IT'M C X x
Y se define como (ver [10]):

ITM(z,y) =
{1 si y € ITrend(x) (o equival. z € ITrend(y))

0 en otro caso

De forma andloga podemos definir las matrices de tendencia
decreciente y de ausencia de tendencia de la siguiente manera:

1 six € DTrend(y)

DT'M(x,y) =
(z,9) {0 en otro caso

1 siye€ NTrend(x)

NTM (xz,y) =
(z,9) {0 en otro caso

Estas matrices de tendencias nos permiten ahora defi-
nir los contextos formales (X,Y,ITM), (X,Y,DTM) y
(X,Y,NTM) y, a partir del andlisis de sus respectivos
conceptos formales, tener una vision general de las tendencias
entre los objetos X y los atributos Y.

Definicion 6: Sea el contexto formal (X,Y,ITM) con X
conjunto de objetos, Y conjunto de atributos y ITM C X xY.
Llamaremos a los conceptos de (X,Y, ITM) conceptos for-
males ITrend. Estos conceptos representardn las tendencias
crecientes.

De la misma manera, podemos obtener los conceptos formales
DTrend para las tendencias decrecientes y conceptos forma-
les NTrend para los casos de ausencia de tendencias.

El célculo de las matrices de tendencia nos va a permitir
analizar aquellos objetos y atributos que mejoran o empeoran
su relacion con el tiempo. Sin embargo, no dispondremos
de herramientas para cuantificar lo que supone esa mejora o
empeoramiento.

En [10] y con el fin de medir el grado de evolucién positiva
de las relaciones entre los objetos y los atributos, se definia
su nivel de tendencia como un valor en el intervalo [0, 1]. Esa
manera de definir el nivel de tendencia tiene el inconveniente
de que recoge el incremento que ha habido en los valores
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de la relacién entre un objeto y un atributo, pero no la
relevancia absoluta del valor. Por este motivo, presentamos
aqui una nueva definicién para los niveles de tendencias que
nos proporcionard una informacién mas precisa.

Dado que los anilisis de las tendencias crecientes y de las
decrecientes son en muchos aspectos simétricos, por simplifi-
car, escribiremos AT'rend para referirnos a cualquiera de las
tendencias ITrend o DTrend:

Definicion 7: Para cada xg € X,y € Y, el nivel ATrendL
del objeto x( para el atributo y se define como:

ATrendL(xo)y =
_ [12217131'{10}@)’ 1I£zégani{IO}(y)] si y € ATrend(zo)
0 en otro caso

Andlogamente, podemos definir para cada yp € Y,z € X
el nivel ATrendL del atributo y, para el objeto x:

ATrendL(yo)s =
_ [1221nAi{y0}(x)’ 11%1%XnAi{yo}(:z)] si x € ATrend(yo)
0 en otro caso

Proposicion 2: Para todo par de elementos (z,y) € X x Y
se verifica que:

ATrendL(x)y = ATrendL(y),

A partir de la definicién de los niveles de tendencias
podemos establecer nuevas relaciones entre los objetos y los
atributos de la siguiente manera:

Definicion 8: Denominamos relacion de A-tendencia a la si-
guiente relacién intervalovalorada definida entre los conjuntos
de objetos atributos.

Para cada (z,y) € X x Y,

ATrendLM (z,y) = ATrendL(x)y = ATrendL(y),

III. RANKINGS DE OBJETOS, ATRIBUTOS Y CONCEPTOS
ATENDIENDO A LAS TENDENCIAS

A partir de las definiciones de ITrendLM y DTrendLM
para el caso de crecimiento y decrecimiento, vamos a intentar
definir relaciones entre los objetos y los atributos de acuerdo
con su evolucién en el tiempo.

Denotaremos por ITrendLM (z,y) y ITrendLM (z,y),
respectivamente, al extremo inferior y superior de intervalo
ITrendLM (x,y). Andlogamente para DTrendLM (x,y).

Definicion 9: Para cada x € X,y € Y, el porcentaje de
crecimiento ITrendLPer y de decrecimiento DT rendL Per
del objeto x para el atributo y se definen como:

ITrendLPer(z,y) =
{ ITrendLM (xz,y)—ITrend LM (z,y)

1—ITrendL M/ (z,y) six € ITrend(y)

0 en otro caso

Del mismo modo,

DTrendLPer(z,y) =
{ DTrendLM (z,y)—DTrendLM (z,y)

DTrendLM (z,y) siz € DTTend(y)

0 en otro caso

Agregando los porcentajes de crecimiento y, andlogamente,
de decrecimiento de cada objeto o atributo podremos analizar
sus niveles porcentuales de tendencia.

Definicion 10: Para cada zog € X,yp € Y definimos su
nivel porcentual de tendencia creciente (o decreciente) de la
siguiente manera:

ATLP(xzg) =Agr(ATrendLPer(xg,y))
yey

ATLP(yo) =Agr(ATrendLPer(z,yg))
xeX

donde Agr es un operador de agregacion.

Esta definicion nos permite establecer relaciones de orden
en los conjuntos de objetos y de atributos en funcién de sus
niveles de tendencia:

Definicion 11: Dados z;,z; € X 0 z;,z; € Y, definimos
las relaciones <apr como z; <arr %; si ATLP(z;) <
ATLP(z).

De este modo, obtendremos rankings de crecimiento si tra-
bajamos con I'T'LP. Aquellos objetos o atributos con mayores
valores de IT'L P serdn los que hayan evolucionado de forma
mads positiva a lo largo del tiempo dentro de su posibilidad de
mejora. También los habrd de decrecimiento, si lo hacemos
con DTLP.

Para obtener una informacién mas completa sobre las ten-
dencias que se pueden observar en la secuencia de contextos
L-fuzzy, el siguiente paso consistird en analizar la evolucion
conjunta de objetos y atributos.

Asi, utilizando las matrices de tendencias AT M, establece-
remos relaciones en los conceptos T'rend definidos a partir
de los contextos formales (X,Y,ATM) que nos permitan
establecer qué conceptos son los que presentan unas tendencias
mds acentuadas.

Asignaremos, en primer lugar, un nivel de tendencia por-
centual a cada uno de los conceptos formales de la siguiente
manera:

Definicion 12: Para cada (A, B) concepto formal del con-
texto formal (X,Y,ATM) se define el nivel porcentual de
A-tendencia del concepto como:

ATLPC(A,B) =

Agr  (ATrendLPer(z,y)) si A,B#0
— { (z,y)€AXB

0 en otro caso

donde Agr es un operador de agregacion.

Esto nos permite obtener relaciones entre los conceptos
formales de los contextos definidos a partir de las matrices de
tendencias y establecer qué conceptos son los que presentan
tendencias crecientes o decrecientes mas acentuadas. Para ello
utilizaremos la siguiente relacion de orden:
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Definicion 13: Dados (A, B),(C,D) € X x Y definimos
la relaciéon <arrc de modo que (A, B) <arrc (C,D) si
ATLPC(A, B) < ATLPC(C, D).

IV. APLICACION PRACTICA

Para ilustrar la aplicacion de los resultados vamos a con-
siderar una sucesion de contextos L-fuzzy (L, X,Y, R;),i €
{1,...,5} que recoge la estancia media de los clientes en
distintos tipos de alojamientos turisticos en algunas regiones
de Espafia a lo largo de un periodo de cinco afios.

El objetivo del estudio serd analizar si ha habido algin
tipo de tendencia creciente o decreciente en dichas estancias,
teniendo en cuenta tanto los tipos de alojamientos como las
regiones consideradas en el estudio.

En estos contextos L-fuzzy hemos considerado el conjunto
de objetos formado por los distintos tipos de alojamientos
X ={z;=Hotel, zo=Camping, zsz=Apartamento Turistico,
x4=Casa Rural }. Los atributos considerados son las dis-
tintas regiones en las que se ha realizado el estudio Y =
{y1=Andalucia, y,=Catalufia, y3=Navarra, y,=Pais Vasco} y
los valores de las relaciones se corresponden con las estancias
medias registradas desde 2016 hasta 2019. Los valores se
han normalizado para trabajar con el reticulo formado por la
cadena L = {0,0.01,...,0.99,1} (ver Tabla I).

Analizando los conjuntos derivados obtenidos a partir de
los distintos objetos o atributos, se obtienen las matrices de
tendencia creciente IT'M y de tendencia decreciente DT M
que se muestran, respectivamente, en la Tabla II y Tabla III.
Estas matrices nos permiten observar para qué objetos hemos
tenido algtin tipo de tendencia y en cudles de los atributos se
ha mantenido dicha tendencia.

Podemos observar, por ejemplo, que mientras la estancia
media en hoteles (z1) tuvo una tendencia creciente en Anda-
lucia (y1), en Navarra y Pais Vasco (y3 e y4) la tendencia fue
decreciente.

Tras calcular las distintas matrices de tendencias, con el fin
de conocer en qué regiones y en qué tipos de alojamientos
se ha dado una tendencia mas acentuada, vamos a establecer
rankings entre los objetos y los atributos. Calculamos para
ello los niveles porcentuales de tendencia tanto creciente como
decreciente. Los valores obtenidos se muestran en la Tabla IV.

Estos niveles de tendencia nos permiten ordenar los objetos
y atributos atendiendo a su mayor crecimiento o decrecimien-
to. La Figura 1 muestra la ordenacién obtenida desde el objeto
(o atributo) con una mayor tendencia creciente.

EHHEHE
EHEHHE

Figura 1. Rankings de objetos y atributos con tendencia creciente.

Podemos observar que el tipo de alojamiento en el que
mads ha crecido la estancia media ha sido en los apartamentos
turisticos (x3), mientras que la regidon que ha tenido una mayor
subida en sus estancias vacacionales ha sido Cataluia (ys).

Andlogamente, observando el ranking obtenido a partir de
los niveles de tendencia decreciente (ver Figura 2), vemos que
el tipo de establecimiento que ha acusado una mayor bajada
ha sido el camping (x2). En cuanto a las regiones, la que ha
sufrido un mayor descenso ha sido Navarra (ys3).

Figura 2. Rankings de objetos y atributos con tendencia decreciente.

Con el fin de tener una visién conjunta de alojamientos y
regiones, a partir de las matrices de tendencia mostradas en
la Tabla II, definimos los contextos formales (X,Y, ITM) e
(X,Y, DT M) y obtenemos los niveles de tendencia asociados
a sus distintos conceptos formales.

Para los conceptos formales del contexto (X,Y,ITM) se
obtienen los niveles porcentuales de tendencia creciente:

ITLPC(X,0)=0

ITLPC({z1, 23,24}, {y1}) = 0,25
ITLPC({z2,23},{y2}) = 0,93
ITLPC({z4},{y1,ys}) = 0,42
ITLPC({'I3}7 {y17 Y2, y4}) = 0754
ITLPC(0,Y)=0

A partir de estos niveles de tendencia obtenemos la prelacién
en el conjunto de conceptos, ordenados de mayor a menor
crecimiento, representada en la Figura 3. Tal y como podemos

( Gazwad{ue)) )

[
C({xs}, {y1, 92, y4}))
I

( Qoah Amush) )

(}{x1,x3,x4}a{yl}{>

(X,0) 0,Y)

Figura 3. Ranking de conceptos con tendencia creciente.
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RELACIONES DE LA SUCESION DE CONTEXTOS L-FUZZY.

Tabla I

2015 2016 2017
Ry Y1 Y2 Y3 Y4 Ro Y1 Y2 Y3 Ya R3 Y1 Y2 Y3 Y4
ry 0.38 0.40 0.31 0.35 T1 0.39 0.41 0.29 0.33 T1 0.39 0.46 0.29 0.30
zg 0.79 0.52 0.80 0.41 T2 0.63 0.64 0.58 0.37 T2 0.58 0.65 0.46 0.36
r3 0.47 0.80 0.56 0.36 3 0.49 0.80 0.54 0.42 3 0.56 0.83 0.54 0.55
zqg 0.51 0.47 0.40 0.41 T4 0.52 0.40 0.46 0.39 T4 0.56 0.39 0.49 0.38
2018 2019

Ry Y1 Y2 Y3 Y4 Rs Y1 Y2 Y3 Y4

T 0.43 0.44 0.22 0.30 T 0.47 0.42 0.18 0.28

T2 0.52 0.83 0.45 0.42 T2 0.50 1 0.45 0.39

T3 0.56 0.87 0.47 0.59 T3 0.58 0.97 0.35 0.72

T4 0.60 0.37 0.52 0.42 T4 0.71 0.37 0.66 0.43

Tabla 1I (X,Y,DTM) definido a partir de la matriz de tendencia

MATRIZ DE TENDENCIA CRECIENTE.

ITM | yi Y2 Y3 Y
x1 1 0 0 0
x9 0 1 0 0
x3 1 1 0 1
x4 1 0 1 0

Tabla III

MATRIZ DE TENDENCIA DECRECIENTE.

DTM | y1 y2  ys 4
1 0 0 1 1
x9 1 0 1 0
xs3 0 0 1 0
T4 0 1 0 0

observar, las estancias que han mantenido una mayor tendencia
creciente se han dado en campings y apartamentos turisticos
(xo y x3) de Catalufa (y3), seguidas de las estancias en
apartamentos turisticos (z3) de Andalucia, Catalufia y Pais
Vasco (y1, Y2 € ya).

De manera andloga, podemos calcular los niveles porcen-
tuales de tendencia para los conceptos formales del contexto

Tabla IV

NIVELES PORCENTUALES DE TENDENCIA.

ITLP
x1; | 0.04 y1 | 0.19
zo | 0.25 ya2 | 0.46
x3 | 0.41 y3 | 0.11
zq | 0.21 ys | 0.14
DTLP
z1 | 0.15 y1 | 0.00
zg | 0.20 y2 | 0.05
z3 | 0.09 y3 | 0.31
x4 | 0.05 y4 | 0.05

decreciente. Los valores obtenidos son los siguientes:

DTLPC(X,0) =0
DTLPC {$4}, {yg}) = 0,21

DTLPC {xl,l‘z,l‘g}, {yg}) = 0,41
{.1'2}, {y17y3}) = 0740
xl}v {9373/4}) = 0731

DTLPC
DTLPC

{
0

DTLPC(®,Y) =0

La ordenacion de los conceptos de mayor a menor decreci-
miento es la representada en la Figura 4.

(Gar 2,23}, {ua}))

(o dmws)) )

C o lmsmd) )

(e )

( X0 )

©,Y)

Figura 4. Ranking de conceptos con tendencia decreciente.

Observamos aqui que el mayor decrecimiento se ha dado
en las estancias medias en hoteles, campings y apartamentos
turisticos (z1, x2 y x3) de Navarra (ys3).

V. CONCLUSIONES Y TRABAJO FUTURO

Hemos continuado con el estudio de tendencias en una
sucesion de contextos L-fuzzy que representa la evolucién en
el tiempo de un contexto L-fuzzy analizando las tendencias
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crecientes, decrecientes y la ausencia de tendencias. Se ha ana-
lizado la relevancia de dichas tendencias temporales lo que ha
permitido establecer rankings de objetos, atributos y conceptos
formales. Como linea futura se estudiardn clasificaciones de
objetos y de atributos a partir de conjuntos de partida y segin
su crecimiento o decrecimiento.
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Abstract—Different approaches to obtain a notion of metric
in the context of fuzzy setting can be found in the literature.
In this paper, we deal with the concept due to George and
Veeramani, which is defined by means of continuous triangular
norms. Different authors have addressed the study of such a
concept from a theoretical point of view. In this paper, we
provide a new methodology to induce fuzzy metrics which gener-
alize the celebrated standard fuzzy metric. The aforementioned
methodology allows us to approach some questions related to
the continuous triangular norms from which such fuzzy metrics
are defined. Moreover, we show the applicability of the new
fuzzy metrics to an engineering problem. More specifically, we
address successfully robust model estimation through a variant
of the well-known estimator RANSAC. By way of illustration
of the performance of the approach, we report on the accuracy
achieved by the new estimator and other RANSAC variants for
a benchmark involving a specific model estimation problem and
a large number of datasets with varying proportion of outliers
and different levels of noise. The resulting estimator is shown
able to outperform the classical counterparts considered.

Index Terms—Fuzzy metric; continuous ¢-norm; Dombi -
norm; standard fuzzy metric; model estimation; RANSAC

I. INTRODUCTION AND PRELIMINARIES

In 1965, L. A. Zadeh introduced the notion of fuzzy
set in [1]. Since then, such a concept has constituted the
grounds of many lines of research in different fields, such as
Mathematics, Computer Science, Economics. In Mathematics
and, in particular, in Topology, an interesting issue consists
in providing a notion of metric, in the fuzzy setting, in
accordance with the essence of the classical concept. With this
aim, in [2], I. Kramosil and J. Michalek introduced a notion
of fuzzy metric space by adapting the concept of statistical
metric due to Menger (see [3]) to the fuzzy context. Later
on, in [4], A. George and P. Veeramani slightly modified the
notion of Kramosil and Michalek with the aim of obtaining a
more faithful adaptation to the fuzzy setting of the classical
concept of metric. In both cases, the concept of fuzzy metric
is defined by means of continuous ¢-norms (see [5] to find
a deep treatment on ¢-norms). Following [4], a fuzzy metric
space is a triplet (X, M, ) where X is a non-empty set, * is
a continuous ¢-norm and M is a fuzzy set on X x X x]0, oo[
satisfying, for each 2, y, 2 € X and ¢, s €]0, oo, the following:

This work is partially supported by EU-H2020 projects BUGWRIGHT2
(GA 871260) and ROBINS (GA 779776), and by projects PGC2018-095709-
B-C21 (MCIU/AEI/FEDER, UE), and PROCOE/4/2017 (Govern Balear, 50%
P.O. FEDER 2014-2020 Illes Balears). This publication reflects only the
authors views and the European Union is not liable for any use that may
be made of the information contained therein.

(GV1) M(z,y,t) > 0;

(GV2) M (z,y,t) =1 if and only if x = y;

(GV3) M (z,y,t) = M(y,x,t);

(GV4) M (z,z,t + s) > M(x,y,t) « M(y, z,s);

(GV5) The assignment M, ,, :]0, co[—]0, 1] is a continuous

function.
As usual, we say that (M, x), or simply M if no confusion
arises, is a fuzzy metric on X.

On account of the previous definition, the value of
M (z,y,t) can be interpreted as a degree of nearness between
the point = and y of X with respect to the parameter ¢ €0, co].
Then, the closer to 1 is such a value, the nearer the points = and
y with respect to ¢ are. Contrarily, values close to 0 indicate a
lower degree of nearness. Thus, in this notion of fuzzy metric,
1 plays a similar role to O for the classical case, whereas 0
can be seen as oo in classical metrics. So, axiom (GV1) is
justified by the fact that the degree of nearness with respect
to a parameter never can be zero, just as in the classical case
the distance between two points cannot become co.

One can easily identify (GV2), (GV3) and (GV4) as fuzzy
versions of the axioms of, respectively, separation, symmetry
and transitivity, which altogether define the notion of classical
metric. Concretely, (GV2) means that, on the one hand, the
degree of nearness between two points with respect to an
arbitrary parameter only can be 1 whenever both points are
the same. On the other hand, the degree of nearness between
a point and itself is 1, with respect to an arbitrary parameter.
Finally, (GV5) ensures that no drastic changes arise in the
degree of nearness due to slight modifications of the parameter
with respect to which it is being measured.

An immediate consequence of (GV4), which was pointed
out by M. Grabiec for fuzzy metrics in the sense of Kramosil
and Michaleck (see [6]), is that the degree of nearness between
two points does not decrease when the parameter for which
such a degree is relative increases, i.e. for each x,y € X, we
have that M (z,y,t) > M(z,y,s) for each ¢, s €]0, co] with
t>s.

This kind of fuzzy metric spaces has been studied by
several authors from the mathematical point of view. Besides,
they have been used successfully in engineering problems
such as colour image filtering or perceptual colour difference
(see [7]-[11]). Indeed, fuzzy metrics show some advantages
with respect to the classical ones. On the one hand, the
parameter ¢ allows the fuzzy metric to be better adapted to
context in which it is to be used. On the other hand, fuzzy
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metrics match perfectly with the employment of other fuzzy
techniques, since the value given by a fuzzy metric, as pointed
out before, can be directly interpreted as a fuzzy degree of
nearness. So, providing useful techniques for generating fuzzy
metrics becomes an interesting issue in order to provide a
wider range of measurement tools in such a way that the fuzzy
metric that best fits the problem being studied can be applied
to solve it.

A celebrated example of fuzzy metric is the so-called
standard fuzzy metric, which is defined from a classical metric
(see [4]). Indeed, let (X, d) be a metric space and define the
fuzzy set M, on X x X x]0, 00[ as follows:

My(x,y,t) = , for each z,y € X,t €]0, c0].

(1
The standard fuzzy metric on X deduced from d is the pair
(Mg, *pr), where *p; denotes the minimum ¢-norm (i.e. a s
b = min{a, b} for each a,b € [0, 1]).

Observe that (X, My, ) is also a fuzzy metric space for
each continuous {-norm *, since *js is the largest ¢-norm.
Indeed, given a continuous ¢-norm x*, the inequality a *; b >
a * b is satisfied for each a,b € [0, 1].

From the topological point of view, the standard fuzzy
metric enjoys outstanding properties. The topologies generated
from the standard fuzzy metric and from the classical metric,
from which it is induced, coincide. Besides, it fulfils some
interesting properties which do not make sense in the classical
context but they do in the fuzzy context. Among others, it
should be stressed the property of being strong (see [12]). Let
us recall that a fuzzy metric space (X, M,x) is said to be
strong if, in addition, M satisfies, for each z,y,z € X and
t €]0, 0o, the next inequality:

Mz, 2,t) > M(z,y,t) * M(y, z,1). )

t
t+d(z,y)

Observe that the preceding inequality is stronger than that
given in the axiom (GV4).

It is a well-known fact that, given a metric space (X, d),
then the standard fuzzy metric space (X, My, *p) is strong,
where xp denotes the usual product t-norm, i.e. a *xp b =
a-b for each a, b € [0, 1]. Nevertheless, (X, My, *p7) is not a
strong fuzzy metric space in general, as pointed out in [12]. In
view of the preceding fact, an interesting question arises: there
exists a continuous ¢t-norm x, different from *p, with * > xp
and such that (X, My, *) is a strong fuzzy metric space for
each metric space (X, d)?

In [13], a generalization of the fuzzy set My given by (1)
was introduced defining, for each 2,y € X and t €]0, oo, the
next fuzzy set:

t
Moy, ) = I G

() +m - d(z,y)’
where m €]0,00[ and g :]0, c0[—]0, co[ is a non-decreasing
continuous function. According to [13], (X, MJ™ xp) is a
strong fuzzy metric space. Nevertheless, an extra condition on
g is required so that (X, MJ"™ x)r) is a fuzzy metric space
for any arbitrary metric space (X, d). Indeed, if the function g

is not superadditive, i.e. g(t+s) > g(t) +g(s) for each t,s €
10, 00, then (X, MJ™, xpr) is not, in general, a fuzzy metric
space. Again, similar to the case of the standard fuzzy metric,
it seems natural to wonder whether there exits a continuous ¢-
norm, different from xp, with % > %p such that (X, MJ™, %)
is a fuzzy metric space for each metric space (X,d) without
requiring any extra condition on g.

Coming back to the applicability of fuzzy metrics, in
most problems, we are interested in measuring some kind
of difference or similarity between objects. Therefore, fuzzy
metrics can be good candidates to evaluate such a measure-
ment. Concretely, the fuzzy set M is used to provide the
aforementioned difference or similarity. However, the t-norm
that defines M as a fuzzy metric does not play any role in
the way in which such a measure is provided and, thus, it
does not contribute anything that can make the fuzzy metric
better fit for the problem under consideration. Since the fuzzy
set M$™ given by expression (3) depends on more elements
than the standard fuzzy metric My, MJ™ allows to get more
flexibility to obtain a measurement tool that fits better to
the problem under consideration than M, . So, providing a
fuzzy set that generalizes expression (3) could improve the
potential applicability of fuzzy metrics, even though such a
generalization does not become a fuzzy metric for the same
class of t-norms for which MJ™ is so.

In the light of the exposed facts, the aim of this paper is
twofold. On the one hand, we focus our efforts on obtaining
a fuzzy set that generalizes expression (3) and on finding a
family of continuous ¢-norms for which this new fuzzy set
becomes a fuzzy metric. Moreover, we are interested in the
study of those continuous ¢-norms for which this new fuzzy
metric fulfils the property of being strong. Such a study allows
us to approach the two questions posed above. On the other
hand, we address a model estimation problem as an example
of engineering application to illustrate the applicability of the
new fuzzy metric proposed in Section II.

II. THE GENERALIZED STANDARD FUZZY METRIC

In this section, we build a new fuzzy metric which gener-
alizes, in some sense, the standard fuzzy metric and the fuzzy
metric given by expression (3). To this end, we recall a well-
known family of continuous ¢-norms introduced by J. Dombi
in [14].

Given ) €]0, oo| the t-norm *},, .
[0, 1], by the following expression:

\ 0, ifa=0o0rb=0
a*Pom b= L otherwise
o 1+((177“)A+((1T‘*’)A)%

is defined, for each a, b €

“)

The construction of the promised fuzzy metric can be found
in the next result:

Theorem 2.1: Let (X, d) be a metric space, m,n €]0, 0]
and g :]0,00[—]0,00[ be a non-decreasing continuous func-
tion. Define the fuzzy set MJ"™" on X x X x]0, 00] as:

9(t)

rg,m,n _
Md (I,y,f) - g(t) +m- dn(lﬂ,y)’ (5)




= XIX Conferencia de la Asociacién Espanola para la Inteligencia Artificial

313

where d"(z,y) denotes (d(x,y))". Then, (X, M$™" %) is
a fuzzy metric space for each continuous ¢-norm * satisfying
e <wp o
Proof.
Let * be a continuous ¢-norm such that * < * Bom It is not
hard to check that M 9T satisfies axioms (GV1), (GV2),
(GV3) and (GVY). It remains to prove that (GV4) also holds.
Let z,y,z € X and t, s €]0, 00[. We will see that

W™, 5) 2 WG 0 8) < NGy, 2, 9).

Set oo = max{g(t), g(s)}. Observe that
a
a+m-d(z,z)’
o
a+m-d*(z,y)

M(g’m7n(x7 27 t + 8) 2

M(g’m’n (‘Tv Y, t) <

and
«

Mg,m,,n < )
a9 a+m-d*(y,z)

1
So, since * < *p, . we have that
MY™™ (@, y,t) « M$™"(y, z,8) <
1
(2,4, ) * Propn MT™ " (y, 2,8) <

< « *% [0
T a+m-di(z,y) P a+m-di(y,z)

o7 g,m,mn
< M;

1 «

m(dzn)+dw)" " a+m- (dz,y) + d(y, 2)"

14

< < Mg ,m,n ¢
~a+m-d(z,z2) (@,2,t + ).
Therefore, for each x,y,z € X and t,s €]0, 0], Mg’m’”
satisfies (GV4) for  and we conclude that (X, M$"™" %) is
a fuzzy metric space. ]

It must be stressed that (X, MJ™™ x) is not a fuzzy metric
space, in general, when * does not satisfy the condition x <
% ome as the next example shows.

Example 2.2: Let (R,d,,) be the metric space where d,, is
the Euclidean metric on R, i.e. d,,(x,y) = |x—y]|. Consider the
non-decreasing continuous function g; :)0, co[—]0, co[ given
by ¢(t) = 1, for each t €]0,00[, and m = n = 1. Then, the
fuzzy set M 91’1’ is given by expression (5) as follows:

~ 1
Mg171,1 x? 7t = )
oY =T )
Let * be a continuous ¢-norm such that * j{ *5om- Then,

there exists a, b E]O 1[ such that ax b >a *Dom b.
Consider z = 1=t and ¢, s €]0, oo. Then,

1
1
5 = @ *Dom b,

MY g ot s) = ————
i ! 14228+ 52

WG 1) = @ and DIy, 2, ) =

for each z,y € R, t €]0, o0.

Therefore, M‘“’l’l(x y,t )*M‘“’l’l(y,z s) =axb>axh,.
b = Mgl’m(:c z,t + s), and so Mgl’Ll does not satisfy
(GV4).

On account of Theorem 2.1 and the preceding example,

we conclude that *]:3 om 18 the largest (continuous) ¢-norm for
which MJ™" is a fuzzy metric on X, for each arbitrary
metric space (X, d), each non-decreasing continuous function
g :]0, 00[—]0, 0o[ and each m,n €]0,00[. Such a conclusion
allows us to approach the two questions posed in Section I.

On the one hand, Theorem 2.1 introduces a generalization
of the fuzzy set given by expression (3). Indeed, such a
fuzzy set is obtained by considering n = 1 in the fuzzy
set defined by expression (5), i.e. MJ™ = MJ™". Besides,
the aforementioned theorem establishes that MJ"™ is a fuzzy
metric on X for each t-norm x with * < %}, . This fact
allows us to answer in affirmative way one of the questions
that we wondered in Section I, which is whether there exists
a continuous ¢t-norm * > *p such that (X, My, *) is a fuzzy
metric space for each metric space (X,d) without requiring
any extra condition on g.

First, observe that, for each a,b €]0, 1], we have that

sl b 1 B ab
Pom =7 ploa L b g4 h—ab’
Now,
b b 1>atb—ab=al—b)+b.
—_— a - a —ab=a —
a+b—ab —

Taking into account that ¢ < 1 we have that 1 =1—-b+b >
a(l—=b)+b. So, axkh, b>axpb for each a,b €]0,1]. Thus
*hom = *p for each a,b € [0,1], since ax*},,,, b=0=a*pb
whenever a = 0 or b = 0.

Hence, we have found a continuous Archimedean ¢-norm
greater that the product ¢t-norm *p for which MJ™ is a
fuzzy metric on X, for each arbitrary metric space (X,d),
each non-decreasing continuous function g :]0, co[—]0, cof
and each m €]0, oo[. Furthermore, on account of Example 2.2
we conclude that *}, ~ is the largest t-norm for which
(X, M9 %L )is a fuzzy metric space, in general.

On the other hand, M 27" becomes the standard fuzzy met-
ric when we consider the non-decreasing continuous function
g(t) =t and m = n = 1. Under this remark and, based on the
argument exposed in the proof of Theorem 2.1, we prove the
next result which will be useful to answer the first question
about the standard fuzzy metric set out in Section L.

Theorem 2.3: Let (X, d) be a metric space, m,n €]0, 00|
and g :]0,00[—]0, 00[ be a non-decreasing continuous func-
tion. Then the fuzzy metric space (X,M$"™" %), where
M 9T s given by (5), is strong for each continuous t-norm
satisfying * < s*p_ .

Proof. )
Consider a continuous t-norm * such that x < *gom. By

Theorem 2.1 we conclude that (X, MJ™" x) is a fuzzy
metric space. It remains to show that inequality (2) holds.
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Let z,y,2z € X and t, s €]0, co[. Then,

9(t)
t)+m-d(xz,z) —

S g(t)
~g(t) +m- (d(z,y) +d(y,2))"

~ 1 -
= Mg,m,n(%y’t) *Dom ]V[g’m’n(y,z,t) >

MI™™ (2, t) =
¢ g

MP™ ™ (,y,t) * MP™" (y, 2, ).

Hence, (X, MJ™™, ) is a strong fuzzy metric space. O

As a consequence of the previous theorem, we conclude
that (X, My, *},,,.) is a strong fuzzy metric space. This fact
answers affirmatively the first question lay out in Section I
by providing a continuous t-norm greater that the product ¢-
norm *p for which the standard fuzzy metric is strong for any
arbitrary metric space (X, d).

Even more, on account of Example 2.2 we conclude that
the standard fuzzy metric is just a strong fuzzy metric in
general for continuous ¢-norms less than *},,, . Notice that
the aforementioned example provides that the standard fuzzy
metric (R, Mg, ,*) is not strong if * £ *}, . Indeed, let

a,b €]0,1[ such that a x b > a *},,,. b. Then, take z = 2=1,
1-b

y=0and z = =, Therefore,
1
Mgy, (x,2,1) = — 1 :a*bomb<a*b:
L+ =25+

= Mg, (z,y,1) * Mg, (y, 2,1).

ITII. APPLICATION CASE: ROBUST MODEL ESTIMATION

Solving model estimation problems is a fundamental com-
ponent of numerous applications involving perception tasks.
Nowadays, facing this kind of problem requires to cope with
new challenges due to an increased use of poor, low-cost
sensors, and the ever growing deployment of robotic devices
which may operate in potentially unknown environments.
Generally speaking, the underlying algorithms have to be
robust against uncertain data that besides may be corrupted
by outliers, i.e. data items which are not consistent with the
original model due to an arbitrary bias affecting them. A robust
estimator is able to correctly find the original model that
supposedly the input data fits to under the aforementioned
conditions [15]. The Random Sample Consensus algorithm
(RANSAC) [16] is one of these robust estimation techniques,
which is widely used nowadays, so much that it has become
common in robotics and computer vision.

Briefly speaking, RANSAC tries to achieve a maximum
consensus in the input dataset in order to deduce the inliers
by generating random hypotheses on the model parameters
through a hypothesize-and-verify approach. That is to say,
instead of using every sample in the dataset to perform the
estimation as in traditional regression techniques, RANSAC
tests many random sets of samples and outputs the one leading
to the best fitting. Since picking an extra point decreases

exponentially the probability of selecting an outlier-free sam-
ple [17], RANSAC takes the Minimum Sample Set size (MSS)
to determine a unique candidate model, thus increasing its
chances of finding an all-inlier sample set. This model is
assigned a score based on the cardinality of its consensus set.
Finally, RANSAC returns the hypothesis that has achieved the
highest consensus and the set of inliers, which are used next
to estimate the ultimate model by regression.

Searching for an all-inlier sample, RANSAC typically runs
for N iterations:

_ log(1-p)
log (1 —(1-w))

where p is the desired probability of success, i.e. at least one
of the considered random sets is outlier-free, s is the size of
the MSS for the problem at hand and w is the ratio of outliers.
See [16] for the details on Eq. (6).

Algorithm 1 outlines FM-based RANSAC, a variant of
RANSAC described in [18] that avoids discriminating between
inliers and outliers by means of the use of a fuzzy metric that
encodes as a similarity the compatibility of each sample to the
currently hypothesized model. In this work, we particularize
FM-based RANSAC for the fuzzy metric MJ"" introduced
as Eq. (5) in Section I. M$™™ is also incorporated into
the final model refinement step that follows the main hy-
pothesis selection loop. Finally, in Section IV, we report on
the accuracy achieved by FM-based RANSAC for a specific
model estimation problem when using MJ"™" for different
values of m and n. The assessment involves a comparison
with RANSAC and MSAC [19] for a benchmark comprising
a large number of datasets with varying proportion of outliers
and different levels of noise.

We detail next the features of FM-based RANSAC:

1) Samples classification. In the original RANSAC, for
every model considered, data samples are classified
into inliers and outliers by comparing the fitting error
with a threshold 7; related to data noise. As already
mentioned, FM-based RANSAC does not distinguish
between inliers and outliers, but makes use of a com-
patibility value ¢ € [0,1] between each sample z;
and the current model Mék’ given the fitting error
€(z;; Mg, ). Such compatibility value derives from the
fuzzy metric MJ"™" once parameterized by (d, ®) with
® = (n,m,g). Since in the following we contemplate
the use of an only, specific distance d, i.e. the Euclidean
metric, and g is set to the constant function 0" as a
reference of noise scale', we denote the fuzzy metric as
M™™ eliminating the allusion to d and g. From now
on, the value of M™" will be denoted by ¢(¢; D).

2) Model scoring. The individual compatibility values
¢(e; P) are aggregated by simple summation to obtain
the model score (step 6 in Alg. 1) and hence the so-far-
the-best-model is given by the maximum score found up
to the current iteration (steps 7 - 9 of Alg. 1).

(6)

'In this regard, we refer to the form M$™" (z,y) = W»
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Algorithm 1 FM-based RANSAC

Input: D - dataset comprising samples {x;}
¢(e; @) - FM compatibility value for fitting error
kmax - maximum number of iterations of the main loop
tmax - Maximum number of iterations of the refinement
stage
Output: Mg - estimated model

I k=0, Onax := —0

2: for k:=1 to kn.x do © find best consensus model Mg
3:  select randomly a minimal sample set Sy of size s

4:  estimate model M@k from Sy,

5: calculate fitting errors e(z;; Mg ), Vz; € D

6:  find model score p := 3, po(e(z;; Mg, ); )

7 if o > ©max then

8

9

Omax 1= Pk M% = Mg,
: end if
10: end for
11: t:=0
12: repeat > refine model Mg

13:  calculate fitting errors €(x;; Mté),v:vj €D

14:  estimate model /\/l%+1 using weights ¢ (e(z;; M%) ;D)
150 t:=t+1

16: until convergence or t > tax

17: return Mté

3) Model refinement. Once a sufficient number of models
have been considered, we re-estimate the winning model
using iterative weighted least squares, where the com-
patibility values ¢ (e; @), calculated for the fitting errors
resulting from the current model, are used as weights for
the new, refined model (steps 12 - 16 of Alg. 1). The
loop iterates until changes in the estimated parameters
of the model © are negligible (or after ¢.,,x iterations).

IV. EXPERIMENTAL RESULTS
A. Experimental setup

For testing purposes, we consider a hyperplane model
estimation problem for 2D (straight lines), 3D (planes) and
10D, the latter as a case of higher dimensionality. To this end,
we generate synthetic datasets stemming from hyperplanes in
random orientations and positions: 500 for 2D/3D hyperplanes
and 250 for 10D hyperplanes. Given a 2D/3D/10D random
point p belonging to a hyperplane with normal vector 77, an
inlier p; is generated by shifting p along 7 using a zero-
mean Gaussian distribution with standard deviation o, i.e.
pr = p+ N(0,0) - fi. Outliers po are uniformly generated
within a rectangular area containing part of the hyperplane,
ensuring that they lie out of a 3o stripe at both sides of the
hyperplane. Every pair (o,w) gives rise to a different dataset.

Regarding hypothesis generation within the main loop, in all
experiments, the size of the MSS is always set to the minimum,
ie. s =2, s =3 and s = 10 for respectively 2D, 3D and 10D.
Besides, the number of iterations ky.x is calculated according

to Eq. (6), with p = 99%. The parameters of ¢(e; @), ¢ =
(n,m,g), are set as follows: n,m € {1,2}, as indicated for
each experiment; and ¢ is the constant function 6", where
0 = k - 0. For RANSAC/MSAC 717 = & - 0. Different values
for x are considered for both 6 and 7;. Finally, to compare
properly RANSAC, MSAC and our estimator, we make use of
the same sequence of MSS’s to avoid the effect of randomness.

B. Results and discussion

In the following, to measure the estimation accuracy for
the hyperplane fitting problem, we make use of the average
w[e] of the angle e between the true and the estimated normal
vector. We also report on the average number of iterations
spent during model refinement pt].

Table I and Fig. 1 show performance results for the fuzzy
metric M™™ and several outlier ratios w and Gaussian noise
magnitudes o. In sight of these results, it is worth noting
that: (1) the estimation accuracy for M??2 is above that of
plain RANSAC and MSAC in all cases, while, for the other
configurations of M"™ ™, the accuracy is in general better
than the classical counterparts though not in all cases; (2) the
value of 8 in M™™ does not seem to be critical, since the
highest change in ule] for  with k € {1,2,2.5,3,4} is less
than 1°; (3) the distribution of the average error u[e] shows
always larger errors for RANSAC/MSAC than for M2 for all
percentiles. As for the number of iterations of the refinement
stage t: (4) in general, p[t] is similar for every combination
of M™™ when varying the noise parameters (o,w) and
particularly higher for M?2 when & is low; (5) lower values of
 allow the proposed estimator to perform a better refinement
stage in terms of accuracy but at the expense of computational
cost since more iterations are required. Regarding the fuzzy
metric M™", both M?™ and M"™? lead in general to higher
accuracy, with a slight increase in the number of refining
iterations for low x values or higher noise (o, w).

V. CONCLUSIONS

This work introduces a methodology to induce fuzzy metrics
that generalizes the celebrated standard fuzzy metric. More-
over, some questions related to the continuous triangular norms
from which such fuzzy metrics are defined have been posed
and answered. A concrete new fuzzy metric induced through
the aforementioned methodology has been succesfully embed-
ded within a revised version of RANSAC. By means of this
metric, we avoid discriminating between inliers and outliers, to
instead make use of a compatibility value to the current model
for each sample. Experimental results show good performance,
actually outperforming two classical counterparts, RANSAC
and MSAC.
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Resumen—En muchos problemas reales no se pueden tomar
medidas de forma exacta. Asi, los conjuntos difusos surgieron
como una forma de intentar tratar con la incertidumbre de la
forma mas eficiente posible. Por otro lado, debe sefialarse que la
convexidad es un concepto interesante en varias areas dentro de
las matematicas. Teniendo esto en cuenta, en este documento
proponemos una extension del concepto de convexidad para
conjuntos difusos intervalo-valuados basada en el uso de t-
normas para intervalos. Para ello, y teniendo en consideracion la
literatura cientifica existente respecto de t-normas, presentamos
una definicion de t-norma aplicada a intervalos. Por iltimo,
comprobamos que nuestra definicion de convexidad, utilizando
t-normas, preserva la convexidad a través de intersecciones, es
decir, que la interseccion de dos conjuntos difusos intervalo-
valuados convexos es también convexa.

Index Terms—Conjuntos difusos intervalo-valuados, t-normas,
convexidad

I. INTRODUCCION

En la vida real no todas las mediciones son exactas, por
ello, en 1965, Zadeh [29] introdujo los conjuntos difusos para
lidiar con la imprecision. Desde entonces, muchos autores los
han estudiado, asi como a sus extensiones. Una de las mads
conocidas es la que da lugar a los conjuntos difusos intervalo-
valuados, que fueron en la década de 1970 presentados in-
dependientemente por Zadeh [30], Grattan-Guiness [13], Jahn
[16] y Sambuc [22]. Hoy en dia, los estudios sobre este tipo
de conjuntos han aumentado gracias a su aplicabilidad (ver
(51, [71, [12], [22], [26]).

Por otro lado, la convexidad es una herramienta muy util
en muchos campos de las matematicas (ver por ejemplo [17]-
[19], [25D).

Este estudio ha sido parcialmente patrocinado por el programa espafiol MI-
NECO (TIN-2017-87600-P: P. Alonso; PGC2018-098623-B-100: P. Huidobro
and S. Montes), MICIN (PID2019!108392GB!I00: H. Bustince), la ayuda
no. 1/0150/21 proporcionada por la agencia de subvenciones eslovaca VEGA
(V. JaniS) y el programa de ayudas Severo Ochoa PA-20PF-BP19-169 (P.
Huidobro).

2" Pedro Alonso
Dept. Mathematics
University of Oviedo
Oviedo, Spain
palonso@uniovi.es

3" Humberto Bustince
Dept. of Statistics, Computing and Mathematics
University of Navarra
Navarra, Spain
bustince @unavarra.es

5% Susana Montes

Dept. Statistics, O.R & M.E.

University of Oviedo
Oviedo, Spain
montes @uniovi.es

Cuando Zadeh present6 los conjuntos difusos, estudié tam-
bién su convexidad. Desde entonces, numerosos autores han
trabajado sobre este tema, asi como sobre la convexidad de
sus extensiones, por ejemplo Ammar y Metz [1], Diaz et al.
[8], Gupta y Dabgar [14], Ramik y Vlach [21], Sarkar [23],
Syau y Lee [24], Yang [28] o Zhang et al. [31].

Segin nuestro conocimiento, la convexidad en conjuntos di-
fusos intervalo-valuados no ha sido estudiada en profundidad,
por lo que Huidobro et al. [15] han trabajado recientemente
en esa direccion.

Este trabajo estd organizado del siguiente modo. Primero,
en la seccién 2, haremos una presentacion de los conceptos
necesarios para los desarrollos llevados a cabo. A continua-
cion, en la seccion 3 estudiaremos las t-normas para intervalos
cerrados contenidos en el [0,1]. Finalmente, analizaremos
si la convexidad de conjuntos difusos intervalo-valuados se
preserva por intersecciones.

II. CONCEPTOS BASICOS

Denotaremos por X al conjunto de referencia. Un conjunto
difuso ;14 puede caracterizarse por una funcién de pertenencia
pa : X —[0,1]. La coleccién de todos los conjuntos difusos
sobre X se representa como F'S(X). Un conjunto difuso
intervalo-valuado esta caracterizado por una funcién 4 : X —
L([0,1]), donde A(z) = [A(z), A(x)] y A(z) < A(z) para
todo z € X, y L([0,1]) son todos los intervalos cerrados
contenidos en el [0, 1]. Denotaremos como IVFS(X) a la
coleccién de todos los conjuntos difusos intervalo-valuados
en X. Podemos observar que los conjuntos difusos intervalo-
valuados son una generalizacién de los conjuntos difusos,
donde la funcién de pertenencia toma como valor intervalos.

El primer problema que encontramos es como ordenar los
elementos. Mientras que en R hay un orden natural (¢ < b
sii b — a no es un nimero negativo), en L([0,1]) no ocurre
lo mismo. Algo que parece 16gico, a la hora de considerar
ordenes, es respetar el orden reticular (lattice order en inglés)




318

XIX Conferencia de la Asociacién Espafiola para la Inteligencia Artificial &&=

[11], definido como a <Xz, bifa<bya < b para cualquier
a=la,a] y b= [b,b] en L([0,1]). En este trabajo seguiremos
las ideas de Bustince et al. [6] usando érdenes admisibles, que
son 6rdenes totales refinando el order reticular. Para un estudio
mas detallado del uso de 6rdenes admisibles entre intervalos
ver [15].

Definicion 2.1: [6] Sea (L([0,1]), <) un conjunto parcial-
mente ordenado. El orden < se dice admisible si verifica

i) < es un orden total en L([0,1]),

i) para todo [a,a],[b,b] € L([0,1]), [a,a] = [b,b] cuando

[a,a] <po [b,b].

Los érdenes admisibles pueden generarse con funciones de
agregacion, asi que recordemos su definicién.

Definicion 2.2: [4], [20] Sea A : UJ_,[0,1]" — [0,1]
cumpliendo

i) A(0,0,...,0)=0,A(1,1,...,1) =1,

ii) A es mondétona en cada variable,
entonces A se llama funcién de agregacion.

Hemos restringido el método propuesto por Bustince et al.
[6] al intervalo [0,1], ya que aunque el resultado original
trabaja con funciones en R, nosotros estamos centrados en
el intervalo [0,1]:

Proposicién 2.1: Sean A, B : [0,1]?> — [0, 1] dos funciones
de agregacion continuas y sean (u*,v*), (v/,v") € {(u,v) €
[0,1|u < wv}. Las igualdades A(u*,v*) = A(u/,v') y
B(u*,v*) = B(u',v") sélo pueden darse si (u*,v*) = (u/,v’).
Definida la relacién <4 g en L([0, 1]) por a <4 5 b si y solo
si

Ala, @) < A(b,b)

Ala,a) = A(b,b) y B(a,a) < B(b,b)).

Entonces < 4,5 es un orden admisible en L([0, 1]).
Con este método, no solo podemos construir nuevos érdenes
admisibles, sino que también podemos comprobar que algunos
de los 6rdenes mds conocidos para intervalos son, en efecto,
ordenes admisibles. Por ejemplo:
» Orden lexicogrifico tipo 1 [6]: @ Zfes1 D& a < bo
a=bya<b,donde A(x,y) =z and B(z,y) = y.

= Orden lexicogrifico tipo 2 [6]: a Zfer2 b & @ < bo
@=0by a<b, donde A(x,y) =y and B(x,y) = x.

= Orden de Xuy Yager [27]: a =y x b= at+a<b+bo
at+a=b+bya—a<b—b donde A(z,y) =2 +y
and B(z,y) =y — x.

Por otro lado, dados dos conjuntos difusos 4 y pp, se
dice que pa estd contenido en pp si pa(x) < pp(z) [29].
Basadndose en esta idea, si A y B son dos conjuntos difusos
intervalo-valuados, decimos que A estd o-contenido en B, y lo
denotamos como A C, B, si A(z) <, B(x) para todo = € X,
donde =, es una relacién de orden en L([0, 1]). Teniendo en
cuenta este punto de vista, Huidobro et al. [15] definieron la
interseccion de conjuntos difusos intervalo-valuados.

Definicion 2.3: [15] Sean A, B dos conjuntos difusos
intervalo-valuados en X y sea =<, una relacién de orden en

L([0,1]). Se llama o-interseccién de Ay B, AN, B, al mayor
conjunto difuso intervalo-valuado o-contenido en A y B.

En [15], Huidobro et al. probaron que esta definicién depen-
de del orden considerado en L([0, 1]), obteniéndose distintas
intersecciones para los distintos d6rdenes, pero con algo en
comtun si se utilizan 6rdenes totales.

Proposicion 2.2: [15] Sea <, un orden total en L([0,1]).
Para cualquier A, B € IVFS(X), la o-interseccién de Ay B
es el conjunto difuso intervalo-valuado definido por:

_ [ Alz) i Az) 2, B(z),
Ao B(z) = { B(x) si B(z) =<, Alx).

En consecuencia, resulta evidente que si A estd o-incluido
en B, entonces la intersecciéon de A y B es A, ya que es el
conjunto més grande contenido en ambos.

III. T-NORMAS PARA INTERVALOS

En esta seccion repasaremos algunas de las definiciones
que se pueden encontrar en la literatura sobre t-normas para
después presentar nuestra propuesta.

Las t-normas en [0, 1] son funciones ¢ : [0, 1]x[0, 1] — [0, 1]
asociativas, conmutativas y crecientes en cada argumento
verificando que ¢(1,u) = u para todo u € [0, 1]. Para inter-
valos, Gehrke et al. [10] consideraron el orden reticular y el
contenido usual. Partieron de que dado un punto ¢ € L([0, 1]),
tiene un intervalo asociado [c,c] y con varias premisas mds
llegaron a la siguiente definicién:

Definicion 3.1: [10] Una operacién binaria T en L(]0, 1])
que es asociativa y conmutativa es una t-norma si para todo
a,b,c € L([0,1]) se cumplen las siguientes propiedades:

i) T([u,ul],[v,v]) es un intervalo degenerado (origen y

extremo coincidentes), donde u,v € [0, 1],

ii) T(a,bVe)=T(a,b)VT(a,c),

iii) T(a,bAc)=T(a,b) NT(a,c),
iv) T(a,[1,1]) = a,

v) 7(0,1], [a,a)) = [0, ),

donde V y A se definen como:

[a,a] V [b,b] = [aV b,aVb],
[a,@] A [b,b] = [a Ab,aAD.

Ademas, también dieron una caracterizacion de las t-normas
para intervalos.

Teorema 3.1: [10] Toda t-norma en L(]0, 1]) se puede poner
de la forma T'(a, b) = [t(a,b), (@, b)], donde ¢ es una t-norma
en [0,1].

Ademds, fueron capaces de relajar la dltima condicién de
la definicidén si el operador binario es convexo, es decir, si
T(a,b) <r, ¢ <p, T(d,e), entonces existen r,s € L([0,1])
con a <r, 1 <podyb<p,s <p, e de manera que ¢ =
T(r,s).

Teorema 3.2: [10] Un operador binario convexo, conmuta-
tivo y asociativo, 7" en L([0,1]), es una t-norma si para todo
a,b,c € L([0,1]) se verifican las siguientes propiedades:

i) T([u,u],[v,v]) es un intervalo degenerado (origen y

extremo coincidentes), donde u, v € [0, 1],
i) T(a,bVe)=T(a,b)VT(a,c),
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iii) T(a,bAc)=T(a,b) NT(a,c),
iv) T(a,[1,1]) = a,

v) T([0,1],]0,1]) = [0, 1].

Bedregal y Takahashi [3] propusieron una extensioén de la
definicién dada por Gehrke et al.:

Definicién 3.2: [3] Una aplicacién T' en L([0,1]) es una
t-norma para intervalos si para todo a,b,c,d € L([0,1]) se
verifica:

i) T(a,b) =T(b,a),

i) T(a,T(b,c)) =T(T(a,b),c)),

iii) si a <p,byc<p,d, entonces T'(a,c) <p, T(b,d),
iv) sia CbycCd,entonces T(a,c) C T(b,d),

v) T(a,[1,1]) = a.

De este modo obtenemos t-normas para intervalos partiendo
de t-normas.

Proposicion 3.1: [3] Sean t; y ty dos t-normas en [0, 1].
Si t; < to, entonces la aplicacién I[t1,to], definida como
I[t1,t2)(a,b) = [t1(a,b),t2(@,b)], es una t-norma para inter-
valos llamada t-norma para intervalos derivada de ¢; y to.

Cuando consideramos un intervalo como un conjunto de
ndmeros reales, tras hallar la interseccién de a y b, aNb, tiene
sentido que si a; C a 'y by C b, entonces a; Nb; C aNb [32].
Sin embargo, nosotros estamos considerando que un intervalo
es una descripcion imprecisa de la funcion de pertenencia,
ya que estamos usando conjuntos difusos intervalo-valuados.
Desde esta perspectiva, la monotonia en la inclusién es equi-
valente a ser creciente, esto es, si A,B € IVFS(X), AC, B
si y solo si A(x) =, B(z),Vz € X.

Por ello, en este trabajo consideraremos la definicién pro-
puesta por Deschrijver [9]. En ella, elimina la cuarta condicién
de la Definicién 3.2.

Definicion 3.3: [9] Una t-norma en L([0, 1]) es una funcién
T : L([0,1]) x L([0,1]) — L([0,1]) conmutativa, asociativa,
creciente en ambos argumentos con respecto a <r, y cum-
pliendo que T'([1,1],a) = a para todo a € L([0, 1]).

Partiendo de esta definicién, podriamos definir t-norma para
intervalos como:

Definicion 3.4: Sea <, un orden en L([0, 1]). Una t-norma
en L([0, 1]) es una funcién T : L([0, 1])x L([0, 1]) — L([0, 1])
conmutativa, asociativa, creciente en ambos argumentos con
respecto a <, y tal que T([1,1],a) = a para todo a €
L([0,1]).

Una de las t-normas mds conocidas es la funcién minimo.
En nuestro caso, el minimo también es t-norma para intervalos.

Proposicion 3.2: Sea <, un orden admisible en L([0,1]).
La aplicacién Ty : L([0,1]) x L([0,1]) — L([0,1]) definida
como Tys([a,a),[b,b]) = min{[a,a],[b,b]} para cualquier
[a, @], [b,b] € L([0,1]) es una t-norma para intervalos.

Como hemos visto previamente, son interesantes aquellos
casos donde podemos relacionar t-normas para intervalos con
t-normas para ndmeros (ver [2], [3], [9]).

Definicién 3.5: Sea T una t-norma en L([0,1]). T se dice
representable si existen dos t-normas, ¢1, t2 tal que T'(a,b) =
[t1(a,b),t2(a,b)], para todo a,b € L([0,1]).

En general es mds sencillo usar t-normas representables para
intervalos, ya que simplifican la dificultad del problema.

Proposicion 3.3: Sean tq,ty dos t-normas con t; < t5. La
funcién T : L([0,1]) x L([0,1]) — L([0,1]) definida como
T(a,b) = [ti(a,b),t2(@,b)] es una t-norma para intervalos
con respecto al orden reticular.

Nota 3.1: Este resultado no es cierto para cualquier orden. Si
consideramos un ejemplo de orden admisible como es el orden
lexicogréfico tipo 1, podemos obtener que [0,2,0,7] =rez1
[0,3,0,4]. Sin embargo, considerando que t; y to sean la
t-norma minimo, llegamos a que 7°([0,1,0,8],[0,2,0,7]) =
[0,1,0,7] y T([0,1,0,8],[0,3,0,4]) = [0,1,0,4]. Por tanto,
7([0,1,0,8],[0,2,0,7]) Zrex1 T([0,1,0,8],[0,3,0,4]), y pode-
mos concluir que 7' no es creciente en la segunda componente.

Para otros 6rdenes admisibles pueden conseguirse contra-
ejemplos similares.

En la Proposicién 3.3 hemos obtenido un método para
obtener t-normas aplicadas a intervalos a partir de t-normas,
sin embargo, hemos visto en la Nota 3.1 que esto no siempre
es posible. De hecho, hemos encontrado una caracterizacién
en el siguiente resultado:

Proposicién 3.4: Sea <, un orden total en L([0, 1]) y sean
t1 y to dos t-normas en [0, 1]. Si consideramos la aplicacién T’
definida como T'(a,b) = [t1(a,b), t2(a,b)], entonces tenemos
que T es una t-norma para intervalos si y solo si 7" es creciente
en el segundo argumento.

IV. CONVEXIDAD DE CONJUNTOS DIFUSOS
INTERVALO-VALUADOS UTILIZANDO T-NORMAS

En este trabajo hemos considerado la definicién de conve-
xidad propuesta por Huidobro et al. [15]:

Definicion 4.1: Sea (X,<) un espacio ordenado y sea
=, una relacién de orden en L([0,1]). Un conjunto difuso
intervalo-valuado A en X se dice o-convexo, si para cada
x<y<zen X secumple A(z) <, A(y) o A(z) =<, A(y).

Claramente esta definicién generaliza la idea de convexidad
en conjuntos difusos propuesta por Zadeh [29], ya que si
consideramos un conjunto difuso g4 como conjunto difuso
intervalo-valuado, esto es, A(z) = [pa(z),pa(x)],Va €
X, diremos que A es convexo si se cumple A(x) =,
A(y) o A(z) =, A(y). Esto es equivalente a decir que
[na(z), pa()] =0 [pa(y),pa(y)] o [pa(z),pa(z)] =0
[a(y), pa(y)], que con el uso de cualquier orden que refine
al orden reticular, por ejemplo cualquiera de los 6rdenes
admisibles, equivale a pa(x) < pa(y) o pa(z) < pa(y). Con
esto recuperamos la definicién de convexidad para conjuntos
difusos propuesta por Zadeh, que venia dada por: pa es
convexo si y solo si pa(y) > min{pa(z),pa(z)} para
r<y<z.

Cuando trabajamos con dérdenes totales, esta definicion es
equivalente a min{A(x), A(z)} <, A(y), y nosotros hemos
podido comprobar satisfactoriamente que el minimo es una
t-norma para intervalos. Partiendo de esa idea, reemplazare-
mos el minimo por otra t-norma para intervalos. Por lo que
proponemos la siguiente definicion:

Definicion 4.2: Sea (X, <) un espacio ordenado, sea =<,
una relacién de orden total en L([0,1]) y sea T una t-norma
para intervalos. Un conjunto difuso intervalo-valuado A en X
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se dice T-o-convexo, si para cada x <y < z en X se cumple
T(A(x), A(2)) %o Aly).

Comprobemos la validez de la definicién comprobando su
compatibilidad con la interseccion.

Proposicion 4.1: Sea (X, <) un espacio ordenado, sea <,
una relacién de orden total en L([0,1]) y sea 7' una t-norma
para intervalos. La interseccién de dos conjuntos difusos
intervalo-valuados T-o-convexos es T-o-convexa.

Este resultado apoya nuestra definiciéon de t-normas para
intervalos mientras que las otras consideradas no conservaban
esta propiedad. Veamos un ejemplo.

Ejemplo 4.1: Consideremos el orden lexicogréfico tipo
1 y la Definicién 3.1. Segun esta definicion, el operador
T*(a,b) = [min{a,b}, min{@,b}] es una t-norma en
L(]0,1]). Consideremos X = {z,y,2} conz < y < zy
los conjuntos difusos intervalo-valuados A y B definidos por
A(z) = [0,3,1], A(y) = [0,3,0,8] y A(z) = [0,7,0,8], vy
B(z) =1[04,0,5], B(y) =10,5,0,7] y B(z) =[0,6,0,9].

La interseccion resulta ser (A Nres1 B)(z) =
[0,3,1], (A Nrex1 B)(y) = [0,3,0,8] y (A Npex1 B)(2) =
[0,6,0,9]. Es fécil comprobar que A y B son
T*-Lexl-convexos, pero A Npez;1 B no, ya que
T*(ANpes1 B(x), ANLez1 B(z)) = T%([0,3,1],[0,6,0,9]) =
[0,3,0,9] ZLex1 [0,3,0,8] = ANper1 B(y). Este contraejemplo
es valido también para la Definicién 3.2.

V. CONCLUSIONES

En este trabajo hemos presentado una definicién de t-norma
para intervalos. Utilizando este concepto, hemos generalizado
la nocién de convexidad para conjuntos difusos intervalo-
valuados y hemos podido comprobar que la definicién pro-
puesta es compatible con la interseccion de conjuntos difusos
intervalo-valuados.
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Resumen—Varios estudios han demostrado que el uso de esca-
las no lineales mejoran las decisiones obtenidas en problemas de
Toma de Decision en Grupo (TDG). Este trabajo esta orientado
a incorporar estas escalas no lineales en Procesos de Alcance de
Consenso (PAC), los cuales son la herramienta fundamental para
suavizar los conflictos que aparecen en los problemas de TDG.
Para ello, utilizaremos automorfismos no lineales definidos en el
intervalo unidad para deformar las preferencias de los expertos,
expresadas mediante relaciones de preferencia difusas, con el
objetivo de obtener escalas mas realistas. Este trabajo introduce
estas deformaciones no lineales como Amplificaciones de Valores
Extremos (AVEs), analiza sus principales propiedades y presenta
dos familias concretas de AVEs: una basada en la funcién seno
y otra basada en polinomios. Por ultimo estudiamos mediante
un caso practico como influye este enfoque no lineal basado en
AVEs en dos modelos de consenso clasicos para TDG.

Palabras clave—Toma de Decision en Grupo, Procesos de
Alcance de Consenso, Amplificacion de Valores Extremos, Pre-
ferencias no lineales.

I. INTRODUCCION

Tradicionalmente se han utilizado escalas lineales para mo-
delar las preferencias en los problemas de Toma de Decision
en Grupo (TDG). Sin embargo, estudios recientes han probado
que se obtienen mejores decisiones usando escalas no lineales
para representar las preferencias de los expertos [1], [2]. Sin
embargo, ninguna de esas propuestas tiene en cuenta los
conflictos entre expertos que normalmente aparecen en los
problemas de TDG.

En este trabajo estudiaremos el efecto de deformar las
preferencias de los expertos mediante escalas no lineales en
Procesos de Alcance de Consenso (PACs) para problemas de
TDG. Asumiremos que las preferencias de los expertos vienen
dadas por medio de Relaciones de Preferencia Difusas (RPDs)
y aplicaremos una deformacion no lineal a cada una de estas
preferencias para ajustar los valores iniciales a una escala mas
realista. Por tltimo, estudiaremos el impacto de este enfoque
no lineal en los modelos de consenso propuestos en [3], [4]
analizando el grado de consenso obtenido y niimero de rondas
empleado.

Esta contribucién estd dividida como sigue: En la Seccién
II se revisan brevemente los problemas de TDG y los PAC. La
Seccioén IIT esta dedicada a la nocidn principal de este trabajo,
la Amplificacién de Valores Extremos (AVE), definidas como
aquellos automorfismos del intervalo [0, 1] que incrementan

3" Rosa M. Rodriguez 4% Luis Martinez
Departamento de Informdtica Departamento de Informdtica
Universidad de Jaén Universidad de Jaén
Jaén, Espaia Jaén, Espaiia
rmrodrig @ujaen.es martin@ujaen.es

la distancia entre valores extremos de las preferencias dadas
mediante RPDs. En la Seccién IV se muestra como influyen
estas escalas no lineales en los PAC. Finalmente, la Seccién
V concluye el trabajo.

II. ToMA DE DECISION EN GRUPO Y PROCESOS DE
ALCANCE DE CONSENSO

En esta seccidn se revisan brevemente los principales con-
ceptos relativos a TDG y PACs.

Un problema de TDG es una situacion en la que un grupo
de expertos £ = {e1,ea,....,em}, 2 < m € N, tiene que
elegir la mejor solucién dentro de un conjunto de posibles
alternativas X = {X1, Xo, ..., X;,}, 2 < n € N. Sin pérdida de
generalidad, podemos suponer que las opinidn de cada experto
viene dada por medio de una RPD, la cual consiste en una
matriz Py € Myxn([0,1]) donde cada entrada pf; € [0, 1]
representa el grado en el que el experto e; prefiere la alter-
nativa X; sobre la X;. Las RPDs verifican la condicién de
simetria pf’j —O—p?i =1Vi,5€e{l,2,..,n},ke{l,2,....,m},
conocida como reciprocidad aditiva.

Es posible que en el proceso de resolucion de un problema
de TDG surjan conflictos entre las opiniones de los expertos
y que algunos consideren que sus opiniones no se han tenido
suficientemente en cuenta durante el proceso [5], [6]. En estos
casos se aplican PACs para lograr un acuerdo en la solucién
elegida [7], [8]. Un PAC es un proceso iterativo que usa
una medida de consenso para calcular la cercania entre las
preferencias de los expertos [6] y finaliza cuando se alcanza
un grado de consenso predefinido o se alcanza un determinado
nimero de rondas. En este trabajo usaremos los modelos de
consenso propuestos en [3], [4], ya que han demostrado un
buen funcionamiento [8].

III. AMPLIFICACION DE VALORES EXTREMOS

En esta seccion se introduce la definicion de AVE, asi
como algunos ejemplos concretos de familias de funciones que
cumplen con los requisitos que caracterizan a estas AVEs.

Definicién 1 (Amplificacién de Valores Extremos). Llamare-
mos Amplificacion de Valores Extremos (AVE) a una funcion
D :[0,1] — [0, 1] verificando:

1. D es un automorfismo en el intervalo [0, 1],
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2. D es una funcion de clase C', esto es, D es derivable
en [0,1] y su derivada D’ es continua en [0, 1],

3. D verifica D(x) =1—D(1 —z) V z €0,1],

D'(0)>1yD'(1) > 1,

5. D es concava en un entorno de 0 y convexa en un
entorno de 1.

>

El propésito de las AVEs es transformar las preferencias
de un problema de TDG de forma que los nuevos valores
obedezcan una escala no lineal en la que las distancias entre
los valores mas extremos se ven incrementadas respecto a las
diferencias originales.

Nota 1. Aunque el propdsito y las caracteristicas de las
AVEs estdn orientadas al modelado de las escalas no lineales
para las preferencias en PAC, el hecho de que permitan
definir medidas de similaridad junto al enfoque particular
que proporcionan a la hora de tratar la informacion mds
extrema recuerda al Hypermatching introducido por Yager y
Petry [14]. En el futuro nos gustaria estudiar detalladamente
como relacionar ambas propuestas.

La primera propiedad, junto con las condiciones de regu-
laridad de la segunda, garantizan que la biyectividad de las
AVEs. Esto es fundamental al comparar preferencias, puesto
que no deseamos que dos valores diferentes de las preferencias
originales tengan por imagen el mismo valor. La tercera
propiedad estd orientada a asegurar la reciprocidad aditiva
de la matriz obtenida al aplicar la AVE a cada uno de los
items de una RPD. La cuarta propiedad esta relacionada con
la amplificacion de las distancias entre los valores extremos de
las preferencias originales (los cercanos a 0 y a 1), mientras
que la quinta permite deducir que a medida que nos acercamos
a los extremos, la amplificacién de las distancias serd mayor.
Formalmente:

Teorema 1. Sea D : [0,1] — [0, 1] un AVE. Entonces
1. La funcion dp : [0,1] x [0,1] — [0, 1] definida por

dp(z,y) = |D(z) = D(y)| ¥ =,y € [0,1],

es una Disimilitud Restringida [9] y la funcion Sp :
[0,1] x [0,1] — [0, 1] definida por

Sp(z,y) =1—[D(x) = D(y)| V z,y € [0,1].

es una Funcion de Equivalencia Restringida [9],
2. Podemos encontrar tres intervalos Iy, Is, I3 C [0,1]
tales que 0 € I, 1 € I3, y I} < Is < I3 verificando

|ID(y) = D(x)| > |y —z| Yo,y : z#y,
|ID(y) = D(z)| < |y —z|Va,y€ly : z#y,
|ID(y) = D(x)| > |y —z|Va,ycls : z#y,

3. El grdfico de D estd por encima de la diagonal del
cuadrado [0,1] x [0, 1] para valores cercanos a 0y estd
bajo la misma diagonal para los valores cercanos a 1,

4. Existen un entorno Uy de 0y un entorno Uy de 1 tales
que para cada par x,y € Ug, x <y existe hg > 0 tal
que | D(z)—D(z—t)| = |D(y)—D(y—1)| V1t € [0, ho]

y para cada par x,y € UY, x <y, existe hy > 0 tal que
|D(z —t) = D(z)| < |D(y —t) — D(y)| Vte[0 hil.

Demostracion. La prueba de este resultado es consecuencia
del Teorema del Valor Medio. Omitimos los detalles concretos
por limitacién de espacio. O

Las cuatro tesis de este resultado permiten interpretar las
caracteristicas de las AVEs de la siguiente manera:

1. Transforman RPDs en RPDs.

2. Amplifican las distancias entre los valores extremos y
reducen la distancia entre los valores intermedios.

3. Su graéfica tiene un patrén comun (ver Figura 1).

4. La amplificacién de las distancias se incrementa a me-
dida que nos acercamos a los extremos.

D) >1
1
’
’
,
08 .4
’,
’
,
,
06 3
,
’
04 Ve
,
,
’
02 ,
’
,
,
0
0 02 04 06 08 1
D(0) > 1

Figura 1: Esbozo del grafico de una AVE

A continuacién presentamos un par de familias de AVEs.
AVEs basadas en la funcion seno.

L ]. La funcién de clase C* s, : [0,1] — [0, 1]

) 2w

Sea o €]0
dada por

So(x) =2 —a-sin(2rz —7) V x € [0,1]

es una AVE (ver la Figura 2).

0.8
0.6
04

0.2

Figura 2: AVE s 09
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AVEs basadas en polinomios.

Fijado o« > 1, la funcién m, [0,1] — [0,1] dada
por
i 11-2x) 0<z<i
= = 2
malw) ={ 1740 00 1EREY
es una AVE (ver las Figuras 3 y 4).
1
08
06
04
0.2
0
0 0.2 0.4 0.6 0.8 1

Figura 3: AVE ma.

0.8
06
0.4

0.2

Figura 4: AVE mg3 39.

IV. AMPLIFICACION DE VALORES EXTREMOS EN
PROCESOS DE ALCANCE DE CONSENSO

En esta seccion mostramos el funcionamiento de las AVEs
cuando son utilizadas en PAC para TDG. Para ello, hemos
implementado el enfoque no lineal de las AVEs en los PAC
ampliamente utilizados en la literatura y presentados en [3],
[4], que estan implementados en el software AFRYCA [6].

El problema de TDG considerado consiste en grupo de 100
expertos que enuncian sus preferencias sobre las alternativas
X = {X1, X5, X35, X4} por medio de RPDs (ver [10]). Para
hacer las simulaciones hemos usado los valores por defecto
que AFRYCA define para los pardmetros de cada modelo. El
umbral de consenso deseado se ha establecido en 0.85 y el
méximo niimero de rondas permitido es 15. Los resultados
obtenidos se muestran en las Tablas I y II.

AFRYCA [6] proporciona una herramienta para visualizar
los resultados de las distintas simulaciones mediante la técnica
de escalado multidimensional [11] (ver Figuras 5 y 6). Esta
representacion muestra la opinion colectiva de los expertos en
el centro del grafico y a su alrededor las preferencias de los
expertos.

Tabla I: Resultados con Herrera-Viedma et al. [3]

AVE Orden de alternativas | Rondas | Consenso
Clasico | zl1 > 22 > x4 > x3 6 0.87
50,08 zl > 22 > x4 > x3 6 0.89
50,09 zl > 22 > x4 > x3 6 0.92

ma xl = 22 > x4 > x3 5 0.86
ms3, 39 zl > 22 > x4 > x3 5 091

Tabla II: Resultados con Quesada et al. [4]

AVE Orden de alternativas | Rondas | Consenso
Clasico | x4 >zl ~ 22 ~ x3 10 0.85
50,08 x4 > xl > x2 ~ x3 7 0.86
50,09 x4 >zl > 22 ~ 3 7 0.87

mo x4 = xl > 2 ~ x3 7 0.86
™ms3,39 x4 > xl > x2 ~ x3 5 0.87

El modelo clésico [3] alcanz6 un grado de consenso de
0,87 en 6 rondas. Para este modelo, las AVEs s 08 y 50,09
han mejorado el grado de consenso alcanzado, aunque no han
reducido el nimero de rondas. Las AVEs polinémicas mo y
m3 39 han reducido el nimero de rondas, obteniendo grados
de consenso de 0,86 y 0,91 respectivamente en 5 rondas.

Por otro lado, el modelo clasico [4] necesitd 10 rondas
para lograr un grado de consenso de 0,85. En este caso,
ambas familias de AVEs han mejorado significativamente el
modelo original. Las AVEs 50 0s, 50,09 ¥ ™2 han mejorado
ligeramente el grado de consenso en 7 rondas, mientras que
la AVE mg 39 destaca por haber incrementado el grado de
consenso en sélo 5 rondas. Las simulaciones indican que las
AVEs mejoran ambos modelos ya que o bien disminuyen el
nimero de rondas o bien incrementan el grado de consenso
alcanzado.

Para analizar el comportamiento de las AVEs en un PAC
desde un punto de vista tedrico es necesario tener en cuenta
dos aspectos clave. Por un lado, es un hecho probado que en
los modelos de consenso los valores menos extremos de las
preferencias aportan cohesién al grupo y favorecen el alcance
del consenso colectivo [12], [13]. Por otro lado, si bien es
cierto que las AVEs amplifican la distancia entre los valores
extremos, cuando usamos una AVE los valores intermedios se
acercan entre si. Considerando estos dos hechos conjuntamente
podemos deducir que al aplicar una AVE a las preferencias
que van a ser usadas en un modelo de consenso, el modelo
de consenso modificado por la AVE alcanzard generalmente el
grado de consenso deseado mds rapido que el modelo original
puesto que los valores intermedios de las preferencias, esto es,
la informacién mds importante para el consenso, estin mds
cerca desde el principio.
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Para que los resultados obtenidos sean fiables, es impres-
cindible tener en cuenta que aunque la AVE usada en el PAC
modifique los valores iniciales de las preferencias, el orden de
preferencia de las alternativas en cada RPD no sufre altera-
ciones significativas. Omitimos aqui los detalles concretos por
motivos de espacio, pero es posible demostrar que las familias
de AVEs propuestas en este trabajo, s,, Yy M no introducen
cambios significativos en el orden de las alternativas preferidas
por cada experto.

V. CONCLUSIONES

Los PAC clasicos asumen escalas lineales para los valores
de preferencias de los expertos. Este trabajo propone el uso
de escalas no lineales en estos modelos con el objetivo de
modelar las preferencias de los expertos de una forma mds
realista.

Este trabajo presenta las propiedades analiticas de estas
escalas no lineales y estudia sus principales propiedades. Estas
deformaciones no lineales han recibido el nombre de AVEs
y se caracterizan por transformar RPDs en RPDs de forma
que las distancias entre los valores extremos se incrementan
mientras que las distancias entre los valores intermedios se re-
ducen. Para mostrar el impacto de las AVEs en los PAC, hemos
utilizado el software AFRYCA para simular el funcionamiento
de dos modelos de consenso cuando se combinan con las AVEs
definidas en este trabajo. Los resultados muestran que o bien
se reducen el numero de rondas necesarias para alcanzar el
consenso o bien se incrementa el grado de consenso.

Como trabajos futuros definiremos nuevas AVEs e intenta-
remos optimizar los pardmetros de las AVEs existentes para
modelos de consenso concretos de acuerdo con diferentes
métricas. También pretendemos analizar el comportamiento de
las AVEs en otros modelos de consenso, asi como aplicar este
marco tedrico para resolver problemas de decisién del mundo
real.
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Estructuras de preferencia para relaciones reciprocas
borrosas: caracterizacion y compatibilidad
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Abstract—El empleo de relaciones borrosas R : A* — [0,1]
esta ampliamente extendido de cara a representar grados de
preferencia entre alternativas en A. En el trabajo recientemente
aceptado [1] se reflexiona en primer lugar sobre la aparente
incompatibilidad entre las relaciones reciprocas y el marco
estandar de preferencias borrosas establecido en [2], proponiendo
a continuaciéon un marco general para estudiar el significado
preferencial de las relaciones reciprocas a partir de la semantica,
bien establecida, de las relaciones y estructuras de preferencia
del modelo estindar. Una consecuencia de este analisis es que
es posible dotar a las relaciones reciprocas de una estructura
de preferencia propia con dos relaciones, preferencia estricta
y ausencia de preferencia. Ademas, es posible dotar de un
significado univoco a esta estructura sobre la base de las
estructuras de preferencia estandar cuando se cumplen ciertas
condiciones de compatibilidad entre ambos modelos.

Index Terms—Relaciones de preferencia borrosa, relaciones
reciprocas, estructuras de preferencia, semantica preferencial

I. INTRODUCCION

Considérese un problema de decision con conjunto de
alternativas A, y sea R : A? — [0,1] una relacién de
preferencia borrosa sobre A. R es una relacién de preferencia
débil si es reflexiva, esto es, si R(a,a) =1 Va € A, mientras
que R es estricta si es antireflexiva, R(a,a) =0Va € A,y R
se dice reciproca cuando R(a,b)+R(b,a) = 1 Va,b € A. Sean
respectivamente R y G los conjuntos de todas las relaciones
de preferencia borrosas débiles y reciprocas. Segin se discute
en [1], las relaciones de preferencia borrosas reciprocas
presentan una incompatibilidad esencial con las relaciones
de preferencia borrosa estdndar, tanto débiles como estrictas,
debido a que la condicién de reciprocidad es incompatible
con las propiedades de reflexividad y antireflexividad. Esto
plantea dudas sobre el significado del predicado preferencial
de una relacién reciproca, asi como sobre las situaciones
preferenciales que un modelo de tipo reciproco puede expresar.
Para estudiar esta cuestion, en [1] se plantea dotar a las
relaciones reciprocas de una estructura de preferencia propia,
y establecer el significado de esta en base al de las estructuras
de preferencia estdndar, siguiendo la formulacién dada por
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Fodor y Roubens [2]. Esto se lleva a cabo en base a
la posibilidad de obtener relaciones reciprocas a partir de
relaciones débiles mediante transformaciones F' : R — G
representables en términos de una funcidn reciproca f :
[0,1]> — [0,1], tal que para R € Ry a,b € A se
cumple que F(R)(a,b) = f(R(a,b), R(b,a)) = f(x,y). Esta
herramienta permite probar que cualquier relacién reciproca
G € G puede descomponerse como G = P + 0.5( + J),
donde (P, I,.J) denota cualquier estructura de preferencia de
una relacién débil R € R tal que R € Fg_l(G), donde
la transformacién F, : R — G se representa mediante la
funcién g(z,y) = HIT*Z/ Esta descomposicién sugiere que
cualquier relacion reciproca puede expresarse en términos de
una componente de preferencia estricta P y otra componente
de ausencia de preferencia L = I + J, y que por tanto la
estructura de preferencia de una relacion reciproca G € G debe
estar compuesta por dos relaciones, Pg y L, respectivamente
representando esas componentes de preferencia estricta y
ausencia de preferencia. Sin embargo, esta descompocién no
es Unica a menos que se cumpla una compatibilidad perfecta
entre las estructuras de preferencia de las relaciones débiles
y reciprocas implicadas. Las condiciones bajo las que se
cumple esta compatibilidad son estudiadas en [1] mediante
un enfoque axiomdtico, que conduce al planteamiento de un
sistema de ecuaciones funcionales que solo puede verificarse
mediante estructuras compatibles. Esto permite probar que
esta compatibilidad solo es posible cuando la semdantica de
las relaciones débiles se modela mediante una preferencia
estricta asimétrica. Ademads, se muestra también que el sistema
de ecuaciones mencionado admite al menos dos soluciones,
basadas en diferentes transformaciones entre relaciones débiles
y reciprocas. Asi, es posible concluir que las relaciones
reciprocas pueden admitir diferentes semdnticas compatibles
con el marco estindar de preferencias borrosas, de modo
parecido a como una relaciéon de preferencia borrosa débil
puede ser dotada de diferentes semdnticas a partir de diferentes
soluciones a las ecuaciones del modelo estdndar.

II. DEFINICIONES Y RESULTADOS

Recordemos en primer lugar que el modelo de preferencias
borrosas estdndar [2] se establece mediante un enfoque
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axiomdtico que considera la existencia de funciones p, 7,7 :
[0,1]> — [0,1], de manera que la estructura de preferencia
(P,I,J) de una relacién débil R € R se obtiene como
P(a,b) = p(x,y), I(a,b) =i(z,y) y J(a,b) = j(a,b), donde
x = R(a,b) e y = R(b,a), con a,b € A. Para representar la
semantica minima de preferencias, estas funciones p, ¢, j deben
cumplir el sistema de ecuaciones funcionales

x:SL(p(Ly),i(x,y)), (1)

1—y=SL(p($,y),j(:E,y)). (2)

donde S; denota la t-conorma de Lukasiewicz bajo el
automorfismo identidad. Existen multiples soluciones al
sistema anterior, siendo relevante para este trabajo la dada por

p(z,y) = max{z —y,0} 3)
i(z,y) = min{z, y} “4)
jla,y) = min{l — 2,1 -y} )
que define una preferencia estricta asimétrica.
Asumiremos ademds que la representaciéon de

transformaciones F' : R — G se lleva a cabo mediante
funciones reciprocas, que se definen como funciones
f:[0,1]2 — [0,1] que verifican f(z,y) + f(y,x) = 1 para
todo z,y € [0,1], y son continuas, mondtonas no decrecientes
en x (y por tanto no crecientes en y) y tales que f(1,0) =1
y f(0,1) = 0. En [1] se prueban diversos resultados sobre
estas funciones reciprocas.

Por otro lado, los principales resultados en [1] que sustentan
la mencionada descomposicion seméntica general de cualquier
relacion reciproca G € G son los siguientes:

Teorema 1. Sea (p,i,j) una solucion del sistema de
ecuaciones del modelo estindar dado por Ecs.(1) y (2).
Entonces, la funcion f : [0,1)? — [0,1] dada por f(x,y) =
p(z,y)+0.5(i(z,y) + j(x,y)) es una funcion reciproca, y se
cumple que f(x,y) = g(x,y) = MT_y

Corolario 1. Sea G € G una relacion reciproca, y sea
R € R una relacion débil tal que G(a,b) = g(x,y) para todo
a,b € A, donde v = R(a,b) e y = R(b,a). Si (P,1,J) es
una estructura de preferencia asociada a R mediante alguna
solucion del sistema dado por las Ecs.(1) y (2), entonces
G(a,b) = P(a,b)+0.5(I(a,b)+ J(a,b)) para todo a,b € A.

Asi pues, toda relacion reciproca puede ser descompuesta
en términos de dos componentes, preferencia estricta P y
ausencia de preferencia (estricta) L = I + J, en tanto [ y
J recogen las situaciones preferenciales que no pueden ser
asociadas a preferencia entre alternativas. Esto lleva a asociar
una nueva relacion borrosa L a esa componente de ausencia de
preferencia, dada por L(a,b) = Sr.(I(a,b), J(a,b)), para todo
a,b € A. Es ficil comprobar que esta relacion L es reflexiva y
simétrica. Ademds, es posible reestablecer la descomposicion
anterior en términos de disyuncién entre preferencia estricta
P y ausencia de preferencia L:

Corolario 2. En las condiciones del Corolario 1, se cumple
que G(a,b) = S(P(a,b),0.5L(a,b)).

Estos resultados sugieren que es natural asociar a una
relacién reciproca G € G una estructura de preferencia
(Pg, Lg). No obstante, en principio la descomposicién de G
en las relaciones P y Lg no es unica, en tanto depende
de la descomposicién de una relacion débil R € R tal que
G = Fy4(R) en la estructura (P, I, J), que es posible realizar
mediante cualquier solucién de las Egs.(1) y (2). Esto ademas
conlleva que la estructura (Pg, Lg) no sea necesariamente
obtenible a partir de GG. Para estudiar la posibilidad de que la
estructura (Pg, L) pueda ser obtenida directamente a partir
de G, y que al mismo tiempo sea arménica con la semantica
de la estructura de preferencia débil (P, I,J) que la dota de
significado, en [1] se recurre a un enfoque axiomdtico que
asume la existencia de funciones pg, ¢ : [0,1] — [0, 1] tales
que Pg(a,b) = pg(u) y La(a,b) = lg(u) para todo a,b € A
y u = G(a,b), con pg no decreciente y /g simétrica respecto
a 0.5, esto es, lg(u) = lg(1 — u), y que conduce a plantear
el siguiente sistema de ecuaciones funcionales:

Si(pr(,y),ir(z,y)) = 2, (6)
Sipr(z,y). jr(z,y)) =1 -y, @)
u=f(z,y), ®)

pc(u) = pr(2,y), ©)
la(u) = Sp(ir(z,y), jr(z,Y)), (10)
u= A(pg(u),lc(u)), (1)

para todo z,y € [0,1], y donde A : {(pg(u),lc(u))u €
[0,1]} — [0, 1] es una funcién continua que permite recuperar
la relacion reciproca G a partir de su estructura de preferencia.
El principal resultado en [1] sobre este sistema es el siguiente:

Teorema 2. El sistema dado por Ecs.(6)-(11) admite solucion
si y solo si pr,igr,jr vienen dadas por Ecs.(3)-(5).

Una solucién particular del sistema anterior, cuando la
funcién reciproca empleada es f = g, viene dada como:

Teorema 3. Si una solucion del sistema Ecs.(6)-(11) es
tal que pRr,iRr,jr vienen dadas por Ecs.(3)-(5) y f = g,
entonces pg(u) = max{2u — 1,0}, lg(u) =1 —2u—1| y
A(pg(u),lg(u)) = Sp(pa(u),0.5l¢(u)) para todo u € [0, 1].

En [1] se establecen otros resultados adicionales, como que
el sistema anterior admite solucion solo si f es estrictamente
creciente en x y es invariante en la direccién (1,1) de [0, 1]2,
o que la funcién A es la dada en el teorema anterior si y solo
si f =g,y se prueba la existencia de al menos otra solucién
al sistema referido.
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Resumen—A pesar de que la fiabilidad humana puede tener
mucha imprecisién asociada, debido a la incertidumbre natural
relacionada con las decisiones tomadas por las personas, una de
las principales herramientas en esta area, la matriz de riesgo,
se define de manera muy precisa. Esto hace que los expertos no
puedan tener ninguna duda a la hora de clasificar un posible
error humano. Para evitar este problema, aqui se propone una
relajacion de la matriz de riesgo, en la que la valoracion de los
riesgos se dara no solo mediante nimeros, sino también utilizando
intervalos o incluso una generalizacion de estos, que llamaremos
cajas. Dicho concepto es analizado en detalle, asi como los 6rdenes
obtenidos para el conjunto de cajas.

Index Terms—matriz de riesgo, ordenes entre intervalos, caja,
ordenes entre cajas, métodos de eleccion

I. INTRODUCCION

Las técnicas de andlisis de fiabilidad se enfocaron ini-
cialmente en aspectos técnicos del disefio y calidad de la
maquinaria. Sin embargo, algunas investigaciones demostraron
que el error humano era la causa mas comin de fallo en
muchas situaciones (ver, por ejemplo, [1], [4], [7]). Desde que
IEEE publicé un informe sobre fiabilidad humana en 1972, han
surgido muchos trabajos en esta temadtica (ver, por ejemplo,
(21, [8], [12], [14], [16], [26]).

Una herramienta fundamental es la matriz de evaluacién de
riesgos (ver [9]). Esta herramienta facilita la clasificacion de
diferentes tipos de errores en funcién de su riesgo asociado.
Esta clasificacién puede ayudar a priorizar los diferentes tipos
de error.

Existen distintas versiones de matrices de evaluacién de
riesgos, pero en todas ellas los decisores se ven obligados a
elegir entre los diferentes niveles de consecuencia/frecuencia,
a pesar de que estdn tomando una decisién subjetiva y, en
muchos casos, la eleccién del nivel apropiado se convierte
en una tarea dificil. Para considerar un procedimiento mds
flexible, proponemos una metodologia en la que los decisores
pueden expresar valores intermedios. Bajo esta consideracion,
el valor asociado con un tipo de error ya no es un nimero sino
un intervalo de la linea real o incluso una generalizacién de
este que llamaremos caja. Asi, para medir el riesgo asociado a
los diferentes tipos de error, es necesario establecer un orden
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entre cajas, que generalizard los 6rdenes considerados entre
nimeros e intervalos.

Asi, la estructura de este trabajo es la siguiente: la seccién
2 ofrece una vision general de los conceptos basicos nece-
sarios para la comprensiéon del mismo. En la seccién 3
introduciremos el concepto de caja, asi como distintas formas
de ordenarlas, lo que nos permitird acabar proponiendo una
matriz de riesgo imprecisa, que era el objetivo fundamental del
trabajo. Para ver la forma de utilizar la metodologia propuesta,
planteamos un ejemplo de aplicacién en la seccién 4, donde
la informacién proporcionada por los distintos Ordenes es
fusionada mediante métodos de ranking. Finalizamos con
algunas conclusiones y puntos abiertos.

II. CONCEPTOS BASICOS

En esta seccidn, se recuerdan algunos conceptos basicos
sobre matrices de riesgo y Ordenes entre intervalos. Sirve
ademds para fijar las notaciones que se van a utilizar a lo
largo del trabajo.

A. Matriz de evaluacion de riesgos

La matriz de riesgo es un elemento que permite cuan-
tificar los riesgos disminuyendo el nivel de subjetividad en
el momento de su evaluacidn, siempre que la parametrizacion
y asignacién de valores a los indicadores esté debidamente
fundamentada. Son un instrumento que nace con la necesidad
de poder cuantificar los errores y saber asi sobre cudles
deberemos actuar con mayor rapidez.

Para obtener los valores de dicha matriz se deberd estudiar
cudl es la frecuencia y las consecuencias de cada uno de los
errores a examinar. Veamos cudl es su definiciéon formal.

Definicion 1: [9], [19] Sea M una matriz de dimensiones
n X m, se dice matriz de riesgo a la combinacién de
ciertas consecuencias (asociadas a las columnas de la matriz),
ocurriendo en un cierto escenario y con una cierta probabilidad
(asociadas a las filas de la matriz), lo cual significa que se
necesitan solamente dos entradas para construir la matriz de
riesgo.

o Los valores de dicha matriz reciben el nombre de valores
de riesgo y quedaran determinados por los ejes de la
matriz de riesgo, es decir por las consecuencias y la
probabilidad de las mismas.
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« Las consecuencias, la probabilidad y los valores de riesgo
pueden estar divididos en diferentes niveles, segtin el caso
particular con el que estudiemos dicha matriz.

o El proceso del cdlculo de los valores de riesgo viene
presentado por la implicacion légica: si la probabilidad
es p y consecuencia es c, entonces el riesgo es r.

A pesar de esta definicién comun, la estructura de la matriz
de riesgo es muy variable, pudiendo variar tanto sus dimen-
siones, como la posible nomenclatura. En el caso particular
de matriz de riesgo aqui considerada (ver [18]), el eje de la
frecuencia lo podremos categorizar como improbable (I), poco
probable (Pp), posible (Pos), probable (P) y muy probable
(Mp) y el eje de las consecuencias lo podremos clasificar
como poco (P), normal (N), grande (G), elevada (E) y extrema
(Ex). Las filas Frec. indican la frecuencia o probabilidad de
ocurrencia y las columnas Consec. indican las consecuencias.
Asf pues, la matriz de riesgo estdndar que vamos a considerar
es la mostrada en la tabla I.

TABLE I
MATRIZ DE RIESGO ESTANDAR.

Cons.
Frec. Hegw
Muy probable 5
Probable 4
Posible 3
Poco probable 2
Improbable 1

Tipicamente se asigna un codigo de colores a los valores
de la matriz de riesgos, segtin cual sea su valor. En concreto,
se considera el color verde para valores de riesgo menores o
igual que 3, el amarillo para valores mayores que 3 y menores
o iguales que 7, el color naranja para valores mayores que 7
pero no mayores que 12 y el rojo para el resto. Es evidente
que la zona con mayor riesgo se representa de color rojo.
En esta zona estdn los problemas graves, aquellos sobre los
que debemos encontrar una rapida solucién. La zona naranja
muestra los problemas que tienen una importancia elevada. La
zona media, de color amarilla, es aquella donde se encuentran
los problemas que tienen menos relevancia pero aun asi son
importantes. La zona de bajo riesgo, en color verde, contiene
los riesgos controlados. Es habitual que no se actie sobre los
problemas que estidn en esta drea.

B. Ordenacion de intervalos en R

En la subseccién anterior hemos visto que los errores se
cuantifican mediante nimeros reales entre 1 y 25. No obstante,
a la hora de flexibilizar esta matriz para recoger mejor la
incertidumbre asociada a la toma de decisiones, nos van a
aparecer en la misma intervalos. Recordemos que dados x4,
zo € R con 1 < x99, llamaremos intervalo (cerrado) al
conjunto definido como X = [z1,22] = {y € R / 21 <
y < mo}, denotando por I(R) el conjunto de todos los
intervalos cerrados en el conjunto de los niimeros reales, es
decir, I(R) = {[z1,22] / x1,22 € R con z1 < za}.

Es sabido que si bien los nimeros reales forman un conjunto
totalmente ordenado con el orden usual (¢ < b si b—a es
un nimero positivo), encontrar un orden total en el conjunto
de los intervalos no es un problema tan inmediato. Asi, en
la literatura se han introducido diversas formas de comparar
intervalos. En concreto, algunos ejemplos son los siguientes:
orden débil [5], Maximin [22], [24], Maximax [21], Domi-
nancia de intervalos [13], Hurwicz [17] y el orden producto
(también llamado lattice order en inglés) [15]. De todos ellos,
solo el orden producto es un verdadero orden. Recordemos
que viene definido por: X <;0Y & 21 <y1y z2 < yo.
No obstante, y a pesar de ser un orden muy natural y habitual
entre intervalos, es evidente que considerando dicho orden hay
intervalos incomparables. Para evitar este problema, buscamos
ordenes que sean completos y refinen el orden producto. Esto
es posible gracias al concepto de orden admisible (orden total
que refina el orden producto) introducido por Bustince et al.
(ver [6]).

Dados X, Y € I(R) con X = [z1,22] e Y = [y1,92),
son 6rdenes admisibles sobre I(R): 1) Orden lexicogrifico 1
X <pez1 Ysiysolosizy <y 0 (xr1 =91y 22 < y2);
2) Orden lexicografico 2: X <pc,o Y siy solo si zo < s
0(x2=y2y 21 <g1)y 3) Orden de Xu y Yager ( [25]):
X <xy Y si y solo si z1 + z9 < Y1 + Y2 O (LE1—|—CIJ2 =
Y1+ Y2y T2 — 21 < Yo — y1).

III. MATRIZ DE RIESGO IMPRECISA

En una matriz de riesgo clasica, el decisor tiene que decidir
por una frecuencia poco probable o posible y no se permite
una opcién intermedia. Sin embargo, podria ser muy natural
una clasificacién del riesgo entre poco probable y posible. En
ese caso, podria ser l6gico considerar que el valor de riesgo
es un nimero entre 8 y 12 si la consecuencia es elevada. Por
lo tanto, el valor de riesgo podria venir dado por el intervalo
cerrado [8,12].

Puede ocurrir una situacién similar con respecto a la
consecuencia. Por tanto, podriamos considerar situaciones
intermedias y llegamos a una propuesta de matriz de riesgo
9 x 9, que permite opciones intermedias para la frecuencia y
la consecuencia, tal como la representada en la tabla II.

TABLE II
PRIMERA APROXIMACION A LA MATRIZ DE RIESGO IMPRECISA.

Consec. P PN

Frec. w

MP B [5.10] 10

MPP 457 | [8.10]

P 7 48] 8

PPos [3.4] | [6.8]

Pos 3 [3.6] 6

PosPP 23T | [4.6]

PP 2 2.4 4 [8.10]

PPT 121 ] 241 [3.6] 4.8 3
I | [1.21 2 [2.31 3 341 4 [4.5] 5

En la tabla II, se ha denotado con las letras correspondientes
a las dos clases que la delimitan a cualquier categoria inter-
media. Por ejemplo, si la frecuencia es entre poco probable y
posible, se representa por PosPp, si la consecuencia es entre
elevada y extrema, se denota por EEx, etc.

En el caso de que exista imprecision en la consecuencia,
pero la frecuencia sea fija, ya tendriamos resuelto el problema
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de clasificar un riesgo, tal como hemos visto en la tabla II. En
este caso el valor de riesgo seria un intervalo. Lo mismo ocurre
si la consecuencia es fija y la imprecision esta en la frecuencia.
Puesto que todo nimero x se puede identificar con el intervalo
[, x], podriamos considerar los 6rdenes entre intervalos vistos
en la seccion anterior para ordenar los distintos errores segtin
sus valores de riesgo. El problema viene cuando tanto la
valoracion de las consecuencias, como la de las frecuencias,
es imprecisa. En tal caso no hemos podido valorar el riesgo,
tal como se ha visto en la tabla II. Vamos a centrarnos en una
zona determinada de la misma, para ir analizando la solucién
dada para este problema. En concreto nos centramos en la
zona correspondiente al caso de consecuencias entre elevadas
y extremas y de frecuencias entre poco probable y posible, la
cual aparece ampliada en la tabla III.

TABLE III
Z0OOM DE LA MATRIZ DE RIESGO.
[ Consecuencia
E EEx Ex
Pos 12 | [12,15] 15
Frecuencia | PosPp | [8,12] ? [10,15]
Pp 3 I8, 10] 10

Para la celda restante, podriamos pensar en considerar
nuevamente un intervalo. Sin embargo, lo que tiene que ocurrir
es que el valor debe estar entre [8, 10] y [12, 15] y ademds entre
[8,12] y [10,15]. Para recoger esta idea, aparece un nuevo
concepto como interseccion de dos “intervalos” de intervalos.

Definicion 2: Sean a, b, ¢, d cuatro nimeros reales con a <
b < ¢ < d. El conjunto {[z,y] € I(R)/[a,c] <ro [z,y] <r0
[b,d],[a,b] <ro [z,y] <ro [c,d]} se llama caja con extremos
a,b,cy dy se denota por [a,b,c,d].

Por lo tanto, estd claro que cualquier elemento en la caja
[a,b,c,d] es un intervalo tal que estd entre el intervalo [a, b]
y el intervalo [c, d] y, al mismo tiempo, estd entre el intervalo
[a,c] y el intervalo [b,d] con respecto al orden producto.
Denotaremos por C(R) al conjunto de todas las cajas en R,
es decir, C(R) = {[a,b,¢,d]/a,b,c,d € Rja < b < ¢ < d}.
A continuacién, presentamos una definicion equivalente del
concepto de caja.

Proposicion 1: Sea [a,b,c,d] en C(R). Se tiene que:

[a,b,c,d] ={[z,y] € IR)/a < x <b,c<y<d}

De esta definicién equivalente se puede deducir que una
caja es un tipo particular de hiperrectangulo bidimensional o
2-ortétropo (ver [10]). Por otro lado, considerando ahora la
identificacién entre la caja [a,b,c,d] y la 4-tupla (a,b,c,d),
el concepto de caja coincide con el de intervalo 4-dimensional,
tal como ha sido definido por Bedregal et al. en [3]. En
dicho trabajo se pone ademds de manifiesto que el conjunto
de los intervalos 2-dimensionales coincide con el conjunto de
los intervalos cerrados y el de los intervalos 1-dimensionales
con el de los nimeros reales. Asi pues, todos los valores
que tenemos hasta el momento en la matriz de riesgo (ver
tabla II) puede considerarse que son cajas. Ademas, podriamos
considerar cajas adecuadas para llenar los espacios vacios

en esta matriz. Por ejemplo, el valor restante en el ejemplo
considerado en la tabla III serfa [8,10,12,15]. Podriamos
repetir este procedimiento a lo largo de todas las celdas vacias
de la matriz de la tabla II. Sin embargo, para poder colorear
esta matriz, debemos definir un orden apropiado en C(RR). Una
primera propuesta podria ser la siguiente.

Definicion 3: Sea [a,b,c,d] y [a,b,¢c,d] en C(R). Diremos
que [a, b, c,d] es menor o igual que [a, b, ¢, d] con respecto al
orden producto, y se denota por [a, b, c,d] <ro [a,b,¢,d], si
ysolosiagd,bgg,cgéydg(i.

Es fécil probar que <o es un orden en C(R), pero no es
una relacién completa. Por ejemplo, [2,3,4,5] €10 [2,2,5, 5]
y [2,2,5,5] €10 [2,3,4,5]. Como necesitamos ordenar todos
los elementos en la matriz de riesgo, necesitamos definir un
orden total en C(R). A partir de las ideas de los drdenes
lexicograficos en L(R) podemos obtener 24 6rdenes distintos
en C(R). Comenzamos con el de tipo 1, que nos servira para
generar el resto.

Definicion 4: Sea [a,b,c,d] y [a,b,¢,d] en C(R). Diremos
que [a, b, ¢, d] es menor o igual que [a, b, ¢, J] con respecto al
orden lexicogrifico tipo 1, que se denota por [a, b, ¢, d] <1234
[a, b, ¢, J], si y solo si se cumple una de las condiciones
siguientes:a<(zo(a:a,b<5)0(a:&,b:5,c<é)o
(a=a,b=0b,c=¢ d<d).

Se puede probar que la relacion en C(R) es un orden total
que refina el orden producto.

Puesto que en dicha definicién no hemos considerado las
relaciones entre los cuatro elementos que describen una caja
y cualquier caja [a,b,c,d] se puede identificar con una 4-
tupla (a,b,c,d) en R*, el orden lexicogrifico 1 en C(R) se
podria generalizar de forma inmediata a R* y también en ese
espacio seria un orden lineal. De hecho, vamos a utilizarlo
como generador de 6rdenes lineales en ese espacio, tal como
puede verse en el siguiente resultado.

Proposicion 2: Sea A una matriz cualquiera de rango
completo con A € Myy4. Se tiene que la relacién binaria
R definida sobre R* x R* como (a,b,c,d)R(a,b,¢,d) si
y solo si A(a,b,c,d) <1234 A(a,b,¢ d)" para cualesquiera
(a,b,c,d), (a,b, ¢ d) € R%, es un orden total en R*.

Este resultado puede considerarse una generalizacién in-
mediata del demostrado para el intervalo [0,1] en [11].
Ademads es inmediato que cualquier orden generado de esta
forma, puede ser restringido al conjunto de cajas C(R). En
concreto, es evidente que segtin vayamos considerando las 24
matrices de rango completo con un 1 en cada fila y el resto
de los elementos nulos, podriamos generar 24 6rdenes lineales
distintos sobre C(R).

Corolario 1: Sea {i,j,k,l} una permutacién cualquiera
del conjunto {1,2,3,4} y sea A;jj; una matriz en Myyxy
tal que todos sus elementos son nulos salvo ai; = az; =
a3, = ay = 1. La relacién <;;;; definida como
[a,b,c,d] <ijr [@,b,¢,d] siy solosi Aijri(a,b,c,d) <iz
Aijri(a,b,¢,d)’"), para cualesquiera |a,b,c,d],[a,b,¢,d] €
C(R), es un orden total en C(R).



334

XIX Conferencia de la Asociacién Espaiiola para la Inteligencia Artificial &=

Si aplicamos la proposicién 2 para la matriz

N1
A= 1000
0010

obtenemos la generalizacion del orden de Xu-Yager para cajas.
Proposicion 3: Dadas [a,b,c,d] y [a,b,¢ d] dos cajas
en C(R). La relacion <xy sobre C(R) definida como:
[a,b,c,d) <xy |a,b,¢,d] siy sélo si verifica alguna de las
siguientes condiciones:
eatbtctd<a+b+c+d
eatbtct+d=a+b+e+dy(b—a)+(d—c) <

b—a)+d—2) )
eat+b+c+d=a+b+c+d,(b—a)+(d—c) =
(b-a)+(d-d)ya<a
. a+b+6+d:d+b+é+d,(bfa)+(d—c):
(b—a)+(d—¢ a=ayc<e

es un orden total que refina el orden producto.

También se puede probar que si nos restringimos a interva-
los estos 6rdenes corresponden con sus homénimos en L(R) y
si nos restringimos a ndmeros, con el orden habitual sobre la
recta real. Evidentemente una caja que es menor que otra con
respecto a un orden, puede no serlo con respecto al otro. Si
consideramos el orden lexicografico tipo 1 y los colores verde
(<1234 3), amarillo (>1234 3y <1234 7), naranja (>1234 7'y
<1234 12) y rojo (>1234 12), obtenemos la matriz de riesgo
imprecisa que puede verse en la tabla IV.

TABLE IV
MATRIZ DE RIESGO IMPRECISA.

PN N NG

5,10 10
[4.5,8.10] [ [8:10]

[10,15]
8. 10 1115]

BA68T 1637 | [o, x 9 12]

[3.6]
B3gony 0T

| 5 [l,2 2 4] 1247
1 1 2

36,691
[4.6]
[2.34,6]
[2.3]

]
= 2ls
IS

Si prefiriésemos trabajar con todos los 6rdenes a la vez,
combindndolos, podriamos utilizar métodos de eleccién como
el de Borda o Concorcet. Vamos a ver el procedimiento
completo mediante un ejemplo.

IV. CASO DE ESTUDIO

Veremos de qué manera podemos aplicar estas formas de
ordenar los distintos tipos de errores en un ejemplo ilustrativo
(ver [23]). El objetivo es mostrar de qué forma quedan
clasificados los errores segin el orden que utilicemos. Asi,
podremos aplicar toda la teoria que hemos desarrollado para
poder ver cudl es su utilidad real. En particular, estudiaremos
y clasificaremos los errores mds comunes que puede cometer
un conductor de autobus. Podemos considerar los siguientes
eventos:

« EL

L] Ez.

L] E3.

« E4.

L] ES.

L] E6.

Cruzar un semaforo en dmbar.

Cruzar un semaforo en rojo.

Conducir bajo los efectos de alcohol o de drogas.
No poner el intermitente al girar.

Saludar a otros conductores.

Confundirse en el cambio mds de 50 céntimos.

e E7. Confundirse en el cambio menos de 50 céntimos.

Ahora, deberemos ver cudl es la frecuencia con la que
se produce cada uno de los eventos, asi como ver cudles
son las consecuencias de los mismos. Las frecuencias y
las consecuencias de cada error se pueden determinar, por
ejemplo, a partir de estadisticas que relacionen la asiduidad
y el impacto que han tenido a lo largo de cierto periodo de
tiempo. En base a esos datos, se podrian clasificar en las
distintas categorias de las frecuencias y consecuencias (con
la posibilidad de considerar intervalos).

En la tabla V aparece resumida toda la informacién: la
etiqueta que relaciona cada error, con unas frecuencias y
consecuencias que se han considerado razonables.

TABLE V
ESTIMACION DE LAS FRECUENCIAS Y DE LAS CONSECUENCIAS DE CADA
EVENTO.
Evento | Frecuencias | Consecuencias

El MpP GE

E2 Pos Ex

E3 Ppl Ex

E4 PosPp EEx

E5 Mp P

E6 Ppl PN

E7 PosPp P

La notacién utilizada es la misma que se ha utilizado en la
matriz de riesgo imprecisa de la tabla IV.
Una vez obtenida la informacion de la tabla V, debemos
considerar dicha matriz de riesgo para asignar a cada uno de
los eventos (errores a cuantificar) el valor de riesgo asociado
a los mismos, que vendra dado mediante una caja, recordando
que los nimeros y los intervalos pueden ser vistos como tipos
particulares de cajas. Asi, dichas valoraciones son:
o El. Cruzar un seméforo en dmbar: Cpy = [12, 15, 16, 20].
o E2. Cruzar un semaforo en rojo: Cgo = 15.
o E3. Conducir bajo los efectos de alcohol o de drogas:
Cgrs = [5,10].

« E4. No poner el
[8,10,12,15].

o ES5. Saludar a otros conductores: Cgs = 5.

o E6. Confundirse en el cambio mds de 50 céntimos: Cgg =
[1,2,2,4].

o E7. Confundirse en el cambio menos de 50 céntimos:
Cr7 =12,3].

Si aplicamos cada uno de los 24 érdenes lexicograficos que
hemos introducido, la ordenacién entre los distintos errores se
repite en muchos de ellos, tal como puede verse en la tabla
VL

Notese que tenemos solamente tres ordenaciones posibles.
Aln asi, se observa como la eleccién del orden entre cajas
hace que la clasificacion de los errores varie de un caso a otro.
Si queremos fusionar la informacioén de varios érdenes, para
no dar mds relevancia a unas componentes de la caja que a
otras, podriamos fusionar las distintas ordenaciones mediante
métodos de eleccion. En particular, estudiaremos los métodos
de Borda y de Condorcet. El primero se basa en la posicion y el

intermitente al girar: Cpy =
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TABLE VI
ORDENACIONES OBTENIDAS SEGUN LOS DISTINTOS ORDENES
LEXICOGRAFICOS.
Frec. Ranking

8 Cp1 > Cp2 > Cpa > Cr3 > Ces > Cgr > Cgse
8 Ceg1 > Cg2 > Cpa > Crs > Ces > Cgs > CEr
8 Cr2 > Cp1 > Cra > Cr3 > Crs > Cer > Cre

segundo en la comparacion por pares. En la mayoria de casos
ambos criterios actiian de igual forma, aunque puede haber
casos en los que la ordenacidén sea completamente contraria.
Veremos a continuacién qué es lo que sucede en este ejemplo.

A. Ranking Borda Count

Existen distintos rankings para clasificar 6rdenes, en este
caso nos centraremos en el Ranking de Borda Count.

Para hacer una clasificaciéon de todos estos Ordenes que
hemos sefialado previamente, usaremos dicho ranking para fu-
sionar la informacion dada por todos los 6rdenes considerados.

En este método (ver [20] para mds informacion al respecto),
basta mirar cudl es la frecuencia de cada una de las ordena-
ciones posibles. La representacion usual es la que aparece en la
matriz O, llamada matriz de votacién, en la que el elemento
0;; representa el niimero de veces que a; > a;. A partir de la
matriz O, bastard sumar por filas obteniendo un valor «;. Para
obtener el ranking final basta hacer una clasificacién natural
con los valores «; obtenidos.

La matriz de votacién asociada a este ejemplo puede verse
en la tabla VII.

TABLE VII
MATRIZ DE VOTACION.

o Cp1 | Cr2 | Ce3 | Cps4 | Crs | Crs | CEr
Cg1 0 16 24 24 24 24 24
Cga 8 0 24 24 24 24 24
Cgs 0 0 0 0 24 24 24
Cga 0 0 24 0 24 24 24
Cgs 0 0 0 0 0 24 24
Cpe 0 0 0 0 0 0 8
Cgr 0 0 0 0 0 16 0

La puntuacién que nos ofrece el ranking de Borda se denota

por
n

ap, = E 0ij
i=1

donde el elemento o;; representa la i-ésima fila y la j-ésima
columna de la matriz O.

Asi, las puntuaciones de Borda serian las siguientes: ap, =
136 y ap, =128, ap, =72, ag, = 96, ag, =48, ag, =8,
ap, = 16. Se obtendria asi el ranking segtn el Ranking de
Borda Count por medio de la ordenacién de estos nimeros de
menor a mayor:

Cpe <Cp7 <Cp5 <Cp3 <Cps <Cp2 <Cp1

Vemos en la figura 1 como queda la representacion grafica
si usamos un diagrama de Hasse.

Fig. 1. Ordenes lexicogrificos (ordenacién por Borda).

Observamos como el diagrama tiene un aspecto lineal. El
evento que tiene una mayor importancia y que domina a todos
los demds es el evento que queda en la parte inferior, en este
caso es el evento Cg1, como ya hemos visto.

La interpretacion real de todo lo que se ha comentado
es que, si fuéramos propietarios de esta empresa de auto-
buses donde se producen estos errores, el primer error en
el que nos deberiamos centrar en solucionar seria el Cg.
Este error se corresponde con cruzar un semaforo en ambar.
Habra distintas formas de enfocar este problema y de intentar
encontrar una solucién, como el hecho de realizar cursos de
concienciacion, intentar disminuir las horas que un conductor
estd conduciendo el autobds de continuo, etc. Se pueden
probar distintos métodos, y una vez que la frecuencia con la
que se produce este error disminuya de manera considerable,
podemos intentar solucionar el siguiente evento, que en este
caso es Cgo. Se procederia asi sucesivamente hasta conseguir
que todos los eventos tengan un riesgo bajo o, si esto no es
posible, conseguir disminuirlo de forma considerable.

B. Ranking de Condorcet

En muchas situaciones reales habituales es dificil que
cuando obtenemos distintos rankings y el objetivo es obtener
un ranking consenso se tenga un ranking que aparezca mas
de la mitad de las ocasiones. Para solucionar este problema,
Condorcet se apoya en el concepto de ganador por mayoria.
Condorcet propone un ganador basado en la dominancia del
mismo sobre el resto de candidatos. Si tal candidato existe,
serd elegido el ganador.

Para ver cudl es el ganador de Condorcet (para mds in-
formacién, ver de nuevo [20]), debemos buscar cudl es el
candidato que comparado con el resto es el preferido por el
mayor nimero de votantes. En este ejemplo, deberemos mirar
cudl es el evento que tiene mayor importancia en la mayoria
de los 6rdenes lexicograficos.

Se puede observar que el evento Cg; es elegido como
primero un total de 16 veces sobre 24 posibles clasificaciones.
Como 16 es mas de la mitad del nimero de ordenaciones, este
candidato serd también preferido por pares a todos los demads.
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Ademds en este caso, el tnico evento que le hace una
competencia real a Cg; es Cgo, ya que este es el Gnico que
le supera en alguna ocasién (lo hace en las 8 restantes). Asi
el primer evento sobre el que deberiamos prestar atencidn es
el C'gy. Para ver qué sucede con el resto de la clasificacion,
debemos seguir mirando qué sucede con el resto de pares. El
segundo evento sobre el que nos deberiamos fijar es sobre
Cg2 ya que domina al resto de errores (salvo Cgi, como
hemos mencionado anteriormente) de manera absoluta. De
igual manera Cp4 domina al resto de los eventos (salvo a
Cg1 y a Cgs), estamos en la misma situacion con los eventos
Cgs y Cgs. Todos ellos tienen dominancia sobre los eventos
siguientes, Cg3 tiene dominancia sobre Cgs, Cps Y Cpr ¥ Crs
tiene dominancia sobre los eventos Cgg y Cgr. Finalmente,
Cg7 tiene dominancia sobre el evento Cgg.

Ast, la clasificacion segin Condorcet quedaria de la siguien-
te manera: Cpg < Cp7 < Cps < Cp3 < Cpy <Cp2 < Cg1.En
este caso, la clasificacién de Borda y de Condorcet coinciden,
lo cudl ya habfamos comentado que suele ser habitual. Como
ambos criterios coinciden, tanto el diagrama de Hasse, como la
interpretacion que podemos hacer en este caso es exactamente
la misma que ocurria cuando utilizdbamos el método de
clasificacion de Borda. Notese que el método de Condorcet
no siempre da lugar a una ordenacion de los eventos (puede
haber ciclos).

C. Orden de Xu-Yager

Por otro lado, si consideramos la generalizacion del orden
de Xu-Yager, obtenemos la siguiente clasificacion: Cg1 > xy
Ce2 2xv Cea 2xv Cr3 >xv Ces >xy Ce7 2xv CEe.

En este caso, sucede lo contrario que cuando estudiamos
los 6rdenes lexicograficos, tenemos una unica clasificacion
posible para todos ellos, ya que los dos primeros puntos
de la definicion de <xy son suficientes para determinar la
clasificacion.

Las conclusiones segin este orden coincide que se co-
rresponden con las dadas por la fusiéon de los 6rdenes lexi-
cogréficos, tanto aplicando Borda, como Concordet.

V. CONCLUSIONES

Hemos introducido un concepto que generaliza al de in-
tervalo y nos permite definir una matriz de riesgo bajo im-
precisién, ademds de analizar distintas estructuras de orden
sobre el conjunto de cajas. La nueva matriz generaliza a
la usual, manteniendo coherencia con el significado de las
etiquetas y los colores de la misma, pero permitiendo ademds
hacer consideraciones menos estrictas. Los elementos de dicha
matriz pueden ser ordenados con distintos drdenes totales y en
un ejemplo aplicado vemos como dicha informacion puede ser
fusionada aplicando los métodos de Borda y Concordet, que
en este caso llegan a la misma conclusion.

Es inmediato observar que las cuestiones estudiadas
plantean la necesidad de resolver algunos problemas bastante
directos. Por ejemplo, considerar otro orden en la definicién de
caja, estudiar otros 6rdenes en el conjunto de cajas o utilizar
otros métodos de elecciones para fusionar la ordenacién dada
por distintos criterios.
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Abstract—En esta contribucion se describe la implementacion
de una plataforma web que puede ser integrada en el campus vir-
tual de cualquier centro educativo con el objetivo de centralizar
la gestion de las tareas de toma de decisiones en grupo por parte
de los estudiantes. Debido a la situacién actual propiciada por
el virus COVID-19, muchas clases que antes eran presenciales
se estan impartiendo de forma “‘online”. Por tanto, situaciones
de toma de decisiones relativas al trabajo en grupo que hasta
hace poco se resolvian directamente con un rapido debate en
clase, ahora necesitan llevarse a cabo de forma no presencial.
Dicha plataforma actia como moderador virtual, permitiendo a
los usuarios comunicarse a través de la web con el objetivo de
tomar decisiones consensuadas.

Index Terms—Toma de decisiones en grupo, Consenso, Légica
difusa, Clase online

I. INTRODUCCION

La toma de decisiones es una tarea cotidiana que todos
realizamos a diario. Hay decisiones con poca trascendencia
como la de escoger si tomar café o zumo en el desayuno,
y otras mds relevantes como decidir si cambio de trabajo
o mantengo mi puesto actual. La actividad docente no esta
excluida de este tipo de tareas, tanto desde el punto de vista del
profesor como desde las tareas intrinsecas del estudiante [14].
Decidir qué dia de la semana hacer una tarea, la fecha de un
examen o escoger el tema de un trabajo de entre un conjunto
de posibilidades, son decisiones que se toman frecuentemente
en la universidad.

Asimismo, cuando se trabaja en grupo y la decisién afecta a
varias personas, la situacién empieza a ser mas compleja. Este
caso es conocido como el problema de la toma de decisiones
en grupo. Resolver este problema de forma presencial suele
ser relativamente sencillo; se discuten conjuntamente las difer-
entes alternativas para intentar llegar a una solucién conjunta
que sea “lo mejor para todos”. Sin embargo, analizdndolo
bien, se pueden dar situaciones en las que cada persona

2" Antonio Velez-Estevez
Dept. de Ingenieria Informdtica
Universidad de Cddiz
Cadiz, Espana
antonio.velez@uca.es

3" Manuel Jesiis Cobo Martin
Dept. de Ingenieria Informdtica
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Cadiz, Espana
manueljesus.cobo@uca.es

perteneciente al grupo tenga unos intereses o motivaciones
diferentes, incluso que dé mds importancia a unos criterios de
eleccion diferentes al resto de compaifieros [9].

Cuando los alumnos se encuentran en una de estas situa-
ciones, sumando a la ecuacién que el entorno de estudio no
sea presencial, necesitan herramientas o entornos virtuales que
les ayuden con el proceso de toma de decisiones en grupo,
de forma que no se paralice el trabajo sencillamente porque
no hay consenso en alguna decisiéon que afecta al grupo en
su conjunto. Por el momento, los estudiantes disponen de
herramientas que les facilitan la comunicacién, como foros,
chats, o incluso wikis que fomentan el trabajo colaborativo.
Sin embargo, no tienen ningln soporte para ayudarles a llegar
a acuerdos grupales.

Cuando hablamos de toma de decisiones en grupo, hay
varias formas de llegar a un acuerdo [5]. Desde un punto de
vista mds dominante, en el que habria un lider que toma la
decision y todos los demds le hacen caso (casuistica poco
recomendable en el entorno docente), hasta modelos mas
participativos en los que se hace lo que dice la mayoria
(usando un sistema de votacién en el que la alternativa que
tenga mds votos serd la elegida como decision del grupo). Sin
embargo, tanto la primera como la segunda opcién pueden
dejar a algunos miembros del equipo sin sentirse comodos con
la decisién tomada, creando diferentes bandos en el grupo de
trabajo. Lo ideal seria alcanzar algin tipo de consenso [2].

Dicho esto, el objetivo general de este proyecto es el de
implementar un modelo de consenso usando la l6gica difusa
[1], [11], [12], [22], en el que todos los miembros del grupo se
sientan igualmente representados por la decision tomada. Para
ello, no trataremos el concepto de consenso como un concepto
“crisp” binario (hay consenso total o no lo hay), si no que se
establecerd una medida del nivel de consenso alcanzado por
el grupo en base a sus preferencias individuales (valores entre
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cero y uno), y se establecerd un umbral para considerar si hay
consenso suficiente o la negociacién debe continuar [2], [16],
[17]. De esta forma, usamos es término “Soft consensus” para
referirnos a que el concepto de consenso puede tener diferentes
grados y para poder medir el nivel de consenso que existe en
cada momento en los procesos de toma de decisiones.

Para guiar la negociacién de forma que el proceso sea
convergente (que cada vez las posiciones de los estudiantes
estén mas cerca), se establecera un mecanismo de consenso,
que actuard como moderador virtual enviando un mensaje
personalizado a cada uno de los miembros del grupo para que
relaje un poco sus preferencias individuales en la direccion
que marque el grupo en su conjunto.

De esta forma, tendremos dos procesos diferenciados que
actian conjuntamente de forma secuencial. El proceso de
consenso actda para lograr alcanzar el mdaximo grado de
consenso posible entre las opiniones de los usuarios. Cuando
todos han expresado sus opiniones, el sistema calcula el
grado de consenso existente. Si es satisfactorio, entonces se
aplica el proceso de seleccion de cara a obtener la solucién
final. Por el contrario, si el grado de consenso medio no
es satisfactorio, entonces el sistema insta a los usuarios a
modificar sus opiniones de cara a aumentar la proximidad
en sus preferencias. De esta manera, un proceso de toma de
decisiones puede verse como un proceso dindmico e iterativo
en el que los usuarios van acercado sus posiciones hasta
maximizar el consenso.

En la plataforma quedardn registradas todas las interac-
ciones de los alumnos con el sistema, de forma que el profesor
dispondrda de nuevos indicadores para la evaluacion de la
competencia de trabajo en grupo en caso de ser evaluable
segin el plan docente de cada asignatura [6], [15], [18].

El resto de este documento se estructura de la siguiente
forma. La Seccién 2 muestra el estado del arte. En la Seccién
3 se describe la plataforma implementada. Finalmente, la
Seccién 4 presenta las conclusiones obtenidas y los trabajos
futuros.

II. ESTADO DEL ARTE

En esta seccién vamos a mostrar los conceptos técnicos en
los que se basa el modelo implementado.

A. Conceptos Bdsicos

Formalmente, el problema subyacente a un proceso de toma
de decisiones en grupo se puede definir de la siguiente manera:

Sea X = {x1,z9,...,zp}(n > 1) un conjunto de
alternativas posibles y, teniendo en cuenta los valores de
preferencia, P = {pi1,...,pm}, proporcionados por un
grupo de expertos E = {ey,..., e}, (como deben ordenarse
los valores del conjunto X de mejor a peor alternativa posible?

Por lo general, para resolver el problema, los procesos de
toma de decisiones en grupo siguen los siguientes pasos [7]:
1) Introduccion de preferencias en el sistema: Los ex-
pertos proporcionan sus preferencias al sistema. Las

Alternativas .
Modificar

0000 vo | s

A Ranking de
alternativas

o

Hay
Consenso

. }

L >

Matriz de preferencia
colectiva

Matrices de Preferencia

Fig. 1. Proceso de toma de decisiones con medidas de consenso.

preferencias definen directa o indirectamente un orden
sobre el conjunto de alternativas.

2) Calculo de la matriz colectiva de preferencias: La
informacion de las preferencias proporcionadas por to-
dos los usuarios es agregada en una sola pieza de
informacién. La matriz colectiva representa la media de
las preferencias proporcionadas.

3) Proceso de seleccion de alternativas: Usando la matriz
colectiva y los operadores de seleccion deseados, se
genera el ranking final de las alternativas.

El esquema comentado arriba tiene la desventaja de que no
permite a los usuarios debatir ni llegar a ninglin consenso
antes de tomar la decision final. Para solucionar este problema
se utilizan las medidas de consenso [3]. Usando las matrices
de preferencia de los expertos involucrados en el proceso de
decision, las medidas de consenso permiten determinar si los
expertos opinan de forma parecida o si, por el contrario, tienen
opiniones encontradas. De esta forma, si los expertos no llegan
a un consenso, se les puede permitir que hablen y modifiquen
sus preferencias con el objetivo de que se pongan de acuerdo.
Si, por el contrario, todos estin de acuerdo, se calcula el
ranking de alternativas y el proceso de decisiéon termina. En
la Fig. 1, podemos ver un esquema de como se definiria un
proceso de toma de decisiones con medidas de consenso.

En un proceso de toma de decisiones, los expertos pueden
proporcionar sus preferencias de diferentes formas. El proced-
imiento elegido es muy importante ya que establecera la forma
en que se deben realizar las operaciones necesarias para la
toma de decisiones. Los métodos mds comunes en la literatura
son los siguientes [4], [19]:

o Ordenes de preferencia: El experto ej proporciona sus
preferencias utilizando una lista ordenada de preferencias
OF = {0*(1),...,0"(n)} donde o*(-) se define como
una funcién de permutacién sobre el conjunto de indices
{1,...,n} del conjunto de alternativas. De esta forma, las
alternativas aparecen ordenadas de mejor a peor opcion.
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o Funciones de utilidad: El experto e; comunica sus
preferencias representadas como un conjunto de n valores
de utilidad U* = {u¥,i = 1,...,n}, u} € [0,1] donde
u¥ representa la evaluacién que el experto ey, proporciona
a la alternativa x;.

« Relaciones de preferencia difusa: El experto e; propor-
ciona sus preferencias mediante una relacién P* C X x
X cuya funcién de pertenencia es ppr : X x X — [0,1].
wpr = pfj establece el grado de preferencia de la
alternativa x; sobre x;.

En este trabajo, vamos a utilizar las relaciones de preferen-

cia difusas como formato de representacion de preferencias.

B. Medidas de consenso y proximidad

Para calcular el consenso de un proceso de toma de deci-
siones que utiliza relaciones de preferencia difusa, podemos
seguir los pasos expuestos en el articulo de Mata et al. [13] y
que detallamos a continuacion:

1) Para cada par de expertos e; y e;, calculamos las
matrices de similaridad sm;;. Para ello, aplicamos la
siguiente funcion de similaridad para cada uno de los
valores de preferencia de cada dos expertos:

s(pi®, p) =1 (i = P )
donde s(p;

i pé’“) muestra la similaridad entre las pref-
erencias de las alternativas x; sobre zj, para los expertos
€ ye€;.

2) Una vez calculadas todas las matrices se agregan en una
unica matriz de consenso colectiva. Para ello podemos
utilizar el operador de media:

Smc:¢(smij)7Vi7vjai7éj:i<j (2)

3) Utilizando la matriz de consenso colectiva sm,., pode-
mos calcular tres medidas distintas de consenso, cada
una representativa de un nivel diferente:

Ik

a) Nivel 1, consenso entre pares de alternativas: Cada
valor de la matriz sm,. nos muestra el consenso
alcanzado para cada par de alternativas:

Cplk:lekvl,k:17...,n7/\l7ék (3)

donde n es el nimero de alternativas del proceso
de toma de decisiones.

b) Nivel 2, consenso en cada alternativa: Para cada
alternativa x;, puede calcularse el nivel de con-
senso alcanzado, ca!, usando la matriz cp tal y
como muestra la siguiente expresion:

cal — Sk ik (D™ + ep™))
2(n—1)
¢) Nivel 3, consenso general del proceso: Finalmente,
podemos agregar los valores de consenso de cada
una de las alternativas para obtener un valor de
consenso global:

4)

er = anl/n &)
=1

También es interesante calcular la distancia que hay entre las
preferencias de cada uno de los expertos a la matriz colectiva
global. De esta forma, podemos ver si las opiniones del experto
son similares o no a la de los demds y en que grado. Estas
medidas de proximidad [10], al igual que las de consenso, se
pueden calcular en tres niveles distintos:
1) Nivel 1, proximidad en cada par de alternativas: El nivel
de proximidad para cada par de alternativas (x;, zx), ppi,
del experto e;, puede calcularse de la siguiente forma:

ot = s P ©)

donde p. es la matriz colectiva.

2) Nivel 2, proximidad para cada alternativa: De manera
analoga que en el consenso, podemos calcular el nivel
de proximidad del experto a cada una de las alternativas
mediante la siguiente expresion:

L ke k (o0 + oo
pa; =
i 2 (n—1)

3) Nivel 3, Proximidad general: El nivel de proximidad
general de las preferencias del experto e; puede calcu-
larse usando la siguiente expresion:

pa;

pri==—"= ®)

Estas medidas serdn utiles a la hora de identificar aquellos
usuarios mas alejados de la opinién colectiva del grupo, y
que por tanto, deberian acercar posturas con el mismo para
maximizar el grado de consenso.

)

C. Métodos de agregacion de informacion

Para calcular la matriz colectiva de preferencias es necesario
agregar la informacioén proporcionada por los expertos. Para
ello debemos usar algin operador de agregacion. A contin-
uacién expondremos algunos operadores que pueden usarse
para completar esta tarea:

« ¢l operador de media.

« ¢l de media ponderada.

o el operador de media de pesos ordenados (OWA) [20],

[21].

Para calcular la matriz de preferencias colectiva utilizando

el operador de media podemos utilizar la siguiente expresion:

pL -+ DY

Cij =
1) m

&)

D. Operadores de seleccion

Para el proceso de seleccion, se utilizan los operadores de
seleccion. Este tipo de operadores son capaces de obtener un
ranking de alternativas a partir de una matriz colectiva de
preferencias. Dos ejemplos de este tipo de operadores son los
operadores de dominancia y no dominancia, GDD y GNDD
respectivamente [8]. El operador GDD calcula el grado en
que una alternativa domina a otra mientras que el de no
dominancia se encarga de determinar qué alternativas no son
dominadas por otras.
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El operador GDD se calcula mediante la siguiente ex-
presion:

GDD; = ¢(ci1, Cizy - -+ Ci(i—1), Ci(it1)s - -, Cin)  (10)

donde c¢ es la matriz de preferencia colectiva y ¢ representa
el operador de media.

El operador GNDD puede calcularse utilizando la siguiente
expresion:

GNDD; = ¢(ci;, 5y - - - Cli—1)is Clit1)ir - - - sei)  (1D)

donde

¢j; = max{cj; — ¢;j, 1}

III. PLATAFORMA DE AYUDA A LA TOMA DE DECISIONES
GRUPALES EN EL TRABAJO DE CLASE ONLINE

En esta seccion vamos a mostrar el funcionamiento de la
plataforma desarrollada.

A. Tecnologias empleadas para el desarrollo de la plataforma

A nivel tecnoldgico, la plataforma ha sido desarrollada
teniendo como cimiento de programacion el lenguaje PHP 8y,
a mas alto nivel, se ha utilizado el framework de aplicaciones
web PHP Laravel.

Dicha plataforma cuenta entre sus dependencias con una
extension de seguridad disefiada por el propio ambito de
Laravel llamado Laravel JetStream. Dicha extensién nos ofrece
una funcionalidad complementaria para la autenticacién de
usuarios y todo el conjunto referente a su gestion dentro de la
plataforma. Incluyéndose el uso de los “teams” para los roles
de los usuarios.

Para el envio de emails a los usuarios con la informacién
sobre las decisiones a tomar o ya tomadas, se ha utilizado
la dependencia PHPMailer por un servidor SMTP (Simple
Mail Transfer Protocol) con un correo previamente definido
y adecuado para esta envergadura.

El estilo de la péagina viene predefinido por una base de
Boostrap 5 con modificaciones e inclusién de clases de CSS
propias.

La plataforma se basa en un modelo de tres capas, definida
como Modelo-Vista-Controlador (MVC). La base de datos que
utiliza el modelo es una base de datos relacional MySQL.

B. Ejemplo de uso y funcionalidad ofrecida por la Plataforma

En la pantalla inicial (ver Fig. 2), se puede configurar un
nuevo proceso de decisidn en grupo ajustando las alternativas
y los expertos, que son divididos en diferentes roles segtin los
tipos de decisiones que van a tomar. Una vez configurado el
proceso, los usuarios pueden proceder a insertar sus preferen-
cias individuales (ver Fig.3) .

Cuando el usuario se identifica en la plataforma, tendrd una
seccién llamada “Mis Participaciones” donde puede ver todos
los procesos de decisiéon pendientes en los que se ha visto
involucrado y el estado en el que se encuentran.

Otra de las operaciones que ofrece la plataforma es el
panel de administracién (ver Fig.4). El administrador de cada

UCA

Pagina Web Oficial de la UCA

DG UCA

Derechos de la UCA

Fig. 2. Pantalla inicial

Alternativa Juan Antonio frente alternativa Pepe Salas
Seleccione:
Alternativa Juan Antonio frente alternativa Maria Zarza
= ~ Seleccione:
:“ Alternativa Pepe Salas frente alternativa Juan Antonio
Titulo: Parte Eléctrica
Edificio Grupo 1

Seleccione:

Alternativa Pepe Salas frente alternativa Marfa Zarza
Seleccione:

Alternativa Marfa Zarza frente alternativa Juan Antonio

. Seleccione:

Deseripcién: Vamos a decidir quien

va a realizar la parte eléctrica del

edificio del grupo 1 puesto que es
la més complicada.

Alternativa Maria Zarza frente alternativa Pepe Salas

Seleccione:

Estado: Valoracion Inicial

Fig. 3. Insercién de preferencias sobre las alternativas

proceso podra ver qué usuarios han registrado sus preferencias,
el estado de la decision y en el caso de que el nivel de consenso
sea suficiente, la alternativa escogida como mejor opcidn.

Mis proyectos administrados

Titulo Proyecto ecto FechaFin  VotadosYa/N° encuestados  N° Alternativas  Consenso Estado,

Donde Vi Decision 20210412 13 3 Barcelona

20210415 s 3

20210421 03 3

20210425 s 2

20210425 0/3 2
20210425 0/0 2

20210425 173

Manual Drupsl

Derechos de la UCA

Fig. 4. Panel de Administraciéon

Que eferccio hacer del manual de drupsl

Una vez que todos los usuarios han insertado sus pref-
erencias, al administrador se le enviard un mensaje con los
resultados obtenidos (ver Fig.5) y, en caso de no alcanzar
el nivel de consenso requerido, tendrd la opcién de iniciar
una nueva ronda de valoraciones de preferencias, mostrando
previamente a cada experto, no solo el consenso alcanzado a
nivel de alternativas, sino también la proximidad con respecto
a la opinién colectiva para que vea si es necesario actualizar
sus preferencias (y en qué direccién) como mecanismo de
retroalimentacién que trate de conseguir que el proceso sea
convergente y en cada iteracion el nivel de consenso sea mayor
que en la anterior.

En cambio, si la accién escogida es “Terminar Valoracion”,
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debido a que el nivel de consenso ya es satisfactorio, el
proyecto pasard a un estado de “Valoracién Final” donde ya
los expertos tendrdn en el apartado “Decisiones Tomadas” un
mensaje con el resultado sobre la decision final consensuada.

Datos del Proyecto con identificador : 4

Nombre Estado

el Tema 1 de P Iniciado.

Tema Trabajo Tems 1 PW

e va a trata el tabajo d programacién

Resultados de las Alternativas
Resuitad
6000%
5000%

5000%

Fig. 5. Estado actual del proceso de toma de decisiones

Finalmente, en la Fig. 6, se puede observar la versién de la
aplicacién moévil de la plataforma funcionando bajo el sistema
operativo Android.

N
\\ 4
o :é‘/

UCA

Pagina Web Oficial de la
UCA

Web disefiada para tomar decisiones grupales

TDG UCA

Nueva Decision
Comenzar nueva decision
grupal
Crear
Decisiones tomadas sobre Proyectos

Ver las decisiones tomadas
sobre proyectos ya iniciados.

I - EE——

Fig. 6. Aplicaciéon Android

IV. CONCLUSIONES Y TRABAJOS FUTUROS

En esta contribucion se ha presentado una plataforma web
de toma de decisiones en grupo, orientada al caso préctico del
trabajo grupal en clase en un entorno docente no presencial
propiciado por el Covid-19. De esta manera, la plataforma
creada actia como moderador virtual, ayudando a tomar
decisiones sensatas para todos los participantes.

Como trabajos futuros, se propone la extension de la
plataforma para aceptar diferentes estructuras de repre-
sentacion de preferencias. También se plantea la posibilidad
de implementar un sistema de control de consistencia y de

estimacion de preferencias no rellenas. Por tltimo, se desea
implementar una plataforma dindmica, que permita que los
elementos del problema puedan cambiar una vez comenzado
el proceso de negociacién.
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Resumen—En los ultimos anos hemos observado avances
enormes en el area del Aprendizaje Automatico, especialmente
a través del uso de Redes Neuronales Profundas. Uno de los
ejemplos mas relevantes es la clasificacion de imagenes, donde
las Redes Neuronales Convolucionales han demostrado ser una
herramienta muy precisa. Aunque las funciones de agregacion,
como los operadores OWA, ya han sido empleadas en com-
binacion con redes neuronales, en este trabajo proponemos y
exploramos una nueva forma de integrar operadores OWA en
redes neuronales. Para ello, introducimos los operadores OWA
dentro de una nueva capa en una red neuronal convolucional.
Realizamos varios experimentos introduciendo la capa en una
red basada en VGG-13 y mostramos como la capa introduce
nuevo conocimiento en la red.

Index Terms—Redes Neuronales, Redes Neuronales Convolu-
cionales, aprendizaje profundo, operadores OWA

I. INTRODUCCION

Uno de los problemas mas estudiados en aprendizaje au-
tomatico es el de clasificacién supervisada de imagenes [1],
[2]. En este tipo de problemas intentamos desarrollar un mo-
delo matemadtico que aprende sobre un conjunto de imagenes
etiquetadas, y que después sea capaz de etiquetar nuevos
ejemplos apropiadamente. Actualmente, la técnica mas comun
es el uso de redes neuronales convolucionales (CNNs), el foco
de atencién de este trabajo.

Las medidas ponderadas ordenadas (OWA) [3], [4] son
un tipo de agregacion paramétrica comuinmente utilizada en
el campo del aprendizaje automdtico y la logica difusa. En
trabajos previos, los operadores OWA han sido integrados en
aprendizaje profundo principalmente como un método para
combinar las salidas de diferentes clasificadores (ensembles)
[5], [6], [7], [8]. También han sido empleados con resultados
interesantes en las capas de pooling de las CNNs [9].

A diferencia de los trabajos anteriores, intentamos emplear
operadores OWA en las capas internas de una CNN, con
el objetivo de incrementar la informacién disponible para la
siguiente capa, afiadiendo muy pocos pardmetros a la red.
Nuestro objetivo es generar informacion sin coste en la red,
obteniendo los mapas de caracteristicas en un punto de la
red y afadiendo informacién derivada que seria dificil de

Este trabajo ha sido financiado por el Servicio de Investigacion de la Uni-
versidad Publica de Navarra bajo el proyecto PJUPNA1926, y por el MICIN
de Espana (PID2019-108392GB-100 / AEI / 10.13039/501100011033).

conseguir a través de operadores convolucionales normales.
Para esto, proponemos implementar una capa de agregaciones
OWA a nivel de canal, que aprenda los pesos de varios
operadores junto con los pardmetros de la red, y los aplique
para afiadir mapas de caracteristicas virtuales a la informacién
ya existente.

Para comprobar el funcionamiento de esta propuesta hemos
considerado una arquitectura base de tipo VGG13 [10], y
hemos insertado capas OWA en ella. Probamos diferentes
configuraciones de la capa sobre los datasets de clasificacion
de imdgenes CIFAR10 y CIFAR100 [11].

El resto del trabajo estd organizado de la siguiente manera.
La Seccién II describe la literatura relevante a nuestra pro-
puesta. La Seccién III revisa algunos conceptos preliminares
sobre OWA y CNN. Después, la Seccion IV especifica nuestra
metodologia para la insercién de la capa OWA y explica el
funcionamiento interno de esta. La Seccién V presenta los
experimentos que hemos disefiado para probar la capa y los
detalles de implementaciéon. A continuacion, la Seccién VI
recopilamos los resultados experimentales y los analizamos.
Finalmente, la Seccién VII concluye este trabajo y propone
algunas lineas de trabajo futuras.

II. LITERATURA RELACIONADA

En la literatura se han explorado previamente varias maneras
de combinar operadores OWA y redes neuronales [5], [6], [7],
[8], [9]. La manera mds habitual es emplear OWAs sobre la
salida de las redes, agregando sus resultados [5], [6], [7], [8].
La otra técnica habitual es la sustitucion de las agregaciones
en las capas de pooling por OWAs [9].

El empleo de operaciones de agregacion basadas en medidas
difusas [12], como las integrales Choquet y Sugeno (de las
cuales los operadores OWA son un caso particular), para
agregar ensembles de redes neuronales ha sido estudiado en
multiples ocasiones recientemente [5], [6], [7], [8]. En estos
sistemas, se entrenan una serie de clasificadores independien-
temente, y se emplean operadores de agregacion sobre los
resultados. En este paso final es donde se pueden emplear
operadores OWA y otros operadores de agregacién basados
en medidas difusas.

Los operadores basados en medidas difusas también se
han utilizado como operadores de reduccion en las capas de
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pooling de CNNs [9]. En este caso, las agregaciones habituales
empleadas en las capas de pooling se reemplazan directamente
por otros operadores. La idea es obtener representaciones
mds fieles de la informacién original tras la reduccién de
dimensionalidad que se da en estas capas.

Finalmente, la inspiracion principal para este trabajo se
encuentra en [13], donde los autores proponen la creacién de lo
que ellos denominan una “Capa Difusa”. Esta capa, insertada
en diferentes puntos de una CNN, realiza seis operaciones
OWA predeterminadas (mdximo, minimo, maximo suavizado,
minimo suavizado, media y un operador aleatorio) sobre los
canales de la red, ordenados en base a una medida de la
entropia de cada canal. Mientras que los autores aplicaban
su método a un problema de segmentacion de imagenes [14],
experimentalmente hemos comprobado que intentar trasladar
la técnica a problemas generales de clasificacién de imagenes
no obtenia buenos resultados. En nuestra opinién, en el caso
de las redes empleadas para clasificacion, existe demasiada
informacion codificada en el orden de los mapas de carac-
teristicas, que se pierde al aplicar los operadores OWA. Por
tanto, diseflamos nuestra propuesta con la idea de aumentar la
informacion en la red, en vez de reemplazarla, concatenando
los nuevos mapas de caracteristicas a los ya presentes. De
esta manera, empleamos la salida de nuestra capa OWA como
un complemento a la salida de las convoluciones estidndar,
proporcionando a las siguientes capas informacién que seria
de otra forma dificil de obtener (informacién global a partir
de las métricas del canal). Ademads, incluimos los pesos de los
operadores OWA como pardmetros de la red, aprendiéndolos
en vez de mantenerlos fijos como en [13].

III. PRELIMINARES
III-A.  Operadores OWA

Los operadores OWA fueron propuestos inicialmente por
Yager [3]. Estos operadores son mapeos F': R™ — R ba-
sados en una coleccién de pesos W = [wy,...,wy], con la
condicién de w; € [0,1] paratodo i =1,...,ny > =1,
y definidos como:

F(al,...,an):ijbj (1)
Jj=1

donde b; representa el j-ésimo elemento mds grande de a;.

Algunos ejemplos notables de operadores OWA serian el
maximo (W =[1,0,...,0]), minimo (W =10,...,0,1]), y
la media aritmética (W = [1 1]).

III-B. Redes Neuronales Convolucionales Profundas

Las redes neuronales convolucionales (CNNs) modifican
la arquitectura habitual de las redes neuronales para espe-
cializarse en informacién espacial [15]. El uso mds comiin,
el procesamiento de imagenes, supone reconocer las relacio-
nes 2D espaciales de la informacién de entrada, y emplear
operaciones convolucionales que s6lo toman en consideracién
pixeles vecinos de la imagen. Esto también supone perder algo
de informacién de gran escala de la imagen, al s6lo trabajarse
con pixeles cercanos.

Otra importante caracteristica de las CNNs son las capas
de pooling [1]. Estas capas, como las convolucionales, re-
conocen la estructura espacial de las imdgenes y mapas de
caracteristicas derivados, pero en vez de agregar mapas (como
las convolucionales) operan sobre un solo canal, resumiendo
la informacién por bloques y reduciendo el tamafio de cada
mapa de caracteristicas independientemente.

Algunas arquitecturas de CNN conocidas que han sido
desarrolladas para clasificaciéon de imdgenes son LeNet [16],
la familia VGG [10] y ResNet [2]. En este trabajo nos
centraremos en VGG, pero nuestra metodologia podria ser
extrapolada a casi cualquier arquitectura CNN.

IV. METODOLOG{A
IV-A.  Capa OWA

Nuestra capa OWA propuesta funcionard tomando una en-
trada de IV imdgenes, con una resolucién de I filas por J co-
lumnas y C},, canales de profundidad (mapas de caracteristicas
de entrada), y agregando C'; nuevos canales a los originales,
con C¢ € [0,C;,]. La salida serd de N imdgenes con la
misma resolucién I x J, pero Coyy = Cjyy, + Cy canales de
profundidad, Cy,; > C};,. Para generar esos C'y nuevos mapas
de caracteristicas, aplicaremos C'y operadores OWA sobre los
canales de entrada. Estos operadores OWA compartirdn la
misma funcién de ordenacién, que utilizard métricas calcu-
ladas por canal para reordenarlos. Después, cada uno de estos
operadores OWA generard un nuevo mapa de caracteristicas
como una combinacion lineal de los canales ordenados, a partir
de un vector de pesos propio. Estos vectores de pesos, uno
por cada uno de los C'y OWAs aprendidos, se aprenderdn y
actualizardn como parametros de la red. Profundizamos mas
sobre esto en la Seccién IV-C. La arquitectura general de la
capa se muestra en la Figura 1.

IV-B. Ordenacion de canales

Al decidir trabajar por canal (y no por pixel), resulta vital
definir precisamente la funcién de ordenacidn, esto es, en base
a que métrica ordenaremos los canales. Dado un canal X de
tamafio I x .J, consideramos las siguientes métricas:

» Entropia del canal. Empleamos la férmula de entropia de

Shannon [17] aplicada a los valores de todos los pixeles
del canal,

I J
H(X) == zilogay 2
i=1 j=1
Como esta funcién estd diseflada para trabajar sobre
vectores de elementos en el rango x;; € [0,1] con
Zle ijl Zij 1, primero aplicamos la funcién
softmax a la entrada X para normalizar el mapa de
caracteristicas,

T
eXkl

T J .
>ic1 Zj:l e

Intuitivamente, podemos entender la entropia como una
medida de desorden, de la cantidad de informacion

(€)

Softmax(zg;) =
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Figura 1. Propuesta de estructura para la capa OWA.

codificada en un canal. Un valor mds elevado de entropia
se corresponde con mds uniformidad en los valores de en-
trada, mientras que un valor mds pequefio se corresponde
con un mayor contraste e informacién en la entrada.

= Suma de valores. Consideramos también la suma simple
de activaciones en el canal,

I J
SX) =" ai (4)

i=1 j=1

» Variacion total [18]. Considerando las caracteristicas
espaciales de la imagen, calculamos las diferencias entre
cada pixel y su vecindad, tanto horizontal como vertical-
mente, y sumamos el valor absoluto de las diferencias en
la imagen.

I J
TVy(X) =D > |wij — i1 ®)

i=2 j=1

I J
TVi(X) = Z Z i ; — a4 5-1] (6)

i=1 j=2
TV(X) = TVy(X) + TVi(X) (7)

La Variaciéon Total (TV), como se define en [18], es

una medida que nos dice cudnta variacién existe entre

los pixeles de una imagen y sus vecinos. Esta medida

serd elevada para imagenes con muchos bordes nitidos y

contraste elevado, y baja para imidgenes muy uniformes.
» Mediana de los valores. Un operador OWA clésico,

M(X) = median(z11,...,217) (8)

donde el operador mediana devuelve el ceil(I - J/2)-
ésimo elemento mds grande de X si [ - J es impar o la
media aritmética de los I-.J/2-ésimo y I-.J/2+ 1-ésimos
elementos mds grandes de X, si I - J es par.

» Mdximo de los valores. En este contexto, el valor del
pixel mds activado del canal,

MAX(X) = méx(x11,...,277) 9)

Hemos considerado, ademas, dos métodos de ordenacion de
referencia que no se basan en los valores del canal:

= No ordenacion. Mantenemos los canales en el orden que

vienen, convirtiendo el OWA en una agregacion estandar.

» Ordenacion aleatoria. Esta ordenacién nos permitird

introducir ruido equivalente al resultado de aplicar la
capa OWA, permitiéndonos descartar que se obtengan
mejoras en la precisiéon debido a fenémenos de tipo
regularizacion.

IV-C. Agregacion ponderada

Con los canales de entrada ya ordenados, realizaremos una
agregacion ponderada, empleando C'y vectores de pesos (uno
por OWA), cada uno de ellos con un peso por cada canal de
entrada (Cj, en total). En nuestra propuesta, los inicializare-
mos de forma aleatoria siguiendo una distribucién U(0, 1).
Trataremos estos pesos como parametros de la red, y por
tanto se aprenderdn a través del método de retropropagacién
habitual.

Estos pesos no se encuentran directamente restringidos, y
conforme son aprendidos pueden llegar a tomar cualquier
valor. Para ajustarnos a la definicion de OWA dada en la
Seccién III-A, donde para cada w;,i € 1,...,Cy, requerimos
w; € [0,1] y Zgl w; = 1, aplicamos algunas transforma-
ciones antes de realizar la agregacion. Primero, empleamos
una funcién ReLU para convertir los pesos negativos en 0, y
después normalizamos dividiendo el vector por la suma de sus
valores, de forma que sumen en total 1.

ReLU(z) = max(z,0) (10)
RBLU(JJ])

= = 11

ST ReLU (1) (b

El resultado es un vector de pesos OWA correcto que puede
ser aplicado directamente a los canales.

V. MARCO EXPERIMENTAL
V-A. Datasets

Como datasets de pruebas hemos escogido CIFARIO y
CIFAR100 [11]. Ambos son datasets de clasificacion de
imagenes muy conocidos, compuestos cada uno por 60.000
imégenes en color en una resolucién de 32x32 pixeles. En
el caso de CIFARIO se reparten en 10 clases balanceadas
y facilmente distinguibles (6.000 por clase), mientras que
CIFARI100 etiqueta sus imagenes en 100 clases (600 ejemplos
por clase). Ambos distribuyen las imdgenes en un conjunto de
entrenamiento de 50.000 imagenes y un conjunto de prueba
de 10.000, balanceados por clase.
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La eleccidn de estos datasets estd motivada por el nimero de
pruebas de configuraciones diferentes que queremos realizar.
Estos datasets de pequefio tamafio nos facilitan realizar mualti-
ples repeticiones y entrenamientos por cada configuracion, de
manera que podamos obtener resultados promediados estables.

V-B. Arguitectura

Decidimos trabajar con una arquitectura de referencia de
tipo VGG [10]. Se trata de una arquitectura relativamente
simple pero con muy buenos resultados, y el entrenamiento
es lo suficientemente rdpido como para realizar multiples re-
peticiones. Al tener una estructura lineal, nos ofrece multiples
puntos de insercién para nuestra capa OWA sobre los que
evaluar sus caracteristicas.

De las posibles configuraciones de esta familia hemos
seleccionado la VGG13, que experimentalmente nos ofrece
buenos resultados para CIFAR sin ser excesivamente costosa
de entrenar.

La red en particular consta de 10 capas convolucionales,
compuestas por una convolucién, una capa de normalizacién
por lotes y una activacion no lineal ReL.U, seguidas por un
clasificador final. Estas 10 capas se reparten en 5 bloques,
cada uno de ellos delimitado por capas MaxPool que reducen
la resolucién del mapa de caracteristicas por la mitad. El cla-
sificador final se compone de 3 capas densamente conectadas
en la estructura original, pero en nuestro caso lo reducimos a
una sola, considerando la pequefa resolucién de las imagenes
de CIFAR, siguiendo el ejemplo de [19].

Para nuestros experimentos, consideraremos como poten-
ciales puntos de inserciéon de capas OWA los puntos justo
antes de cada capa convolucional, a excepcion de la primera,
resultando en 9 posibles puntos de insercion. La red de
referencia serd siempre la original sin ninguna insercién, y
introduciremos capas en los puntos de insercion para generar
las configuraciones de estudio. Esta estructura se refleja en la
Tabla I.

V-C. Detalles de Implementacion

La implementacion de estos experimentos se ha realizado
en PyTorch 1.3.1 y Fastai 1.0.58.

Para todas las configuraciones empleamos los mismos hi-
perpardmetros, en concreto, un ratio de aprendizaje maximo
de le™2 con una politica de entrenamiento lcycle [20].
Este parametro se ha determinado empleando la herramienta
Ir_finder de Fastai, optimizandolo para la red de referencia (sin
capas OWA). Para todos los experimentos se ha empleado un
tamafio de lote de 1024.

Adicionalmente hemos empleado aumentacién de datos,
siguiendo el ejemplo de [21]. En particular, hemos realizado
volteos horizontales con una probabilidad de 0.5, y padding
de 4 pixeles (empleado espejado para rellenar las regiones
externas) seguido de un recorte aleatorio a la resolucién
original (32 x 32).

V-D. Evaluacion

Para la evaluacién de los resultados de los experimentos,
optamos por repetir el entrenamiento de cada configuracién

Tabla I
ARQUITECTURA DE LA RED*.

Nombre Tamaiio de nicleo  Paso  Tamafo de salida
input_data - - 32 x32x%x3

convl_1 3x3 1 32 x 32 X 64

OWA; - - 32 x 32 x (644 Cy)
convl_2 3x3 1 32 x 32 X 64
maxpool 2 X2 2 16 x 16 x 64

OWA - - 16 x 16 x (64 + Cy)
conv2_1 3x3 1 16 x 16 x 128
OWA3 - - 16 x 16 x (128 + Cy)
conv2_2 3x3 1 16 x 16 x 128
maxpool 2x2 2 8 x 8 x 128

OWA,4 - - 8 x 8 x (128 + Cy)
conv3_1 3x3 1 8 X 8 x 256

OWA5 - - 8 X 8 x (256 + Cy)
conv3_2 3x3 1 8 X 8 X 256

maxpool 2% 2 2 4 x 4 x 256

OWAg - - 4 x4 x (2564 Cy)
conv4_1 3x3 1 4 x4 x 512

OWA~7 - - 4 x4x (5124 Cy)
conv4_2 3x3 1 4 x4 x 512

maxpool 2x2 2 2 x 2 x 512

OWAg - - 2 x 2 x (512 + Cy)
conv5_1 3x3 1 2 X 2x512

OWAo - - 2x2x (5124 Cy)
conv5_2 3x3 1 2 X 2 x 512

maxpool 2 X2 2 1x1x512

flatten - - 512

linear - - 10

* Las capas marcadas como OWA_, son los posibles puntos de insercién para las nuevas
capas OWA.

50 veces, cada una de ellas de cero (reinicializando la red)
y entrenando por 30 épocas. De estos resultados recogemos
la precision en test final de cada repeticién, y empleamos la
media y desviacion estdndar de esas precisiones como medidas
principales. Para comparar los resultados de las configuracio-
nes modificadas respecto de la original empleamos el test no
paramétrico de Mann-Whitney U [22]. Calculamos este test
considerando como hipétesis nula que la referencia obtiene
precisiones mayores o iguales que la versiéon modificada.

La referencia es siempre una versién sin modificar de la
red. En el tercer experimento, ademds, entrenamos la red
con dos ordenaciones de canal de referencia (no ordenarlos
y ordenarlos aleatoriamente).

V-E.  Configuracion de los experimentos

Dada la gran cantidad de combinaciones de parametros po-
sibles hemos dividido el trabajo en 3 experimentos principales.
Cada experimento pretende determinar uno de los principales
parametros de la capa OWA: posicién, cantidad de operadores
y métrica de orden. Cada experimento se repite con CIFAR10
y con CIFARI100.

1. Posicién de la capa. En el primer experimento, man-

tenemos constante el nimero de operadores aprendidos
(C; = 16) y generamos configuraciones para todas las
posiciones de capa posibles (OWA; a OWAy). Como
métrica de orden consideramos la suma de activaciones.
2. Nuamero de operadores. En el segundo experimento pro-
bamos una variedad de nimeros de operadores (Cy = 4,



7= XIX Conferencia de la Asociacién Espafiola para la Inteligencia Artificial

349

Cr=8,C; =16y C; = 32) para las dos mejores po-
siciones del experimento anterior, ambas con las mismas
métricas.

3. Métrica de ordenacién. En el tercer experimento nos
centramos en las métricas de orden, fijando las mejores
configuraciones de posicién y nimero de operadores
del experimento anterior. En este experimento, ademas,
estudiamos las matrices de pesos de los operadores OWA
aprendidos en la red.

VI. ESTUDIO EXPERIMENTAL
VI-A. Posiciéon de la capa

Los resultados del primer experimento se recogen en la Ta-
bla II. Podemos observar como existe una fuerte dependencia
entre el punto de insercién y la precision obtenida. En el caso
de CIFAR10 observamos como todos los puntos de insercién
entre OWA; y OWAj; obtienen una mejora de precision
estadisticamente significativa respecto de la media, con el
mejor en OWA4. En CIFAR100 podemos observar resultados
similares, con las mejores configuraciones en OWA3 y OWA5;.

Sospechamos que esta tendencia a obtener mejores resulta-
dos en las capas inferiores estd ligada al tamafio de imagen
muy reducido de nuestro dataset, de 32 x 32 pixeles. Esto,
en combinacion con la arquitectura VGG, hace que las capas
superiores tengan tamafios de imagen realmente pequefos
(4 x4 y menores a partir de OWAg), haciendo que las métricas
de capa no aporten informacion respecto de las convoluciones
estandar.

Tabla 1T
RESULTADOS EN FUNCION DEL PUNTO DE INSERCION.

Capa CIFARI0 prec. CIFARI100 prec.
referencia  92.44 £ 0.17 69.74 £ 0.27
OWA, 92.40 + 0.19 69.85 + 0.29°
OWA 92.53 £0.19°  69.87 £ 0.32°
OWA3 92.52 +£0.18°  69.97 +0.27°
OWA4 92.55 +0.18°  69.95 + 0.24°
OWA5 92.51 £0.17°*  69.97 £ 0.28°
OWAg 92.45 £ 0.20 69.75 £ 0.33
OWA~; 92.44 +0.17 69.82 + 0.25
OWAg 92.44 +0.18 69.79 £ 0.30
OWAg 92.49 £+ 0.20 69.78 £ 0.25

Los resultados sefialados con ® mejoran la referencia con p-valor < 0.05.

VI-B. Nimero de operadores

Los resultados del segundo experimento se resumen en la
Tabla III. A partir de los resultados del primer experimento,
decidimos seguir explorando los puntos de insercién en OWA3
y OWA, y mantenemos la métrica de ordenacién de suma de
activaciones.

En estos resultados observamos una cierta tendencia a favo-
recer mayores nimeros de operadores aprendidos, pero sin una
variacién particularmente significativa. Todos los resultados
para Cy = 8 y Cy = 16, en ambos datasets, obtienen
resultados estadisticamente significativos con p-valor < 0.05.

Tabla III
RESULTADOS SEGUN NUMERO DE OPERADORES.

Capa Cy CIFARIO prec. CIFAR100 prec.
referencia - 92.44 + 0.17 69.74 + 0.27
OWA3 4 92.494+0.19 69.82 + 0.32
8 92.51 £ 0.21° 69.88 4+ 0.26°
16  92.524+0.18°  69.97 +0.27°
32 92.57 +0.16° 69.82 + 0.28
OWA4 4 92.47 + 0.17 69.81 + 0.33
8 92.50 + 0.19° 69.91 + 0.31°
16 92.55 £ 0.18° 69.95 + 0.24°
32 92.51 £0.17° 69.90 4 0.29°

Los resultados sefialados con ® mejoran la referencia con p-valor < 0.05.

VI-C. Métricas de orden

Los resultados del tercer experimento se recogen en la Tabla
IV. En este experimento se han empleado, en base a los
resultados de los anteriores experimentos, el punto de insercién
OWA3 con Cy = 32 para CIFARIO y el punto OWA3 con
Cy = 16 para CIFAR100. Podemos observar que la suma
de activaciones obtiene mejores resultados de precisién que el
resto de métricas, seguida de cerca por la variacion total, tanto
en CIFAR10 como en CIFAR100.

Las dos medidas de referencia, la ordenacidn aleatoria y la
no ordenacién de canales, obtienen resultados similares a la
referencia sin capa OWA, de forma consistente con la hipétesis
de que la capa OWA introduce nueva informacién a través de
la funcién de ordenacion.

Tabla IV
RESULTADOS SEGUN LA METRICA DE ORDEN.

Orden CIFARI10 prec. CIFAR100 prec.
referencia 92.44 + 0.17 69.74 + 0.27
activ_sum 92.57 £ 0.16°  69.97 + 0.27°
total_var 92.55 4 0.19° 69.91 4+ 0.24°
max_activ 92.51 + 0.21° 69.74 + 0.28
median_activ 92.48 +0.19 69.84 + 0.31
entropy 92.47 + 0.16 69.80 + 0.25
random 92.45 + 0.17 69.76 + 0.26
no_sorting 92.43 + 0.19 69.79 + 0.30

Los resultados sefialados con ® mejoran la referencia con p-valor < 0.05.

VI-D. Matrices de pesos

Resulta de especial interés estudiar las matrices de pesos
obtenidas de los entrenamientos. En la Figura 2 mostramos 8
ejemplos de matrices de pesos de las capas OWA aprendidas,
todas ellas sobre la misma configuracién base (insercién en
OWA,, Cy = 8) y variando la métrica de orden. El tamafio
de estas matrices es de 8 x 64, siendo C'y = 8 el niimero de
operadores aprendidos (cada uno representado en una linea de
la imagen) y C;,, = 64 el nimero de pesos de cada operador,
correspondientes a los canales de entrada a capa.

Podemos apreciar como el sistema converge a patrones
bastante claros para la mayor parte de las agregaciones. Estos
patrones se corresponden con operaciones de tipo maximo y
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minimo suavizados, donde la mayor parte del peso se reparte
en las capas de entrada con mayor o menor valor de métrica
asociados.

En concreto, se observa que en general el sistema converge
a operaciones de tipo minimo suavizado para todos los ope-
radores excepto la entropia, aunque en todos los casos con
algin operador de tipo maximo suavizado intercalado. En el
caso de la variacion total y la suma de activaciones se observan
operadores con valores mds concentrados, mientras que para
la mediana los operadores se acercan mds a una media. En el
caso de la no ordenacién y la ordenacién aleatoria, como es
de esperar, no se aprecian patrones claros.

0 10 20 20 40 50 60

[
1
2
3
2
5
B
7

(e) No ordenacion

Nouawnro

°
8
&
g

(f) Ordenacion aleatoria

Figura 2. Operadores OWA aprendidos por la capa propuesta segtin diferentes
métricas de orden. El eje vertical se corresponde con los diferentes operadores
aprendidos, mientras que el horizontal con los pesos de los canales de entrada.

VII. CONCLUSIONES Y TRABAJO FUTURO

En este trabajo hemos propuesto la insercién de operadores
OWA dentro de CNNs como un método para aumentar la infor-
macién de los mapas de caracteristicas. Si bien los resultados
obtenidos no se posicionan en el estado del arte, consideramos
que prueban sin dudas el potencial de esta técnica.

En el futuro, serfa importante analizar si este enfoque
puede aplicarse en redes mds complejas, como ResNet [2]
y arquitecturas similares, que se adaptan mejor a ciertos
problemas. Es necesario, en general, una investigacion mas
profunda sobre como la red neuronal estd obteniendo la ventaja
que hemos constatado en nuestros experimentos.
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Learning OWA weights by combining fuzzy
quantifiers with empirical data

Alvaro Cristébal
University of Zaragoza
Zaragoza, Spain
alvcrimar @ gmail.com

Abstract—Ordered Weighted Averaging (OWA) is a popular
family of aggregation operators that has been used in many
practical applications. This paper addresses the problem of
learning the weighting vector of OWA operators and uses a
hybrid approach combining a sample learning method and a
function-based method. The idea is to search for the parameters
of a fuzzy quantifier that minimizes the error on a given set of
examples. We also perform an experimental study in the field of
smart cities.

Index Terms—aggregation, fuzzy quantifiers, smart cities

I. INTRODUCTION

Aggregation of different criteria into a single value is a very
common operation in many real-world applications. For exam-
ple, online travel agencies typically provide a simple way for
customers to compare hotels by combining the scores obtained
in different criteria (such as location, price, or cleanness) into
a single value. The interest in aggregation operators is not
expected to decrease in the next years. For instance, in the field
of smart cities, with high numbers of sensors providing pieces
of information that need to be combined somehow, aggregation
operators seem crucial.

Ordered Weighted Averaging (OWA) operators [I] are a
very popular family of aggregation operators that has been
successfully used in many applications [2]. OWA operators
are parameterized with a vector of weights. While the choice
of the weights is critical in the behaviour of the operators,
determining the concrete values is a common problem in
practice. Among the many existing solutions, we are interested
in quantifier-guided aggregation [3], where the weights are
computed from fuzzy quantifiers.

To illustrate the interest in quantifier-guided aggregation, we
will mention some examples in the field of fuzzy ontologies,
which are fuzzy extensions of the current de-facto standard
for knowledge representation. For example, the fuzzy ontology
language Fuzzy OWL 2 [4] and the fuzzy ontology reasoner
SfuzzyDL [5] support quantifier-guided aggregation using right-
shoulder and linear functions. Some recent applications using
fuzzy ontologies also take advantage of quantifier-guided
aggregation. In particular, the beer recommender system Gim-
meHop [6] and Fuzzy BIM [7] support flexible queries about
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beers and a semantic Building Information Modeling (BIM),
respectively. In both cases, user preferences can be combined
using OWA operators, built in a transparent way for the user
from right-shoulder, linear, and power functions.

Although there have been many approaches to determine
the weights of an OWA operator, the comparisons between the
existing alternatives are mostly theoretical. Instead, it would
be interesting to evaluate the performance of different methods
on real-world datasets. In this paper, we use empirical data to
learn the parameters of different functions (fuzzy quantifiers)
used in quantifier-based aggregation. Therefore, our method
can be seen as a combination of a sample learning method
and a function-based method [8]. Moreover, we evaluate the
behaviour of our learning strategy using smart cities data.

The remaining of this paper is organized as follows. Sec-
tion II provides some background on aggregation operators and
quantifier-based aggregation. Then, Section III describes our
approach, and Section IV discusses the result of our empirical
evaluation. Finally, Section V sets out some conclusions and
ideas for future work.

II. AGGREGATION OPERATORS

Aggregation Operators (AOs) are mathematical functions
that are used to combine different pieces of information
(typically, membership degrees to fuzzy sets) [9], [10]. There
is no standard definition of AO. Following [9], an AO takes
n numerical values z1,zs,...,x, (the values of n different
criteria) and returns another numerical value, i.e., given a
domain D (such as [0,1] or R), an AO of dimension n is
a mapping @ : D™ — D. A classical example of AO is the
weighted mean. We will write @y, to denote the usual case
where an AO is parameterized with a vector of n weights
W = [wy,...,w,] such that w; € [0,1] and > " | w; = 1.

A very important family of AOs are the Ordered Weighted
Averaging (OWA) operators [1]. OWA operators provide a
parameterized class of mean type AOs. Formally, given a
weighting vector W, an OWA operator of dimension n is
an AO such that:

n
owa
QWA (1, wn) = Y Wil ()
i=1
where o is a permutation such that z,(1) > Ty2) = -+ >

Tg(n)> 1.€., To(;) 18 the i-th largest of the values x1,...,z,
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to be aggregated. Note that, because of this reordering step, a
weight w; is not associated with a specific argument but with
an ordered position of the aggregate. By choosing different
weights, OWA operators can implement different AOs, such
as arithmetic mean, k-th maximum, k-th minimum, median or
order statistic, among others.

Example 1: The average temperatures of Barcelona, Basel,
Logrofio, Madrid, and Milan in February 2018 are 6.7, 1.4,
5.5, 6, and 7.5 ° C, respectively. Given the weighting vector
W = [0.0048, 0.9952, 0,0,0], the aggregated value using
OWA @9%4(6.7,1.4,5.5,6,7.5) is given by:

0.0048-7.540.9952-6.740-6+0-5.5+0-1.4 = 6.70384 =

A common practical problem is how to compute the weights
of an OWA operator, and several solutions have been proposed
in the literature [8], [11], [12]. According to X. Liu, existing
approaches can be classified in 5 categories [8]: optimization-
based methods, sample learning methods fitting to empirical
data, function-based methods, argument dependent methods,
and preference methods.

The family of function-based methods include methods
to build the weights from an orness value. For example,
the vector of weights W can be defined starting from a
desired value for the orness in two recursive ways, a Left
Recursive Form and a Right Recursive Form [13], or using
Faulhaber’s formulas [14]. However, the most popular example
of function-based methods is quantifier-based aggregation.

In quantifier-based aggregation, the vector of weights W
can be defined using a fuzzy quantifier Q : [0,1] — [0,1].
We will focus on Regular Increasing Monotone (RIM) quan-
tifiers [15], characterized by the idea that as the proportion
increases, the degree of satisfaction does not decrease. More
formally, RIMs satisfy the boundary conditions Q(0) = 0 and
Q(1) = 1, and are monotone increasing, i.e., z1 < x5 implies
Q(z1) < Q(x2). A RIM @ can be used to define an OWA
weighting vector Wg of dimension n, where each weight is
computed as follows:

wi= Q) - Q=) @

Note that indeed w; € [0,1] and >, w; = 1.
In this paper, we will consider the following functions to
build RIMS:
e Right-shoulder (or window [16]), illustrated in Figure 1
(a). Given q1, g2 € [0, 1] such that ¢1 < ¢a:

1—1

0 < q
. r—q
right(q1, q2) = r€q,qpl  3)
g2 — q1
1 T 2> qo
If g1 = g2 # 1, we have a step function [16]:
. _J 0 z<q
right(q1,¢2) = { 1 2>q “)
If ¢1 = g2 = 1, we also have a step function:
. _J 0 z<aq
right(q1,q2) = { 1 2> q &)

e Linear, illustrated in Figure 1 (b). Given ¢1,¢2 € [0,1]
with ¢; € (0,1):

By r< @1
i ( ) q1
inear(q1, g2) =
1 _
(1—q)z+ (g2 —q1) ‘>0
1—q
(6)
If q1 = 0:
. 0 z=0
linear(q1, ¢2) = (N
(1—QQ).’L'+q2 x>0
If q1 = 1:
g <l
linear(q, q2) = ®)
1 r=1

o Power, illustrated in Figure 1 (c). Given ¢ € (0, 00):
power(q) = z¢ )

Example 2: The weighting vector in Example 1, with
n = 5 weights, can be computed from the quantifier ) =
right(0.1991,0.3851):

e W1 = Q(1/5) - Q

. ws = Q(2/5) - Q

e w3 =Q(3/5)—-Q(2/5)=1-1=0

e wy=Q(4/5)—QB/5)=1-1=0

e w5 =Q(5/5)—Q4/5)=1-1=0 =

III. LEARNING THE PARAMETERS OF THE FUZZY
QUANTIFIERS

0) = 0.0048 — 0 = 0.0048
1/5) = 1 — 0.0048 = 0.9952

~ A~

We assume that we have a set of examples F =
(e1,...,em). Each example e; contains the values of n input
variables (z;;) and the value of an output variable (y;):

ej:<x1jax2ja"'axnjayj> (]O)

For each e;, we compute aggregated values using different
weighting vectors W:

wo_
W=

an

For each W, we compute the error between the expected value
y; and the aggregated value z;. In particular, we consider the
Mean Absolute Percentage Error (MAPE), which is computed
as a percentage in [0,100] where the smaller the percentage,
the smaller the error:

owa
z Qyy (215, T255 -+ - Tnj)

MAPE(E, W) — 120 3
m

j=1

W
YiT A

Yj

12)

Finally, we choose the quantifier type and parameters that lead
to the weighting vector W' minimizing the MAPE:

argmin MAPE(E, W) (13)
w
Example 3: Revisiting Example 1, assume that we want
to predict the temperature in Zaragoza from the tempera-
tures of the other 5 cities. If the expected value of the



= XIX Conferencia de la Asociacién Espanola para la Inteligencia Artificial

353

A /
1= — 1|— — — — 1|— — — —
I | [ L7
[ | [ A
[ | | d |
[ | | e |
[ Q2| — — — — - |
: | [ e x4 |
0 X 0 | | . olZ | ,
ql g2 q1 1 1
(a) (b) (©)

Fig. 1. (a) Right-shoulder function; (b) Linear function; (c) Power function

temperature in Zaragoza in February 2018 is 6.8 °C, then
the term of the summation corresponding to this example is
|(6.8 — 6.70384)/6.70384| = 0.0143. m

The key of our approach is that W is built using different
types of RIM functions and with different parameters. If the
search space is not very large, and computing the weights and
the aggregation using OWA are not computationally expensive
operations. Therefore, it could be possible to compute the best
parameters by brute force, at least for not very large datasets.

o Algorithm 1 shows how to compute the parameters of
a linear RIM quantifier that minimizes the MAPE using
brute force. The algorithm loops over the values of ¢;
and ¢o by adding an increment A. The best MAPE is
initialized to 100, the highest possible value. When a
smaller MAPE is found, the parameters ¢; and ¢ that
made it possible are stored. Finally, the pair of parameters
(g1, q2) is returned.

o A brute-force algorithm to compute the parameters of a
right-shoulder RIM quantifier is similar, but the loop over
all values of go starts from ¢; so that ¢; < go.

« Finally, for the power function, a single loop is needed,
as there is just one parameter g, ranging in (0, 0o).

As a final remark, note that we do not split out set of examples
F into training and test sets.

For large datasets, it could be possible to use heuristic
methods, such as Monte Carlo algorithms, local search, or
evolutionary algorithms. For example, Algorithm 2 shows how
to compute the parameters of a linear RIM quantifier using a
Monte Carlo algorithm. The idea is to generate pseudo-random
numbers as the possible values of ¢; and gy, repeating the
experiments several times, and storing the values that minimize
the MAPE.

To conclude this section, let us note that it is trivial to
consider the case where there are missing values, i.e., for some
examples e; some of the values z;; are unknown. In this case,
rather than having the same vector W for all the examples,
we could compute for each example e¢; a weighting vector
of dimension n;, where n; is the number of non-missing
values for the input variables, using the same function type
and parameters for all the examples.

Algorithm 1 Brute-force algorithm to compute the parameters
of a LINEAR quantifier minimizing the MAPE.
Input: A dataset E with examples as in Equation 10.
Output: Parameters  (q1,q2) of a linear
tion.

1: bestMapeL < 100

2: for g1 < 0 to 1 by A do

3 for g+ 0to1by A do

4: Q < linear(qi, ¢2)

5: W < compute a vector from Q using Eq. 2
6: mape < compute MAPE(E, W) using Eq. 12
7.
8
9

func-

if mape < bestMapeL then
bestMapel < mape

bestQ1 < q1
10: bestQ2 < ¢
11: end if
12:  end for
13: end for

14: return (bestQ1, bestQ)2)

IV. EVALUATION

This section discusses an evaluation of our approach in the
field of smart cities.
a) Datasets: We consider two datasets: Temperatures
and Tourism.

o The Temperatures dataset includes the temperatures in 7
cities: Barcelona, Basel, Buenos Aires, Logrofio, Madrid,
Milan, and Zaragoza. Note that all of them are cities in
Northern hemisphere except Buenos Aires, which thus
has opposite seasons. Table I shows the URLs where the
temperatures were retrieved. The dataset has 12 rows,
with the monthly average temperatures on one year.

o The Tourism dataset includes information about London':
the total number of visits, the total number of nights,
and the total spend. The values cover the period 2002—
2019 (so the effects of the COVID-19 pandemic are

Thttp://data.london.gov.uk/dataset/number-international- visitors-london
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TABLE I
URLS WITH THE TEMPERATURES OF EACH SMART CITY
City URL

Barcelona http://opendata-ajuntament.barcelona.cat/data/es/dataset/temperatures-hist-bcn

Basel https://www.meteoblue.com/es/tiempo/archive/export/basilea_suiza_2661604

Buenos Aires http://data.buenosaires.gob.ar/dataset/registro- temperatura-ciudad

Logrofio http://datos.gob.es/en/catalogo/al 700294 3-estaciones-meteorologicas-sos-riojal

Madrid http://es.climate-data.org/europe/espana/comunidad-de- madrid/madrid-92/t/enero- 1

Milan http://dati.comune.milano.it/dataset/ds305-ambientemeteo- temperature-mese-2008-2014
Zaragoza http://datosclima.es/Aemet2013/Temperatura2013.php

Algorithm 2 Monte Carlo algorithm to compute the parame-
ters of a linear quantifier minimizing the MAPE.
Input: A dataset E/ with examples as in Equation 10, and the
number of repetitions MAX_REPETITIONS.
Output: Parameters (gq1,q2) of a
tion.

1: bestMapeL <— 100

2: repetition < 0

3: repeat
4:  ¢1 + random number in [0, 1]
5. ¢o < random number in [0, 1]
6
7
8
9

linear func-

Q + linear(qi, q2)
W < compute a vector from Q using Eq. 2
mape < compute MAPE(E, W) using Eq. 12
. if mape < bestMapeL then
10: BestMapeL < mape

11: BestQ1 + ¢,
12: BestQ2 + q»
13:  end if

14:  repetition < repetition + 1
15: until repetition = MAX_REPETITIONS
16: return (bestQ1, bestQ2)

not observed) and are aggregated by quarters. Therefore,
there are 72 rows.

b) Experiments: We consider two experiments with the
Temperatures dataset, and three with the Tourism dataset:

El.  Prediction of the temperature in Zaragoza from the
temperatures of 5 cities: Barcelona, Basel, Logrofio,
Madrid, and Milan.

E2.  Prediction of the temperature in Zaragoza from the
temperatures of 6 cities: Barcelona, Basel, Buenos
Aires, Logrofio, Madrid, and Milan. This experi-
ments is similar to E1 but taking Buenos Aires into
account.

E3.  Prediction of the total number of visits from the total
number of nights and the total spend.

E4.  Prediction of the total number of nights from the total
number of visits and the total spend.

E5.  Prediction of the total spend form the total number
of visits and the total number of nights.

In the Tourism dataset we apply a normalization step, since
the three variables have a different range of values. For each

variable, we divide each value by the maximum value plus a
5 %, obtaining a value in [0, 1].

c) Parameters:

o In our brute-force algorithms, we use increments A =
0.001 and A = 0.0001.

o For the power quantifier, we take 20 as an upper bound
for the value of the parameter, i.e. ¢ € (0, 20]. This choice
was made after checking experimentally that higher val-
ues produce very small changes in a vector of 5 weights.

« In our Monte Carlo algorithms, we repeat the experiments
5-10° times. This choice was made to have a similar run-
ning time as in the brute-force algorithm with A = 0.001.
We also noticed that in different runs of the algorithm,
the MAPE did not change if we rounded to two decimals.

d) Environmental setup: Our code was implemented in
Java 1.8. All experiments were performed on a laptop com-
puter with Intel Core i7-8750H, 16 GB RAM, 1 TB HDD +
256 GB SSD under Windows 10, 64-bits.

e) Results: Table II includes the results. For each experi-
ment, for each algorithm, and for each quantifier type, we show
the best MAPE, the best parameters, and the corresponding
weighting vector. For each experiment and algorithm, we show
the total running time (in seconds) to optimize the parameters
of all quantifier types.

Figures 2, 3, and 4 illustrate a summary of the results for
the brute-force algorithm in experiment E1, for different types
of quantifiers (right-shoulder, linear, and power, respectively)
and an increment A = 0.1. MAPE values are rounded to the
next integer. In Figure 4 the rows and the columns indicate
the integer part and the fractional part of g, respectively, and
the integer part is not shown if higher than 10.

f) Discussion: To start with, it is worth to clarify that our
main objective is not to solve some prediction problems but to
find the parameters corresponding to the best OWA weights.
Indeed, to solve these prediction problems, more complex
machine learning strategies are very likely to perform with
better results.

The first interesting observation is that the MAPE is very
similar regardless of the algorithm for a given quantifier type.
In all the experiments with the Tourism dataset (E3, E4,
and ES), the MAPE is actually the same (and so is the
weighting vector) regardless of the quantifier type. In the other
experiments, the differences in the MAPE are smaller than
0.007.
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TABLE II
RESULTS OF THE EXPERIMENTS
Experiment Algorithm Quantifier MAPE Parameters Weights Time
Right-shoulder =~ 5.3888  0.1991 0.3851 [0.0048 0.9952 0 0 0]
Brute-force A = 0.0001 Linear 9.4604  0.4434 0.9319 [0.4203 0.4203 0.1104 0.0245 0.0245] 47
Power 10.0735 0.3014 [0.6156 0.143 0.0986 0.0777 0.065]
Right-shoulder ~ 5.3956 0.199 0.4 [0.005 0.995 0 0 0]
El Brute-force A = 0.001 Linear 9.4614 0.443 0.932 [0.4208 0.4208 0.1096 0.0244 0.0244] 0.6
Power 10.0741 0.301 [0.616 0.1429 0.0985 0.0776 0.065]
Right-shoulder ~ 5.3893  0.1995 0.3007 [0.0048 0.9952 0 0 0]
Monte Carlo Linear 9.461 0.4438 0.9327 [0.4203 0.4203 0.1110 0.0242 0.0242 ] 0.6
Power 10.0736 0.3013 [0.6157 0.143 0.0986 0.0776 0.065]
Right-shoulder  5.2896 0.166 0.513 [0.0019 0.4803 0.4803 0.0375 0 0]
Brute-force A = 0.0001 Linear 12.6139  0.0836 0.0082  [0.0981 0.1804 0.1804 0.1804 0.1804 0.1804] 60
Power 13.4133 102.431 [0.1078 0.1474 0.1673 0.1816 0.1931 0.2028]
Right-shoulder ~ 5.2896 0.166 0.513 [0.0019 0.4803 0.4803 0.0375 0 0]
E2 Brute-force A = 0.001 Linear 12.6139 0.125 0.053 [0.0981 0.1804 0.1804 0.1804 0.1804 0.1804] 0.7
Power 13.4136 10.243 [0.1078 0.1474 0.1673 0.1816 0.1931 0.2028]
Right-shoulder 529 0.166 0.5129 [0.0019 0.4805 0.4805 0.0372 0 0]
Monte Carlo Linear 12.6139  0.1447 0.0743  [0.0981 0.1804 0.1804 0.1804 0.1804 0.1804] 0.7
Power 13.4133 1.2431 [0.1078 0.1474 0.1673 0.1816 0.1931 0.2028]
Right-shoulder 9.007 0.1492 0.5278 [0.9266 0.0734]
Brute-force A = 0.0001 Linear 9.007 0.0535 0.861 [0.9266 0.0734] 112
Power 9.007 0.11 [0.9266 0.0734]
Right-shoulder 9.007 0.235 0.521 [0.9266 0.0734]
E3 Brute-force A = 0.001 Linear 9.007 0.142 0.874 [0.9266 0.0734] 1.5
Power 9.007 0.11 [0.9266 0.0734]
Right-shoulder 9.007 0.3208 0.5142 [0.9266 0.0734]
Monte Carlo Linear 9.007 0.4624 0.921 [0.9266 0.0734] 1.3
Power 9.007 0.11 [0.9266 0.0734]
Right-shoulder ~ 9.8532 0.1265 0.501 [0.9973 0.0027]
Brute-force A = 0.0001 Linear 9.8532  0.0263 0.9948 [0.9973 0.0027] 105
Power 9.8532 0.0038 [0.9974 0.0026]
Right-shoulder ~ 9.8532 0.126 0.501 [0.9973 0.0027]
E4 Brute-force A = 0.001 Linear 9.8532 0.251 0.996 [0.9973 0.0027] 1.4
Power 9.8533 0.004 [0.9972 0.0028]
Right-shoulder ~ 9.8532  0.0612 0.5012 [0.9973 0.0027]
Monte Carlo Linear 9.8532 0.1962 0.9957 [0.9973 0.0027] 1.4
Power 9.8532 0.0039 [0.9973 0.0027]
Right-shoulder ~ 16.582 0.5 0.5 [0 1]
Brute-force A = 0.0001 Linear 16.582 050 [0 1] 108
Power 16.582 20 [0 1]
Right-shoulder ~ 16.582 0505 [0 1]
ES5 Brute-force A = 0.001 Linear 16.582 050 [0 1] 1.3
Power 16.582 20 [0 1]
Right-shoulder ~ 16.582 0.6822 0.842 [0 1]
Monte Carlo Linear 16.582 0.5584 0 [0 1] 1.2
Power 16.582 20 [0 1]

Brute-force with A =

0.0001 always has the smaller

of the quantifier type.

MAPE. Brute-force with a higher increment is slightly worse
in 5 cases (in El and in E2 for two quantifier types) and
Monte Carlo is slightly worse in 4 cases (in E1 and in E2 for
one quantifier type). If we compare the two worse algorithms,
Monte Carlo wins strictly speaking in 4 cases and loses in 1,
but the MAPEs are actually equal if we round to 2 decimals.

However, reasoning times can be more different. The fastest
algorithms are brute-force with A = 0.001 and Monte Carlo
algorithm, both of them with almost the same time. On the
other hand, brute-force with A = 0.0001 is pretty much
slower, and the increase in the running time is not compensated
with a significant decrease in the MAPE.

If we compare the quantifier types, right-shoulder is always
the best function in the Temperatures dataset, whereas in the
Tourism dataset the same MAPE is always obtained regardless

Now let us give a closer look to each dataset. In the Tem-
peratures dataset, the MAPE is in general clearly smaller in E1
than in E2. This result is expected, because E2 introduces data
(from Buenos Aires) making the prediction harder. However,
experiments with the right-shoulder function are an exception,
and the MAPE is actually slightly smaller in E2. We can notice
that in these cases the weight associated to the smallest value
to be aggregated is 0, and the weight associated to the largest
value is very small, about 0.002. Because Buenos Aires is
the only city from the Southern hemisphere, its temperature
will usually be either the highest or the lowest one, but it
will have a small influence in the aggregated value because
of the weights. Note that after considering Buenos Aires, the
size of the weighting vector increases. Therefore, to build
the weighting vectors, the quantifier functions are evaluated
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Fig. 2. MAPE for right-shoulder quantifiers in E1
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Fig. 3. MAPE for linear quantifiers in E1

in the points {0,0.2,0.4,0.6,0.8,1} rather than in the points
{0,0.25,0.5,0.75,1}.

In the Tourism dataset, the best strategy seems using almost
exclusively one of the two input variables. Indeed, in ES5, the
weighting vector is [0, 1]. In the other experiments E3 and E4,
the highest value to be aggregated has a weight greater than
0.9. The MAPE is worse than in the Temperatures dataset, an
is particularly high when predicting the total spend (ES).

V. CONCLUSIONS AND FUTURE WORK

In this paper we have followed a hybrid approach to learn
the weights of OWA operators by choosing the parameters of
some functions, commonly used in quantifier-guided aggrega-
tion, that minimize the error over a set of samples. We studied

Fig. 4. MAPE for power quantifiers in E1

right-shoulder, linear, and power functions, and proposed two
alternatives for the search on the parameter space: brute force
and a Monte Carlo algorithm.

Our approach has several advantages over learning the OWA
weights directly. On the one hand, the number of parameters
is smaller, reducing the search space. On the other hand, the
results of more interpretable, as fuzzy quantifiers can be more
easily understood by humans.

We have also discussed the results of an empirical evaluation
on two datasets in the field of smart cities. We found significant
differences in the running times of the algorithms but not on
the error. Furthermore, we observed that in one dataset the
error was smaller for right-shoulder functions, whereas in the
other dataset the results were independent on the function type.

There are a lot of directions for our future work. Firstly,
it would be interesting to consider more types of RIMS.
Secondly, we could consider more complex algorithms to
search for the best parameters. We could also take into account
alternative approaches than quantifier-guided aggregation. Fi-
nally, experiments on more real-world datasets are desirable.
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Integrales de Choquet y capacidades 2-aditivas en la
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I. RESUMEN

Los indicadores sintéticos (también denominados com-
puestos) se han convertido en una herramienta muy valiosa
en diversos ambitos cientificos dado que permiten resumir
en un unico valor la informacién proporcionada por diversos
indicadores. A la hora de elaborar un indicador sintético es
conveniente seguir una serie de pasos (véase [1, Tabla 1]),
entre los que se encuentra la seleccidon de un procedimiento
de agregacion. En la eleccion de dicho procedimiento resulta
fundamental tener en cuenta tanto la posible correlacidn exis-
tente entre los indicadores utilizados como la compensabilidad
que se desea permitir entre ellos (véanse [2, p. 363], [1, p. 21]).

En este contexto, uno de los métodos mds habituales para
agregar los valores de los indicadores consiste en utilizar
funciones de agregacion. Entre la gran variedad de funciones
existentes destacan, por su sencillez y propiedades, las medias
aritméticas y geométricas.! Aunque estas funciones estdn
presentes en la construccidon de muchos indicadores sintéticos,
su uso ha sido objeto de diversas criticas.

En el caso de la media aritmética, la principal tiene que ver
con el hecho de que valores elevados en algunos indicadores
pueden compensar valores bajos de otros. Ello ha originado
que, en algunos casos, haya sido sustituida por la media
geométrica. Por ejemplo, el Indice de Desarrollo Humano
(IDH), que hasta el afio 2009 se basaba en la media aritmética,
se construye desde el afio 2010 mediante la media geométrica
debido a que esta funcién permite una menor compensabilidad
entre los indicadores que la media aritmética. Por lo que
respecta a la media geométrica, sus principales debilidades
son la imposibilidad de utilizar el 0 como valor minimo de
referencia (algo bastante habitual en la practica al transformar
los valores de los indicadores mediante determinadas norma-
lizaciones), lo cual dificulta la capacidad informativa de la
escala utilizada, y que no es invariante a cambios de origen
[3].

En el contexto descrito, la integral de Choquet [4] emerge
como un instrumento eficaz para solventar los problemas
anteriormente mencionados. Ademads, permite tener en cuenta

Patrizia Pérez-Asurmendi agradece el apoyo recibido por la Fundacion
Areces (Proyecto CISP18A6216).

IEn ambas funciones, la importancia de los indicadores en el indicador
sintético se establece con el vector de pesos utilizado en su célculo.
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tanto la posible correlacién existente entre los indicadores
utilizados como la compensabilidad que se desea permitir
entre ellos. En la definicién de la integral de Choquet juega
un papel fundamental el concepto de capacidad. Entre la
amplia variedad de capacidades que se pueden construir,
las capacidades 2-aditivas [S] son, probablemente, el mejor
compromiso entre baja complejidad y riqueza del modelo [6].

En trabajos anteriores (véanse [7], [8]) se ha desarrollado
un modelo basado en capacidades 2-aditivas que permite tener
en cuenta las interacciones que habitualmente existen entre los
indicadores empleados. En el presente trabajo se extiende el
modelo anterior de manera que, ademds de tener en cuenta
las interacciones existentes entre los indicadores, es posible
regular la compensabilidad que se permite entre ellos.

Como aplicacién prictica, el modelo propuesto se aplica
al Indice de Sociedad Sostenible (SSD),2 reemplazando, como
funcién de agregacion, la media geométrica por la integral de
Choquet y comparando los resultados obtenidos segiin ambas
agregaciones.
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%Este indicador sintético permite medir la sostenibilidad en un sentido
amplio dado que tiene en cuenta tres dimensiones del bienestar: el bienestar
humano, el bienestar medioambiental y el bienestar econémico.
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Abstract—En este trabajo presentamos una definicion de la
integral de Choquet discreta n-dimensional, para fusionar datos
vectoriales. Como aplicacion, utilizamos estas nuevas integrales
de Choquet discretas multidimensionales en la fusién de infor-
macion secuencial en las redes neuronales recurrentes, mejorando
los resultados obtenidos mediante el método de agregacion
tradicional.

Index Terms—Integral de Choquet, Funcion de Agregacion, In-
formacion Multivariante, Redes Neuronales Recurrentes, LSTM.

I. INTRODUCCION

El proceso de fusion de informaciéon resulta un
procedimiento fundamental a la hora de combinar o
agregar distintas estructuras de informacién en una sola
[1]. Su utilizacién es necesaria en diversos campos, como
por ejemplo: toma de decisién multi-criterio [2], economia
y finanzas [3], estadistica, procesamiento de imagenes [4],
aprendizaje automadtico [5], etc. Recientemente también se
ha aplicado en el aprendizaje profundo, por ejemplo en las
capas de pooling de redes neuronales convolucionales [6].
En la literatura se analizan multitud de métodos de agregacion
de informacién. Algunos de los mds habituales son las medias
aritméticas ponderadas [7] o los d6rdenes estadisticos [8]. Sin
embargo, frecuentemente los criterios y datos considerados
interactian entre ellos y es conveniente utilizar operadores
de agregacidon que tengan en cuenta este hecho. En este
sentido, en la literatura se han utilizado las integrales difusas
[9], las cuales se basan en medidas difusas. Estas medidas
[10] permiten tener en cuenta la relacidon existente entre
los elementos a agregar, valorando la relevancia de posibles
coaliciones entre los datos [5].

Una de las integrales difusas mas utilizadas es la integral de
Choquet [11]. Hasta ahora, en la literatura se han presentado
distintas generalizaciones de la integral de Choquet [12],
[13], [5], [14] para datos unidimensionales.

Frecuentemente los elementos a agregar son datos o instancias
con varias variables, es decir, informaciéon multivariante,
estructurada en forma de vectores. Por ejemplo, un modelo
utilizado actualmente en la inteligencia artificial donde se
manejan datos multivariantes son las Redes Neuronales

Recurrentes [15].

Las Redes Neuronales Recurrentes son un tipo de red
neuronal artificial que se encargan de modelar informacién de
tipo secuencial o temporal, como las series temporales o el
procesamiento de lenguaje natural [16]. Dichas redes constan
de una arquitectura en la que en cada instante, los valores
de salida de la capa del instante anterior se conectan con la
informacion del instante actual. Para la conexién de dichos
datos multivariantes, usualmente se suelen sumar los vectores
como forma de agregaciéon de la informacion multivariante
secuencial. Entre los datos recurrentes generados por la red
y los datos provinientes del dataset puede haber interaccién
entre los mismos.

El objetivo de este trabajo es presentar una extension
multidimensional de la integral de Choquet, es decir, una
funcién que agregue m datos n-dimensionales, teniendo en
cuenta las posibles coaliciones entre los mismos.

Para mostrar la utilidad de nuestra extension, presentamos
su uso en la modelizacién de las posibles coaliciones entre
datos en el proceso de agregaciéon de una red neuronal
recurrente. En concreto, la modificaciéon de la arquitectura
que presentamos en este trabajo consiste en una red neuronal
recurrente del tipo memoria de corto y largo plazo (LSTM)
[17]. En los pasos en los que se agrega la informacion
recurrente con la informacién inicial estudiamos la utilizacién
de la integral de Choquet discreta multidimensional. De forma
andloga, completamos el estudio con el uso de combinaciones
lineales de otras funciones de agregacion.

Este trabajo se organiza de la siguiente manera: en la Seccién
II recordamos los conceptos preliminares necesarios para
comprender el resto del trabajo. En la Seccién III se introduce
la nueva definicién de la integral de Choquet extendida
a datos multivariantes. En la Secciéon IV se introduce la
modificacién en la arquitectura. En la Seccidén V se presenta
la experimentacion realizada. Por dltimo, en la Seccién VI,
se explican las conclusiones asi como las lineas futuras del
trabajo.
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II. PRELIMINARES

En esta seccidn, recordamos nociones bdsicas y termi-
nologia necesarias para abordar el desarrollo del trabajo.
Presentamos por un lado las definiciones tedricas bésicas de
funcién de agregacion, medida difusa e integral de Choquet, y
por otro la explicacién del funcionamiento de una red neuronal
recurrente de tipo LSTM.

A. Funciones de agregacion e integral de Choquet

Consideremos el reticulo (L, <) donde L = [0,1] y sea
< el orden natural de los ndmeros reales. Denotamos 0 =
0,...,00eL"y1=(1,...,1) e L™

Definicion IL1. Sea m un entero positivo. Una funcion M :
L™ — L es una funcion de agregacion m-aria si satisface
las siguientes propiedades:

(i) M0)=0yM(1)=1

(ii) es no-decreciente en cada variable, es decir, para todo

@1y s Zm)s (Y1, oy Ym) € L™, M(z1,...,2m) <
MWty s Ym) SEZ1 < Ytyev oy T < Yo
Denotamos el conjunto {1,...,m} por [m]. Dos vectores
(1, yTm)s W1y -yYm) € L™ son considerados
comondtonos si y soOlo si existe una permutacion
o : [m] — [m] tal que z,q) < < Tom) €

Yo (1) <...< Yo(m)-

Denotamos con letras negrita los elementos en L™, esto
es, x = (x1,...,2,) € L™ Existe un orden parcial <p
inducido por <y dado de la siguiente manera:

x<pysiysolosiz <y;

para todo i € {1,...,n}.

De hecho, podemos verificar que (L™, <) es un reticulo
donde el elemento minimo es 0 y el mdximo es 1. En este
reticulo el infimo y el supremo de dos elementos vienen
dados por las siguientes operaciones:

X/\y = (Inin(xlayl)w"amin(xnayn)) (1)
X\/y = (max(ml,yl),...,max(xn,yn)) (2)

Con anterioridad a la definicién del concepto de integral de
Choquet, consideramos la definicién de medida difusa.

Definicion IL2. [18] Una medida difusa definida sobre [m]
es una funcion v : 2" — L tal que:

(i) v(0) =0y v([m])=1

(ii) v(A) <wv(B) para todo A C B C [m)]

Una medida difusa v : 2™ — L se dice que es aditiva si
v(AUB) = v(A) + v(B) para todo A, B C [m] tales que
ANB=10.

Ejemplo I1.3. Un ejemplo de medida difusa considerada en
este trabajo es la medida de potencia. Es definida para todo

A [m] por: q
u = (1) )

m

donde q > 0.

Ejemplo IL4. La medida difusa v; : 2™ — L mds pequeria
viene dada por

1 si A=[m)]

m(A) = {0 en otro caso )

La medida difusa v, : 2™ — L mds grande viene dada por
0 siA=0

vu(A) = {1 en otro caso )

Para cualquier medida difusa v - 2™ — L se cumple:
v(A) < v(A) < vy(A)
para todo A C [m)]

Una vez introducida la medida difusa, presentamos Ia
definicién de la integral de Choquet discreta, la cual es un
ejemplo de funcion de agregacion presentada en la Definicién
IL.1.

Definicion IL5. [11] La integral de Choquet discreta en
L con respecto a la medida difusa v es definida como una
aplicacion Ch,, : L™ — L

m

Chy(x) = Z (%r(z‘) - xa(ifl)) v (Aa(i)) (6)

i=1

donde x = (21,...,%y) € L, v : 2" — L es una medida
difusa en el conjunto [m], o : [m] — [m] es una permutacion,
con To1y < ... < Tgamy con la convencion To) = 0y
Aoy = {0(i),...,a(m)} es el subconjunto de los indices
correspondiente a los m — i+ 1 mayores elementos de x para
todo i € [m).

Por ultimo, si bien definimos la integral de Choquet
Ch, : L™ — L, en la literatura también podemos encontrar
la definicién [19] para un intervalo I = [a,b] C R. Dado que
posteriormente en la aplicacion (Seccién IV) la utilizaremos,
se puede definir la integral de Choquet discreta como una
aplicacion C'h, : I"™ — I, mediante la misma expresién que
en la Eq. 6. Donde x = (%1,...,%,) € I™ con la medida
difusa v : 2™ — L. manteniendo la convencién ZTo) =0y

Asy = 1{0o(i),...,a(m)}.

A continuacion introducimos la definicion de funciones
de agregacion n-dimensionales, como marco introductorio a
la Seccién II1.

Definicion IL6. [20] Sean n, m enteros positivos. Una
aplicacion M : (L™)™ — L™ es una funcién de agregacion
me-aria n-dimensional si satisface las siguientes propiedades:

(i) M(0,...,00=0y M(1,...,1)=1

(ii) Para todo Xi1,...,Xm,¥Y1,---,¥Ym € L™ tal que
X1 <Y1, Xm < Ym, entonces M(X1,...,Xm) <
M(y1,---,Ym)-



360

XIX Conferencia de la Asociacién Espaiiola para la Inteligencia Artificial &=

B. Redes Neuronales Recurrentes: Memoria a corto y largo
plazo (LSTM)

Las Redes Neuronales Recurrentes (RNN) nacen con la
intencion de modelar datos que tienen dependencia secuen-
cial o de tiempo. Sin embargo, dado que los algoritmos de
aprendizaje para redes neuronales suelen estin basados en el
gradiente, en estas redes surge el problema llamado vanishing
gradient [21], es decir, el decrecimiento recurrente del valor
de una variable en la salida de la red neuronal. Esto es un
problema especialmente grave cuando tratamos de entrenar
redes con dependencias o secuencias temporales largas.

Las Long Shot-Term Memory (LSTM) surgen principalmente
como respuesta a este problema y suponen un cambio radical
[21] en el entrenamiento de las redes recurrentes ya que evitan
el decrecimiento continuo de los pardmetros. De esta manera,
esta arquitectura de neurona artificial [17] genera un estado
que permite la memorizacién de conocimiento que se utiliza
en instantes temporales posteriores.

Las neuronas LSTM han tenido diversas modificaciones en
la literatura, pero en este trabajo utilizamos una de las mds
extendidas [16]. En la Fig. 1 podemos observar el detalle del
interior de una LSTM donde es importante recalcar las puertas
[22] forget gate (f), input gate (i) y output gate (o) asi como
la celda candidata (¢).

h®

c(t=D

c®

h¢—1b —— n(®)

Fig. 1. Representacién de una unidad LSTM.

A continuacion, explicamos el funcionamiento de una unidad
LSTM. Sea N la longitud de la secuencia de entrada, H el
ndmero de caracteristicas que extraiga la celda y T el niimero
de instantes de tiempo de la secuencia. Los que se detallan a
continuacion son las matrices y vectores asociados a cada una
de las puertas y celda candidata:

e Matrices de pesos de entrada: Wy, W, W, ., W, €
RHXN

« Matrices de pesos recurrentes: Wy, Wi, W, Wy, €
RHXH

o Vectores de pesos del sesgo: by, b;, b, b, € RH

El funcionamiento de forma descriptiva para cada instante de
tiempo t € {1,...,T} es el siguiente:

i. Los valores de entrada x(*), h(*~1) entran a las puertas
f (Eq. 7), i (Eq. 8), ¢ (Eq. 9) y o (Eq. 11). En cada
una de ellas, el valor x(*) se multiplica por cada una
de las matrices de pesos de entrada, en funcién de la
puerta. De forma analoga ocurre con los valores h(*—1)
y las matrices de pesos recurrentes. Los vectores H-
dimensionales obtenidos se suman junto con los vectores
de sesgo correspondientes en cada una de ellas. Se utiliza
una sigmoidea logistica (o(x) = H% ) como funcién
de activacién de las puertas y la tangente hiperbdlica
como funcién de activacion de la celda candidata.

ii. El vector de la memoria a largo plazo del instante anterior
(c(t=1) y el de la celda candidata (€®) se combinan.
Para ello se calcula el producto de Hadamard o elemento
a elemento (o) entre el valor de la forget gate y la input
gate respectivamente (Eq. 10). Ambos valores se suman
obteniendo el valor de la celda en el instante actual (c(*)).

iii. Por dltimo, se calcula el vector de la memoria a corto
plazo. Para ello, en primer lugar se pasa la informacién a
corto plazo por una funcién de activacion de salida. Para
ello, utilizamos la tangente hiperbdlica. Posteriormente
se calcula el producto de Hadamard entre el valor de
la output gate con la informacién obtenida de la tltima
funcidn de activacion, obteniendo el valor de la memoria
a corto plazo, h(®).

Las ecuaciones que describen el proceso son las siguientes
(Eq. 7-12):

£ = o(Wp,x) + Wyh(~Y 4+ by) )
i) = o(Wi,x) + W;,h—D) 1 b)) (8)
¢ = tanh(W,x® + W, h~D 4+ b,) )
e = ) 5 (=1 4 §(®) 5 &®) (10

o™ = 6(Woux® + W, h"~Y 4 b)) (11)
h® = 0 o tanh(c™®) (12)

III. INTEGRAL DE CHOQUET MULTIDIMENSIONAL

A continuacién se presenta una definicién de la Integral de
Choquet en reticulos (L™, <), la cual es también un ejemplo
de funcién de agregacion n-dimensional, presentada en la
Definicién IL.6.

Sean x1 = (%11,---,%1n),- - Xm = (Tmi,---,Tmn)
m vectores en L". Denotaremos por x!,...,x" a los
siguientes n vectores en L™: x! = (z11,...,%m1), ..., X" =
(Z1ny -y Tmn). Es decir, por ejemplo si Xi,...,Xm son
filas de una matriz de tipo m x n, entonces x',...,x™ son

las columnas de dicha matriz.
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Definicion IIL1. Sean n y m dos niimeros enteros positivos. i) = (Ch;(me(ﬂ, Wihh(tfl), b7)) (18)
Sea v = (v1,...,v,) una secuencia de medidas difusas en
el conjunto [m] y sean Ch,, : L™ — L las integrales de ¢® — tanh (Chr (Woox®, W, h(tD) bc)) (19)
Choquet en L con respecto a la medida v; para todo i € [m]. v ’ ’

Una funcion Chy, : (L™)™ — L™ dada por: c® — ) 5 (t=1) 4 {® 5 &® (20)

Chy,(x1,...,Xm) = (Chy, (xh,...,Ch,, (x™)  (13)
o — o (Ch;(wmx@, W, h(D), bo)) Q1)

para todo Xi,...,Xm € L" es una Integral de Choquet

. " <
discreta representable en L™ con respecto a v 'y al orden < h® — o® o tanh(c(t)) 22)

La integral de Choquet Ch;, se denomina representable ya
que es obtenida a través de la utilizacién de n integrales de
Choquet en L de forma separada para cada componente:

Ch:,(xl, e ,Xm) = (Ch,j] ($11, e 7$m1)7 ey
Chy, (Z1ny -y Tmn))

Esta expresion es una generalizacion de la integral de Choquet
estdndar en L, ya que si todos los vectores de entrada son n-
tuplas con las mismas coordenadas, p.e. x = (z,...,z) y la
secuencia de medidas difusas es un vector con las mismas
medidas, esto es, v; = ... = v, = v, la salida es una n-tupla
con las mismas coordenadas iguales a C'h,,.

Asi mismo, de forma andloga a la que se explica en la
Seccion 11, se puede extender la Definicién III.1 a un intervalo
I = [a,b] C R. De esta manera, podemos extender la funcién

(14)

Ch,, : (L™)™ — L™ a una aplicacién Ch;, : (I")" — I”
dada por:
Ch),(X1,...,Xm) = (Chy, (x),...,Ch,, (x*))  (15)

para todo x1,...,Xm € [" con respecto a v y al orden <.

Proposicion IIL2. Bajo las condiciones de la definicion

anterior, sean V1 = ... = v, = V. Entonces:
Ch! (x1,...,Xm) = (Chy(z1,...,Zm),.- -,
061, ) = (Chaln )
Chy(z1,...,Tm))

para todo x; = (x;,...,x;) € L™, i € [m].

IV. MODIFICACION DE LA ARQUITECTURA DE UNA RED
NEURONAL RECURRENTE BASADA EN LA DEFINICION
MULTIDIMENSIONAL DE LA INTEGRAL DE CHOQUET

En la presente seccion se explica la introduccion de las
definiciones expuestas en las anteriores secciones en la arqui-
tectura de una red neuronal recurrente, concretamente en una
LSTM.

En este sentido, modificamos el operador de agregacion de
la red LSTM (suma de vectores) por la nueva definicién de
integral de Choquet discreta multidimensional.

En las nuevas ecuaciones generadas por la modificaciéon de
la funcién de agregacion, esto se ve reflejado en el cdlculo
de la salida de la forget gate (Eq. 17), input gate (Eq.
18), output gate (Eq. 21) y celda candidata (Eq. 19), donde
los vectores son fusionados mediante la integral de Choquet
multidimensional.

El conjunto de las ecuaciones modificadas que describen el
proceso son las siguientes:

£ = 4 (Chg(wfwx“),wfhh(t*l),bf)) (17)

Como hemos mostrado, la modificacién principal del fun-
cionamiento de la celda LSTM serd la sustitucion de la suma
por la integral de Choquet multidimensional. No obstante,
por completitud en el estudio, en la fusién de informacién
vectorial en la unidad LSTM utilizaremos distintas funciones
de agregacion, asi como las combinaciones lineales entre si.
Tomamos z = (Wy,x® W ,h(t=) b)) = (2,)3_, para
g € {f,i,¢c,0}, dado que son la misma expresién con matrices
de pesos diferentes. A partir de ello, en la Tabla I mostramos
las distintas funciones que utilizaremos.

TABLE I
DISTINTAS FUNCIONES DE AGREGACION UTILIZADAS

M Expresion funcion agregacion

Max maxf:1 Z;

Cha Ch£’2 (z)

Chyg Ch;, (z)

Sum ?:1 z; )
Max + Sum A\ maxb_; z; + Az Zle Z;
Chy +Sum A\ Chl,(2) + A2 35 | 2
Chq +Sum X\ Chy,_(z) + X2 37, 2
Chz +Max A1 Chy, (z) + A2 max;_; 2z
Chq + Max A\ Chy_(2) + A max;_; z;

Siendo v4(.A) la expresién de la Eq. 3 donde ¢ es un
pardmetro aprendido por la red neuronal. La medida v5(A)
se corresponde a la misma expresion de la Eq. 3 evaluando
q = 2. Los pardmetros A\; y Ay son aprendidos por la propia
red neuronal recurrente mediante el método de descenso por
gradiente estocdstico.

V. ESTUDIO EXPERIMENTAL

En la presente seccién explicamos la arquitectura, conjunto
de datos e hiperpardmetos utilizados asi como los resultados
obtenidos y su posterior valoracién.

A. Marco de trabajo experimental

1) Conjunto de datos: El conjunto de datos utilizado es
el Fashion-MNIST [23], el cual consiste en un conjunto de
entrenamiento de 60.000 imigenes de dimensiones 28 x 28
distribuidas en 10 clases, junto con un conjunto de test
compuesto por 10.000 imdgenes similares. Las imagenes cor-
responden a 10 articulos diferentes de categorias de ropa. En
este caso, planteamos los datos que contiene una imagen como
informacion secuencial [24].
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2) Arquitectura: En este caso, como podemos observar en
Fig. 2, establecemos una arquitectura en la que las imagenes
son tomadas como datos secuenciales. En cada instante de
tiempo ¢t € {1,...,T} es tomada una fila de la imagen en
forma de vector como dato de entrada x(*) € [0,255]"V. En el
caso de este dataset concreto, 7' = N = 28.

La arquitectura consta de dos capas. La primera, una unidad
de memoria LSTM con H = 128 nodos de capa oculta.
En segundo lugar, una capa totalmente conectada (FC) que
conecta los 128 nodos de la unidad LSTM con 10 nodos de
FC, asigndndoles un valor de probabilidad en [0, 1] a cada uno
de ellos. Se clasifica en el nimero de clase correspondiente
al maximo valor de probabilidad del vector softmax. Esto es,
tomando § = arg max P

. k= cxP(FCk) o

En este experimento se han realizado 10 ejecuciones
independientes de 40 epochs cada una. La tasa de aprendizaje
fijada para el experimento es de o = 0.1 y el método de
optimizacién utilizado para el aprendizaje ha sido el descenso
por gradiente estocdstico (SGD).

20 o

| LsTym || LsTm LSTM
x(l)ewN)
' =1
T
v

<~ N —

Fig. 2. Arquitectura de la red utilizada.

B. Resultados experimentales

A continuacién mostramos los resultados obtenidos tras el
célculo de una media aritmética de diez ejecuciones indepen-
dientes para cada una de las funciones de agregacién asi como
para las combinaciones lineales de funciones. En las tablas II
y III se recalca con negrita el resultado con mayor precisién
obtenida.

En primer lugar, en la tabla II mostramos los resultados
obtenidos con una sola funcién de agregacién. El mejor resul-
tado promedio lo obtenemos cuando realizamos la agregacién

de los valores mediante la integral de Choquet, pero cuando
el exponente ¢ > 0 es aprendido por la propia red neuronal
recurrente. Esto supone que el algoritmo modeliza mejor la
interaccion y posible coalicidn entre los datos. De esta manera,
obtenemos una ponderaciéon de los datos que permite una
mejora de 1.01 puntos con respecto a la forma de agregacién
clasica en esta arquitectura, la suma.

TABLE 11
PRECISION DE DISTINTAS AGREGACIONES PARA EL DATASET
FASHION-MNIST (MEDIA DE 10 EJECUCIONES)

Agregacion  Precision
Max 86.45
Cha 85.65
Chy 90.01
Sum 89.00

Dado que es posible mejorar los resultados mediante la
combinacioén lineal de funciones de agregacion, en la tabla III
mostramos los resultados obtenidos a partir de la aplicacién
de estas ultimas. A nivel general, en comparacién con los
resultados obtenidos con la aplicacién de una tnica funcién
de agregacion, podemos observar que todos los resultados son
mejores, ya que los valores A1, Ay € R permiten modelar con
mayor acierto los datos. Asi mismo, con similitud a la tabla II,
las agregaciones con las que mejor resultado obtenemos son
aquellas las cuales uno de sus componentes es la integral de
Choquet en la que se aprende la medida.

TABLE III
PRECISION DE DISTINTAS COMBINACIONES DE AGREGACIONES PARA EL
DATASET FASHION-MNIST (MEDIA DE 10 EJECUCIONES)

Combinacion — Precision
Max + Sum 89.78
Chy + Sum 90.04
Chg + Sum 90.12
Cha + Max 89.71
Chq + Max 90.14

VI. CONCLUSIONES

En este trabajo hemos propuesto un nuevo método para la
fusion de vectores multidimensionales, asi como la utilizacion
de dicha expresion para la fusién de informacién secuencial
en redes neuronales recurrentes tipo LSTM. Asi mismo, se
ha corroborado una mejora en la precisién en el dataset
Fashion-MNIST. Hemos observado que los mejores resultados
se obtienen cuando sustituimos la suma por la integral de
Choquet.

En cuanto a las lineas futuras, en el aspecto tedrico nuestra
intencion es continuar investigando nuevas formas de fusién de
vectores basadas en la integral de Choquet, como por ejemplo
la generalizaciéon de expresiones o la utilizacién de érdenes
admisibles. En la vertiente aplicada, las lineas futuras van en
la direccion de la modificaciéon de mds arquitecturas y mads
complejas, asi como la utilizacién de otros conjuntos de datos.
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Abstract—Computable aggregation operators can be seen as a
generalization of aggregation operators where the mathematical
function is replaced by a program that performs the aggre-
gation process. This extension allows the introduction of new
aggregation processes not feasible under the classical framework.
Particularly interesting are some non-deterministic processes
widely considered to merge information. However, especially in
non-deterministic processes, the extension of some of the well-
known concepts for aggregation operators such as monotony,
is needed. In this work, a new concept of monotonicity is
proposed, from a probabilistic perspective, for non-deterministic
computable aggregation operators. To be consistent, the concept
coincides with the classical definition in the deterministic case.
In addition, some cases of interest are analysed.

Index Terms—aggregation, computable aggregation, mono-
tonicity.

I. INTRODUCTION

One of the most important processes for dealing with
complex information is the aggregation process [1]-[6].

Aggregation is a key tool for most knowledge-based sys-
tems. In general, we can say that aggregation has the aim of
using different pieces of information to come to a conclusion
or a decision. Several research communities consider these
tools, such as the multi-criteria community, the decision-sensor
fusion community, the decision-making community, and the
data mining community, among many others.

Aggregation functions have been associated in literature
with aggregation processes. In this sense, the process to
aggregate information has usually been modelled by a function
or a family of functions.

Nevertheless, in the pioneering work of Montero [7] the
concept of computable aggregations was defined. In that
definition, an aggregation process is associated with a program
not necessarily being expressed in terms of functions. This
approach focuses on the way each aggregation is obtained,
i.e., the procedure that produces the aggregated value. Relevant
properties come from these procedures, and it is the specific
procedure we apply what should be the main object of study.
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Furthermore, the rupture between functions and aggregation
operators allows to open the domain of aggregation pro-
cesses to a field not yet analysed in this discipline: non-
deterministic computable aggregations [8], which are those
aggregations in which it cannot be guaranteed that the results
of the information that is going to be aggregated coincide
when replicating the process, so they are not functions. This
type of aggregation procedure is very common in statistics,
where, due to the volume of information that is processed,
it is frequent to choose a representative sample on which to
operate. Obviously, replicating the process does not imply that
the sample coincides and therefore the result varies. This kind
of computable aggregation needs to redefine some common
properties of aggregation operators, as monotonicity, being no
longer valid for non-deterministic computable aggregations.

Monotonicity has been always present in aggregation pro-
cesses, from the initial ideas by Zadeh (corresponding to
set operations as unions and intersections) to more recent
proposals (directional monotonicity [6], arity-monotonic ag-
gregation operators [9], ...). Monotonicity seems to be a
desirable property associated with a certain robustness of the
aggregation process (obviously not always needed). As an
example, when aggregating information representing positive
evidence on a fact, one expects aggregation being monotone.
Even if the aggregation process is non-deterministic (a non-
deterministic computable aggregation), one would expect some
kind of monotonicity in this process as well.

The purpose of this paper is to revisit and redefine the
monotony property for non-deterministic computable aggrega-
tions. Section II contains some preliminary knowledge useful
to follow the rest of the paper. In Section III we address the
key issue of how the output of a non-deterministic computable
aggregation can be described. In Section IV we discuss the
concept of empirical monotonicity, and population monotonic-
ity, which generalizes monotonicity in the deterministic frame-
work. Comparison between both concepts is developed in
Subsection IV-C. Final Section includes an additional analysis
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and stresses the interest of our results.

II. PRELIMINARIES
A. Non-deterministic Computable Aggregations

Aggregation operators were initially defined to deal with
fuzzy sets [3], [5], [10]-[12], and as a consequence, they were
associated with membership functions. So, this is the reason
why they were defined as follows:

Definition 1. [2] An aggregation operator is a mapping Ag :
[0,1]™ — [0, 1] that satisfies:

1) Ag(0,0...,0) =0 and Ag(1,1,..,1) = 1.

2) Ag is monotonic.

It is even possible in some cases to define aggregation
processes going beyond functions by considering methods that
do not match with the concept of mapping. To analyse this
option let us remind the concept of computable aggregation.
The main contribution in [7] was to separate the strong
association that existed between “aggregation processes” and
explicit functions. But to do so let’s first rewrite the previous
definition in terms of lists as we will use a list notation all
trough this paper.

Definition 2. Let £ be the set of non-empty and finite lists of
degrees in [0, 1]. Then an aggregation operator is a mapping
Ag : L —[0,1] that satisfies:

1) Ag(]0,0...,0]) =0 and Ag([1,1,..,1]) = 1.

2) Ag is monotonic.

Definition 3. [7] (Computable aggregation). Let L < T >
be a non-empty and finite list of n elements with type 7. A
computable aggregation P is a program that transforms the
list L < T > into an element of 7.

Remark 1. This paper combines computational and mathe-
matical aspects. From a computational point of view, the term
list is used to refer to the type of data with which our program
(Computable aggregation) works. However, from a mathemat-
ical approach, even considering that we will maintain the term
list, these lists should be analysed as tuples.

Given a program, there exist some situations in which it is
not possible to build a function associated to it. Those are, for
example, the non-deterministic programs that we introduce in
the following definition.

Definition 4 (Deterministic program). A program is determin-
istic, or repeatable, if it produces the very same output when
given the same input, no matter how many times it is run.

On the other hand, we have programs that can not be
modelled by functions because of the intrinsic definition of
function.

Definition 5 (Non-deterministic computable aggregation). A
computable aggregation P over the set 1" is non deterministic
if and only if the program implementing it is non deterministic.

Hereafter, we will assume T = [0, 1], and consequently, our
lists (L) will be defined in £. The obtained results can be easily

extended to any lattice totally ordered and with maximum and
minimum.

Let us denote by Pp the class of deterministic computable
aggregations and by Parp the set of non deterministic com-
putable aggregations.

The non deterministic behaviour of a program can arise
from different sources, but we will concentrate now in those
aggregation processes involving random or probabilistic deci-
sions. Some elements of Pyrp with this characteristic are the
following [8]:

Definition 6. (Probability sampled computable aggrega-
tion). Given a value p € (0,1], and given a family of
aggregation operators {Ag, : [0,1]" — [0,1], n > 1}, let
us define the computable aggregation P4, ,, as the three steps
program that for a given list Ly = [z1,...,z,] € L performs
the following actions:
o Step 1. Reduce the list L; into another list Lo of lower
(or equal) dimension by randomly erasing the elements
of the list with probability 1 — p.
o Step 2. If Ly is empty then return to Step 1.
o Step 3. Return the value Ag|z,|(L2) if [Lo| > 1.

Note that the computable aggregation Pa4,—1 is deter-
ministic since Pag1(L1) = Agp,|(L1) (since in this case
Ly = Ly).

Another way to sample a list is by fixing a value k, and
randomly selecting k elements from it. Given a list of m
elements in [0,1], L1 = [x1,...,%,] € L, let us denote by
Sely, a program that randomly chooses a sample (without re-
sampling) of k elements of the list if £ < m, and maintains
the same list if &k > m.

Definition 7. (k-sampled computable aggregation). Given
a family of aggregation operators {Ag,, n > 1}, the com-
putable aggregation P4, 1, is defined as the program that for
a given list L1 of m elements, first applies the procedure
Ly = Sely(L1), and then computes the value Ag|r,|(Lz).

It is important to notice that in the previous definitions the
sampled list Ly should be a sublist of L, then maintaining
the relative positions among elements.

B. Distribution functions

In our analysis based on populations we will use distribution
functions and will consider some related concepts.

Definition 8. Given a random distribution X, the cumulative
distribution function of X (denoted by Fx), is a function
that for each value xy computes the probability induced by X
of the set {X < x¢}. Formally the function Fx : R — [0, 1],
is defined as

We can simply use the term distribution function to refer to
the cumulative distribution function.

Another concept that we need to introduce is the idea of
empirical distribution. The empirical distribution function can
be understood as an estimation of the cumulative distribution
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function that is obtained from a sample of the global popula-
tion.

Definition 9. Given a list [ = [aq,. .., a,,] with m values in
[0,1], then the empirical distribution function associated to !
and denoted by EF} can be formally defined for all x € R as

_lila <)
=l

EF(x)

Given a distribution X, if we obtain [ = [a4, ..., a,,] in an
independent way from the global distribution X, there exist
many statistical results that deal with the convergence of the
empirical distribution function to the underlying cumulative
distribution function. So, in general, when m increases, E'F}
converges to F'x.

In addition, given two distributions we can compare them.

Definition 10. Given two distributions X; and X5 with
distribution functions Fy, and Fx,: R — [0,1]. We will
say that X; <p Xs when for all x € R, Fx,(z) > Fx,(z).

ITI. CHARACTERISING THE OUTPUT OF A NON
DETERMINISTIC COMPUTABLE AGGREGATION

Taking into account that the core properties of aggregation
operators are monotonicity and boundary conditions, it is
obvious that defining a new kind of aggregation, as the non
deterministic computable aggregations, requires the analysis
of this two properties.

The boundary conditions are quite simple concepts that have
a straightforward counterpart in this kind of non deterministic
computable aggregations. Any sampling of a list of Os will
be a new list of Os (similarly for a list of 1s), so, as the
underlying aggregation satisfies the boundary conditions, the
computable aggregation also does. But monotonicity is a quite
different question. The analysis of monotonicity requires the
comparison of the outputs of two aggregations. The problem is
that, differently from other aggregation processes, the output of
a non-deterministic aggregation cannot be described in terms
of a known and fixed value. This situation rises a previous
question prior to consider monotonicity. How can we describe
the output of a non-deterministic computable aggregation?

Given a computable aggregation P aggregating a list L1 €
L, we could describe its output by running the program several
times and compiling the outputs. Clearly, if considering a de-
terministic computable aggregation, all outputs should be the
same. However, a non-deterministic computable aggregation
would probably produce several different values.

From now on we will denote by LP7" € L the list of length
m obtained after m executions of the program P over the list
L. These m-realizations could be characterized in terms of a
distribution [13].

Definition 11. (Empirical distribution of a computable
aggregation). Given a computable aggregation P and given
a list L; € L, the distribution of results obtained after m
executions of the program P over the list L, will be referred
as the empirical distribution with size m of the program P
over the list Ly in L, represented by DPﬂ.

It is also possible that, by simply analysing the program
or the underlying algorithm, we could determine what should
theoretically be the distribution of outputs for a given input.

Given a computable aggregation P that aggregates a list
Ly € L, let us denote by P(Lq) the theoretical distribution
after all possible realizations of the program P over the fixed
list L. Obviously, if P € Pp, the associate P(L;) for any
list will be a single value. For non deterministic programs,
we will have here a probability distribution P(L1) for each
fixed value of L;. However there will be some cases where
we would be not able to obtain that theoretical distribution.

In general, given a non deterministic computable aggrega-
tion P, it is not possible to know the theoretical distribution
P(Ly). Nevertheless, we could try to approximate it by
making many realizations of P(L).

After defining LP7", DP}" and P(L;) we need to consider
its relations. In order to show the differences between the list
of executions, the empirical distribution, and the theoretical
distribution, let’s consider the following example.

Example 1. Let L; = [0.1,0.2,0.6,0.7] be a list of four
elements in [0, 1], and let P be a deterministic program that
calculates the average of the elements of the list. Let m =5
be the number of executions. In one hand, it is easy to see
that LPIE’1 = [0.4,0.4,0.4,0.4,0.4] (i.e. a list of 5 elements
each one of them taking the value 0.4), since the program is
deterministic and the program will give always the same result.
On the other hand, the empirical and theoretical distributions
DP} and P(L;) coincide with the degenerate distribution
in the point 0.4 (ie. DP; = P(Ly) = {0.4}) that can be
described by the following cumulative distribution function.

F(z) 0 If z<04
xr) =
1 If >04.

We have obtained the list of executions, the empirical distri-
bution and the theoretical distribution.

Once analysed the previous example considering a deter-
ministic computable aggregation, let’s consider now a generic
approach including the non deterministic case. Taking into
account the concept of distribution function presented in
previous section, if we want to estimate the distribution of
P(L1), we can execute m times P(L;), obtaining the list
LPP. From this list, it is possible to obtain what we have
denoted by DPy" that is the empirical distribution of the
values of the list LP7". The result will be:

Proposition 1. [14] Given a deterministic computable ag-
gregation P, the following holds:

DPJ, = P(Ly).

Starting from a list L; € £ of elements to be aggregated,
and a non deterministic aggregation process, we have defined
two distributions describing the result of the aggregation
process: the theoretical distribution P(L;) and the empiri-
cal distribution (DP7?). In addition we have the list LPr"
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obtained after m executions of the aggregation process. The
interactions and relations among these elements will describe
and characterize a non deterministic computable aggregation.

IV. MONOTONICITY IN NON-DETERMINISTIC
COMPUTABLE AGGREGATION

In a first approach to the monotonicity condition, we will
assume that the output for a certain input list L; € L is
described in terms of m-realizations LPﬂ € L, being also
a list. In this situation any monotonicity analysis will require
a method to compare/order elements of L.

Let Ly = [ay,...,ay,) and Lo = [by,...,b,] be two lists of
L with the same length n > 0. We will represent by s(L1) the
list obtained by sorting L; in increasing order. Accordingly,
s(Lg) will correspond to the sorted version of Lo.

Definition 12. (Sorted 1tol preorder). A list L; in L is
S1tol lower or equal than a list Ly in £, if and only if the k™
value of s(L1) is lower or equal to the k™ value of s(Ls), for
all £ from 1 to n, that is:

Ly <gito1 Lo if and only if s(Lq) < s(L2)k,Vk=1,...n.

Definition 13. (1tol partial order). A list Ly = [a1, ..., ay]
in £ is 1tol lower or equal than a list Ly = [by,...,b,] in L,
if and only if the kth element of L is lower or equal than the
k™ degree of L. It is:

L1 Sllol LQ if and only if Qg S bk,Vk‘ = 1, Lo n.

This partial order is equivalent to the one obtained by
considering the lists (of lenght n) in £ as elements in R™
with its usual order.

A. Empirical monotonicity for non-deterministic computable
aggregations

How to generalize the idea of monotonicity from classical
aggregation operators to non-deterministic computable aggre-
gations is not a trivial task. In general terms, monotonicity
implies that if we have two input lists L, < Lo, their outputs
should maintain that order. Consequently, the usual concept
of monotonicity of aggregation operators is not valid for non-
deterministic computable aggregations, as these aggregations
do not produce the same output when receiving the same input.
To cope with this situation, the concept of list associated to
m executions for a given list L; (LF") has been previously
introduced. This concept describes the result obtained (a list
L, € L) after m executions of the program P over the list
L;. When m is large enough it allows an empirical analysis
of the computable aggregation.

The following properties try to answer the question of how
to define monotonicity from this point of view, applying the
different methods previously considered for the comparison of
lists. It is important to notice that we have lists as inputs (L;),
and we describe the outputs also in terms of lists (LPgZ).

In what concerns the lists of inputs (L;), from the point of
view of an aggregation processes these lists behave as vectors
(the n inputs of an aggregation process are an element of

[0,1]™), and should be ordered considering the usual order
of [0,1]™, that is equivalent to <j,; previously defined.
Consequently we will use this notation in the definitions.

Definition 14. (Strong <-monotonicity of non-deterministic
computable aggregations]). Let P be a non-deterministic
computable aggregation. Let L1 = [aj,...,a,] and Ly =
[b1,...,by] be two lists of degrees in L. Let < be a (partial)
order on the set £. A non-deterministic computable aggrega-
tion P is strong <-monotone if and only if, when L; <ji1 Lo
then (LP) < (LP7}) for any m > 1.

Definition 15. (Asymptotic <-monotonicity of non-
deterministic computable aggregations). Let P be a non-
deterministic computable aggregation. Let L1 = [ay,...,ay]
and Ly = [by,...,b,] be two lists of degrees in L. Let < be
a partial order on the set £. A non-deterministic computable
aggregation P is asymptotic <-monotone if and only if, there
exists a natural number ng such that If L, <j,; Lo then
(LPrY) < (LP[Y) for any m > ng.

B. Population monotonicity for non-deterministic computable
aggregations

Once defined an order in the output-space of non determin-
istic computable aggregations, let us consider monotonicity.

Definition 16 (Population monotonicity of non-deterministic
computable aggregations). Let P be a non-deterministic com-
putable aggregation, and let L; and L, be two lists € L
ordered with the classical vectorial order definition (equivalent
to the previously defined 1tol order). A non-deterministic
computable aggregation P is population monotone if and
only if, when Ly < Ly then P(Ly) <p P(La).

Remark 2. Let us observe that previous definition general-
izes the classical definition of monotonicity for deterministic
computable aggregations. In the following proposition we will
see in detail.

Proposition 2. Let P be a deterministic computable aggrega-
tion with associated function Ag. Then, the following holds:

P is population monotone if and only if Ag is monotone.

Proof. e From left to right. Given L; < Lo, will prove that
Ag(L1) < Ag(Ls). First, since P is deterministic with
associated aggregation function Ag, the following holds
for the list L1 and L.

0 If =< Ag(Lh)
F —
P () {1 If @ > Ag(L,)

and
0 If z< Ag(Ls2)

F ') =
P(L2)(7) {1 If 2> Ag(Lz).

Then, since P is monotone, P(L1) <p P(Ls2) which
implies that for all X Fp(r,)(x) > Fp(r,)(x). Finally, it
is very easy to see that these inequalities hold if and only
if Ag(L1) < Ag(Ls) so the result is proved.
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o From right to left. Given Ly < Lo, we are going to prove
that P(L1) <p P(Ls). Since P is deterministic, P(L1)
and P(Ls) are degenerated distributions in the values
Ag(Ly) and Ag(Ls), respectively. Since Ag is monotone,
Ag(L1) < Ag(Ls), and thus it is very easy to see that
Fp(1,)(x) < Fp(p,)(z) for any value of x.

O

For practical reasons, we can approximate the theoretical
distribution empirically if the number of executions is enough
to ensure that empirical distribution is close to theoretical
distribution. Taking into account this consideration, we present
the following definition.

Definition 17 (Population asymptotic monotonicity of non-de-
terministic computable aggregations). Let P be a non-
deterministic computable aggregation, and let L; and Lq
be two lists in £ ordered with the classical vectorial order
definition. A non-deterministic computable aggregation P
is population asymptotic monotone if and only if when
L1 < Lo then, Vo € R,

lim
m—r 00

(FDPE; (x) — Fopp, (x)) > 0.

Proposition 3. Let P be a non deterministic computable ag-
gregation, if P is population monotone then P is population
asymptotic monotone.

Proof. First of all, let us note that Fp P and Fp Py, are
bounded functions in [0, 1]. Also, by Ghvelznko Cantelh the-
orem, there exist punctual convergence of the empirical dis-
tribution function (Fp Pr) into the theoretical one (denoted
as Fppy) for L € {L1, L2}. Consequently, the limits of
Fppy () and Fppy () exist for all z € R, and the limit of
the dl%ference commées with the difference of limits. So, the
following holds:

i (FDPg; () = Fppp, (x)) =

i Fppp (z) =

lim Fppm (x
m—>00 DPL2( )

Now, due to the punctual convergence previously men-
tioned,

ol Fory (@) = lim Fopp, (v)

— Fp, (2) - Fp,, ().
Finally, since P is population monotone, P(L1) <p P(Ls)

so the previous difference is greater than or equal to zero and

the result is proved.

O

C. Empirical and population monotonicity

Finally, in this subsection we will see the relationship
between the defined concepts of monotonicity for lists and
distributions. In particular, let us analyse the relations between
population monotonicity, asymptotic population monotonicity,
asymptotic < monotonicity and strong < monotonicity.

Let us first consider the relation between the order <p for
distribution functions and the order <gq;,1 for lists.

Proposition 4. Given a computable aggregation P, two lists
Ly, Ly € L, two m-realizations of the computable aggregation
on these lists LP[", LP, € L, and the corresponding empir-
ical distributions DPE”1 and DP”;, then DPﬂ <p DPF2 if
and only ifLPﬂ <S1tol LPE’;.

It is relevant to mention that the strong monotonicity defined
for lists will not have an equivalence in the context of
distributions since the requirements are too strong, so we will
focus on the equivalence in the asymptotic cases for lists
and distributions. Our first result is a natural consequence of
Proposition 4, which establishes an equivalence between the
orders in distributions after m realizations and the associated
lists.

Proposition 5. P is population asymptotic monotone if P is
<s1to1-asymptotic monotone.

Proof. This is direct by Proposition 4 in which we have that
DPry <p DPf if and only if LPf} <g1401 LP[.. So if
P is <g1t01-asymptotic monotone, then DPﬂ <p DP}J’;
for a given value of m > mg, and as a consequence

Now taking into account the previous implications between
list of orders, distributions, and different classes of monotonic-
ity, the following implications trivially holds.

Corollary 1. Let P be a computable aggregation.

o If P is strong <g1:01 monotone, then P is population
asymptotic monotone.

o If P is strong <g1:01 monotone, then P is population
monotone.

o If P is a deterministic computable aggregation, then P
is strong < monotone, for any order.

Prior to conclude the paper with a preliminary analysis on
sampling aggregations, it is important to remark the reason
to introduce the analysis based on populations, once we have
the empirical approach. The main reason relies in the fact that
once we move from lists to distributions, the dimension of the
list does not affect. We can compare distributions related to
lists of different dimension. That is, we can compare D P
and Dsz, no matter if n # m.

V. FINAL ANALYSIS AND CONCLUSIONS

Once introduced the different definitions and properties,
it is possible to analyse monotonicity for a family of non
deterministic computable aggregations that includes the most
famous non deterministic process in statistics: sampling. We
will consider now the k-sampled and probability sampled
computable aggregations.

It is possible to check that both families of non deterministic
computable aggregations are population monotone, for any
classical aggregation operator function Ag. To do so, a possi-
ble guideline of the proof is to use the concept of empirical
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distribution function associated to a list (FF}, see definition
9) and the distribution associated to a list [ denoted as D,
and described (according to Eq. 1) as Fp, = E'F;. Note that
this is a generalization of the relation defined between a list
of m-—realizations (LP7") and the corresponding empirical
distribution (DPi”l).

The idea beyond this, is to compare the associated empirical
distribution with the population distributions associated with
lists that are generated after we aggregate all possible scenarios
of these two computable aggregations.

To conclude this section, let us note that in this work we
provide an approach to monotonicity of non deterministic
computable aggregations. This definition includes the classical
notion in the deterministic case and offers two different
approaches. The first approach relies on orders (and preorders)
on lists. The second represents a probabilistic conception
appearing in a natural way since we model the outputs of
a computable aggregation (that in the deterministic case are
single points), as probability distributions. As a consequence,
we have had to answer the question of how to order lists
and/or probability distributions. In this work, we provide a
natural way of comparing distributions following the idea of
stochastic dominance between distribution functions.

To conclude we make two additional comments. On the
one hand, it is clear that other definitions for ordering lists
and probability distributions could be considered and would
give different versions of monotonicity. How to establish other
orders between lists and between probability distributions is
a question that we believe is worth studying in the future.
On the other hand, we have also interpreted the output of a
computable aggregation after a sufficient number of iterations,
simply as a list of values. In that framework, we can also
explore other order relations (now between lists) that would
produce different notions of monotonicity.
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Abstract—Las interfaces cerebro-ordenador (BCI) basadas en
el analisis de Electroencefalografia (EEG) estin compuestas por
varios elementos para procesar y clasificar las seiales de entrada
del cerebro. Una fase relevante de estos sistemas es el médulo de
toma de decisiones, en el que la salida de diferentes clasificadores
se fusiona en uno solo. En este trabajo proponemos el uso de
funciones basadas en desviaciones moderadas con ponderaciones
para la fase de toma de decisiones del sistema de BCI de
fusion multimodal mejorado (EMF). Las funciones de agregacion
basadas en desviacion moderada (MD) nos permiten elegir el
mejor valor para agregar un vector de puntos utilizando una
funcion de desviacion moderada. Usando una MD ponderada,
también podemos tener en cuenta la importancia relativa de
cada dimensién en los datos multidimensionales que estamos
agregando. Utilizando estas funciones en el EMF, podemos
ponderar cada una de las diferentes sefiales cerebrales segin su
importancia, y utilizando la diferenciacion automatica, también
podemos optimizarlas para el problema concreto a solucionar.

I. INTRODUCCION

Las interfaces cerebro-ordenador (BCI) tienen como
objetivo decodificar patrones de sefales cerebrales para
controlar diferentes mecanismos del cerebro [1], [2]. Se
pueden utilizar diferentes propiedades de una sefial para
controlar dispositivos mediante sefiales cerebrales, [3], [4].
Una estrategia popular para modular las sefiales cerebrales
de modo que se puedan interpretar en comandos es el
entrenamiento con imdgenes motoras (MI). Durante el
proceso de MI, una persona imagina el movimiento de una
parte del cuerpo, como por ejemplo la mano izquierda o
derecha, los pies o la lengua [5]. Durante la imaginacién
de los movimientos, la potencia eléctrica de las d4reas
sensoriomotoras, contralaterales al lado del movimiento,
se reduce, en un efecto conocido como desincronizacién
relacionada con el evento (ERD), [6]-[8] y, a menudo,
también se da un aumento de la potencia, o sincronizacién
relacionada con el evento (ERS) en el lado ipsilateral. La
identificacién correcta de ERD/ERS influye en gran medida
en el rendimiento de un sistema BCI basado en MI. Algunos
algoritmos muy populares para identificar y clasificar los
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cambios de potencia de las sefiales MI son el patrén espacial
comun (CSP), las maquinas vectoriales de soporte o las redes
neuronales de aprendizaje profundo, [6], [9]-[14].

Los sistemas BCI se disefan utilizando una amplia gama
de técnicas para extraer caracteristicas de los datos originales
en bruto antes de extraer patrones cerebrales clasificables.
Algunos procedimientos comunes incluyen la estimacién de
la potencia de banda estrecha en el dominio de tiempo
[15], [16], en el dominio de frecuencia [17]-[19] o en
el dominio de tiempo-frecuencia utilizando, por ejemplo,
ondas de Meyer [20], [21]. Posteriormente, la clasificacion se
realiza generalmente empleando clasificadores lineales como
el Analisis Discriminante Lineal (LDA), pero también QDA
o SVMs [22] son procedimientos de clasificacién populares.
A veces, especialmente en el caso de paradigmas multiclase,
estdn involucradas muchas caracteristicas diferentes o se
combinan diferentes caracteristicas. En esos casos, el mddulo
de reconocimiento de patrones puede estar compuesto por
un conjunto de clasificadores. La estrategia mds comun para
combinar resultados de clasificacién es probablemente la
votacién por mayoria [23].

En [24], los autores propusieron una nueva forma de realizar
la toma de decisiones en un marco BCI en dos fases, la toma
de decisiones multimodal. En [25] los autores propusieron
una actualizaciéon de este mismo proceso, lo que resulté en
el marco BCI de fusién multimodal mejorado (EMF). Este
trabajo también presenté un estudio detallado de diferentes
funciones de agregacion, que mostré diferencias significativas
en cuanto a la precisién de la clasificacion final.

Sin embargo, el problema de elegir la mejor funcién de
agregacion sigue estando abierto. La literatura sobre teoria
de la agregacion sugiere el uso de agregaciones basadas en
desviaciones moderadas (MD) como una opcién para resolver
el problema de escoger la agregaciéon mds adecuada para
conjunto de datos [26]. La idea de las MD es utilizar una
desviacion moderada para calcular la similitud entre el posible
valor de salida y el conjunto de datos de entrada. Luego,
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buscamos el valor que maximiza esa similitud con respecto
a los datos de entrada.

En este trabajo, usamos la MD desarrollada en [27]
para tomar en cuenta las diferentes importancias de cada
caracteristica de entrada usando pesos, y para resolver el
problema de elegir la mejor agregacién. Mostramos cémo se
aplican estas funciones al marco BCI publicado en [25] y
un procedimiento para aprender los pesos de acuerdo con los
datos de entrada.

El resto del articulo es el siguiente: en la seccion
I explicamos las funciones basadas en la desviacién
moderada multivariante ponderada (II-A) y el marco de fusién
multimodal mejorado (II-B) y como aplicar estas funciones
en dicho marco. En la Secciéon III describimos nuestros
experimentos y mostramos los resultados obtenidos, y en la
Secciéon IV damos nuestras observaciones finales para este
trabajo y explicamos nuestras pautas futuras.

II. METODOS

En esta seccién explicamos los conceptos asociados con las
funciones basadas en la MD y el EMF para la clasificaciéon de
seflales MI-BCI.

A. Desviaciones moderadas

Sea I un intervalo cerrado de nimeros reales y sea a =
min/ y b = max /. Una aplicacion M : [I™ — I se dice
que es una funcién de agregacion (n-dimensional) si M es
creciente y M(a,...,a) = a, M(b,...,b) = b. Ademds, se
dice que una funcién de agregaciéon M es promedia [28] si
solo si

min(zy,...,2,) < M(x1,...,2,) < max(x1...,%,)

por cada xq,...,x, € I.

Se puede encontrar una lista completa de varios ejemplos de
funciones de agregacioén en [29]. Existen muchas familias de
funciones de agregacidn, utilizadas segtin las circunstancias de
cada problema. Entre ellas, el concepto de agregacién basada
en desviacion resulta muy eficaz en muchas circunstancias.
Su procedimiento es sencillo: se mide la diferencia entre los
valores a agregar y un posible valor de salida y se escoge el
valor que sea mas similar a todos ellos.

Para medir la disimilitud en estos pares de valores, se puede
utilizar una funcién de desviacién o una funcién de desviacién
moderada. Sea I un intervalo cerrado de nimeros reales. Se
dice que un mapeo D: I? — R es una funcién de desviacion
si y solo si D(x,-): I — R es continuo y estrictamente
creciente, y D(x,z) = 0 para todo x € I. Ademds, sea n un
nimero natural, un mapeo Mp: I™ — R se dice que es una
media de Daroczy si'y solo si Mp viene dado por

MD(X) =Y

donde y es la solucién de la ecuacioén

Z D(z;,y) =0.
i=1

Una media de Dar6czy nos permite determinar qué tan
diferente es cada entrada z; de y, y el resultado final de
la funcion Mp es ese y para el cual la suma de todas las
diferencias es tan pequefla como sea posible. Sin embargo,
debido a algunos problemas de esta definicion, se propusieron
las desviaciones moderadas:

Sea I un intervalo cerrado de nimeros reales. Se dice que
un mapeo D: I? — R es una funcion de desviacién moderada
si y solo si

1) Porcadax € I, D(x,-): I — R no es decreciente;
2) Porcaday € I, D(-,y): I — R no es creciente;
3) D(z,y)=0siysolosiz=vy, z,y € 1.

Una funcién dada por D(z,y) = y — = para z,y € R,
representa el ejemplo prototipico de funcién de desviacién
moderada.

Ahora procedemos a presentar un método para construir
desviaciones moderadas ponderadas para datos multi-variable,
que luego usaremos para agregar preferencias de distintos
expertos.

Proposition IL.1. Sea f: R — R una funcién no decreciente
tal que f(x) = 0 si y solo si ¢ = 0. Sea s: [0,1] = R
una funcion estrictamente creciente. Luego, un mapeo Dy  :
[0,1]> — R dado por

Dys(w,y) = f(s(y) — s(x))

es una funcion de desviacion moderada.

Sea el conjunto de datos multidimensionales una matriz
p X q¢ A de n vectores de manera que tanto p como ¢ sean
divisibles por un entero positivo r, r # 1. La matriz A puede
considerarse compuesta de n submatrices A1, Ao, ..., A, con
entradas reales, donde A; es una “ seccion transversal ” de A
a través de todos sus j -ésimos componentes . Por tanto, la
matriz A puede considerarse como el vector (A1, Az, ..., Ay)
de matrices.

Descompongamos la matriz A en (p/r) - (¢/r) mutuamente

disjuntas submatrices 7 x r B, o € {1,2,...,p/r},
8 € {1,2,...,q/r}. Al aplicar el método de fusién en
cuestion, reemplazaremos cada submatriz de n-tuplas por un
representante apropiado que es nuevamente una n-tupla, lo
que da como resultado un (p/r) X (¢/r) matriz C de n reales
-tuplas.
Paso #1 (Descomposicion de la matriz A): sea Z = [p/r] y
J = [g/r]. Denotando el elemento en la posicién (r,s) de A
por a,s. Se define para cada o« € Zy § € J una r X r matriz
B*? de n-tuplas como

b = apactyrri(p-yres Para i e (1)

Entonces, la matriz A puede verse como una unién disjunta
de matrices B*? sobre todos los indices a € Z, BseJ.

Sea « un indice arbitrario pero fijo de Z y 5 de J,
respectivamente. Entonces la matriz B*® consta de n de r x r
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matrices cuadradas

B B B

b(flk b(ka T b(frk

B B B

s b;lk bgzk e bgrk
B, = para cada k € [n]. (2)

B B B

b?lk b?Qk T b?rk

Nota: Dentro del espacio euclidiano n-dimensional E™
alcance, los elementos de Bgﬁ corresponden a las proyecciones
sobre el k-eje.

Paso #2 (Fijando un dominio): teniendo en cuenta las
posibles aplicaciones, es necesario fijar un intervalo real
cerrado para ser utilizado como dominio de una funcién de
agregacion basada en desviaciones. Por esta razén, designamos

AP = _mig]{biﬁ} y vif :i{?gf;]{bﬁ;i},

1,J€

k en.

Llamando 72" al intervalo real cerrado [AL”, V7], ie.
¥ ={z e RIAY < < ViPY. 3)

Servird como el dominio de una funcién de agregacién basada
en la desviacion que se aplicard como la agregacién de IB%?B
elementos.

Paso #3 (Implementacion de la agregacion basada en
desviaciones):

Theorem IL.2. Sea I un intervalo de niimeros reales. Sea X
una matriz s X t tal que x;; € I por cada i € [s], j € [t].
Denotamos por Ix un intervalo real cerrado

{zis}, ]{%‘j}]-

max

[ mi
i€[s],jE[t

n

1€[s],j€[t]
Sea D: Ix x Ix — R una funcion de desviacion moderada.
Se define una funcion Mp: I5* — R por

Mp(X) = %(sup{y el ZZD(mij,y) <0}+

i=1 j=1

+inf{y € I1Y Y D(wij,y) > 0}).

i=1 j=1
(MDX)

entonces Mp es una funcion de agregacion idempotente y
simétrica.

Paso #4 (Ponderando las matrices): Sea I un intervalo de
ndmeros reales. Sea D: I? — R una funcién de desviacién
moderada. Sea W una matriz de ponderacioén no negativa s x ¢
tal que w;; € [0,00) por cada i € [s], j € [t], y X serd una
matriz s x t de nimeros reales tal que x;; € I por cada i € [s],
Jj € [t]. Se dice que el mapeo Mp w: IP"? — I es una funcion

de agregacion matricial basada en la desviacion ponderada
si y solo si

1 s t
Mp w(X) = E(sup{y €l ZzwijD(xijay) <O0}+

i=1 j=1

+1nf{y el | ZZU)UD(%U,:U) > O})

i=1 j=1
(MDWX)

La imagen Mp w(X) de X se denomina agregacion de
matrices basada en desviaciones moderadas ponderada.

Proposition I1.3. Siendo k € [n] un mimero entero escogido
arbitrariamente. Sea ]ESZB una matriz v X r definida como
Eq. (2). Siendo w = (w1, wa,...,w,) € [0,00)™ un vector
de pesos no negativos. Siendo Mp : (I;:ﬁ)r'T — R una
agregacion de matrices basada en desviaciones moderadas.
Entonces, para cada k € [n], la funcion Mp v : (I,‘:ﬁ)"'r —
R definida como:

Mp ., (B}”) = Mp(wB;”)

wi - 07, wi - b
Wy - bglﬁk Wi, - Doy
= MD
af af
Wi - brlk Wk brrk:
(MDw)

es una agregacion de matrices basada en desviaciones
moderadas ponderada.

Example 11.4. Siendo I un intervalo de niimeros reales cerrado.
Siendo A una matriz de dimensién 12 000 x 800 de cuddruplas
reales a;; de modo que

aij = (aij1, aij2, aijs, aija), i € [10000], j € [800],

5
(aiji, Gije,aij3,aija) € I°.

Siendo r = 2. Entonces, siguiendo (1), « € [10000/2] =
[5000] y B € [800/2] = [400].
Para € > 1, se define D.: I? — R como

De(w,y) = (x +¢)(y — 2).

Pues, D. es una funcién de desviacion, y la correspondiente
funcién de agregacién de dos variables Mp_: I? — R es
dada por:

:u(u—l—e)—i—v(v—i-s)

Mp. (u,v) w4+ v+ 2

“
para todo u, v € [ siendo u + v + 2¢ # 0.

Siendo w = (w1, we, w3, wy) € [0,00) un vector de pesos.
Para todo k € [4], a € [5000], 8 € [400], se define, de
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acuerdo con Eq. ((2)), una matriz 2 x 2 IB%;:B . Entonces la
funcion Mp_w: I* — R:

Mp, ., (B}?) = Mp,_ (w;,B}")

af af
wibyyy  wrbigy
= Mp
e af o
wibyyy, wkbzzk

2 2 o
Z Z wkbwk(buk +e)

= 5 &)

2 wkb”k

es la agregacion de matrices basada en desviaciones
moderadas ponderada. Finalmente, la resultante matriz de
5000 x 400 C de 5000 - 400 = 2000 000 cuadriplas

ygvﬁ = (MD57w1 (Btllﬁ)’ s 7MD5»1U4 (BZB))a
€ [5000], 8 € [400], es el resultado A con respecto a D..

B. Enhanced-Multimodal Fusion BCI Framework

El EMF es el marco MI BCI que clasifica sefiales EEG [25].
El EMF consta de 5 fases diferentes:

1) Calcular la transformada rapida de Fourier de la sefial
de EEG para transformar los datos de potencia de EEG
en el dominio de la frecuencia. Luego, se realiza una
diferenciacion de la salida FFt en cada frecuencia.

2) Se dividen los datos en cinco bandas de ondas diferentes:
01—4Hz,§ 4—8Hz,« 8—14 Hz, f14 —30 Hz y
1 — 30 Hz (Todas).

3) Se calcula el CSP en cada banda de onda para extraer
caracteristicas con separacidn espacial méxima [30].

4) Se entrena un conjunto de clasificadores para cada banda
de onda: un andlisis discriminante lineal (LDA), andlisis
discriminante cuadratico (QDA), maquina de vectores de
soporte (SVM), K-vecinos cercanos (KNN) y proceso
gaussiano (GP). De esta manera tenemos un clasificador
de cada tipo para cada banda de onda estudiada.

5) Se realiza la decision multimodal utilizando dos
funciones de agregacién. Los mejores resultados en
[25] se obtuvieron utilizando una integral de Choquet /
Sugeno en la primera fase de la agregacién y una funcién
de overlap generalizada [31].

Se puede encontrar un esquema visual del EMF en la
Figura 1.

C. Aprendizaje de ponderaciones en una agregacion basada
en desviacion moderada ponderada

Como se detalla en la Seccion II-A, es posible usar una MD
para agregar un vector de entradas, dando mds importancia a
algunos canales. Sin embargo, este proceso de ponderacién no
es sencillo, ya que qué canales deberian ser mds importantes
que otros depende en gran medida de la tarea a resolver.
Ademds, en el caso de la decision multimodal, los pesos
aprendidos para la fase 1 pueden influir mucho en los pesos
Optimos para la fase 2.

En el caso de una tarea de aprendizaje supervisado,
podemos plantear este problema como uno de optimizacion.
Usando los logits de los clasificadores como datos de
entrenamiento, los agregamos usando la MD ponderada y
luego clasificamos cada muestra. La funcién de coste para la
funcién de optimizacién es la entropia cruzada para las clases
C'y las muestras de M:

M C
- Z Zyc,m * lo.g(pc,m) 6)

m=1 c=1

donde y.,m es un valor binario que es 1 solo si c es la
etiqueta real para la muestra m, y p.,, es la probabilidad
predicha para la muestra m a ser de clase c.

Procedemos entonces a solucionar este problema mediante
la autodiferenciacion. El algoritmo de backpropagation para
resolver este problema estd presente en todas las bibliotecas
de célculo de tensores, que se utilizan comtinmente para Deep
Learning [32].

III. EXPERIMENTOS Y RESULTADOS

Para nuestros experimentos, hemos utilizado el conjunto de
datos BCI Competition IV 2a [33]. Este conjunto de datos
consta de cuatro clases de tareas: lengua, pie, mano izquierda
y mano derecha realizadas por 9 voluntarios. Para cada tarea,
se recolectaron 22 canales de EEG. Hay un total de 288
ensayos para cada participante, distribuidos equitativamente
entre las 4 clases. Para nuestra configuracién experimental,
hemos utilizado 4 de los 22 canales disponibles (8, 12, 14,
18), siguiendo los procedimientos de [24], [25].

De cada sujeto, hemos generado veinte particiones de las
288 pruebas que constan de 50% entrenamiento (144 pruebas)
y 50% test (144 pruebas) elegidas al azar. Dado que tenemos
9 sujetos, esto produce un total de 90 conjuntos de datos
diferentes.

Estudiamos tanto la clasificacién binaria de mano
izquierda/derecha como la tarea completa de cuatro clases.

A. Resultados de la clasificacion binaria

En esta seccion hemos estudiado el rendimiento del EMF
utilizando una MD ponderada para la clasificacién binaria.
Hemos estudiado dos versiones de esta MD ponderada,
estableciendo todos los pesos en 1 y aprendiéndolos usando
la propagacion hacia atrés.

En la Tabla I mostramos los resultados de la MD ponderada
en ambos casos y los comparamos con otras agregaciones.
Obtuvimos un mejor resultado aprendiendo los pesos que
fijandolos al mismo valor, lo que mostré que el algoritmo de
entrenamiento funcioné bien. Funcioné de manera similar a
la media aritmética y la integral de Choquet, y mejor que la
integral de Sugeno. Creemos que esta ventaja de rendimiento
se debe a la flexibilidad que se obtiene al utilizar diferentes
funciones de agregacién en ambas fases.
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Fig. 1. Esquema visual para el marco BCI de fusién multimodal mejorado.

TABLE I
RESULTADOS DE LA CLASIFICACION BINARIA UTILIZANDO EL EMF CON
DIFERENTES CONFIGURACIONES.

Tasa de acierto

86.97% + 3.98
85.80% + 4.08

85.80% =+ 4.04
86.39% + 4.20
81.39% + 4.39

Agregacion

MD-Ponderada aprendida
MD-Ponderada fijada

Media Aritmética
Integral de Choquet
Integral de Sugeno

B. Resultados de la tarea completa

En esta seccion, hemos estudiado el rendimiento del sistema
BCI EMF utilizando la MD ponderada para la tarea de
clasificaciéon de cuatro clases. Hemos estudiado la versién
de pesos fijos de la MD, donde todos los canales son
igualmente importantes, y la version de peso aprendido usando
la propagacién hacia atrds, al igual que en la tarea de
clasificacién binaria.

Hemos mostrado nuestros resultados en la Tabla II. En
esta Tabla también encontramos los resultados para la media
aritmética y las integrales de Sugeno y Choquet. Descubrimos
que la MD ponderada funciona igual o mejor que las otras
integrales. Aprender el peso del canal también nos dio un peor
resultado que fijar todos los pesos a 1, probablemente por la
falta de suficientes datos. El mejor resultado se obtuvo usando
la MD ponderado fija y la integral de Choquet, que resultaron
en una precision de 72,93%.

TABLE II
RESULTADOS DE LA CLASIFICACION DE LAS CUATRO CLASES UTILIZANDO
EL EMF CON DIFERENTES CONFIGURACIONES.

Tasa de acierto

65.91% 4 13.15
72.93% + 2.29

72.22% +2.31
72.93% + 1.85
64.45% + 2.66

Agregacion

MD-Ponderada aprendida
MD-Ponderada fijada

Media Aritmética
Integral de Choquet
Integral de Sugeno

IV. CONCLUSIONES

En este trabajo hemos presentado las agregaciones
ponderadas basadas en desviaciones moderadas aplicadas a un
marco de interfaz cerebro-computadora de imdgenes motoras,
el marco de fusién multimodal mejorado. Hemos mostrado
en qué parte del marco BCI se aplica y como se pueden
optimizar los pesos de esta funcion mediante la diferenciacion
automatica.

Hemos comparado los resultados utilizando pesos
optimizados y fijos, obteniendo mejores resultados al
aprenderlos. Asimismo, hemos comparado las agregaciones
basadas en Desviacién Moderada con el promedio aritmético
y las integrales de Sugeno y Choquet, obteniendo resultados
favorables a nuestras soluciones.

Nuestra investigacion futura tendrd como objetivo mejorar
el proceso de aprendizaje para requerir menos muestras
de entrenamiento y mejorar ain mds la fase de salida
del clasificador explorando mds funciones de desviacién
moderada.
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Abstract—En este trabajo proponemos un nuevo enfoque del
algoritmo de clustering gravitacional basado en lo que Einstein
consideré su “mayor error”: la constante cosmolégica. De manera
similar al algoritmo de clustering gravitacional, nuestro enfoque
esta inspirado en principios y leyes del cosmos, y al igual que
ocurre con la teoria de la relatividad de Einstein y la teoria
de la gravedad de Newton, nuestro enfoque puede considerarse
una generalizacion del agrupamiento gravitacional, donde, el
algoritmo de clustering gravitacional se recupera como caso
limite. Ademas, se desarrollan e implementan algunas mejoras
que tienen como objetivo optimizar la cantidad de iteraciones
finales, y de esta forma, se reduce el tiempo de ejecucion tanto
para el algoritmo original como para nuestra version.

Index Terms—cosmos, clustering, no supervisado, simulacion,
fuerza gravitacional

I. INTRODUCCION

OS OPERADORES DE COMPARACION han sido ob-
jeto de estudio en el dmbito del procesamiento de la
informacién. De hecho, la comparacién (cuantitativa) de in-
formacién es una de las tres operaciones mds bdsicas sobre
datos, junto a las operaciones de igualdad y ordenacién. De
manera general, la investigacion se ha centrado en simular el
comportamiento humano al realizar este tipo de operaciones.
Gran parte de la literatura sobre operadores de com-
paracién estd dedicada a las métricas, asi como a clases de
operadores estrechamente relacionados (pseudométricas [1],
cuasimétricas [2], etc.). Una de las principales criticas a las
métricas como operadores de comparacién es el hecho de
que se imponga la desigualdad triangular [3]. Si bien la
desigualdad triangular es matematicamente conveniente en una
amplia gama de escenarios, no estd claro si los humanos
realmente se comportan de acuerdo con esta propiedad, y
se pueden encontrar muchos contraejemplos diferentes en
contextos especificos [4]. Por esta razén, los investigadores
han intentado construir paradigmas de comparacién que no se
basen ni se inspiren en métricas.

Dentro de la teoria de conjuntos difusos, la comparacion
se ha abordado de diferentes maneras. Una parte importante
se ha dedicado a la idea de métricas difusas [5], [6] o
pseudométricas [7], [8], y las Funciones de Equivalencia

Restringida (REF por sus siglas en inglés), son en este 4mbito
de vital relevancia. Estas fueron presentadas en [9] para la
comparacién de grados de pertenencia en el intervalo [0, 1]
adaptando los axiomas originales propuestos por J. Fodor y
M. Roubens [10]. Desde su introduccion, el concepto de REF
se ha adaptado a dmbitos en los que los valores a comparar
se encuentran dentro del intervalo [0, 1]. Ejemplos relevantes
son las REF intervalo-valoradas (IV-REF), disefadas para
comparar grados de pertenencia con intervalos [11], o las REF
radiales (RREF), adaptadas para datos escalares en configura-
ciones radiales [12]. Una necesidad critica en la adaptacién
de las REF a escenarios distintos al original es en relacién al
modelado del orden de crecimiento, que se utiliza criticamente
en la definicién axiomética de REF.

En este trabajo presentamos una adaptacion de las REF a
datos multivaluados, que denotamos como L™. Para lograr este
objetivo, presentamos la idea de L™-REF, y desarrollamos
un conjunto de axiomas que estos operadores deben cumplir.
Ademads, introducimos métodos de construccion para L™-REF
capaces de acomodar diferentes interpretaciones en el orde-
namiento multivaluado. Nuestras propuestas, en términos de
ordenacion de datos multivaluados, se cicunscriben dentro del
la taxonomia de Barnett [13]. Tengase en cuenta que imponer
algin orden para los datos multivaluados es necesariamente
arbitrario y dependiente del contexto, ya que no hay un
orden natural para los datos multivaluados [13]. A modo de
ejemplo, utilizamos las L™-REF en la comparacién de colores,
ya que el color se representa de forma habitual como un
dato multivaluado (independientemente del espacio de color
especifico). Ademads sirve como ejemplo de aplicacion de las
L"-REF en vision artificial.

El resto de este trabajo estd organizado de la siguiente
manera. La Seccién II resume algunos conceptos de uso para
las proximas secciones. La Seccién III presenta nuestra prop-
uesta, mientras que diferentes ejemplos ilustrativos presentan
una prueba de concepto de nuestros operadores en el contexto
de la comparacién de colores. Finalmente, en la Seccién IV se
recogen las conclusiones de nuestro trabajo y posibles lineas
futuras.
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II. PRELIMINARES
A. REF en L

Considérese (L,<) donde L = [0,1] y < es el orden
natural de los numeros. Ahora bien, considérense en le-
tra mayuscula los elementos pertenecientes a L", es decir
X = (¢1,...,2,) € L™ donde n € N. Existe un orden
parcial <p inducido por < dado de la siguiente manera:
X <p Y iff z; <y, paratodo i € {1,...,n}..

Denétense 0 = (0,...,0) € L™ y 1 = (1,...,1) € L™
Una funcién de agregacion n-aria M de elementos multivalu-
ados en L" es una funcién M : L™ — L creciente para cada
una de las variables y debe satisfacer M (0) = 0, M (1) =1
[14]-[16]. Las siguientes propiedades para las funciones de
agregacion M : L™ — L son de utilidad para las siguientes
secciones:

(Pl) M(z1,...,2,)=0iff x1 =... =2, =0.
P2) M(z1,...,2p)=1iff 1 =... =2, = 1.

Una Media Aritmética Ponderada n-aria (MAP) en L con
pesos normalizados w1, ..., w, € L'y X = (z1,...,%Zn) €8s
una funcién w : L™ — L definida como w(X) = wyz1+...+
WXy tal que wy + ... +w, = 1.

Definicion II.1. Un automorfismo de L es una funcion con-
tinua estrictamente creciente @ : L — L tal que p(0) =0y
©(1) = 1. Ademds, la identidad en L se indica con Id.

Definase una REF en L construida por automorfismos de
la siguiente manera.
Definicion I1.2. /9] Una funcion R : [0,1]*> — [0,1] es
llamada Funcion de Equivalencia Restringida si cumple:
RD R(z,y) =1iff x =y,
(R2) R(z,y) =0 iff {z,y} = {0, 1}
(R3) R(z,y) = R(y,x) para todo x,y € [0,1];
R4) Sixz <y <z entonces R(x,z) < R(z,y) y R(z,z) <

R(y, z) para todo x,y,z € [0, 1].

En [17] se introduce un método para construir REFs en

términos de automorfismos.

Proposicion IL.3. [17] Si 1, p2 son dos automorfismos de
L, entonces la funcion R : L? — L definida como

Ra,y) = ¢ (1= lpa(@) = p2)l ) .
es una REF.

Definicion IL4. Una funcion f : (L™)™ — L" es llamada

representable si existen f1,..., fn : L™ — L tales que
f(Xq,.. ., Xm) =

(f1($11,~~ a.fn(xlnw--vxmn)) >

para todo X1,..., X, € L™ with X; = (x;1, ..
todo i € {1,...,m}.

6]

R xm1)7 tet
., Tin) para
A 1o largo de este trabajo, la definicién de i serd la misma para abreviar.

De lo contrario, se redefinird explicitamente para algunas excepciones si asi
fuera necesario.

B. Espacios de color y operadores lineales

Como se expone en [18], para reproducir una imagen a
color, es necesario generar nuevos vectores en el espacio
espectral n a partir de los obtenidos por un sensor multi-
espectral dado, mientras que los dispositivos de salida, que
pueden caracterizarse como aditivos o sustractivos, debe poder
reproducir colores de estos vectores. Dado que el ojo humano
se puede representar como un sensor n = 3, lo mis comin
es usar espacios tridimensionales para guardar informacién de
color. Entre todos los diferentes sistemas de color posibles
para dispositivos de salida aditiva, el modelo RGB [19] es el
mds extendido debido a la evolucién de la codificacién, que
trata las imagenes a color como tres bandas monocromadticas
independientes [20]. A pesar de que existen otros espacios de
color como CIE L*a*b* que intentan reproducir un espacio
de color uniforme basado en la percepcién humana del color,
donde el significado de cada valor L*,a* y b* es bastante
diferente. Por el contrario, el espacio RGB es un espacio
simple en forma de cubo y el significado de cada valor que
compone un triplete es siempre el mismo, siendo la cantidad
de rojo, verde o azul que compone un color respectivamente.
Por simplicidad e idoneidad, tomaremos el modelo RGB como
espacio de color en el que trabajar. Incluso si se puede
elegir cualquier otro espacio de color, los resultados y las
interpretaciones podrian ser bastante diferentes.

En RGB es habitual representar los tres componentes de un
color en una escala de 0 a 255 y sélo se corresponde un tnico
color para cada triplete en el espacio [0,255]3. Consideremos
ahora el espacio RGB, pero refactorizado al espacio [0, 1]3,
es decir, L3. Entonces, los colores que corresponden a las
esquinas del cubo RGB son:

B Rojo: Cg Verde: Cg B Azul: Cp
(1,0,0) (0,1,0) (0,0,1)
Cian: C¢ B Magenta:C)yy Amarillo: Cy
(0,1,1) (1,0,1) (1,1,0)

B Negro: Cx [0 Blanco: Cyw
(0,0,0) 00 (1,1,1)o1

Estos son los tnicos colores compuestos usando solo Os y 1s
y por esta razén los llamamos tripletes crisp o colores crisp.

Todos los colores posibles en el espacio RGB se pueden
describir, de acuerdo con la terminologia comun, en los sigu-
ientes términos de apariencia de color [21]: brillo, tonalidad
o matiz y saturacion. Un color pierde brillo si disminuye el
promedio de los valores del triplete que describe su posicién
en el espacio RGB. Entonces, todos los colores dentro de un
plano perpendicular a la diagonal entre O y 1 tienen brillo
idéntico. El tono del color es otra propiedad principal y estd
relacionada con la longitud de onda dominante percibida; en
otras palabras, si un color es rojo, azul, amarillo, naranja... Los
colores dentro de la diagonal entre O y 1 son los tnicos colores
sin matiz, y ademds, en esta diagonal se encuentran todos los
colores grises posibles; por eso dicha recta se llama diagonal
de grises. Finalmente, la saturacién describe cudn cerca estd
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un triplete de la diagonal de grises; cuanto mas cerca(lejos)
de la diagonal de grises, menor(mayor) saturacién. A mayor
saturacién, mds fécil es percibir el tono de un color dado.

Denotamos colores complementarios a los pares de colores
que, cuando se combinan, producen un determinado color en
escala de grises [22]. Estos pares de colores se consideran
complementarios dependiendo de la teoria de color que se
utilice: la teorfa de color moderna utiliza el modelo de color
aditivo RGB o el modelo CMY para los sustractivos. Es por
ello que en este trabajo consideramos colores complementarios
crisp los pares Cr — Co, Cg — Cpr, y Cp — Cy. El par de
colores Cxr — Cy es comin a todas las teorias del color.

A lo largo de todo este trabajo, se pueden aplicar diferentes
f:(L™™ — L™ (como se presenta en Def. 11.4) a un punto
X = (x1,...,2,) € L™, es decir, f(X xm). Ademds, algunas
funciones f se construyen con m = n MAPs. En estos casos,
la funcién f toma la forma

f(X xn)= (wl(X),...,wn(X)) ,

que se puede reescribir como una transformacién lineal de
un punto X € L™ a otro punto X’ € L™ mediante una
multiplicacién matricial;

T
(F(X xm)" =
w1 (X) w11T1 + -+ WipTy
wn(X) Wp1T1 + -+ WpnTn (2)
w11 Win x1
=wx'=x"
Wn1 Wnn Lp

donde la fila i-ésima de la matriz W se compone de los pesos
de la i-ésima MAP, w;.

Esta forma de representacién nos permite tratar muchas
de las futuras operaciones en este trabajo como operaciones
lineales algebraicas en el espacio RGB y se utilizardn para:

1) Visualizar de una manera sencilla lo que sucede con el

espacio de color, mientras,

2) La notacién algebraica reduce la complejidad de las

expresiones obtenidas, y ademds,

3) Simplifica la implementacién del algoritmo presentado.

Nétese que para cualquier n el cubo L™ se transforma en un
n-hiperparalelepipedo mas pequefio dentro del cubo original
L™ con dos de sus vértices opuestos en O y 1 debido a
las propiedades (P1) y (P2). Ademis, sea X4 = (z,...,)
cualquier punto en la diagonal de L", i.e., X4 estd en la linea
entre 0 y 1. Es fécil ver que X; permanecerd inmutable bajo
la transformacién W presentada en la Eq. 2 debido a que cada
una de las filas de WW suma 1, entonces,

X =wxT =x7T. 3)

En términos de color, la Eq. 3 implica que cualquier color
gris es inmutable bajo cualquier W. Con respecto a los colores
de fuera de la diagonal de grises, estos serdn diferentes bajo
una transformacién W. De hecho, los colores que no son grises

Fig. 1: Transformacién del cubo L3 para los valores del
Ejemplo II.5. Es evidente que las propiedades del espacio
resultante se pueden deducir de las propiedades de la matriz
W como, por ejemplo, sus simetrias, el determinante, etc.

se aproximardn a la diagonal de la escala de grises cuando
det(W) < 1, por lo que los colores perderdn saturacién. En
muchas otras transformaciones, estos colores también pueden
cambiar su tono y brillo.

Ejemplo IL5. Tomemos la siguiente matriz W para un
ejemplo en L3,

| 0| o=
DO | o | =
B [ | 0 | =

Teniendo en cuenta las columnas de W, es fdcil ver que los
tripletes Cr, Cg y Cp, que son la base de nuestro espacio
RGB, se transforman en M = (%,%,%), m = (%,%,%) y
H = (%7 i, %) respectivamente. La representacion visual de
la transformacion del espacio RG B se muestra en la Figura 1.
Como se deduce de la Eq. 3, cualquier color de la escala de
grises permanecerd invariante bajo transformacion. También
se puede apreciar como los colores de las esquinas Cr, Cq y
Cp han perdido saturacion, y ademds, han cambiado de tono
debido a la rotacion inducida por W. Los colores Cr y Cq

han ganado brillo, mientras Cg lo ha perdido.

Como resumen, si aplicamos esta W a los colores que for-
man la base del espacio RGB, Cr, Cq y Cp, se transformardn
en

HEN — EEN.
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III. L™-REF: NUEVO OPERADOR PARA COMPARAR DOS
COLORES OBTENIENDO UN TERCERO COMO RESULTADO

El objetivo de esta seccién es construir un operador que
sea capaz de devolver una medida de equivalencia en L™
como resultado de comparar dos elementos multivaluados
pertenecientes a dicho espacio. Para ello, mientras la teoria
es desarrollada para cualquier n, los ejemplos ilustrativos se
dardn para n = 3, y en concreto, se presentara un algoritmo
de comparacién de imagenes. Este, dadas dos imagenes, debe
devolver una imagen de salida donde sus pixeles pueden ser
interpretados como un mapa, donde sea posible interpretar
las regiones donde las imdgenes de entrada son similares en
color o, en su defecto, diferentes. Para lograr este objetivo,
introducimos un algoritmo para comparar pixel a pixel todos
los pixeles de una imagen con los pixeles correspondientes en
una segunda imagen de entrada, siendo necesario que, ambas
tengan las mismas dimensiones.

Definamos el pixel ¢j-ésimo de una imagen A como Pj,;.
En el Algoritmo 1 presentamos la estructura computacional de
nuestra propuesta.

Algoritmo 1: Comparacién pixel a pixel

Entrada: Dos imagenes A y B del mismo tamafio.
Resultado: Una imagen a color de tamafio idéntico.
Escoger un método de comparacion de pixeles ;
para cada posicion ij hacer

Comparar los pixeles Pa,, y Pp,; ;

Asignar al ij-ésimo pixel de la imagen resultado el

valor de la comparacion entre pixeles anterior;

fin

Por lo tanto, para la accién de compararacién del Alg. 1
es necesario construir un método para comparar pixeles, es
decir, encontrar un operador que dados dos tripletes de entrada
su salida sea otro triplete que guarde la informacién de la
comparacion.

Llegados a este punto, podemos considerar dos filosofias
diferentes teniendo en cuenta cudles de los tripletes crisp
complementarios son antagonistas para el caso del color. Es
posible construir dos métodos diferentes, uno para cada una
de las siguientes filosoffas:

1) Un método que trata el par de colores complementarios
Ck — Cyw de manera diferente a los otros pares crisp
complementarios al compararlos, siendo Cx — Cyy el
unico par que presenta el mayor antagonismo.

2) Un método que trata todos los pares crisp complemen-
tarios por igual al compararlos.

Para comparar dos pixeles de color, debemos definir la
nocién de REF sobre L? (en general sobre L™), de tal forma
que el valor que obtengamos sea nuevamente un elemento de
L3 (L™). En las siguiente subseccién definimos y presentamos
una versiéon de REF en L™ con este propdsito. De las dos
filosofias posibles, en este trabajo solamente se ha desarrollado
la primera planteada donde el par Cx — Cy se trata de
diferente manera que los restantes.

A. L"-REF basadas en la filosofia donde el par 0 — 1 es
tratado de diferente manera

Esta version de REF trata el par Cx — Cy como el tnico
que representa la menor eequivalencia posible.

Definicion IIL1. Sea n un nimero entero positivo. Una
funcion Rpn : L™ x L™ — L™ se llama funcion de equiv-
alencia restringida en L™ (Rp~), si satisface:

(RL1) Rp+(X,Y)=1iff X =Y;
(RL2) Rp«(X,Y)=0iff {X,Y}=1{0,1};
(RL3) Rpn(X,Y) = Ry (Y, X) para todo X,Y € L™;

(RL4) Si X <p Y <p Z, entonces Rin(X,Z) <p
Rin(X,Y) y Rin(X,Z2) <p Ri~n(Y,Z) para todo

X,Y,Z e L™

Teniendo en cuenta Def. II.2, la justificacién del axioma
(RL1) es natural; comparar tripletes equivalentes debe de-
volver el valor mas alto en L™, ie., 1, como medida de
equivalencia dado que estos son equivalentes. En cuanto al
axioma (RL2), se trata de comparar los tripletes 0 y 1. En
este caso, estamos teniendo en cuenta que los tripletes Ck
y Cw son los tripletes menos equivalentes entre todos los
pares de colores posibles segtin la filosofia escogida, entonces,
siendo este nuestro punto de partida, se justifica que son los
tripletes Unicos que al compararse, deben devolver 0, es decir,
el valor mds bajo posible de todo L™. La justificacién del
axioma (RL3) es que se exige a la REF que la comparacion
entre dos pixeles debe cumplir con la simetria. Esta propiedad
puede no ser necesaria en otras aplicaciones donde existe una
dependencia entre imdgenes comparadas (como imdgenes de
video donde existe una relacion temporal entre fotogramas), en
nuestro caso, no se considera dependencia del tiempo, por lo
que (RL3) esté justificado. Finalmente, la justificacion del ax-
ioma (RL4 1) es que la equivalencia resultante entre comparar
dos tripletes similares debe ser mayor que la equivalencia de
comparar dos tripletes que son, al menos, mas diferentes que
los anteriores.

Ahora damos un método de construccién para Ry~ en L™
de acuerdo con Def. III.1.

Teorema IIL.2. Sea w; : L™ — L una MAP n-aria como vec-
tor de pesos normalizados (w1, . .., w;y,) tal que los vectores
son linealmente independientes y existe k € {1,...,n} con
wy; # 0 para todo j € {1,...,n}. Sea R = (R1,...,Ry,)
una secuencia de REFs en L. Entonces la funcion Rpn
L™ x L™ — L™ dada por,

RL" (Xa Y) =

(Rl (wl(X),wl(Y)),...,Rn<wn(X),wn(Y))) :

“)
para todo X,Y € L™, es una Rp» en L™.

Proof. (RL1) La suficiencia se deriva de Eq. (4). Con re-
specto a la necesidad, sea Rpn(X,Y) 1, entonces,

Ri ng(X), Wy (Y)
finalmente X =Y.

= 1, por lo tanto w;(X) = w;(Y) y
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(b) Img. B

(a) Img. A

Fig. 2: Las imdgenes sintéticas A (Fig. 2a) y B (Fig. 2b) son
el input para el Algoritmo 1 en el Ejemplo II1.4.

(RL2) Sea Ry~ (X,Y) = 0. Por lo tanto para todo i, se tiene
que R; <wi(X)7wi(Y)> =0, de modo que {w;(X),w;(Y)} =
{0,1}. Ya que existe k tal que wy, satisface (P1) y (P2), se
sigue que {X,Y} = {0,1}.

(RL3) La prueba es directa teniendo en cuenta (R3).

(RL4) De z; < y; < z; se obtiene w;(X) < w;(Y)
w;(Z) para todo j y consecuentemente R; (w;(X),w;(Z))
R; (wj(X),w;(Y)), de donde se sigue que Rp~(X,Z) <p
R~ (X,Y). La prueba para Ri»(X,Z) <p Rin(Y,Z) es
similar. O

<
<

Si aplicamos el método de construccion de las REFs
Ry,..., R, enel Teorema. II1.2 en términos de automorfismos
se obtiene que al seguir la construccién de Rpn.

Corolario IIL3. Si se asume el Teorema IIl.2, sea p;; para
7 = 1,2, un automorfismo de L. Luego la funcion Rpn :
L™ x L™ — L™ dada por,

Run(X,Y) = (wﬁl (1= 12 (@1(X) = 2 (@) ),

N (1 — |n2(Wn(X)) = n2(wn(Y))] )) 7

)]
para todo X, Y € L", es una Ry~ en L™.

Notese que es posible reescribir la anterior expresiéon en
términos de Eq. 2 dado el caso en el que w; son MAPs,

Rin(X,Y)=R ((WXT)T’ (WYT)T) ) (6)

donde W es la matriz construida con los pesos de las MAP y
R es una secuencia de REFs en L.

Tomemos los colores crisp presentados en la Sub-
secciéon II-B y compongamos las imdgenes sintéticas A y
B (Figuras 2a y 2b respectivamente). Ambas son la misma
imagen pero una rotada con respecto a la otra, y ademds, la
segunda contiene tres caracteres adicionales: el caracter blanco
“L” a la izquierda, el caracter cian “R” a la derecha y un tercer
cardcter negro “C” en el centro.

Ejemplo II1.4. Las imdgenes sintéticas Fig. 2a y Fig. 2b nos
permiten comparar muchos de los colores crisp entre si al

R

o G

(a) Algl(A, B)Y (b) Algl(A, B)Y-

Fig. 3: Mapas resultantes para W = I (Fig. 3a), y para W =T
(Fig. 3b).

usar el Alg. 1. En este ejemplo, el resultado se calcula dos
veces; uno para W =1y otro para W =T, siendo

0.6 02 0.2
=102 06 02},
0.2 02 0.6

donde, en ambos casos la secuencia de REFs elegida es R =
(A—=lz—yl1-]z—y[,1 -z —y])

Los mapas de caracteristicas resultantes se muestran en la
Fig. 3. Se observa como al comparar Cr y Cp devuelve el
mismo tono verde que al comparar Cc 'y Cy para diferentes
valores de W sin rotacion. Esta simetria se debe a que el
canal que permanece inalterado es el segundo. Véase como,
tomando Cc = (0,1,1) y Cy = (1,1,0) el canal con
valor equivalente sigue siendo el segundo. Entonces, esto
se puede interpretar como; los tonos de color del mapa
resultante identifican los canales que son mds equivalentes
entre los pixeles comparados, haciendo coincidir el tono del
pixel resultante con sus canales correspondientes cuando no
hay rotacion inducida por W.

Ejemplo de (RLI) es que el fondo de ambos mapas es Cyy
porque se compara el mismo color; en ambos casos, el color
Ck estd como fondo. Ademds, el drea circundante del cardcter
“C” en los mapas es Cy porque en ambas imdgenes de
entrada se compara el color Cyy. Por el contrario, teniendo
en cuenta (RL2) C'i se obtiene en el mapa resultante para el
cardcter “C” y la parte superior del cardcter “L” al comparar
0 con 1.

El color en la parte izquierda de “R” es el resultado
de comparar dos pares de colores crisp complementarios
(Cr — C¢) y depende de W. Para W =1 (en la Fig. 3a), se
obtiene C y lo mismo sucede si se comparan cualquiera de
los colores crisp complementarios en el cubo RGB; Cx —Cyy,
Cr—Cgo, Cg —Cu o Cp — Cy. Esto implica que todos los
pares crisp complementarios tienen el mismo comportamiento
con respecto a la REF que va en contra de la filosofia
establecida. Entonces, debido a esta razon, W no puede
ser la matriz de identidad para Ri~. En otras palabras,
esto significa que Cy se puede obtener en mds casos que
comparando exclusivamente C'ic con Cyy, entonces, el axioma
RL2 no se cumple para W =1 (o, en cualquier caso, cuando

det(W) = 1).
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Fig. 4: La imagen 3063 original (Fig. 4a) y su versién
modificada (Fig. 4b) para usar como input del Alg. 1 en el
Ejemplo IIL.5. El mapa resultante se muestra en la Fig. 4c.

Para concluir este trabajo, mostramos un ejemplo donde
aplicamos el Alg. 1 usando Rj~. Este Ejemplo IIL.5 es
una posible aplicacién del Algoritmo 1 donde se detecta un
objeto en funcién de la diferencia de color entre las imdgenes
de entrada. Con este propdsito, hemos tomado del Berkeley
Segmentation Dataset [23] la imagen indexada como 3063
(Fig. 4a) y 1a hemos modificado para agregar un segundo avién
en la esquina superior derecha como se muestra en la Fig. 4b.

Ejemplo IIL.5. La Ry~ tal y como aparece en la Eq. 6 es
usada para comparar mediante el Alg. 1 las imdgenes de la
Fig. 4 tomando como secuencia de REFs R = (1—|x—y|,1—
|z —y|,1 — |z —yl|). Por simplicidad W es la misma que en
el Ejemplo I1.5. El mapa resultante se muestra en la Fig. 4c.

IV. LINEAS FUTURAS

Una evidente linea futura es generar una nueva clase de
operadores L™-REF que se basen en la filosofia en la cual
todos los posibles complementarios crisp sean tratados de la
misma manera, por ejemplo, deberdn tomar como igualmente
antagonicos todos los elementos multivaluados que sean com-
plementarios crisp y no acentuar la diferencia para el tnico
par 0 — 1.

En concreto, la creacion de este tipo de operador nos llevarfa
a tener que analizar qué diferencias se podrian apreciar entre
la aplicacion de los operadores construidos en base a las
diferentes filosofias en el procesamiento de imagen a color.

Otra posible linea futura es extender las aplicaciones a otro
tipo de formato de informacién como pueden ser las imagenes
multi e hiperespectrales.
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Computing with Comparative Linguistic
Expressions and Symbolic Translation for Decision
Making: ELICIT Information

1%t Alvaro Labella
Department of Computer Science
University of Jaén
Jaén, Spain
alabella@ujaen.es

Abstract—This is a summary of our article published in
IEEE Transaction on Fuzzy Systems [1]. This article introduces
a new fuzzy linguistic representation model for comparative
linguistic expressions that takes advantage of the goodness of
the 2-tuple linguistic representation model and improves the
readability and accuracy of the results in computing with words
processes, resulting the so-called extended comparative linguistic
expressions with symbolic translation.

Index Terms—Decision making, computing with words, sym-
bolic translation, comparative linguistic expressions

I. INTRODUCTION

Nowadays, Decision Making (DM) problems are defined
in changing contexts in which uncertainty and vagueness are
quite common. The fuzzy linguistic approach [2] has been used
successfully to model such uncertainty by means of linguistic
information, giving rise to the so-called Linguistic Decision
Making. Consequently, the use of linguistic information im-
plies to perform computations with it in order to solve decision
problems under uncertainty. Computing with Words (CW) [3]
methodology carries out processes “where words and not
numbers are used for computing” and mimics the human
beings’ reasoning process in which, from linguistic premises,
provides linguistic results. In this way, CW methodology
guarantees interpretable results.

There are several proposal that try to follow a CW ap-
proach. One of the most widely used in DM is the 2-tuple
linguistic model [4] which presents interpretable and precise
linguistic results, the latter thanks to use of the symbolic
translation concept. However, such results are represented by
single linguistic terms that are inadequate to represent experts’
hesitancy. To overcome the latter limitation, Rodriguez et
al. [5] introduced the Hesitant Fuzzy Linguistic Term Set
(HFLTYS) that, together with the use of context-free grammars,
allow to generate Comparative Linguistic Expressions (CLEs)
close to the natural language used by human beings. However,
the existing computational model that makes use of CLEs does
not provide interpretable results.

Therefore, in order to overcome previous drawbacks, we
propose a new fuzzy linguistic representation model that

274 Rosa M. Rodriguez
Department of Computer Science
University of Jaén
Jaén, Spain
rmrodrig @ujaen.es

3" Luis Martinez
Department of Computer Science
University of Jaén
Jaén, Spain
martin@ujaen.es

extends the CLEs by using the concept of symbolic trans-
lation introduced by the 2-tuple linguistic model resulting
the so-called Extended Comparative LInguistiC Expressions
with Symbollc Translation (ELICIT) information. These ex-
pressions extend the representation of CLEs generated by a
context-free grammar into a continuous domain to perform
CW processes without any kind of approximation. The pro-
posed context-free grammar to generate ELICIT information
is described below:

Definition 1: [1] Let Gy be a context-free grammar and
S = {s0,..., 84} alinguistic term set. The elements of Gz =
(V, Vi, I, P) are defined as follows.

Vv = {(continuous primary term), (composite term),
(unary relation), (binary relation), (conjunction)}

Vr = {at least, at most, between, and, (s¢, ),

(s1,0)7,...,(sg,)7}
IeVy
P ={I = (continuous primary term)]

(composite term)

(composite term) = (unary relation)

(continuous primary term)|

(binary relation)(continuous primary term)
(conjunction)(continuous primary term)
(continuous primary term) == (sg,)?]
(51,0)7].. (55, @)

(unary relation) = at least|at most

(binary relation) = between

(conjunction) = and}

Thus, the possible ELICIT expressions generated according
to the new definition of the context-free grammar are: “at
least (s;, )7, “at most (s;,«)?” and “between (s;, 1) and
(Sjv O‘2)V2”

A CW approach for ELICIT information has been also
proposed in [1]. Such a CW approach obtains linguistic results
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modeled by ELICIT information from linguistic inputs repre-
sented by CLEs and ELICIT information. To carry out CW
processes, linguistic inputs are transformed into trapezoidal
fuzzy numbers (TrFNs), which are manipulated by means of
fuzzy parametric operations. Whereas CLEs are transformed
into TrFNs by means of the fuzzy envelope, such a transfor-
mation for ELICIT information is carried out by means of the
function ¢~ 1.

Definition 2: [1] Let x.; be an ELICIT expression and
T(a,b,c,d) a trapezoidal fuzzy number. The function ¢! is
defined as:

¢tz = T(a,b,c d) (1)

The manipulation of the fuzzy envelopes through fuzzy
parametric operations provides new fuzzy numbers noted as 3.
Now, it is necessary a retranslation process to obtain ELICIT
information from TrFNs. This process consists of different
steps:

1) Identify the relation: the relation is determined by the
fuzzy number B and the ¢ function, defined as follows:
Definition 3: Let S = {so,...,s4} be a set of linguistic
terms and 3 a fuzzy number. The function ( is given by

Zep = at least (s;, )Y if B =T(a,b,1,1)
Zep = at most (s;, )Y if §="T(0,0,c,d)
Te = between (s;,aq)" and (s, az)?

if B=T(a,b,c,d)

C(B) = X1, where

Henceforth, for sake of space, it is
assumed  that the  ELICIT  expression  is
“between (s;, a1)" and (s;, az)7?”.

2) 2-tuple linguistic terms computation: the process of
obtaining the two continuous primary terms (s;, p)"
and (sj,a2)” is divided into different steps:

a) Compute linguistic terms: select the linguistic
terms s; and s; € S, 4, j € {0,...g}, whose
distance between the coordinates x of their respec-
tive centroids, Z; and Z;, and the points b and c
belonging to £ is minimal.

i=argmin|b—z|, h € {0,...,9}
h

2
j=argminlc—Z|, h € {0,...,9} @
h

When this step finishes, the ELICIT expression so
far is “between (s;,7?)? and (s;,7)"".

b) Compute symbolic translations: according to [4],
1/2g represents the distance equivalent to a sym-
bolic translation equal to 0.5 in S, where g + 1 is

the cardinality of S:
ar=9g-(b—=T;) oy €[-0.5,0.5) 3
as=g-(c—T;) az€[-0.50.5)

When this step finishes, the ELICIT expression so

far is “between (s;, 1)’ and (sj,a2)"”.
3) Compute adjustments: the adjustment is an additional
parameter included in the ELICIT expression, which
allows to keep information related to the fuzzy number

B. This parameter will be used to obtain the fuzzy num-
ber 5 from an ELICIT expression by using its inverse
function, (~!. The steps to compute the adjustments for
the ELICIT expression are:
a) Compute HFLTS: the HFLTS of an ELICIT expres-
sion whose relation is between would be composed
by:

Erricrr(between (s;, ) and (s;, ) = {si |
(si, ) and (s, @), s; < s < s; where s, € S}

b) Compute fuzzy envelope: the fuzzy envelope,
Terrorr = T(d', V', ¢, d'), of the former HFLTS
is computed.

c) Compute adjustments 1 and ~yo: the adjustments
1 and 7y, are determined by the subtraction be-
tween the points a and d of B = T(a,b,c,d) and
the points a’ and d’ of T'(a’,V’, ¢/, d"), so that:

y=a—da v €[-1,1]
’}/QZd—d/ 726[—1,1]

When this step finishes, the ELICIT expression is com-
pleted “between (s;, ®1)" and (sj, az)"?".

“

II. CONCLUSIONS

The need of a new fuzzy linguistic representation model
that overcomes the existing limitations in previous linguistic
models either from the point of view of interpretability or/and
accuracy has resulted in the ELICIT representation model and
its CW approach. This new linguistic model makes use of the
ELICIT information, CLEs extended to a continuous domain
by means of the symbolic translation concept. In this way, it
is possible to carry out CW processes with high accuracy and
interpretability.

As future works, we will study the definition of new
aggregation operators for ELICIT information. Another aim is
to apply this new type of information to consensus reaching
processes.
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Abstract—In this work we will present some results about
the aggregation of fuzzy (quasi-)metrics that appear in [9]
Concretely, we provide a characterization of functions thamerge
a collection of fuzzy (quasi-)metrics into a single one in tens of
s-triangular triplets, isotonicity and x-supmultiplicativity, where
% is a t-norm. We also show that, in contrast to the crisp case,
this characterization does not depend on the symmetry of the
fuzzy quasi-metrics. We also stress that these results areot
only interesting from the aggregation theory viewpoint but also
because they allow to generate examples of fuzzy (quasi-)trie
spaces that are not easy to obtain. Moreover, from our resust we
can infer others about the aggregation of fuzzy preorders ad
indistinguishability operators.

I. INTRODUCTION

JesUs Rodriguez-Lopez
Instituto Universitario de Mategtica Pura y Aplicada
Universitat Poliecnica de Vancia
Valencia, Spain
jrlopez@mat.upv.es

In the literature we can find several papers [2], [3], [6],
[11] studying functions which preservetransitivity of fuzzy
binary relations in the following two, a priori, differeng¢sses:

Definition 2 (cf. [6], [11]). Let I be a set of indices and’ :
[0,1]F — [0, 1] be a function. We say that:

o F preserves«-transitivity of fuzzy binary relations on
productsif whenever{(X;,E;) : i € I} is a family
of nonempty sets\; endowed withx-transitive fuzzy
binary relations E; for all ¢« € I, then F o E is

an x-transitive fuzzy binary relation ofi[,_, X; where
E : ([T;e; Xi)* = [0,1]" is given by
E(a, b)l = Ei(ai, bz) forall i e I.

F preserves-transitivity of fuzzy binary relations on sets

The problem of aggregating several structures of the same
type into a single one has received a lot of attention in tee la

if whenever{E; : i € I} is a family ofx-transitive fuzzy
binary relations E; on a fixed nonempty set for all

years. In this way, we can find results about the aggregation
of: metrics [1]; quasi-metrics [7]; norms [4]; asymmetric
norms [5]; fuzzy binary relations [11], [2]; indistinguighility
operators [6]; etc. In the following, we will present some
results about the aggregation of an important fuzzy strectu For studying functions which aggregate fuzzy quasi-mstric
the fuzzy quasi-metrics. This concept has its origins in thieis important to take into account the characterization of
probabilistic metric spaces introduced by Menger [8] in 294those functions which preserwe transitivity of fuzzy binary
who gave a probabilistic interpretation of the concept oElations, since fuzzy (quasi-)metrics satisfy a propegsr to
distances and proposed to associate a distribution funafith  «-transitivity. Surprisingly, we can prove that there is n6 d
a pair of elements, instead of associating a number. ference between those functions which presertansitivity

In some sense, fuzzy binary relations can be consider@ifuzzy binary relations on products and those which preser
as a particular class of fuzzy (quasi-)metrics. We recall it-transitivity of fuzzy binary relations on sets.

i € I, thenF' o E is an x-transitive fuzzy binary relation
on X whereE : X% — [0, 1] is given by

E(a,b); = E;i(a,b) forall i € I.

definition as well as one of its most important classes.

Definition 1 ([10]). A fuzzy binary relationon a nonempty
setX isamapE: X x X — [0,1].
If a fuzzy binary relation®’ on X satisfies for alkx,y,z € X :

e E(z,z)=1

* E(I7y) = E(:[/ax)

o E(z,y)* E(y, 2) < E(x,2)
where % is a triangular norm, then it is called an«-
indistinguishability operator

(reflexivity)
(symmetry
(x-transitivity)

Definition 3. Let x be a t-norm andl be a set of indices.
A triplet (a,b,c) € ([0,1)1)? is said to beasymmetricx-
triangularif a; * b; < ¢; forall i € I.

Definition 4. Let x be a t-norm and/ be a set of indices. A
functionF : [0, 1] — [0, 1] preserves asymmetrictriangular
tripletsif (F'(a), F(b), F(c)) is an asymmetric-triangular
triplet whenever(a, b, c) so is, wherea, b, ¢ € [0, 1]%.

Proposition 5 ([9]). Let F : [0,1]! — [0, 1] be a function and
x be a t-norm. The following statements are equivalent:
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1) F preservesx-transitivity of fuzzy binary relations on Definition 8 (cf. [11]). A functionF : [0, 1] — [0, 1] is said

products; to bex-supmultiplicativefor a t-normx if for all x,y < [0, 1]
2) F preservesk-transitivity of fuzzy binary relations on then
sets; F(x)« F(y) < F(z " y)

3) F preserves asymmetrictriangular triplets. wherea «! y € [0,1)7 is given by(a ! y); = @, +y, for all

i€l
o . o _ Theorem 9([9]). Let F: [0,1]! — [0, 1] be a function and
Definition 6. A fuzzy quasi-metridin the sense of Kramosil pe g t-norm. The following statements are equivalent:

and Michalek) ona noqempty sét is a pair (M, %) such 1) F is a (x-)fuzzy quasi-metric aggregation function on
that « is a t-norm and}M is a fuzzy set inX x X x [0, +00)

Il. AGGREGATION OF FUZZY QUAStMETRICS

roducts;
such that for every, y,z € X andt, s > 0 it verifies: 2) ?«“ is a (x-)fuzzy metric aggregation function on products;
o M(x,y,0)=0; 3) F is isotone, #-)supmultiplicative, left-continuous,
o M(z,y,t) = M(y,z,t) =1 for all ¢ > 0 if and only if F(0)=0and F~1(1) = 1;
T =y; 4) F(0) = 0, F is left-continuous,F~1(1) = 1 and F’
o M(z,y,t)* M(y,z,8) < M(z,z,t+ s); preserves asymmetrig-)triangular triplets.
* M(@,y,-):[0,00) = [0,1] is left-continuous. Theorem 10 ([9]). Let F : [0,1]7 — [0,1] be a function and
If a fuzzy quasi-metri¢), x) also satisfies « be a t-norm. The following statements are equivalent:
o M(x,y,t) = M(y,x,t) 1) F is a (x-)fuzzy quasi-metric aggregation function on
for all z,y € X and all ¢ > 0 then (M, «) is said to be a sets;
fuzzy metric on¥X. 2) F is_ a (*-)fuzzy metric aggregatiqn function on sets;
A fuzzy (quasi-)metricspace is a triple(X, M, %) such that 3) F is lsotone,_ £-)supmultiplicative, Ieft-contmu_ous,
X is a nonempty set an(l/, ) is a fuzzy (quasi-)metric on F(0) = 0 and if {w, : n € N} C F~'(1) there exists
X, i € I such that(x,); = 1 for all n € N;
4) F(0) =0, F(1) =1, F is left-continuousF' preserves
Definition 7. A functionF : [0,1]" — [0,1] is said to be: asymmetric £-)triangular triplets and if {z, : n €
« a fuzzy (quasi-)metric aggregation function on products N} C F~'(1) there exists € I such that(z,); = 1 for
if wheneverx is a t-norm and{(X;, M;,*) : i € I} all neN.

is a family of fuzzy (quasi-)metric spaces theh o

> G e _ 4 More results about this topic can be consulted in [9].
M, ) is a fuzzy (quasi-)metric ofi[,., X; where M :

(I;es X:)2 x [0, +00) — [0,1]" is given by ACKNOWLEDGMENT
. The two last authors acknowledge financial support from
(M(x,y,t); = Mi(zi,yi,t) FEDER/Ministerio de Ciencia, Innovacion y Universidades
Agencia Estatal de Investigacion-Proyecto PGC2018-0957

for everyx,y € [[,c; X; andt > 0. B-C21.
If F only satisfies the above condition for a fixed t-narm
then it is said to be ar-fuzzy (quasi-)metric aggregation 3
function on products_ [1] J. Doboé_, “Metric preser\{ing functionsS_trof_fek, KoSice, 1998. _

. a fuzzy (quasi-)metric aggregation function on séts 1%l Js'tféeml';{‘\?(;‘Idé"p%”%gﬁ’s‘é%%ggat”” in classes aizy relations,”
wheneverx is a t-norm and{(M;,*) : i € I} is [3 u. D.udziak-, “Preservation of-norm and¢-conorm based properties of

a family of fuzzy (quasi-)metrics on the same 3ét fuzzy relations during aggregation procesBroc. of 8th Conference of

; i ; the European Society for Fuzzy Logic and Technol@ySFLAT 2013),
then (F' o M, x) is a fuzzy (quasi-)metric oX where 2013, pp. 376-383.
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Abstract—The notion of quasi-closed element is extended to
fuzzy posets in two stages: First, in the crisp style, in which
each element in a given universe either is quasi-closed or it is
not. Second, in the graded style by defining a degree to which
an element is quasi-closed. We discuss the different possible
definitions and compare them with each other. Finally, we show
that the most general one has good properties that can be used
when we have a complete fuzzy lattice as a frame.

Index Terms—Quasi-closed element, fuzzy poset, closure oper-
ator.

I. INTRODUCTION

In this work, the research in [1] is revisited. The goal is to
discuss which is the appropriate generalization of the notion
of quasi-closedness when working on fuzzy posets. In the
classical case, this notion is key to knowledge representation
ensuring non-redundancy. However, obtaining an adequate
generalization for fuzzy environments that guarantees similar
properties, remains an open problem.

A wide variety of generalizations to the fuzzy framework of
the notion of implication (and logics for reasoning about them)
can be found in the literature, see for example [2]. In [3], the
authors include a general framework for these generalizations.
All the results on pseudo-closed elements for the fuzzy case
have been obtained by using a recursive definition of pseudo-
closedness. In the classical case, there exists an equivalent
definition based on the notion of quasi-closed element. In
this paper, we aim to generalize such notion to the fuzzy
framework, which, in the short term, may provide with an
alternative definition of pseudo-closed element, as a starting
point for a new approach in the study of bases in a fuzzy
environment.

As stated in [4], “clearly, in the graded setting, the topics
related to non-redundancy and minimality of bases are con-
siderably more involved than in the classic setting and further
investigation focused on theory, algorithms, and experiments
is needed”.

II. PRELIMINARIES

Throughout this paper, let L = (L,A,V,®,—,0,1) be a
complete residuated lattice. A non-empty set A with a binary
L-relation p on A, is said to be a fuzzy poset if p is a fuzzy
order, i.e. if p is reflexive, antisymmetric and transitive.

The notions of lower (resp. upper) bound and infimum (resp.
supremum) used in this work are the ones presented in [5].

Inma P. Cabrera
Dept. Applied Mathematics
University of Mlaga
Mlaga, Spain
ipcabrera@uma.es

Pablo Cordero
Dept. Applied Mathematics
University of Mlaga
Mlaga, Spain
pcordero@uma.es

Theorem 1: Let A = (A, p) be a fuzzy poset and X € L.
An element a € A is supremum (resp. infimum) of X if and
only if

pla,z) = X°(z) (resp. p(z,a) = X,(x)).

It is not difficult to see that, if a supremum (resp. infimum)
of X exists, it is unique. We will denote it by | | X (resp.
[1X).

Definition 2 ([6]): We say that a fuzzy poset (A,p) is a
complete fuzzy lattice if every fuzzy subset X € L4 has
supremum and infimum.

We conclude this section with the usual definition of closure
operator on a fuzzy poset.

Definition 3: Given a fuzzy poset A = (A, p), a mapping
c: A — A is said to be a closure operator on A if the
following conditions hold:

1) p(a,b) < p(c(a),c(d)), for all a,b € A (isotony)

2) p(a,c(a)) =1, for all @ € A (inflationarity)

3) p(c(c(a)),c(a)) =1, for all a € A (idempotency)

Definition 4: Let c: A — A be a closure operator on a
fuzzy poset (A, p) and X be an LL-subset of A. The closure
of X wrt c is the LL-set defined by

(X)@= \ X@)

z€c(a)

for all a € A.

ITI. GENERALIZING THE NOTION OF QUASI-CLOSED
ELEMENT TO FUZZY POSETS

The aim of this section is to analyse possible generalisations
to fuzzy posets of the classical notion of quasi-closed element.
We begin by recalling the definition in the case of crisp posets
[7]. Throughout this section A = (A, p) is a fuzzy poset and
c is a closure operator on A.

There are four equivalent properties that define quasi-
closedness in the crisp case. The direct extensions of each
one these statements to a fuzzy setting are the following.

O  pla,q) < plc(a),q) V (c(a) = c(q)), for all a € A.

I pla,q) < plc(a),q) vV p(c(q), c(a)), for all a € A.

@n  pla,q) ®-p(c(q),cl(a)) < p(c(a),q), for all a € A.

V) p(a, q)®-p(q,a)®p(c(a), c(q)) ®=p(c(q), c(a)) <
p(c(a),q), for all a € A.

These relation among these statements are in the following
proposition.
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Proposition 5:

o (I) implies (ID).

o (II) implies (III).

o (III) implies (IV).

None of the converses hold.

Proposition 6: Given a closure operator ¢ on a (crisp) poset,
any quasi-closed element with respect to c satisfies condition
av).

We adopt the most general of the statements as the definition
of quasi-closed element wrt a closure operator.

Definition 7: Given a closure operator c on a fuzzy poset
(A, p), an element ¢ € A is said to be quasi-closed (with
respect to c) if it satisfies statement (IV).

Theorem 8:

1) Every closed element is quasi-closed.
2) There exist quasi-closed elements which are not closed.

IV. QUASI-CLOSED ELEMENTS IN GRADED SETTING

In the previous section, an element either was quasi-closed
or not. In this section, we define the degree to which an
element is quasi-closed. First, to ease the reading of the
definitions and properties, we introduce the following notation.

Notation 1: Given a closure operator ¢ on a fuzzy poset
(A,p) and ¢ € A, we use X, to denote the L-set with
membership function defined as follows:

Xy(a) = p(a,q) ® =p(q,a) ® p(c(a), c(q)) ® ~p(c(q), c(a)).

With this notation, an element ¢ is quasi-closed iff X,(a) <
p(c(a),q), for all a € A.

Definition 9: Given a closure operator ¢ on a fuzzy poset
(A, p), for any ¢ € A, we define the degree in which q is
quasi-closed as follows

QC(q) = M\ [Xq(z) = plc(x), )]

z€A

Theorem 10: Let c be a closure operator on a fuzzy poset
(A, p) and ¢ € A. Then, QC(q) = 1 if and only if ¢ is quasi-
closed.

In the classical setting, there is an if-and-only-if condition
for a set to be quasi-closed based on an operator that is usually
denoted by °. We can do an analogous characterization here.

Definition 11: Let c be a closure operator on a complete
fuzzy lattice (A, p) and ¢ € A. We define the element ¢° as
follows:

q¢° =qU |_|C(Xq).

This is not a quasi-closed element in general, not even in
the crisp case.

Theorem 12: Let c be a closure operator on a complete
fuzzy lattice (A, p). Then, QC(q) = p(¢°, q), for all ¢ € A.

Corollary 13: Let c be a closure operator on a complete
fuzzy lattice (A, p). An element g € A is quasi-closed wrt ¢
if and only if ¢° = q.

V. CONCLUSIONS AND FURTHER WORK

We have presented a fuzzy definition of quasi-closed ele-
ments in the frame of fuzzy posets and checked its properties.
On the other hand, we have extended the definition to graded
setting and we have proved that it extends the classical results
that are necessary for its effective use in the search for bases
of implications or if-then rules in the fuzzy frame.

In a next step, we will study aspects related to the com-
putability of quasi-closed elements looking for necessary and
sufficient conditions to ensure that they can be calculated
efficiently. As further work, we will generalize the notion of
pseudo-closed element and compare the definition obtained
with the recursive one proposed in [4]. In addition, we will
study whether the bases of implications with pseudo-closed
premises have the desired properties of completeness, non-
redundancy and minimality. We will also consider whether
this work can be extended to the multi-adjoint concept lattice
framework [8].
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Abstract—In this paper, we address one of the most important
topics in the field of Social Networks Analysis: the community
detection problem with additional information. That additional
information is modeled by a fuzzy measure that represents the
risk of polarization. Adding this type of information to the com-
munity detection problem makes it more realistic, as a community
is more likely to be defined if the corresponding elements are
willing to maintain a peaceful dialogue. Hereafter, we work in a
real case obtained from Twitter, concerning the political position
against the Spanish government. We analyze how the partitions
obtained change when some additional information related to
how polarized that society is, is added to the problem.

Index Terms—networks; community detection; extended fuzzy
graphs; polarization; fuzzy sets; ordinal variation

I. INTRODUCTION

In this document, we review our paper [1] in which we
addressed one of the hottest problems in the Social Networks
Analysis (SNA) field: the community detection problem. We
go beyond the “classic” approach of this problem, based on
the crisp connections between the elements which are defined
by the edges of the graph. Our main contribution is the
incorporation of some additional information modeled by a
fuzzy measure.

In particular, our background is related to Polarization. In
broader terms, Polarization can be understood as the split
of a given society into two different and opposite groups
with significant size along an attitudinal axis [2]. In this
work, we recall the concept of Polarization based on fuzzy
sets developed in [3], where Guevara et al. introduced a
Polarization measure based on the fuzzy set approach, the
JDJpe. It uses the membership degree of each individual to
the poles and some aggregation operators to measure the risk
of polarization of a group. We consider as an important matter
to include the concept of Polarization into the field of SNA
and to community detection problems due that Polarization
and communication are strongly related. The way in which a
community is detected in a social context should fit reality not
only based on the interactions between their nodes but in its
attitudinal or ideology coherence as well.

On the basis of the JD.J,,,;, we work with (non) polarization
fuzzy measures [4], which allow us to measure the ability for
peaceful dialog of a society.

Then, we introduce the non polarization extended fuzzy
graph (non-polarization EFG). It is characterized on the basis
of the extended fuzzy graph (EFG) [5]. Given a crisp graph
G = (V,E) and a fuzzy measure i : 2V — [0, 1] defined on
the set of nodes, the triplet G = (V, E, i) is said to be an
extended fuzzy graph. As it is pointed in [6], fuzzy/capacity
measures are fundamental in modeling dependencies among
the inputs. Then, with the combination of the ability of the
graph to model connections between elements, and the ability
of the fuzzy measures to handle the capacity related to any
set of elements, we can represent situations in which more
than two nodes are implied, independent of the way they are
connected through the graph by using an EFG.

Finally, we work in a specific application of the non-
polarization EFG: the community detection problem. Once
we develop a methodology to find groups in a graph paying
attention to how polarized the society is, we work in a real case
obtained from Twitter and related to the hottest topic in the
last 2020: the Covid-19 pandemic. In particular, we analyze
the position of people against the Spanish government during
this period of crisis.

II. POLARIZATION FUZZY MEASURES AND POLARIZATION
EXTENDED FUZZY GRAPH

Our first goal is the characterization of a fuzzy measure
obtained from the JDJ,,;, 11p-. We emphasize on the fact the
wp- can be re-formulated as a summation which involves the
elements of a matrix P~ which is symmetric, non-negative, 1-
normalized and whose main diagonal is null. Because of the
interpretation of JD.Jpe, P;; represents the risk of conflict
concerning the elements ¢ and j. So that, up- represents
the capacity of the elements to argue, to trigger conflict and
arguments. Hence, it is a recommended model to properly
represent the discrepancy or distance between individuals.

Because of the interpretation of the measure JD.J, its
negation, jl\)_j] pol can be understood as the minimum risk of
polarization for a given population or community. Then, from
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jbj pol, we define the matrix P, non negative, symmetric,
1-normalized and with main diagonal null. It can be somehow
understood as an “affinity” matrix [5], from which we can
define a measure which represents the capacity of the elements
of a set to peacefully dialogue without risk of Polarization,
wp+. Because of the properties of P+, we can affirm that
up+ 1s a 2—additive non-polarization fuzzy measure [7].
Then, we define a new representation model: the non polar-
ization extended fuzzy graph. It is a crisp graph together with a
non-polarization fuzzy measure, the triplet G = (V, E, up+).

III. COMMUNITY DETECTION PROBLEM BASED ON
POLARIZATION MEASURES

We approach the community detection problem based on
fuzzy measures including this information inspired by the
idea developed in the Additional Louvain algorithm (see in
[7]), based on the Louvain algorithm [8]. The key point is
to distinguish two different roles within the input parameters:
one of them, to establish the neighbor relations, and the other,
to calculate the variation of the modularity. The first role
will be played by the adjacency matrix of the graph, A, so
that only those nodes that are connected in G can be in the
same group. On the other hand, we suggest to consider a
combination of the two components of the non-polarization
extended fuzzy graph G as basis to calculate the variation of
modularity, in order to incorporate the additional information.
Then, having a crisp graph, the two membership functions,
and a grouping, an overlapping and a negation operators, it
can be obtained a non-polarization EFG, G = (V, E, up),
where pup = p+. In order to simplify the management of the
synergies between elements, it is characterized the weighted
graph associated with a fuzzy measure, G, ., particularly, the
one associated with pp. Being £ an aggregation operator,
Shi(pp) and Sh](pp) the Shapley index of ¢ when it is in
a coalition with all the elements of V' and V'{j} respectively,
the graph G/,,, is that whose adjacency matrix is F', where

Fij = € (Shiup) = Sk (1p), Shy(ity) =SB (1)) (1

In our specific proposal, we suggest summarizing the non-
polarization fuzzy measure pp into the matrix F', with adja-
cency of its associated weighted graph defining the Polariza-
tion Louvain algorithm to detect communities. We combine
the matrices A and F' by means of a linear combination
(0(A, F) = yA+ (1 —~)F) using the parameter -y to assign a
weight or importance to each component of the G. Note that
when v = 1 the additional information is not considered.

IV. A REAL CASE: THE IMPACT OF THE COVID-19
PANDEMIC IN THE ORGANIZATION OF THE PEOPLE

The nodes and theirs relations considered in this work have
been obtained from the social network Twitter, particularly
from some posts recorded along the state of alarm imposed by
the central government in Spain. All data downloaded relate
to the COVID-19 pandemic. The experiment design and all

the process are detailed in '. A random sample of tweets were
labeled by an expert in order to label them as supporters or
detractors towards the Spanish Government. Then, machine
learning algorithms were applied to generalize the knowledge
to all tweets. Support Vector Machines showed the best
performance so we used that probability of being a supporter
or detractor as membership degree values to compute J.DJ,;.
Due that we labeled tweets but not users we computed the
average probability of all messages posted by a given user in
order to obtain the probability to be a supporter and detractor
of that user. We apply the Polarization Louvain algorithm to
find communities in the non-polarization extended fuzzy graph
G = (V,E, up). We vary the parameter v which allow us to
control the importance of that extra knowledge (Polarization
values between two individuals). The partition which shows
the best modularity value is considered as optimal.

To compare the Polarization Louvain algorithm with the
traditional Louvain algorithm we show an example of how two
pairs of nodes which should belong to the same communities,
respectively, are split into four different communities with the
Louvain algorithm. On one hand, we have nodes “38” and
“115”, both left-wing political parties that teamed back in
march 2019. On the other hand, we have nodes “76” , a right-
wing political party, and “203”, a member of this political
group. After applying the Polarization Louvain algorithm,
those pairs are clustered into the same communities (see the
original paper [1] for illustrations and more details).
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I. INTRODUCTION

The study of the knowledge stored in databases is one of the
most important goals in several research fields. Formal Con-
cept Analysis (FCA) [10] and Rough Set Theory (RST) [8] are
two widely studied mathematical theories, devoted to obtain
information from relational databases that contain uncertainty.

The reduction of size of database is a widely study issue in
both theories, separately. In addition, in the literature, several
papers can be found that stablish the existing connections be-
tween these two mathematical tools, considering the classical
framework [3], [5], [7], [9].

This paper introduces a novel mechanism to reduce the
set of attributes in the fuzzy general framework of multi-
adjoint concept lattices, considering the RST philosophy with
tolerance relations. This study extends the one introduced
in [3] in a fuzzy case, shown that the same properties are
not satisfied. Besides that, the proposed mechanism has been
enriched with other interesting properties, showing that the
new procedure also keeps important features. One of these
properties is that the reduction is directly applied to the
context and the whole concept lattice is not needed to be
computed. Moreover, the main structure, based on the join-
irreducible elements, is preserved including no new join-
irreducible element after the reduction procedure. The notions
and results obtained considering this framework is deeply
studied in [4].

II. REDUCTION IN MULTI-ADJOINT CONCEPT LATTICES

In this section, we will present the proposed reduction
mechanism to multi-adjoint concept lattices, which can also
be applied to any other fuzzy FCA framework. For that, the
RST reduction philosophy and a family of tolerance relations
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will be taken into account. In the following, we explain step
by step how this reduction procedure is carried out.

Reduction in Multi-adjoint Concept Lattices from RST with
tolerance relations

S1. The first step is to consider the associated information
system (B, A), with the mappings a: B — V,, from
a given multi-adjoint formal context (A, B, R,o) and a
frame (L1, Lo, P, &1, .- ., &n)-

S2. From this context the sets V,, will be the poset P and the
mappings a: B — P will be defined as a(z) = R(a, x),
for each a € A and = € B.

S3. In this new environment, we consider the tolerance re-
lations for each attribute, which are used to build the
unidimensional £-discernibility function of the associated
information system.

S4. We compute the £-information reducts Dy, ..., D,.

SS. Considering these reducts we reduce the original
fuzzy  context, obtaining the reduced ones
(D1,B,Rip,xB)s---» (Dn, B,R|p, xB)-

S6. Finally, we build the concept lattices from the reduced
contexts obtaining significant reductions in the context
as well as in the size of the original lattice, preserving
the discernibility among the objects.

From now on, a multi-adjoint frame
(L1, Lo, P, &1,---,&n) and a multi-adjoint  context
(A,B,R,0) will be fixed. First of all, different properties
relating the concept-forming operators in the original context
and in the reduced one will be introduced in the following
proposition, which will be needed later on.

Proposition 1: Given a subset D C A, for any concept
(g, f) obtained from the multi-adjoint context, the following
statements hold:

1) gN =, ngiD

2) gt = gto

33 “;]ciDu - ‘L}w

The following proposition asserts that if a group of concepts
in the original context are the same concept in the reduced one,
then they have the structure of a join-semilattice.

Proposition 2: Let D C A be a subset of attributes.

The set Re = {({(g1,f1),(92, f2)) | (91, f1),(92, f2) €
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M(A, B, R, a),gIDiD = ggDiD} is an equivalence relation
and every class [(g, f)]p of M(A,B,R,0)/Rg is a join-
semilattice with maximum element (g'2+" gTo4"1),

We can think that it is natural that properties presented in [3]
will not be satisfied when fuzzy sets are considered. Concern-
ing the structural properties, one of the most important feature
is related to the join-irreducible elements. As it was proven
in Theorem 3.5 of [3] for the classical framework of FCA,
no new join-irreducible element appears after the reduction
process. This main structural property is also preserved in this
fuzzy framework, as the following result shows.

Theorem 3: Given an £-information reduct D in the corre-
sponding context information system (B, A), if the pair (g, f)
is a join-irreducible concept in the reduced concept lattice built
using the reduct D, then there exists an object b € B and a
truth value z € Ly such that QSZL; = f and ¢y, also generates
a join-irreducible concept in the original concept lattice.

III. RELATED METHODOLOGIES

The attribute reduction mechanism based on tolerance rela-
tions proposed in this paper is different from the ones given in
diverse papers. In this section, we will focus our attention on
two general reduction procedures given in [1] and [6], since the
rest of procedures are given in a more restrictive framework
or are based on them.

The philosophy of the reduction presented in [1], consider-
ing similarities, is very different from the proposed one in this
paper. Our reduction is directly applied to the context. This fact
is very important since, for example, it has a direct impact on
the construction of the attribute implications, such as, reducing
the number of implications or creating equivalences among
them. Meanwhile, the factorization presented by Bélohldvek
reduces the concept lattice and it has no impact in the context.
Moreover, the whole concept lattice must be computed before
calculating the factorization, which is not necessary for the
mechanism we propose. Furthermore, the reduction given
in [1] provides a covering instead of a partition, which is the
clustering we obtain from the %-information reducts.

On the other hand, the reduction presented in [6] consideres
block relations, where the rows of this relation are intents and
the columns are extents. The methodology proposed in this
paper is different, since the tolerance relations are defined on
the set of values of the attributes, and they are independent
of the relation of the context. With our procedure, we try to
group the similar attributes whose separated consideration does
not provide relevant information and so, the main knowledge
of the database is preserved after the reduction. Although
both mechanisms are different, they are compatible. As a
consequence, we can apply both procedures to the same
database in order to obtain a bigger reduction, embedding both
philosophies.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, by means of different results and examples,
we have introduced a mechanism to reduce attributes in
fuzzy FCA, considering the reduction procedure with tolerance

relations introduced in RST [2]. This new method to reduce
attributes provides a significant reduction of the original con-
cept lattice. Some interesting properties of the new procedure
have been presented troughout the paper. The most important
one shows that the structure of the original concept lattice is
partially preserved considering this new mechanism, that is,
no new join-irreducible elements appear after carrying out the
reduction procedure.

Moreover, the paper finishes exposing a comparison among
this new mechanism and other interesting fuzzy reduction
methods.

In the future, we are interested in establishing a comparison
between the attribute reduction process given in multi-adjoint
concept lattices and other multi-adjoint frameworks, as multi-
adjoint property oriented concept lattice and multi-adjoint
object oriented concept lattices. We also want to apply this
study to real examples.

REFERENCES

[1]1 R. Bélohlavek. Similarity relations in concept lattices. Journal of Logic
and Computation, 10(6):823-845, 2000.

[2] M. J. Benitez-Caballero, J. Medina, E. Ramirez-Poussa, and D. glgzak.
Bireducts with tolerance relations. Information Sciences, 435:26 — 39,
2018.

[3] M. J. Benitez-Caballero, J. Medina, E. Ramirez-Poussa, and D. glgzak.
A computational procedure for variable selection preserving different
initial conditions. International Journal of Computer Mathematics, 2019.

[4] M. J. Benitez-Caballero, J. Medina, E. Ramirez-Poussa, and D. Slgzak.
Rough-set-driven approach for attribute reduction in fuzzy formal con-
cept analysis. Fuzzy Sets and Systems, 2019.

[5] J. Chen, J. Li, Y. Lin, G. Lin, and Z. Ma. Relations of reduction between
covering generalized rough sets and concept lattices. Information
Sciences, 304:16-27, 2015.

[6] J. Konecny and M. Krupka. Complete relations on fuzzy complete
lattices. Fuzzy Sets and Systems, 320:64 — 80, 2017. Theme Logic
and Algebra.

[7]1 J. Medina. Relating attribute reduction in formal, object-oriented and
property-oriented concept lattices. Computers & Mathematics with
Applications, 64(6):1992-2002, 2012.

[8] Z. Pawlak. Rough sets. [International Journal of Computer and
Information Science, 11:341-356, 1982.

[91 L. Wei and J.-J. Qi. Relation between concept lattice reduction and
rough set reduction. Knowledge-Based Systems, 23(8):934-938, 2010.

[10] R. Wille. Restructuring lattice theory: an approach based on hierarchies
of concepts. In I. Rival, editor, Ordered Sets, pages 445-470. Reidel,
1982.



= XIX Conferencia de la Asociacién Espanola para la Inteligencia Artificial

395

Measuring Consistency of Fuzzy Logic Theories

Nicol4ds Madrid
Departamento de Matemadtica Aplicada
Universidad de Malaga
Milaga, Spain
Email: nicolas.madrid@uma.es

Abstract—Fuzzy logic has shown to be a suitable framework
to handle contradictions in which, unsurprisingly, the notion of
inconsistency can be defined in different ways. This paper starts
with a short survey of different ways to define the notion of
inconsistency in fuzzy logic systems. As a result, we provide a
first notion of inconsistency by means of the absence of models.
Subsequently, we define two measures of consistency that belong
purely to the fuzzy paradigm; in the sense that both measures
coincide with the crisp notion of consistency when the set of
truth values is {0,1}. Accordingly, we can state that the two
provided measures of consistence are notions of consistence based
on degrees, bringing back the spirit of fuzzy logic into the notion
of consistency.

Based on the paper A measure of consistency for fuzzy logic
theories, to appear in the journal Mathematical Methods in the
Applied Sciences, 2021.

I. INTRODUCTION

Since its introduction, fuzzy sets and fuzzy logic have
shown to be an interesting research topic. One can find lots
of papers ranging from the development of algebraic theories
of fuzzy structures or the underlying mathematics of fuzzy
logic, to fuzzy modelling or automated control in terms of
sets of fuzzy rules. From the theoretical standpoint; in [1] the
notion of relational Galois connection is extended to be applied
between transitive fuzzy directed graphs in a framework in
which the components of the connection are crisp relations
satisfying certain reasonable properties; from the practical
standpoint, in [7] it is shown how a control application can
leverage (even) from a set of inconsistent rules; and in [2] we
can see a fuzzy logic-based mathematical model of a sequence
of earthquakes using tools from fuzzy reasoning.

Being the fuzzy realm a matter of degrees, a number of
papers have focused on measuring the degree of inconsistency
of a set of fuzzy rules, and a number of different inconsistency
indices have been introduced. For instance [3] introduces the
so-called knowledge-based consistency index for deriving pri-
orities from fuzzy pairwise comparison matrices in multiple-
criteria decision-making problems; other approaches introduce
means for both measuring and repairing inconsistency, for
example [8] presents a family of measures aimed at deter-
mining the amount of inconsistency in knowledge bases with
graded truth and considers minimal adjustments in the truth-
degrees of the propositions necessary to make the knowledge-
base to be consistent within a given frame (in that case the
FLukasiewicz semantics); last but not least [4] deals with the
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definition of measures of inconsistency in the residuated-logic-
programming paradigm under the fuzzy answer set semantics
and provides a soft mechanism to control the amount of
information inferred, thus, controlling the inconsistencies by
modifying slightly the truth values of some rules. The number
of possible measures of inconsistency that can be found in the
literature somehow suggests the existence of a problem with
inconsistency in a fuzzy setting, namely, its definition: there is
not a consensus on how to interpret inconsistency in a fuzzy
system.

In this paper we briefly survey the main properties
and equivalent characterisations of inconsistency in classical
(crisp) logic and then, we focus on, under of point of view,
the more natural way to define inconsistency in a logic
theory, namely: the absence of models. This consideration
as definition of inconsistency keeps some of the most im-
portant properties of inconsistency in the fuzzy paradigm,
e.g., explosive reasoning. However, we also lose an important
issue, we lose degrees; which is the soul of fuzzy logic. For
such a reason, we propose a generalization of consistence
by means of two measures of consistency. Specifically, we
define two measures of consistency that belong purely to the
fuzzy paradigm. In other words, both measures coincide with
the crisp notion of consistency when the set of truth values
is {0,1}. Moreover, we provide a set of properties for both
measures of consistency in order to motivate the use of them
to represent the consistency of fuzzy logic theories.

II. MEASURES OF CONSISTENCY FOR FUZZY LOGIC
THEORIES.

In this section we follow a common procedure in the
definition of measures of (in-)consistency in crisp logic: given
a logic theory I', we consider subsets of consistent formulas
contained in I'. At this point, in crisp logic we can measure
the inconsistency by considering the ratio or the absolute
number of removed formulas. Interestingly enough, in a fuzzy
environment, we can proceed differently: for instance, we can
measure the consistency Mc of the removed formulas with
respect to the remaining ones.

Definition 1: Let I' be a fuzzy logic theory defined on a
residuated lattice (L, <, *, —) and consider « € L. A formula
1 is said to be a-feasible wrt. T if T =4 — . T =0

The degree of consistency of 1 with respect to T is:

Mec(¥,T) = min{« | ¢ is a-feasible w.rt T'}
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In order to properly understand the rationale in the following
definition, let us consider an arbitrary fuzzy logic theory
of three formulas I' = {4¢1,92,%3}. Assume that T' is
inconsistent and that 1) is non-contradictory. The question
is how consistent are formulas s and 13 in the logic theory
I'* = {41 }. One could think about measuring separately the
consistence for both formulas and then aggregate them, but
that is not possible because {1,12} and {11,13} could be
consistent and, then, both measures would be 1. Therefore,
the only reasonable option is to combine 5 and 3 into one
formula. Note, that the consistency of {i1,12, 13} is given
by assuming on the one hand v; and, on the other hand, both
19 and 13 at the same time; the latter means that we are
assuming g A1)3. Therefore, the consistency generated by )5
and 3 in the logic theory T* = {41} is Mc(¢2 A 13, T*).

Definition 2: Let I be a fuzzy logic theory defined on a
residuated lattice (L, <, %, —), then we define the measure of
consistency Mc¢*(I") as

Mc /\ ¥; I ] | T™ CT is consistent

1, €L\IT'*

sup

At first sight, the reader may think that considering all the
set of combinations of consistent sub-theories of a fuzzy logic
theory I' may be unpractical, however, the following result
shows that only one consistent subtheory must be considered
to compute the measure M c*, namely, the empty theory.

Theorem 1: Let T" be a fuzzy logic theory defined on a
residuated lattice (L, <,*, —), then:

/\1/]170)

P el

Mc*(T) = Mc

As a direct consequence of the previous theorem, we have
the following corollary that shows that Mc* satisfies those
properties of a measure of consistency (i.e., the opposite
properties of a measure of inconsistency).

Corollary 1: Let I and T be fuzzy logic theories defined
on a residuated lattice (L, <, %, —), then:

a) Mc*(T) > Mc*(TUTY) ;

b) If T is consistent then, Mc*(T") = 1,

¢) If Mc*(T') # 1 then, I is inconsistent;

d) If L is finite and totally ordered, then Mc*(T') = 1 implies
I is consistent.

The measure of consistency M c* is related to the k-models
which, in turn, are related to the so-called z-consistency [9]
and a-cuts models [6]. The underlying idea in the k-models
is to guarantee the satisfiability of formulas in at least truth-
degree k € L, and it is given in the following definition.

Definition 3: Let I' be a fuzzy logic theory defined on a
residuated lattice (L, <,*,—) and consider k& € L. We say
that an interpretation M is a k-model of I if M (y)) > k for
all p €T

The k-models were introduced in the context of Fuzzy Logic
Programming aiming at providing “partial” models to a given
inconsistent logic program (i.e., fuzzy logic theory). Later, it

was proved that the existence of models is guaranteed by very
general requirements in Fuzzy Logic Programming [5] and,
then, k-models faded away. However, in the general context
we are working on in this approach, the existence of models
cannot be guaranteed easily and k-models may be valuable
here. The following result relates the measure Mc* with k-
models.

Theorem 2: Let I' be a fuzzy logic theory defined on a
residuated lattice (L, <,x,—) . If Mc*(T') = « then, there is
not S-model of I' with 8 > «.

ITII. CONCLUSIONS AND FUTURE WORK

We have presented two different measures of consistency.
The first one measures how much compatible a formula is with
respect to a given theory in the sense the closer to 0, the more
inconsistent; and the closer to 1, the more consistent. The
second measure determines a degree of consistency of a logic
theory by means of consistent subtheories. Both definitions
coincide with the standard notion of consistency when we
restrict to crisp logic, and both definitions satisfy convenient
properties in order to be considered measures of consistency.

There are two main lines of future research. On the one
hand it is convenient to keep digging up some measures
of inconsistency in fuzzy paradigms. To have a notion of
inconsistency based on degrees (as the ones proposed in this
paper) may allow to incorporate a paraconsistent reasoning
into inconsistent fuzzy logic theories without leaving the fuzzy
paradigm aside. On the other hand, it is interesting to find out
an application of the measures of consistence. For instance, we
think they can be used to deal with contradictions in databases
obtained from fails or system errors.
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I. INTRODUCTION

An appealing goal in different frameworks is detecting
redundant or irrelevant variables (attributes) in data sets, such
as in Formal Concept Analysis (FCA) in which the removal of
redundant data becomes essential. However, the elimination of
such variables may have some impact in the concept lattice,
which is closely related to the algebraic structure of the
obtained quotient set and their classes [4].

In [2], [3], local congruences were introduced as equiva-
lence relations defined on lattices whose equivalence classes
are sublattices of the original lattice. Furthermore, local con-
gruences were intended to complement the attribute reductions
of formal contexts in order to ensure that the equivalence
classes, [C]p, be sublattices of the original concept lattice.
If its infimum C,,, = /\C,;e[C]D C; belongs to the equivalence
class, we can assert that the class is already a sublattice, since a
join-semilattice with a minimum element is a lattice. As a con-
sequence, in this case, the application of a local congruence, as
a complementary mechanism to attribute reduction, does not
provide any modification in this particular class. Therefore,
it is significant to characterize the required conditions under
which these cases arise.

II. CHARACTERIZING EQUIVALENCE CLASSES

This research line was initiated in [2] and was continued
in [1]. Namely, we determined in this last paper a sufficient
condition to ensure that the equivalence class of C, is
generated by an attribute-concept and presented the following
enhanced version of the characterization of the infimum of
elements belonging to a non-singleton classes:
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Theorem 1: Given a context (A, B, R), a subset of attributes
D C A, and a concept C' € C(A, B, R) such as its equiva-
lence class [C]p of the induced equivalence relation is not a
singleton. We have that C,,, € [C]p if and only if one of the
following statements is satisfied:

o There exists at least one attribute a € D such that C,,, =

(at,ath).

o There exists a concept C* € C(4, B, R), such as C* =
(a*¥,a™") with a* € D, C* ¢ [C]p and Cyy £ C*.
Moreover, C* is in a meet-irreducible decomposition
{Cj S MF(D,B,R‘DXB) |j S J} of C,,.

In addition, we analyzed Theorem 1 when the considered
subset of attributes does not contain unnecessary attributes.
This fact is the usual case in FCA attribute reduction and
simplifies the detection of equivalence classes which are not
convex sublattices of the original concept lattice. Further-
more, under this consideration, we also proved that when the
original concept lattice is isomorphic to a distributive lattice
the induced equivalence classes by the reduction are always
sublattices.

III. CONCLUSIONS

Consequently, all the results shown in this paper have a
significant importance, for example, in the application of local
congruences, due to characterizing the cases when classes are
not sublattices, we will be useful to know which classes will be
affected when a local congruence be applied after an attribute
reduction mechanism.
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Abstract—This work concerns the research recently published
in M. E. Cornejo, D. Lobo and J. Medina, “Extended multi-adjoint
logic programming”, Fuzzy Sets and Systems, vol. 388, pp. 124-145,
2020. The reader is referred to that source for a full discussion
and examples of the work.

Index Terms—multi-adjoint logic programming, non-
monotonic logic programming, negation operator, stable models

I. INTRODUCTION

Medina et al. introduced multi-adjoint logic program-
ming [8] in order to generalize different non-classical logic
programming frameworks [4], [9]. The foundations of a multi-
adjoint logic program is a complete lattice endowed with
different adjoint pairs, which allow to obtain several general-
izations of modus ponens. Recently, the inclusion of a negation
operator in multi-adjoint logic programming was carried out
in [1], giving rise to a first non-monotonic multi-adjoint logic
approach, which generalizes other current frameworks [6], [7].

In [2], we defined a general non-monotonic logic pro-
gramming language which shares the multi-adjoint philos-
ophy. Besides permitting different adjoint pairs, the syntax
of the so-called extended multi-adjoint logic programming is
characterized by the use of constraints and of a special type
of aggregator operator. Namely, such aggregation enables to
consider, among others, different negation operators in the
body of the same rule of the logic program. In addition to
defining the syntax and the semantics of this logic program-
ming paradigm, a mechanism for obtaining a multi-adjoint
normal logic program from an extended multi-adjoint logic
program has been shown, which entails a correlation between
the semantics of both logic programming languages.

II. EXTENDED MULTI-ADJOINT LOGIC PROGRAMMING

The underlying idea of extended multi-adjoint logic pro-
grams can be stated as follows:
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e On the one hand, constraints simulate the limitation of
a certain property, attribute or characteristic by an upper
bound. Therefore, the inclusion of constraint rules of the
form (¢ +; B; T) in a logic programming language
might be enormously useful in what regards applications,
being c an element of a lattice representing a degree of
limitation.

e On the other hand, as well as the multi-adjoint paradigm
aims at relaxing limitations for modus ponens, it would
be desirable to provide freedom for the non-monotonic
behaviour of propositional symbols. For instance, it could
be advantageous allowing different negations in the body
of the same rule. This can be done by considering ex-
tended aggregators, that is, an n-ary mapping Q¢ defined
as:

Q%(x1y ...y n) = Q%[T1, ..o, Ton Tt 1y - -« » L)

such that it is order-preserving in the first m arguments
and order-reversing in the last n — m arguments.
According to the foregoing remarks, the syntax of extended
multi-adjoint logic programming is defined as follows.
Definition 1: Let (L, =<, 41,&1,- -, ¢ n, &n, QF,...,QF)
be an extended multi-adjoint lattice with greatest element T.
An extended multi-adjoint logic program is a finite set of
weighted rules of the form

(p i @e[pl, <y Pmy Pmts - - J)n]%ﬁ)
and constraint rules of the form
(¢ @e[pl, <oy Pmy Pmts - - 7Pn]§ )

where ¢ € {1,...,n}, @° ¢ {@f,...,@%}, ¥,c € L and
Ds; 7 Dso» for all s1,50 € {1,...,n} with s1 # so.

The semantics of extended multi-adjoint logic programs is
defined similarly to the stable model semantics of multi-adjoint
normal logic programs [1]. Namely, the stable model seman-
tics lies on the principles of the Gelfond-Lifschitz reduct [5].

A detailed procedure to transform an extended multi-adjoint
logic program into a semantically equivalent multi-adjoint
normal logic program was introduced in [2]. Such a procedure
is shown in two steps:

1) Firstly, given an extended multi-adjoint normal logic

program, its constraint rules are converted into regular
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rules, in such a way that the stable models of the original
and the final logic programs coincide.

2) Then, the remaining rules are written in terms of a
single non-monotonic unary mapping, which turns out
to be an involutive negation. It needs to be stressed
that such transformation is carried out by means of
continuous mappings. An interesting outcome of this
fact is the possibility to apply a sufficient condition for
the existence of stable models in multi-adjoint normal
logic programs [1] for constraint-free extended multi-
adjoint logic programs.

III. CONCLUSIONS

The research carried out in [2] enables to make use of a
flexible language like extended multi-adjoint logic programs
in order to model real-world problems, and then translate them
into multi-adjoint normal logic programs to handle compact
simple programs with the same meaning. Furthermore, this
procedure can be complemented with the methods shown
in [3], where a multi-adjoint normal logic program is translated
into a core fuzzy answer set program. As highlighted in [6],
core fuzzy answer set programs are easier to implement and
to reason about from a computational point of view.

The completed transformation considerably increases the
potential of extended multi-adjoint logic programs to model
real-life problems, since modelling the information contained
in a text or in a database by decision rules and the interpre-
tation of those rules will be easier through extended multi-
adjoint logic programs, and its translation into a core fuzzy
answer set program will facilitate the simulation and compu-
tation of the consequences/deductions from the program.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]
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