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Presentación de CAEPIA 2024 

La Inteligencia Artificial se ha convertido en una revolución, no sólo es un cambio tecnológico, ya 
que la economía, el escenario de empleo, las formas de relacionarnos en sociedad, los equilibrios 
geopolíticos, etc. están también sufriendo cambios importantes. Las disrupciones durante los últimos 
años han sido continuas, con la explosión de la IA generativa y la reciente publicación de la regulación 
europea de Inteligencia Artificial, en pos de una IA más confiable, sostenible y al servicio de las 
personas. 

CAEPIA (Conferencia de la Asociación Española para la Inteligencia Artificial, con periodicidad 
bianual), es el foro en el que la comunidad científica española presenta y discute sus últimos avances 
en IA y desde sus orígenes está abierto a investigadores de todo el mundo. Este volumen contiene un 
conjunto de artículos seleccionados de entre los enviados a CAEPIA 2024, la XX Conferencia de la 
Asociación Española de Inteligencia Artificial, celebrada en A Coruña, del 19 al 21 de Junio de 2024. 
La conferencia comenzó a celebrarse en 1985, con ediciones anteriores que se celebraron en Alicante, 
Málaga, Murcia, Gijón, San Sebastián, Santiago de Compostela, Sevilla, La Laguna, Madrid, Albacete, 
Salamanca, Granada y Málaga. Esta edición nos permite celebrar una efeméride especial, que es el 40 
aniversario de la Asociación Española para la IA (AEPIA), ente organizador del congreso. Los 
investigadores asistentes a la conferencia han optado por cinco tipos de contribuciones: trabajos 
inéditos de investigación en idioma inglés para un volumen en la serie Lecture Notes in Artificial 
Intelligence de Springer, trabajos inéditos de investigación para estas actas, trabajos destacados ya 
publicados (Keyworks), proyectos de doctorado (Doctoral Consortium y Frances Allen, este último 
para las tesis doctorales realizadas por una mujer), y desarrollos de aplicaciones móviles. La 
conferencia acoge tanto investigación teórica como metodológica, técnica o aplicada 

Dentro de CAEPIA, junto con las sesiones generales, se celebran diversos congresos y talleres 
federados. En particular, en esta edición, se celebraron el XXI Congreso Español Sobre Tecnologías y 
Lógica Fuzzy (ESTYLF), el XV Congreso Español de Metaheurísticas, Algoritmos Evolutivos y 
Bioinspirados (MAEB), el XI Simposio de Teoría y Aplicaciones de la Minería de Datos (TAMIDA), el 
I Congreso Español en Sistemas de Recomendación y varios Talleres/workshops: I Workshop de la 
Sociedad Española de Inteligencia Artificial en Biomedicina (IABiomed 2024), I Taller de IA para la 
Educación (TIAE), y un tutorial en Large Scale Data Analytics (LSDA). También se organiza el 
Doctoral Consortium (DC), un foro para que estudiantes de doctorado puedan interactuar con otros 
investigadores discutiendo sobre sus avances y planes de tesis. Por último, para subrayar la 
importancia práctica de la IA a nivel de aplicaciones móviles, en CAEPIA 2024 tuvo lugar la 5ª 
Competición de Apps con técnicas de IA. 

CAEPIA tiene como objetivo ser reconocida como uno de los congresos de referencia en IA, 
manteniendo los estándares de alta calidad de ediciones previas y el modelo de revisión por pares de 
todos los trabajos. A partir de estas revisiones, los responsables de área, presidentes de congresos y 
organizadores de talleres y sesiones especiales propusieron un número final de artículos que fueron 
analizados y aprobados por los editores de este volumen. En total, se recogen en estas actas un total de 
100 trabajos de investigación originales, además de 59 Keyworks, y 24 contribuciones a los premios 
Doctoral Consortium, Frances Allen y el concurso de Apps. 

CAEPIA 2024 invitó a dos destacados investigadores a impartir una charla plenaria. Nuestros dos 
ponentes plenarios fueron el Prof. José Mª Lassalle (“IA y autenticidad humana”) y Amparo Alonso 
Betanzos (“Hacia una IA más sostenible”). Además, ESTYLF contó con otro investigador invitado de 
relevancia, Francesc Esteva (“Algunas reflexiones sobre investigación y sociedad”). Tras la conferencia 
de apertura, tuvo lugar una mesa redonda sobre Retos empresariales de la IA, en la que tuvimos el 
honor de contar con destacadas empresas influyentes en el sector como Inditex, Abanca, NTT Data, 
Minsait, el Clúster TIC Galicia y DataSpartan. 

Nuestra conferencia se celebró como un gran evento dentro de uno aún mayor: el VII Congreso 
Español de Informática (CEDI), que también contó con charlas plenarias muy interesantes, en el 
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campo de la IA y la Robótica. AEPIA y los organizadores de CAEPIA 2024 reconocieron las mejores 
tesis doctorales y artículos originales en eventos federados escritos tanto por investigadores 
consolidados como por estudiantes. Como en ediciones anteriores, y con el objetivo de promover la 
presencia de mujeres en la investigación de IA, el premio Frances Allen también reconoció las dos 
mejores tesis doctorales defendidas por una mujer durante los dos últimos años. Los editores de este 
volumen quieren agradecer a las numerosas personas su contribución al éxito de CAEPIA 2024: 
autores, miembros de los comités científicos y los comités de programa, ponentes invitados, 
organizadores de eventos, gestores de medios electrónicos, etc. Quisiéramos agradecer asimismo el 
trabajo incansable del comité organizador, de nuestros patrocinadores (Abanca), del equipo de 
Springer y de AEPIA por su apoyo. Por último, pero no menos importante, en nombre de los 
participantes de CAEPIA 2024, Amparo Alonso Betanzos, Bertha Guijarro Berdiñas (co-presidentas), 
así como Noelia Sánchez Maroño y Beatriz Pérez Sánchez (responsables de este volumen) dan las 
gracias a la organización de CEDI, la Universidad de A Coruña (sede local de la conferencia) y a toda 
la comunidad española que trabaja en IA (y sus numerosos colaboradores extranjeros) por hacer de 
este evento, una vez más, y en esta fecha tan especial de 40 aniversario, un verdadero éxito. 

 

Amparo Alonso Betanzos 

Bertha Guijarro Berdiñas 

Co-presidentas de CAEPIA 2024 

 

 

 

 



Presentación de la Presidenta de la  
Asociación Española para la Inteligencia Artificial 

Es para mi un placer presentar esta nueva edición de la Conferencia de la Asociación Española para la 
Inteligencia Artificial (CAEPIA) que se celebra en junio de 2024 en A Coruña, en este año tan especial en el que 
la Asociación Española para la Inteligencia Artificial (AEPIA) celebra su 40 aniversario. Un grupo de 
investigadores españoles, que trabajaban en diversos campos de la Inteligencia Artificial (IA), coinciden en 
Karlsruhe (Alemania) en agosto de 1983, durante la celebración del congreso International Joint Conference on 
Artificial Intelligence (IJCAI1983). En ese momento se estaba gestando una asociación de IA a nivel europeo, y 
este grupo de investigadores pioneros considera necesario la organización a nivel español, para promover la 
comunicación entre los investigadores de IA en España y para tener una representación en la asociación que se 
estaba gestando a nivel europeo. En 1984, estos investigadores organizaron unas Jornadas Técnicas de IA en 
Buitrago (Madrid), en las cuales nace AEPIA, y que fueron el embrión de nuestra actual CAEPIA. Hoy, mis 
palabras son de sincera felicitación, pero también de gratitud a los investigadores de muchas generaciones, que 
han contribuido desde aquel lejano 1984 hasta nuestros días a la historia de AEPIA, construyendo una asociación 
con muchos logros y muchos retos aún por delante. 

En esta XX CAEPIA están representadas las diferentes líneas de investigación de los grupos de investigación 
en IA en España, tanto en sus sesiones generales como en sus talleres y en las diferentes conferencias que integra: 
XXI Congreso Español de Tecnologías y Lógica Difusa (ESTYLF), XV Congreso Español de Metaheurística y 
Algoritmos evolutivos y bioinspirados (MAEB), el XI Simposium de Teoría y Aplicaciones de Minería de Datos 
(TAMIDA) y el I Congreso Español en Sistemas de Recomendación. AEPIA siendo consciente de la importancia 
que tienen los jóvenes investigadores, incluye en CAEPIA actividades que contribuyan al desarrollo del talento 
emergente como es el caso del Doctoral Consortium, los premios a los jóvenes investigadores autores de los 
mejores artículos, o a las mejores apps y videos divulgativos de IA. En AEPIA también contribuimos con 
acciones de género positivas, mediante los premios Frances Allen a las mejores tesis doctorales realizadas por 
mujeres, en un intento de reducir la significativa brecha de género existente en la IA e incorporar ese talento. 
Además, en esta edición de CAEPIA se ha organizado por primera vez una mesa redonda de retos empresariales 
de la IA, con la que pretendemos conocer de primera mano las necesidades y problemas a los que se enfrentan las 
empresas, acercar la IA al mundo empresarial, y establecer colaboraciones para el desarrollo conjunto de 
proyectos de IA. 

Las dos conferencias plenarias de la XX CAEPIA se enmarcan dentro de dos retos de actualidad para la IA, 
como es la IA ética y la IA sostenible. Precisamente con respecto a la IA ética, estamos en un momento histórico, 
ya que en mayo de 2024 la Unión Europea ha aprobado la ley de inteligencia artificial que se aplicará de forma 
progresiva hasta 2026, que será cuando entre finalmente en vigor. En esta ley se etiquetan las aplicaciones 
basadas en IA en función del riesgo que genera para las personas, identificando así los sistemas de alto riesgo que 
solo se podrán usar si respetan los derechos fundamentales, y prohibiendo algunos sistemas como aquellos 
basados en biometría, puntuación de personas en función de su comportamiento, etc. En cuanto a la IA 
sostenible, dado el alto consumo energético que tiene el entrenamiento de algunos modelos de IA surge la 
necesidad de desarrollar nuevos modelos, que sean mucho más eficientes computacionalmente, e instaurar la 
eficiencia energética como medida de evaluación, con el objeto de caminar hacia una IA responsable con el medio 
ambiente. 

El futuro de la IA se nos presenta apasionante, pudiendo contribuir a mejorar la calidad de vida de los 
ciudadanos, combatir el cambio climático y avanzar hacia una sociedad más sostenible y justa. Para lograrlo se 
necesita talento y estamos seguros de que la AEPIA aportará su grano de arena. 

 

Alicia Troncoso Lora 
Presidenta de AEPIA 

 

 





Ponentes Plenarios 

José María Lassalle 

 

José María Lassalle (Santander, 1966) es doctor en Derecho. 
Inició su trayectoria profesional como investigador y profesor en 
la Universidad de Cantabria y en la Universidad Carlos III de 
Madrid. Fue coordinador científico del Centro de Estudios 
Hispánicos e Iberoamericanos de la Fundación Carolina y más 
tarde, director de esta institución. En 2004 inició su actividad 
política como diputado en el Congreso por Cantabria. 
Compatibilizó su dedicación a la política con la actividad 
docente en la Universidad San Pablo-CEU y en la Universidad 
Rey Juan Carlos de Madrid. En 2011 fue nombrado secretario 
de Estado de Cultura y en 2016 de Agenda Digital. En julio de 
2018 abandonó la política. 

Es autor de numerosos ensayos y publicaciones académicas sobre pensamiento político y filosofía 
anglosajona y escribe en El País y La Vanguardia. También es colaborador de Las mañanas de RNE y 
la SER. Actualmente es consultor privado y analista; Director del Foro de Humanismo Tecnológico de 
ESADE; miembro del Open internet Governance Institute de ESADE, vocal de la Junta Directiva del 
Cercle d´Economia de Barcelona, miembro del Consejo Asesor de AMETIC, patrono de la Biblioteca 
Nacional y de la Fundación Hermes. Es profesor de Filosofía del Derecho en la Universidad Pontificia 
de Comillas (ICADE). 

Entre sus últimos ensayos destacan El liberalismo herido. Reivindicación de la libertad frente a la 
nostalgia del autoritarismo y Ciberleviatán. El colapso de la democracia liberal frente a la revolución 
digital, ambos con Arpa editorial. 

IA y autenticidad humana 
La reflexión que planteo es la necesidad de desarrollar una política pública que defina una ética de 

la autenticidad humana que, partiendo del principio de responsabilidad de Hans Jonás, atribuya a los 
seres humanos la tarea de gobernar la IA desde un propósito de preservación de las bases 
antropológicas y culturales que, según Hannah Arendt, definen la condición humana. 
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Amparo Alonso Betanzos 
Universidade da Coruña, España 

 

Amparo Alonso Betanzos es Catedrática de Universidad en el área 
de Ciencias de la Computación e Inteligencia Artificial, en la 
Universidade da Coruña (UDC). Sus líneas de investigación actuales 
son la Inteligencia Artificial Confiable y Explicable, el desarrollo de 
modelos de aprendizaje máquina sostenibles, y los modelos basados en 
agentes para la sostenibilidad, entre otros.  Ha sido Vicedecana y 
Coordinadora Erasmus, directora del Departamento de Computación, 
Coordinadora de la Especialidad de Sistemas Inteligentes del Master 
en Informática y Coordinadora del Máster Universitario en 
Bioinformática para Ciencias de la Salud, en la Facultad de 
Informática de la UDC, así como adjunta al Rector para la 
Inteligencia Artificial.  Como investigadora ha publicado más de 270 
artículos en revistas científicas y congresos internacionales, libros y capítulos de libros. Ha participado 
en más de 30 proyectos de investigación y transferencia competitivos autonómicos, nacionales y 
europeos.  Fue presidenta de la Asociación Española de Inteligencia Artificial desde 2013-2021.  Ha 
participado como miembro del Grupo de Trabajo en Inteligencia Artificial, del Ministerio de Ciencia, 
Innovación y Universidades para la redacción de la Estrategia Española de I+D+I en Inteligencia 
Artificial en 2018. En la actualidad es miembro de CAIA, la Comisión Asesora del Gobierno en 
Inteligencia Artificial, desde 2020, así como Miembro del Comité Español de Ética de la Investigación, 
desde 2023.  Es Académica correspondiente de la Real Academia de Ciencias Exactas, Físicas y 
Naturales de España desde 2023.  Es Senior Member de IEEE y de ACM y miembro del Advisory 
Board of the Chair of AI and Democracy de la UE.   Ha recibido varios premios, entre ellos el Helena 
Rubinstein-UNESCO “Women in Science” en España y finalista europea (1998), Premio Galicia TIC a 
la Innovación Digital (2004), Premio Galicia TIC a la trayectoria profesional (2019), Premio Josefa 
Wonenburger Planells de la Xunta de Galicia, (2020), Premio Gallega del año 2020, Grupo Correo 
Gallego y Colegiada de Honor del Colegio de Ingenieros Informáticos de Galicia en 2023. 

Hacia una IA más sostenible 
El éxito de la Inteligencia Artificial (IA) hasta ahora ha dependido del desarrollo de modelos cada 

vez más precisos, pero también más complejos, con un mayor número de parámetros a estimar. La 
transparencia y explicabilidad de los modelos son menores, y el costo energético resultante de 
entrenarlos y ejecutarlos ha aumentado significativamente, con estimaciones que sugieren que para 
2030 la IA podría ser responsable de más del 30% del consumo energético del planeta. En este 
contexto, surge la IA verde y responsable, caracterizada por huellas de carbono más reducidas, 
tamaños de modelo más pequeños, menor complejidad computacional y mayor transparencia. Existen 
diversas estrategias para lograrlo, como proporcionar algoritmos datos de mayor calidad, desarrollar 
modelos más eficientes o mejorar la eficiencia energética de los modelos. Estos temas se presentan 
como elementos clave para avanzar hacia una IA más ética y responsable, promoviendo la 
democratización de la tecnología, fortaleciendo la confianza de los ciudadanos en su uso y avanzando 
en el cumplimiento de las regulaciones de la UE. 
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Resumen—En este artı́culo se presentan las álgebras de Hey-
ting débiles. Estas álgebras constituyen una extensión del álgebra
de Heyting adaptada a retı́culos no distributivos. Fijado un
retı́culo, se enumeran condiciones que garantizan la existencia
de estas álgebras. Además, se caracterizan en función de los
operadores de implicación y se acota su rango.

Index Terms—Álgebras de Heyting, Implicación, retı́culo no
distributivo

I. INTRODUCCIÓN

Las álgebras de Heyting son estructuras algebraicas que
extienden las álgebras de Boole y tienen una amplia aplicación
en distintas áreas como son la lógica, la topologı́a o la
ciencia de computación. En este trabajo, estudiamos una nueva
variedad de álgebra de Heyting que se puede considerar en
algunos retı́culos no distributivos a las que bautizamos como
álgebras de Heyting débiles en [3]. Esta nueva variedad surgió
de la necesidad para demostrar la completitud y la correctitud
en la lógica de simplificación en el caso de retı́culos no distri-
butivos. Analizaremos en profundidad estas nuevas estructuras,
estudiando sus propiedades más notables y caracterizando su
existencia.

II. RESULTADOS INICIALES

Las álgebras de Heyting se definen sobre un retı́culo acotado
(L,∨,∧, 0, 1) al que se le adjunta una operación binaria →
que cumple la conocida propiedad de adjunción: para todo
a, b, c ∈ L,

a ∧ b ≤ c si y solo si a ≤ b → c.

Fijado un retı́culo acotado (L,∨,∧, 0, 1), para poder definir
la operación binaria → que cumpla la propiedad de adjunción
es necesario que el retı́culo sea distributivo. Diferentes autores
han estudiado distintas variedades de las álgebras de Heyting
con el objetivo de utilizarlas en estructuras más amplias. Por
ejemplo, las semi álgebras de Heyting que fueron estudiadas
por H.P. Sankappanavar en [5] o la noción de las álgebras
débilmente de Heyting definidas por S. Celani y R. Jansana

Queremos agradecer la ayuda económica recibida de los proyectos del
Ministerio de Ciencia e Innovación PID2022-140630NB-I00, PID2021-
124063OB-I00 y PID2021-127870OB-I00.

en [2]. Sin embargo, ambos casos, requieren que el retı́culo
con el que se trabaja sea distributivo.

En este artı́culo trabajaremos con retı́culos completos, por
tanto, las álgebras de Heyting con las que trabajaremos serán
álgebras de Heyting completas. No obstante, por simplificar el
nombre, nos referiremos a ellas como álgebras de Heyting sin
mencionar el atributo completa. Un álgebra de Heyting puede
ser caracterizado acorde al siguiente resultado.

Proposición 2.1 ([4]): Sea (L,∨,∧, 0, 1) un retı́culo y →:
L×L → L una operación. Entonces, (L,∨,∧,→, 0, 1) es un
álgebra de Heyting si y solo si (L,∨,∧, 0, 1) es un retı́culo
completo y se cumplen las siguientes propiedades:
[H1] a ∧ (a → b) = a ∧ b para todo a, b ∈ L.
[H2] a ∧ (b → c) = a ∧

(
(a ∧ b) → (a ∧ c)

)
para todo

a, b, c ∈ L.
[H3] (a ∧ b) → a = 1 para todo a, b ∈ L.

La noción de álgebra de Heyting débil se presentó [3] de
manera dualizada. Aquı́ presentamos la definición sin dualizar.

Definición 2.2: Decimos que (L,∨,∧,→, 0, 1) es un álgebra
de Heyting débil si (L,∨,∧, 0, 1) es un retı́culo completo y
se cumplen las siguientes propiedades:

[wH1] a ∧ b ̸= 0 implica que a ≤ b → (a ∧ b) para todo
a, b ∈ L.

[wH2] a → b ≥ b para todo a, b ∈ L.
[wH3] a → b = 1 si y solo si a ≤ b para todo a, b ∈ L.
[wH4] a ∧ (a → b) = a ∧ b para todo a, b ∈ L.

Como primer resultado, tenemos que la definición de álge-
bra de Heyting débil extiende a la de álgebra de Heyting.

Teorema 2.3: Si (L,∧,∨,→, 0, 1) es un álgebra de Heyting,
entonces (L,∧,∨,→, 0, 1) es un álgebra de Heyting débil.
Demostración. Sea (L,∧,∨,→, 0, 1) un álgebra de Heyting.
Vamos a probar que cumple las propiedades de álgebra de
Heyting débil.

1. Para empezar, [wH1] se cumple ya que si a, b ∈ L
cumplen que a ∧ b ̸= 0, entonces, por [H2] sabemos
que:

a ∧
(
b → (a ∧ b)

)
= a ∧

(
(a ∧ b) → (a ∧ a ∧ b)

)
,

a∧
(
(a∧ b) → (a∧ a∧ b)

)
= a∧

(
(a∧ b) → (a∧ b)

)
.
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Por [H3] sabemos que (a∧ b) → (a∧ b) = 1, por tanto,

a ∧
(
b → (a ∧ b)

)
= a ∧ 1 = a,

es decir, a ≤ b → (a ∧ b).
2. Para probar [wH2], tomamos a, b ∈ L. Por [H2] sabemos

que

b∧(a → b) = b∧
(
(a∧b) → (a∧a)

)
= b∧

(
(a∧b) → a

)
.

y por [H3], (a ∧ b) → a = 1. En consecuencia,

b ∧ (a → b) = b ∧ 1 = b,

Es decir, b ≤ a → b.
3. Si a ≤ b,por [H3], a → b = 1. Por otro lado,

supongamos que a → b = 1, tenemos que:

a ∧ (a → b) = a ∧ 1 = a.

Por otro lado, por [H1], tenemos que

a ∧ (a → b) = a ∧ b.

Es decir, a = a ∧ b y, por tanto, a ≤ b.
4. wH4 es igual a [H1].

□

III. CARACTERIZACIÓN DE LAS ÁLGEBRAS DE HEYTING
DÉBILES EN TÉRMINOS DEL OPERADOR IMPLICACIÓN

Fijado un retı́culo (L,∧,∨, 0, 1), el propósito de esta sec-
ción es determinar una condición necesaria y suficiente sobre
un operador implicación (→) para construir un álgebra de
Heyting débil (L,∧,∨,→, 0, 1).

Para ello, necesitamos introducir una condición sobre
(L,∧,∨, 0, 1) que es clave en la construcción de un álgebra
de Heyting débil.

Definición 3.1: Sea (L,∧,∨, 0, 1) un retı́culo completo.
Decimos que L es cerrado bajo supremos-∧ si para todo
a, b ∈ L cumpliendo a ≥ b ̸= 0, se satisface la siguiente
igualdad

a ∧ (sup
c∈L

{a ∧ c = b}) = b, (1)

es decir, el supremo del conjunto es un máximo.
Ejemplo 3.2: Consideremos los retı́culos L y L′ en la Figura

1 y en la Figura 2.

1

v

u

z

x

0

Figura 1. Retı́culo L.

veamos que L es cerrado bajo supremos-∧. Sean a, b ∈ L con

1

0

y

Figura 2. Retı́culo L′.

a ≥ b ̸= 0. Si x = 1 o a = b, la igualdad (1) es trivial. Por
tanto, solo necesitamos comprobar los casos b ∈ {x, u}.

Supongamos que b = x. Como a > b, sabemos que
a ∈ {z, u, 1}. Si a = 1 es trivial. Si a = z,

z ∧ (sup
t∈L

{z ∧ t = x}) = z ∧ (sup{x, v}) = z ∧ v = x.

Si x = v,

v ∧ (sup
t∈L

{v ∧ t = x}) = v ∧ (sup{x, z}) = v ∧ z = x.

Ahora supongamos que b = u. De a > b, sabemos que
a ∈ {v, 1}. Si a = 1 el resultado es trivial. En el caso
que a = v,

v ∧ (sup
t∈L

{v ∧ t = u}) = v ∧ (sup{u}) = v ∧ u = u.

Veamos ahora que L′ no es cerrado bajo supremos-∧. Este
retı́culo pertenece a una familia de retı́culos conocida, estu-
diada en profundidad en [1]. Sea a ∈ L′ tal que y < a < 1.
Tenemos que

a ∧ (sup
t∈L

{a ∧ t = y}) = a ∧ 1 = a ̸= y.

De acuerdo con el siguiente resultado, dado un retı́culo
completo (L,∧,∨, 0, 1), podemos construir un álgebra de
Heyting débil sobre él siempre que el retı́culo sea cerrado
bajo supremos-∧.

Proposición 3.3: Sea (L,∧,∨, 0, 1) un retı́culo completo tal
que L es cerrado bajo supremos-∧. Consideremos el operador
→: L× L → L definido por:

a → b =


1 si a = b = 0,
0 si a ̸= b = 0,
sup
t∈L

{a ∧ t = a ∧ b} si b ̸= 0 con a ∧ b ∈ {a, b},

b en otro caso.

Entonces, (L,∧,∨,→, 0, 1) es un álgebra de Heyting débil.
Demostración. Simplemente tenemos que probar que
(L,∧,∨,→, 0, 1) cumple las propiedades de álgebra de
Heyting débil.

1. Observemos que [wH1] se cumple ya que si a, b ∈ L
cumplen que a ∧ b ̸= 0 entonces b es comparable con
(a ∧ b), por tanto,

b → (a ∧ b) = sup
t∈L

{b ∧ t = b ∧ (a ∧ b)},
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es decir, a ≤ b → (a ∧ b).
2. De forma directa, por la definición de →, tenemos que

[wH2] se cumple.
3. Por definición, 0 → 0 = 1. Si a ≤ b ̸= 0, entonces

a → b = sup
t∈L

{a ∧ t = a ∧ b} = sup
t∈L

{a ∧ t = a} = 1.

4. Dados a, b ∈ L, tenemos que comprobar que a ∧ (a →
b) = a ∧ b. Si a = 0 o b = 0, entonces la igualdad es
trivial. Supongamos ahora que a es comparable con b,
entonces:

a ∧ (a → b) = a ∧ (sup
t∈L

{a ∧ t = a ∧ b}).

Si 0 ̸= a < b, la igualdad es directa. Si a ≥ b ̸=
0, tenemos que a ∧ b = b y como L es cerrado bajo
supremos-∧,

a ∧ (sup
t∈L

{a ∧ t = a ∧ b}) = a ∧ b.

Si a no es comparable con b, entonces la igualdad es
trivial.

□
La Proposición 3.3 establece una condición suficiente so-

bre el retı́culo completo para poder construir un álgebra de
Heyting débil. Como probamos en el siguiente teorema, la
condición es también necesaria.

Teorema 3.4: Sea (L,∧,∨, 0, 1) un retı́culo completo. Existe
una operación →: L × L → L tal que (L,∧,∨,→, 0, 1) es
un álgebra de Heyting débil si y solo si L es cerrado bajo
supremos-∧.
Demostración. Si L es cerrado bajo supremos-∧, considerando
la función → de la proposición 3.3, tenemos que (L,∧,∨,→
, 0, 1) es un álgebra de Heyting débil. Por otro lado, asumamos
que L no es cerrado bajo surempos-∧, es decir, existen a, b ∈
L tales que a ≥ b ̸= 0 cumpliendo que:

a ∧ (sup
t∈L

{a ∧ t = b}) ̸= b. (2)

Por reducción al absurdo, supongamos que existe una fun-
ción → tal que (L,∧,∨,→, 0, 1) es un álgebra de Heyting
débil. Por la propiedad [wH4] tenemos que

a ∧ (a → b) = a ∧ b = b,

por tanto, (a → b) ∈ {t ∈ L | a ∧ t = b}. Sea x ∈ {t ∈ L |
a ∧ t = b}, como x ∧ a = b ̸= 0, por [wH1], obtenemos que
x ≤ a → (x ∧ a), que es equivalente a

x ≤ (a → b).

Es decir,
sup
t∈L

{a ∧ t = b} = a → b,

que contradice la Condición 2. □
Nótese la importancia de la Proposición 3.3, pues no solo

nos garantiza la existencia, sino que nos dice cómo deben
ser los operadores implicación para su construcción. El Teo-
rema 3.4 nos asegura que esa construcción captura todos los

operadores implicaciones que pueden formar un álgebra de
Heyting débil. Equivalentemente, cada uno de los operadores
de implicación descritos en la proposición mencionada induce,
y solo ellos, un álgebra de Heyting débil. Por ello, para acabar
esta sección, daremos una caracterización de ellas en términos
de su operación implicación.

Teorema 3.5: Sea (L,∧,∨, 0, 1) un retı́culo completo y un
operador →: L×L −→ L. Entonces, (L,∧,∨,→, 0, 1) es un
álgebra de Heyting débil si y solo si el operador → cumple
las siguientes condiciones:
I) 0 → 0 = 1.

II) Si a ̸= 0, entonces a → 0 ∈ {t ∈ L | a ∧ t = 0}.
III) Si b ̸= 0, además de a ∧ b ∈ {a, b}, entonces

a → b = sup{t ∈ L | a ∧ t = a ∧ b}.

IV ) Si a ∧ b ̸∈ {a, b}, entonces

a → b ∈ {t ∈ L | a ∧ t = a ∧ b con b ≤ t}.

Demostración. Supongamos que (L,∧,∨,→, 0, 1) es un álge-
bra de Heyting débil. Entonces:
I) es directo por [wH3].

II) De [wH4] tenemos que

a ∧ (a → 0) = a ∧ 0 = 0.

Por tanto, si a ̸= 0, tenemos que necesariamente a →
0 ∈ {t ∈ L | a ∧ t = 0}.

c) Si b ̸= 0 además de a ∧ b ∈ {a, b} distinguiremos dos
casos:
En el primer caso supondremos que a∧b = a. Por [wH3]
tenemos que

a → b = 1 = sup{t ∈ L | a ∧ t = a ∧ b}.

En el segundo caso supondremos que a ∧ b = b. Por
[wH4],

a ∧ (a → b) = a ∧ b = b.

Por tanto, a → b ∈ {t ∈ L | a∧t = a∧b}. Comprobemos
que a → b es el máximo, tomamos t ∈ L tal que a∧t = b.
Como t ∧ a = b ̸= 0, por [wH1], tenemos que

t ≤ a → (t ∧ a) = a → b,

es decir, a → b = sup{t ∈ L | a ∧ t = a ∧ b}.
d) Si a ∧ b ̸∈ {a, b}, por [wH4] se cumple que a ∧ (a →

b) = a ∧ b, que implica que

a → b ∈ {t ∈ L | a ∧ t = a ∧ b}.

Además, por [wH2], sabemos que b ≤ a → b.
Por otro lado, asumamos que (L,∧,∨, 0, 1) es un retı́culo

completo y que la función → : L × L → L cumpla las
propiedades I), II), III) y IV ). Consideremos a, b ∈ L.

1. Si a ∧ b ̸= 0, entonces tenemos que a ̸= 0 y b ̸= 0.
Podemos comprobar que [wH1] se cumple, es decir, que
a ≤ b → (a ∧ b). Observemos que 0 ̸= a ∧ b ≤ b, por
tanto, podemos aplicar III):
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b → (a ∧ b) = sup{t ∈ L | b ∧ t = b ∧ (a ∧ b)}.

Es decir, para todo t ∈ L que cumple b ∧ t = a ∧ b,
tenemos que t ≤ b → (a ∧ b). Terminando la prueba
simplemente tomando el caso t = a.

2. Podemos comprobar que [wH2] se cumple comprobando
que para todo a, b ∈ L a → b viene dado por alguna de
las expresiones de I), II), III) y IV ) y en todas ellas
se cumple que a → b ≥ b.

3. Supongamos que a ≤ b. Si b = 0, por I), tenemos que
a → b = 1. Si b ̸= 0, como a∧b = a, por III) tenemos
que

a → b = sup{t ∈ L | a ∧ t = a ∧ b = a}

y es fácil comprobar que 1 es el supremo de ese
conjunto.
Supongamos ahora que a → b = 1. Si a → b viene
dado por I) entonces es claro que a ≤ b. Si a ̸= 0,
a → 0 ̸= 1 y, por tanto, es imposible que a → b venga
dado por II). Si a → b viene dado por III), entonces

1 = a → b = sup{t ∈ L | a ∧ t = a ∧ b},

concluyendo que a ∧ 1 = a ∧ b, que es equivalente
a a ≤ b. Para terminar, vemos que es imposible que
a → b venga dado por IV ) por reducción al absurdo.
Supongamos que a → b viene dado por IV ). Entonces,

1 = a → b = sup{t ∈ L | a ∧ t = a ∧ b y b ≤ t},

por tanto, a∧ 1 = a∧ b, pero si hemos aplicado IV ) es
porque a ∧ b ̸∈ {a, b}.

4. La demostración de [wH4] es análoga a la demostración
de [wH2].

□

IV. PROPIEDADES DE LAS ÁLGEBRAS DE HEYTING
DÉBILES

En caso de existir el álgebra de Heyting, gracias al Teo-
rema 2.3, sabemos que también es álgebra de Heyting débil.
Teniendo en cuenta el Teorema 3.5, la siguiente proposición
nos muestra que el operador implicación de un álgebra de
Heyting débil es siempre igual o menor al operador de un
álgebra de Heyting.

Proposición 4.1: Fijado un retı́culo completo L, supon-
gamos que (L,∧,∨,→H , 0, 1) es un álgebra de Heyting y
(L,∧,∨,→W , 0, 1) es un álgebra de Heyting débil. Entonces
la implicación →W está acotada superiormente por →H .

Demostración. Gracias al teorema 3.5, vamos a desglosar
la demostración en los siguientes casos disjuntos. Sea a y b
elementos del retı́culo L.

1. Si a ≤ b, trivialmente

a →H b = 1 = a →W b.

2. Si b = 0 y a ̸= 0, a partir del teorema, podemos afirmar
que

a →H 0 = máx{t ∈ L | t ∧ a = 0}

y

a →W 0 ∈ {t ∈ L | a ∧ t = 0}.

Se concluye que a →W 0 ≤ a →H 0.
3. Si 0 ̸= b < a, tenemos que

a →H b = máx{t ∈ L | t ∧ a ≤ b}

y

a →W b ∈ {t ∈ L | a ∧ t = b}.

Teniendo en cuenta que {t ∈ L | a ∧ t = b} está
contenido en {t ∈ L | t ∧ a ≤ b}, concluimos que
a →W b ≤ a →H b.

4. Por último, si a no es comparable a b, tenemos que

a →H b = máx{t ∈ L | t ∧ a ≤ b}

y

a →W b ∈ {t ∈ L | a ∧ t = a ∧ b y b ≤ t}.

Como {t ∈ L | a∧ t = a∧b y b ≤ t} es un subconjunto
de {t ∈ L | t ∧ a ≤ b}, concluimos que a →W b ≤
a →H b.

□
Además de tener el supremo de todas las álgebras de

Heyting débiles desde el punto de vista de sus operadores
de implicación, el cual es el operador de implicación →H

asociado al álgebra de Heyting, es posible construir el ı́nfimo
de la siguiente forma.

Proposición 4.2: Sea (L,∧,∨, 0, 1) un retı́culo completo tal
que L es cerrado bajo supremos-∧. La menor implicación ⇝
tal que (L,∧,∨,⇝, 0, 1) es un álgebra de Heyting débil viene
dada por la siguiente expresión:

a⇝ b =


0 si b = 0,

b si no son compatibles,
sup
t∈L

{a ∧ t = a ∧ b} en otro caso.

(3)
La demostración de esta proposición es inmediata usando el
Teorema 3.5.

Por lo tanto, fijado un retı́culo completo (L,∧,∨, 0, 1)
cerrado bajo supremos − ∧, cualquier operador →W que
induzca un álgebra de Heyting débil está acotado inferiormente
por ⇝ y superiormente por →H , es decir, para todo a, b ∈ L,
tenemos que

a⇝ b ≤ a →W b ≤ a →H b,
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V. CONCLUSIONES Y TRABAJOS FUTUROS

En [3] se introdujo las álgebras de Heyting débiles como
una extensión de las álgebras de Heyting, adaptadas para
considerarlas sobre retı́culos no distributivos. En esa lı́nea, se
han establecido condiciones sobre el retı́culo para garantizar la
existencia de un álgebra de Heyting débil y se ha proporciona-
do una caracterización en términos del operador implicación.
Además, hemos presentado un método para construir un
operador implicación que forme un álgebra de Heyting débil
siempre que el retı́culo sea cerrado bajo supremos-∧.

Para futuras investigaciones, se propone determinar el
número de implicaciones que pueden formar un álgebra de
Heyting débil dado un retı́culo cerrado bajo supremos-∧.
Asimismo, se plantea investigar las propiedades que deben
cumplir estas implicaciones para poder extenderlas punto a
punto en el caso de productos de retı́culos, manteniéndose
como álgebras de Heyting débiles. Además, se considera
la exploración de aplicaciones de estas álgebras en campos
distintos a la lógica de simplificación.
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Abstract—Nilpotent Minimum logic (NML) is one of the fuzzy
logics of the family of t-norm based logics that is particularly in-
teresting because it enjoys two important properties: its residual
negation is involutive and it satisfies a form of deduction theorem.
In this paper we study a paraconsistent companion of NML that
captures a weak notion of logical consequence that preserves non-
zero truth-values from the premises to the conclusions. Moreover,
we also consider its expansion with a consistency operator in the
sense of the logics of formal inconsistency (LFI).

Index Terms—Fuzzy logic; Nilpotent minimum logic; para-
consistent logic; non-falsity preserving companion; consistency
operators.

I. INTRODUCTION

Nilpotent Minimum logic (NML for short) is a distinguished
member of the family of formal systems of mathematical
fuzzy logic (MFL) [11], introduced by two of the authors of
this paper in [6] as a particular extension of the so-called
Monoidal t-norm based fuzzy logic (MTL), a very general
logic whose equivalent algebraic semantis is the variety of
prelinear (commutative, bounded, integral) residuated lattices,
also known as MTL-algebras, that is generated by the subclass
of algebras with domain the real unit interval [0, 1] and defined
by left-continuous t-norms1, see [13]. In fact, the logic NM
was originally defined in [6] as the axiomatic extension of
MTL by the involutive negation axiom

(INV) ¬¬φ→ φ

and the (weak) nilpotent minimum axiom

(WNM) (ψ ∗ φ→ ⊥) ∨ (ψ ∧ φ→ ψ ∗ φ).

NML is an algebraizable logic, as all the axiomatic extensions
of MTL, and the corresponding variety of NM-algebras is gen-
erated by a single algebra on the real unit interval [0, 1], called
standard NM-algebra, defined by the Nilpotent minimum t-
norm and its residuum, see Section 2.

The NM logic together with all its axiomatic and finitary
extensions has been exhaustively studied by Gispert in [8], [9].
They are all explosive with respect to its residual negation
¬φ = φ → 0. This means that any theory T containing or

1A t-norm ∗ is a binary operation in [0, 1] which is commutative, asso-
ciative, non-decreasing and having 1 as neutral element and 0 as absorbent
elements.

deriving both a formula φ and its negation ¬φ is contradictory,
and hence it can derive any formula. In other words, the
explosion rule with respect to ¬:

(Exp)
φ ¬φ

⊥
is valid in NML. From a semantical point of view, this is so,
because the only designated value for NML is truth-value 1: a
formula φ is a logical consequence of a theory T in NML if,
under any evaluation, φ gets value 1 whenever all the premises
in T get value 1 as well. It is clear then that no evaluation
can assign the truth-value 1 to both φ and ¬φ.

When the (Exp) rule with respect to a negation ¬ is not
valid for a logic, the logic is called ¬-paraconsistent, that is,
when deduction from theory having a contradiction does not
immediately trivialise. Paraconsistent variants of fuzzy logics
have been already studied under the paradigm of the so-called
truth-preserving logics. In these logics, φ is a consequence of
T if, under any evaluation, φ gets a value at least as high as
all the values got by the premises in T . In the case of NML,
this variant, denoted NML≤ is paraconsistent since φ ∧ ¬φ
can get a value greater than 0. In this paper our main aim
is to study and characterise another paraconsistent variant of
NML obtained by taking the semi-open interval (0, 1] as set
of designated values, i.e. when we only exclude the falsum
truth-value. In this logic, that will be denoted nf-NML (nf
for non-falsity), φ follows from T if, under any evaluation, φ
does not get value 0 whenever all the premises in T do not
get value 0. The logic nf-NML is paraconsistent as well, and
it lies between NML and NML≤.

II. PRELIMINARIES: THE NM LOGIC

The nilpotent minimum logic, NML for short, was firstly
introduced by two of the authors in [6] in order to formalize
the logic of the nilpotent minimum t-norm, that was defined
by Fodor in [7] as an example of an involutive left continuous
t-norm which is not continuous.2

The language of NML consists of countably many propo-
sitional variables p1, p2, . . ., binary connectives ∧ (weak or
lattice conjunction), ∗ (strong conjunction), → (implication),
and the truth constant 0. Formulas, which will be denoted by

2Actually, Pei showed later in [15] that NML and NM-algebras are
equivalent to Wang’s L∗ logic and R0-algebras, respectively [16], [17].
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lower case greek letters φ,ψ, χ, . . ., are recursively defined
from propositional variables, connectives and truth-constant
as usual. Further definable connectives and constants are as
follows: ¬φ stands for φ→ 0 and 1 stands for ¬0.

As already mentioned in the previous section, NML is
defined as the axiomatic extension of the monoidal t-norm
logic MTL, also introduced in [6], by the axioms

(INV) ¬¬φ→ φ
(WNM) (ψ ∗ φ→ ⊥) ∨ (ψ ∧ φ→ ψ ∗ φ).

Axiom (INV) forces the negation to be involutive, and axiom
(WNM) forces the strong conjunction ∗ to coincide with the
lattice or weak conjunction ∧ wherever it does not vanish. It
is worth observing that NML enjoys the following form of
deduction theorem:

Γ ∪ {φ} ⊢NM ψ iff Γ ⊢NM φ2 → ψ,

where φ2 is a shorthand for φ∗φ. It is well known that NML
is algebraizable and the class NM of all nilpotent minimum
algebras is its equivalent algebraic quasivariety semantics [6].

A nilpotent minimum algebra (NM-algebra) A = ⟨A, ∗,→,
∧,∨,0,1⟩ is an involutive MTL-algebra (i.e. a bounded,
commutative, integral, involutive, prelinear residuated lattice)
that satisfies the following equation

(WNM) (x ∗ y → 0) ∨ (x ∧ y → x ∗ y) ≈ 1.

We say that an NM-algebra is an NM-chain provided that
its underlying lattice order (defined as x ≤ y if x→ y = 1) is
total. Since the class NM of all NM-algebras is a proper subva-
riety of MTL-algebras, it inherits the subdirect representation
of MTL-algebras, and thus each NM-algebra is representable
as a subdirect product of NM-chains (see [6, Proposition 3]).

NM-chains can be easily characterised. Namely, given a
bounded totally ordered set (A,≤), with upper bound 1 and
lower bound 0, equipped with an involutive negation ¬, then
defining for every a, b ∈ A,

a∗b =
{

0, if b ≤ ¬a
a ∧ b, otherwise a→ b =

{
1, if a ≤ b
¬a ∨ b, otherwise,

where ∧ and ∨ denote meet and join in (A,≤), it follows
that A = ⟨A, ∗,→, ∧,∨,0,1⟩ is an NM-chain. And more-
over, every NM-chain is of this form. In particular, when
A = [0, 1],∧ = min,∨ = max, and ¬x = 1 − x, then
A = [0,1]NM is called the standard NM-algebra. It turns
out that the variety NM is generated by the standard algebra
[0,1]NM, and this means that the logic NML is sound and
complete w.r.t. the semantics given by evaluations of formulas
on [0,1]NM.

Theorem 2.1: [6] For any set of formulas Γ∪{φ}, Γ ⊢NM φ
iff, for every [0, 1]NM -evaluation e, if e(ψ) = 1 for all ψ ∈ Γ,
then e(φ) = 1.

III. NON-FALSITY PRESERVING COMPANION OF NML

We start by generalising the usual notion of 1-preserving
logical consequence by considering the consequence relations

|=(a and |=a that respectively preserve values above a ∈ [0, 1]
both in a strict (for a < 1) and non-strict sense (for 0 > a).

Definition 3.1: For any finite set of formulas Γ ∪ {φ}, we
define:

• Γ |=(a φ if, for any NM -evaluation e, if e(ψ) > a for
all ψ ∈ Γ, then e(φ) > a.

• Γ |=a φ if, for any NM -evaluation e, if e(ψ) ≥ a for all
ψ ∈ Γ, then e(φ) ≥ a.

Note that |=1, by the above completeness result, coincides
with ⊢NM . Also, it is easy to check that |=(a is paraconsistent
iff a < 1/2, while |=a is paraconsistent iff a ≤ 1/2. Moreover,
one can show that many of these logics colapse.

Proposition 3.1: The following properties hold:
1) |=a, |=(a and |=1 are the same logic for all a ∈ (1/2, 1).
2) |=a, |=(a and |=(0 are the same logic for all a ∈ (0, 1/2).

In the rest of the section we axiomatise the logic |=(0, that
we will refer to as the non-falsity preserving companion of
NML. We borrow the terminology of ‘non-falsity preserving
logic’ from Avron [1], where the author considers a similar
companion for Łukasiewicz logic, although in fact the logic
defined there is the non-falsity preserving companion of only
the {∧,∨,¬}-fragment of Łukasiewicz logic, and the idea of
the proof is totally different.

Next lemma is a key observation that tightly relates both
logics |=1 and |=(0 through the negation connective.

Lemma 3.1: For every formula φ,

ψ |=(0 φ iff ¬φ |=1 ¬ψ (iff |=1 (¬φ)2 → ¬ψ)

In particular, |=(0 φ if, and only if, |=1 ¬(¬φ)2.
Proof: By definition, ψ |=1 φ iff for every NM-evaluation

e, if e(ψ) = 1 then e(φ) = 1; that is, if e(φ) < 1 then
e(ψ) < 1, for all e; that is, e(¬φ) > 0 then e(¬ψ) > 0, for
all e; iff ¬φ |=(0 ¬ψ.

Now we define an axiomatic system aimed to syntactically
capture the logical consequence |=0 that preserves the non-
falsity.

Definition 3.2: The non-falsity preserving companion of
NML, denoted nf-NML, is the logic defined by the following
axioms and rules:

• Axioms: those of NML
• The rule of Adjunction (Adj): from φ and ψ derive φ∧ψ
• The rule (r-MP2): from φ and φ → ¬(¬ψ)2 derive ψ,

whenever ⊢NM φ→ ¬(¬ψ)2

Finally, using the above lemma and some further adjust-
ments, we can prove that nf-NML is sound and complete w.r.t.
the intended semantics. Details can be found in the paper [10]
currently under submission.

Theorem 3.1: For any set of formulas Γ∪{φ}, it holds that
Γ ⊢nf-NM φ iff Γ |=(0 φ.

Since NM-algebras are locally finite (i.e. the NM-subalgebra
generated by a finite set of elements of a given NM-algebra is
finite), the logic enjoys the finite model property, and thus it
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is decidable. Furthermore, due to the direct relation between
|=(0 and |=1 shown in Lemma 3.1 above, the computational
complexity of deciding whether a deduction Γ ⊢nf-NM φ holds,
with Γ finite, is the same as in the case of the NML logic,
which is known to be coNP-complete, see e.g. [12], [14].

IV. THE nf-NM LOGIC AND CONSISTENCY OPERATORS

Among the plethora of paraconsistent logics proposed in
the literature, the Logics of Formal Inconsistency (LFIs),
proposed in [4] (see also [2]), play an important role, since
they internalize in the object language the very notion of
consistency by means of a specific unary connective (primitive
or not), usually denoted as ◦.

Definition 4.1: Let L be a logic defined in a language
L containing a negation ¬ and a unary operator ◦ whose
deduction system is denoted by ⊢. L is an LFI (with respect
to ¬ and ◦) if the following conditions hold:
(i) φ,¬φ ̸⊢ ψ, for some formulas φ,ψ, i.e. L is not explosive

w.r.t. ¬,
(ii) ◦(φ), φ ̸⊢ ψ, for some formulas φ and ψ,

(iii) ◦(φ),¬φ ̸⊢ ψ, for some formulas φ and ψ, and
(iv) φ,¬φ, ◦(φ) ⊢ ⊥, for every formula φ.

A consistency operator in an LFI logic can be primitive or
it can be defined from other connectives of the language.

However, the nf-NM logic, although it is paraconsistent,
it is not an LFI. Obviously, the consistency operator ◦ is
not a primitive connective, but as we will show below it is
not definable either. Anyway, similarly to what was done in
the case of fuzzy logics preserving degrees of truth [5], we
can expand nf-NML with a consistency operator ◦, that is, a
unary operator such that the expanded logic satisfies the above
properties (i)-(iv) and hence it becomes an LFI. This will be
done in the rest of this section.

In the following, we will denote by L◦ the expansion of
the language of NML with ◦. And given a unary operator
◦ : [0, 1] → [0, 1] we will denote by [0,1]NM◦ the the
expansion of the standard algebra [0,1]NM with ◦3 and
by |=◦

(0 the consequence relation that preserves non-falsity
(defined as in Def. 3.1 for a = 0) but over the expanded
language L◦ and where evaluations interpret formulas on the
expanded algebra [0,1]NM◦ .

We start by considering the most general semantical condi-
tions on ◦ such that the logic |=◦

(0 is an LFI, that is, such that
the following conditions are satisfied:

• ◦φ,φ,¬φ |=◦
(0 ⊥

• φ, ◦φ ̸|=◦
(0 ⊥

• ¬φ, ◦φ ̸|=◦
(0 ⊥

It immediately follows that these conditions are satisfied if,
and only if, in the algebra [0,1]NM◦ the following conditions
are in turn satisfied:

- for all x ∈ [0, 1], x ∧ ¬x ∧ ◦x = 0,
- there exists x ∈ [0, 1], such that x ∧ ◦x ̸= 0,

3Without risk of confusion, we will use the same symbol ◦ to denote the
connective and a generic unary operation on the unit real interval [0, 1].

- there exists x ∈ [0, 1], such that ◦x ∧ ¬x ̸= 0,

which can be equivalently replaced by the next three condi-
tions on ◦:

(C0) ◦x = 0 for all x ∈ (0, 1),
(1-NZ) ◦1 > 0,
(0-NZ) ◦0 > 0.

Definition 4.2: A unary operator ◦ : [0, 1] → [0, 1] that
satisfies conditions (C0), (1-NZ) and (0-NZ) will be called a
basic consistency operator.

As we anticipated, such basic consistency operators are not
definable in [0, 1]NM , and more generally in any NM-algebra.
An argument for this claimn is the following. Since the 2-
element Boolean 2 algebra over {0, 1} is a subalgebra of any
NM-chain, if ◦ were definable (by a unary term), the only
consistency operator that could be definable would be the one
where ◦(0) = ◦(1) = 1, since this is the only compatible
possibility when restricting ◦ to 2. Now, consider the NM-
homomorphism h : [0, 1]NM → NM3, where NM3 is the
NM-subalgebra of [0, 1]NM on the set {0, 1/2, 1}, defined as
h(x) = 1 if x > 1/2, h(1/2) = 1/2 and h(x) = 0 if x < 1/2.
Then it should be h(◦(x)) = ◦(h(x)), but if 1/2 < x < 1 or
0 < x < 1/2, we have h(◦(x)) = 0 while ◦(h(x)) = 1,
contradiction.

In the following, we will call an element x ∈ [0, 1] stricly
positive (SP) if 1/2 < x < 1 and strictly negative (SN) if
0 < x < 1/2.

It turns out that one cannot distinguish in [0,1]NM the case
◦(0) = a from the case ◦(0) = b if both a and b are SP or
SN, because there exists an isomorphism f of [0,1]NM such
that f(a) = b. Therefore, from conditions (1-NZ) and (0-
NZ) above, we are left only four significant cases to consider
for the values ◦(0) and ◦(1), that can be characterized by
equations and inequations in [0,1]NM. The proof is easy and
thus omitted.

Proposition 4.1: For x ∈ {0, 1}, the following conditions
hold:

[x-1] ◦(x) = 1 is equivalently characterized by the equa-
tion ¬(◦(x)) = 0,

[x-SP] ◦(x) ∈ (1/2, 1) is characterized by the inequation
(◦(x))2 ∧ ¬(◦(x)) > 0,

[x-fix] ◦(x) = 1/2 is characterized by the inequation
(◦(x) ↔ ¬(◦(x)))2 > 0,

[x-SN]◦(x) ∈ (0, 1/2) is characterized by the inequation
◦(x) ∧ (¬(◦(x)))2 > 0.

Combining these four conditions for x = 1 and x = 0,
we obtain sixteen types of basic consistency operators ◦. In
particular, the operator satisfying the conditions [1-1] and [0-
1] is the maximal consistency operator ◦max, i.e. the one such
that ◦max(0) = ◦max(0) = 1.

Proposition 4.2: Two interesting properties of consistency
operators are the following:
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(i) The operator ◦max and Baaz-Monteiro’s projection oper-
ator4 ∆ are interdefinable.

(ii) The maximal consistency operator ◦max (and the ∆
operator) is definable from any of the sixteen types of
consistency operators except from the one defined by the
pair of conditions [0-SN] and [1-SN].

Proof: (i) To prove the first item it is enough to check
that ∆(x) = ◦max(x)∧x and also that ◦max(x) = ∆(x∨¬x).

(ii) The second item can be proved by checking the follow-
ing cases:

• if both ◦(0), ◦(1) ≥ 1/2, then
◦max(x) = ¬((¬(◦(x)))2) and ∆(x) = ◦max(x) ∧ x.

• if ◦(1) ≥ 1/2 and ◦(0) ∈ (0, 1/2), then
∆(x) = ¬((¬(◦(x))2)2) and ◦max(x) = ∆(x ∨ ¬x).

• finally, if ◦(1) ∈ (0, 1/2) and ◦(0) ≥ 1/2, then
∆(x) = ¬((¬(◦(¬x))2)2) and ◦max(x) = ∆(x ∨ ¬x).

Note that the converse of the previous results does not hold
in the sense that if we add ◦max to the algebra [0,1]NM, it
is not possible to recover the previous consistency operators,
of course with the exception of ◦max itself, because ∆ and
◦max are crisp operators (i.e. they only take values 0 or 1)
and the operations of the algebra [0,1]NM are classical when
restricted to {0, 1}.

In the next section we focus our attention to the case of
adding the maximal consistency operator ◦max to the logic nf-
NML. The expansions of nf-NML with the remaining fifteen
cases of consistency operators can be dealt in a similar way,
except for the case of operators where both ◦(0) and ◦(1) are
SN.

V. EXPANDING nf-NML WITH THE MAXIMAL
CONSISTENCY OPERATOR ◦max

In this final part of the paper we formally define and
axiomatise the expansion of the logic nf-NM with the maximal
consistency operator ◦max, i.e. the basic consistency operator
◦ further satisfying:

[1-1] ◦(1) = 1
[0-1] ◦(0) = 1

As already noted before, the crucial observation is that, in this
case, ◦max and the Baaz-Monteiro operator ∆ are interdefin-
able: ∆(x) = ◦max(x) ∧ x, and ◦max(x) = ∆(x ∨ ¬x).

We start by axiomatising first the 1-preserving logic |=◦max
1

and then, based on that, we will axiomatise the non-falsity
preserving logic |=◦max

(0 . In the following we introduce the
following abbreviation: ∆φ := (◦φ) ∧ φ.

Definition 5.1: NMLmax
◦ is the logic defined by the follow-

ing axioms and rules:
• Axioms of NML
• Consistency Axioms:

(C0) ¬(◦φ ∧ φ ∧ ¬φ)

4Recall that the Baaz-Monteiro unary operator ∆ on the unit interval [0, 1]
is defined as ∆(1) = 1 and ∆(x) = 0 for x < 1.

(⊤-1) ◦⊤
(⊥-1) ◦⊥

• Modus ponens: (MP)
φ, φ→ ψ

ψ
• Congruence rule:

(Cong)
(φ↔ ψ) ∨ χ

(◦φ↔ ◦ψ) ∨ χ
Observe that it is easy to check that the following three

inference rules
φ

◦φ
,

¬φ
◦φ

,
φ

∆φ

are derivable in NMLmax
◦ from the axioms (⊤-1) and (⊥-1)

and the rule (Cong). Moreover, one can also check that the
formula ◦φ ∨ ¬◦φ, stating that ◦ is a Boolean operator, can
be proved to be a theorem of the logic as well: by applying
the (Cong) rule to the axiom (C0), equivalently expressed as
φ∨¬φ∨¬◦φ, one gets ◦φ∨¬φ∨¬◦φ, and applying (Cong)
again, one gets ◦φ∨◦φ∨¬◦φ, which is equivalent to ◦φ∨¬◦φ.

Theorem 5.1: NMLmax
◦ is a sound and complete axiomati-

sation of |=◦max
1 .

Proof: (Sketch) First of all, note that NMLmax
◦ is an

expansion of NM with axioms plus the (Cong) inference rule,
so the logics keeps being algebraizable, and hence it is strongly
complete with respect to the class (quasivariety) of NMLmax

◦ -
algebras. Moreover, the (Cong) inference rule is closed by
disjunctions (thanks to the addition of the clause ‘∨χ’ in the
premise and in the conclusion of the rule). Then, by results
in [3], the quasi-variety of NMmax

◦ -algebras is semilinear, that
is, it is generated by its linearly ordered members. Hence,
if an equation fails in an NMLmax

◦ -algebra, it also fails in a
NMLmax

◦ -chain. The final observation is the fact that every
embedding from a countable NM-chain into [0,1]NM (which
always exists) easily extends to an embedding from a NMmax

◦ -
chain into the standard algebra [0,1]NMmax

◦
, hence if an

equation fails in a NMmax
◦ -chain it will aso fail in the standard

chain [0,1]NMmax
◦

. Therefore, if Γ ̸⊢ φ there will always
exist an evaluation over an evaluation e on [0,1]NM such
that e(Γ) = 1 and e(φ) < 1.

It is worth noticing that, from this completeness result, it
follows that the set of axioms for the ∆ operator (defined
above as ∆φ := (◦φ) ∧ φ), as proposed e.g. in [11] to
syntactically characterizing it, are provable in NMLmax

◦ , since
they are obviously valid formulas for |=◦max

1 .
Now we move from the logic |=◦max

1 to the paraconsistent
logic |=◦max

(0 . Note that |=◦max

(0 can be described in terms of
|=◦max

1 by using the ∆ connective. Namely, it holds that

{φ1, . . . , φn} |=◦max

(0 ψ

iff {∇φ1, . . . ,∇φn} |=◦max
1 ∇ψ,

iff |=◦max
1 (∇φ1 ∧ . . . ∧∇φn) → ∇ψ,

iff |=◦max
1 ∇(φ1 ∧ . . . ∧ φn) → ∇ψ,

where ∇ = ¬∆¬. Indeed, for any evaluation e, it holds that
e(φ) > 0 iff e(¬∆¬φ) = 1.

Now we introduce an axiomatic system for the logic |=◦max

(0 .
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Definition 5.2: nf-NMLmax
◦ is the logic defined by the

following axioms and rules:
• Axioms of NMLmax

◦

• Rule of Adjunction: (Adj)
φ, ψ

φ ∧ ψ
• Restricted Modus Ponens:

(r-MP)
φ, φ→ ψ

ψ
, if ⊢NML◦ φ→ ψ

• Restricted Congruence:

(r-Cong)
(φ↔ ψ) ∨ χ
(◦φ↔ ◦ψ) ∨ χ

, if ⊢NML◦ (φ↔ ψ) ∨ χ

• Reversed Necessitation for ∇:

(r-∇Nec)
∇φ
φ

Observe that the rule of necessitation for ∇:

(∇Nec)
φ

∇φ
,

which is the reverse of (r-∇Nec), is derivable. In fact, it is
a direct consequence of the fact that, by definition, ¬∆¬φ =
(¬◦¬φ)∨φ. On the other hand, from (r-∇Nec) it easily follows
that the rule

¬◦¬φ
φ

,

is also derivable since clearly ¬◦¬φ → (¬◦¬φ) ∨ φ is a
theorem of NMLmax

◦ .

Theorem 5.2: nf-NMLmax
◦ is a sound and complete axioma-

tisation of |=◦max

(0 .

Proof: Suppose {φ1, . . . , φn} |=◦max

(0 ψ. Then, as ob-
served above, this holds iff |=◦max

1 ∇(φ1 ∧ . . . ∧ φn) → ∇ψ,
and by completeness of NMLmax

◦ , iff ⊢NMmax
◦

∇(φ1 ∧ . . . ∧
φn) → ∇ψ. Therefore, in NMLmax

◦ there is a proof

Π1, . . . ,Πr = ∇(φ1 ∧ . . . ∧ φn) → ∇ψ,

where each Πi (with 1 ≤ i < r) is either an axiom of
NMLmax

◦ , it has been obtained from a previous Πk by the
(Cong) rule, or has been obtained from previous Πk,Πj

(k, j < r) by the application of Modus ponens rule. Then,
in order to get a proof of φ from ψ1, . . . , ψn in nf-NMLmax

◦
we only need do the following:
(i) add two previous steps Π1

0 and Π2
0, where

- Π1
0 = φ1 ∧ . . . ∧ φn, obtained from the premises by

the (Adj) rule,
- Π2

0 = ∇(φ1 ∧ . . . ∧ φn), obtained from Π1
0 by the

(∇Nec) rule
(ii) add two final steps Πr+1 and Πr+2, where

- Πr+1 = ¬∆¬ψ, obtained by the application of the
(r-MP) rule to Π0 and Πr, and

- Πr+2 = ψ, obtained by applying the rule (r-∆Nec)
to Πr+1.

Therefore, the sequence Π1
0,Π

2
0,Π1, . . .Πr,Πr+1,Πr+2 is a

proof of ψ from {φ1, . . . , φn} in the logic nf-NMLmax
◦ , with

the proviso that the applications of the modus ponens and
the (Cong) rules in the original proof Π1, . . .Πr in NMLmax

◦

have to be replaced now by applications of the corresponding
restricted rules (r-MP) and (r-Cong).

VI. CONCLUSIONS

The Nilpotent Minimum logic NML is an axiomatic ex-
tension of the Monoidal t-norm based fuzzy logic MTL that
enjoys nice properties. In this paper we have explored the
definition and axiomatisation of the logic nf-NML, the non-
falsity preserving companion of the Nilpotent Minimum logic.
nf-NML is a ¬-paraconsistent logic, but it does not belong
to the family of well-behaved paraconsistent logics known as
Logics of Formal Inconsistency. These logics are characterised
by having in its language a unary connective ◦ (primitive or
definable) by which one can internalize in the object language
the notion of consistency. To remedy this problem we have
considered expanding nf-NML with a consistency operator,
and have presented a complete axiomatic system for this
expansion in the particular case of the maximum consistency
operator ◦max. Nevertheless, let us notice that the same kind
of approach could be used to define the logics corresponding
to each of the remaining fourteen basic consistency operators
described in Proposition 4.1 for which the ∆ operator is
definable, see (ii) of Proposition 4.2. To do this, in Definition
5.1 one has to:

(1) Replace axioms (⊤-1) and (⊥-1) respectively by suitable
axioms corresponding to any pair of conditions [x-SP],
[x-fix], [x-SN].

(2) Change the working definition of ∆ in terms of ◦ in
Definition 5.1 (i.e. ∆φ := (◦φ) ∧ φ) in each case
according to the three expressions shown in the proof
of Proposition 4.2.

As future work we plan to generalise the approach to other
axiomatic extensions of MTL with a (primitive or definable)
involutive negation.
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Resumen—La necesidad de explicación para complejos algorit-
mos de aprendizaje automático ha provocado el auge del campo
de la Inteligencia Artificial Explicable (eXplainable Artificial
Intelligence, XAI). Se puede distinguir entre explicaciones locales,
que se enfocan en explicar la clasificación de una instancia
en particular, y explicaciones globales, que tratan de mostrar
una visión global del funcionamiento interno del modelo. En
este trabajo proponemos FLocalX, una metodologı́a que permite
construir una explicación global, expresada en términos de reglas
difusas, a partir de un conjunto de explicaciones locales. Esta
explicación global se obtiene mediante un proceso de optimización
guiado por una metaheurı́stica, que se ha instanciado a un
algoritmo genético. Hemos realizado una evaluación experimental
considerando distintos conjuntos de datos y métricas (fidelidad,
complejidad, etc.) habituales en las propuestas de XAI. Los
resultados obtenidos muestran que FLocalX es capaz de generar
explicaciones globales compactas y comprensibles que resumen
fielmente el comportamiento del clasificador que explican.

Index Terms—XAI, Optimización, Sistemas Basados en Reglas
Difusas, Explicaciones Locales, Explicaciones Globales

I. INTRODUCCIÓN

En los últimos tiempos, la gran cantidad disponible de datos
y nuevos paradigmas de aprendizaje automático (deep lear-
ning, ensembles, etc.) ha fomentado la obtención de nuevos
(y complejos) modelos que han sido incorporados a tareas
previamente inabordables [5], [24]. Sin embargo, la creciente
complejidad normalmente viene de la mano de una pérdida
en la interpretabilidad del modelo [2], lo que puede ser una
gran desventaja en campos crı́ticos como la medicina, la
legislación, la aviación, etc. La propia legislación europea trata
este tema a través del derecho a la explicación incluido en el
Reglamento General de Protección de Datos [16], que afecta
tanto a humanos como a técnicas de inteligencia artificial.
La Inteligencia Artificial Explicable (XAI) [3], [9] trata de
promover el uso de la interpretabilidad y la explicabilidad para
comprender los modelos de caja negra, y facilitar su uso en
contextos sensibles y áreas crı́ticas.

Una distinción importante en XAI, es si un método genera
explicaciones locales o globales. Las explicaciones locales
razonan las decisiones tomadas ante instancias individuales,
mientras que las explicaciones globales proporcionan una
visión general del comportamiento completo del modelo. Un
tipo común de explicaciones locales son las explicaciones
factuales y contrafactuales [6], [8]. Las explicaciones factuales
tratan sobre el razonamiento que soporta una decisión, mien-
tras que las explicaciones contrafactuales reflejan los cambios
necesarios para revertir dicha decisión. LORE (LOcal Rule-
based Explainer) [8] es un conocido método de XAI que
genera tanto explicaciones factuales como contrafactuales en
forma de reglas de clasifiación. Para ello, genera un vecindario
(dataset) cercano a la instancia que es usado para inducir un
árbol de decisión crisp, del que se extraen las reglas usadas
como explicaciones. FLARE [7] trabaja en la misma lı́nea de
investigación, pero empleando un árbol de decisión difuso.

En trabajos previos podemos ver que las explicaciones loca-
les se han tomado como punto de partida para la construcción
de explicaciones globales, difuminando la lı́nea entre ambas.
En [11] se convierten valores locales Shapley en explicaciones
globales a través de descomposición funcional. Otros métodos
fusionan ambos tipos de explicaciones mediante la importancia
de las variables [15], relevancia de conceptos [17] y resúmenes
de estrategia [13]. GLocalX [19], en el cual está inspirado
este trabajo, fusiona explicaciones locales formadas por reglas
crisp para construir una teorı́a de explicación global.

En este trabajo, introducimos FLocalX, una metodologı́a
agnóstica al modelo subyacente para explicar clasificadores
de caja negra mediante la obtención de teorı́as de explicación
globales, consistentes en un sistema de reglas difusas obte-
nido a partir de explicaciones locales difusas. Estas teorı́as
de explicación globales replican el comportamiento de los
clasificadores de caja negra subyacentes, y se pueden usar
para generar explicaciones factuales a nuevas instancias, a la
vez que proporcionan un entendimiento global del modelo.
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Ası́, un usuario puede entender cómo funciona el clasificador
y cómo se comportará ante nuevas instancias, en lugar de
generar explicaciones nuevas para cada instancia desconocida.
La construcción de una teorı́a global con reglas difusas, en
lugar de crisp, resulta más comprensible, flexible y fiel al
modelo de caja negra. Las reglas difusas aprovechan las etique-
tas lingüı́sticas, que aumentan su legibilidad asociando cada
premisa con conceptos lingüı́sticos de alto nivel, y han sido
utilizadas previamente para diseñar sistemas explicables [1],
[22], ası́ como para generar explicaciones locales [20].

Este trabajo se estructura de la siguiente manera. La Sección
II presenta el problema e identifica los elementos relevantes.
La Sección III ilustra el flujo de trabajo de nuestra propuesta.
La Sección IV muestra los experimentos realizados y analiza
el rendimiento de FLocalX. Finalmente, la Sección V presenta
las conclusiones e indica algunas lı́neas de trabajo futuro.

II. CONCEPTOS PREVIOS

En un problema de clasificación, una instancia x =
(x1, . . . , xn) ∈ X1 × · · · × Xn, donde X1, . . . ,Xn son n
variables de entrada, se asocia con una decisión y ∈ Y =
{y1, . . . , ym} mediante una función (clasificador) f : X1 ×
· · · × Xn → Y . Escribimos f(x) = y para expresar la
clasificación y dada a x. Decimos que ncont (resp. ndisc) es
el número de variables continuas (resp. discretas) en X , t.q.
0 ≤ ncont, ndisc ≤ n, ncont + ndisc = n.

Asumimos que asociada a cada variable de entrada Xi,
existe una variable difusa (lingüı́stica) Fi = {vi,1 . . . , vi,ki

}
definida por una partición de Ruspini [1] de ki conjuntos
difusos ordenados (ver Figura 1)1. Con vi,zi nos referimos
indistintamente tanto al conjunto difuso como a su etiqueta
lingüı́stica asociada. Un conjunto difuso triangular se define
por una terna de puntos reales: (comienzo, pico, fin), p. ej.
teen = (15, 15, 25) y young = (15, 25, 45) en la Figura 1a.
Si conocemos los valores mı́nimos y máximos de dom(Xi),
la partición se puede especificar usando ki − 2 valores. Dado
un valor δ ∈ dom(Xi), sea µi(δ) = (µi,1(δ), . . . , µi,ki

(δ)) el
vector de grados de pertenencia de δ a los ki conjuntos difusos
de Fi. Es decir, µi,zi(δ) es el grado de pertenencia de δ al
conjunto vi,zi . Un modificador lingüı́stico es una función que
altera la función de pertenencia (y la forma) de un conjunto
difuso (ver Figura 1b). En este trabajo, utilizamos dos de los
modificadores más comunes, muy y algo, siendo µmuy

i,zi
(xi) =

(µi,zi(xi))
2 y µalgo

i,zi
(xi) =

√
µi,zi(xi). Finalmente, para las

variables discretas, podemos interpretar cada valor como una
etiqueta lingüı́stica cuyos conjuntos difusos asociados tienen
un grado de pertenencia 1 en caso de que la instancia tome
dicho valor y 0 en caso contrario.

Sea b() un clasificador (posiblemente un modelo de ca-
ja negra) entrenado con un conjunto de datos TR =
{(xt

1, . . . , x
t
n, y

t)}Tt=1 cuyo proceso de toma de decisiones
necesita ser explicado. Sea e = {r1, . . . , re} una explicación

1Empleamos funciones triangulares de pertenencia por simplicidad y con-
veniencia. Esta metodologı́a permite otros tipos de funciones de pertenencia
(Gaussianas, trapezoidales, etc.) para representar los conjuntos difusos, siem-
pre que cubran el dominio completo de las variables.

multi-regla formada por una (o más) reglas de decisión difusas.
Cada regla r = P (r) → y(r) consiste en un conjunto de
premisas en forma conjuntiva P (r) = ps1 ∧ · · · ∧ psr y un
consecuente y(r) ∈ Y . Cada premisa pi = ⟨Fi, vi,zi⟩ es
un par atributo-valor. Para las variables continuas, Fi es una
variable difusa y vi,zi es uno de sus conjuntos difusos. Para
las variables discretas, Fi = Xi y vi,zi es un valor de su
dominio. Un ejemplo serı́a la siguiente explicación para una
solicitud de préstamo de 30k C de un usuario x = {(edad =
30), (trabajo = Contable), (ingresos = 20k)}:

e = {(r1 : edad es joven ∧ trabajo es Contable → acepta),

(r2 : edad es adulto ∧ ingresos son medios → acepta)}

Cabe destacar que dada una explicación multi-regla e que
explica una instancia x, entonces y(r) = b(x) para todo r ∈ e.
Las reglas difusas se diferencian de las reglas crisp en que,
mientras que una regla crisp tiene un emparejamiento binario
(0 o 1) con la instancia x, una regla difusa r tiene un grado
de emparejamiento con la instancia, md(r, x), definido como:

md(r, x) = min
i∈{s1,...,sr}

{µi,zi(xi)} ∈ [0, 1].

Una teorı́a de explicación E = e1∪· · ·∪eq consiste en la unión
de explicaciones que pueden tener distintas conclusiones.

Ası́, dado un clasificador b(), un conjunto de instancias
X = {x1, . . . , xq} y sus explicaciones locales {e1, . . . , eq},
el Problema de pasar de Explicaciones Locales a Globales
consiste en obtener una teorı́a de explicación global EG =
e′1∪· · ·∪e′q′ que agrega las explicaciones locales para resumir
la lógica de b.

III. FLOCALX: UNA METODOLOGÍA PARA OBTENER UNA
EXPLICACIÓN GLOBAL A PARTIR DE EXPLICACIONES

LOCALES DIFUSAS

En este artı́culo proponemos FLocalX, una metodologı́a
para obtener una explicación global de un clasificador a partir
de un conjunto de explicaciones locales difusas relativas al
mismo. FLocalX toma como entrada un conjunto de instancias
X y una teorı́a de explicación EL = e1∪· · ·∪eq , formada por
la unión de las explicaciones de cada instancia en X , y genera
una teorı́a de explicación global EG aplicando los siguientes
pasos:

A. Transformar (mapear) los conjuntos difusos locales F j

definidos para cada ej ∈ EL a una definición de con-
juntos difusos comunes FC obteniendo una teorı́a de
explicación con conjuntos comunes EC .

B. Codificar EC en una representación simple y única
que será la configuración (explicación) inicial CEC del
proceso de optimización.

C. Generar la teorı́a de explicación global EG desde CEC

mediante un proceso de optimización.

III-A. Mapeo de los Conjuntos Difusos Locales a Globales

Las explicaciones locales podrı́an no compartir las mismas
definiciones de variables difusas, y la misma etiqueta lingüı́sti-
ca podrı́a tener un significado distinto en cada explicación.
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(a) Variable difusa age (b) Modificadores: muy joven and algo adulto.

Figura 1: Partición difusa fuerte para una variable difusa age

Para homogeneizar las definiciones locales F1
i , . . . ,F

|EL|
i que

existen para cada variable Xi, establecemos una definición
global FC dividiendo el dominio de las variables numéricas
en conjuntos de igual anchura, si bien se puede partir de otros
conjuntos, p.e. definidos por expertos.

Dados dos conjuntos difusos vi,zi ∈ Fi y v′i,z′
i
∈ F ′

i ,
calculamos su similaridad [23] como

S(vi,zi , v
′
i,z′

i
) = A(vi,zi ∩ v′i,z′

i
)/A(vi,zi ∪ v′i,z′

i
)

donde A(v) es el área del conjunto v. Como es habitual en la
literatura, utilizamos min para modelar la intersección y max
para la unión. Ası́, dada una variable Xi, definimos el mapeo

M(v′i,z′
i
,Fi) = arg max

vi,zi
∈Fi

S(vi,zi , v
′
i,z′

i
), (1)

que toma un conjunto difuso v′i,z′
i
∈ F ′

i y devuelve el conjunto
vi,zi ∈ Fi con la mayor similaridad. Se obtiene EC aplicando
la Eq. 1 a cada premisa de cada ei ∈ EL.

III-B. Codificación de la Teorı́a de Explicación

En FLocalX, redefinimos el objetivo de construir una teorı́a
de explicación global como el proceso de optimizar el Sistema
Basado en Reglas Difusas (SBRD) formado por las reglas de
decisión difusas de EC . Para ello necesitamos una codificación
de EC , es decir, una representación de una solución potencial
al problema que usará el proceso de optimización.

El objetivo de la optimización de FLocalX es doble: (i)
mantener o mejorar la capacidad del SBRD de imitar el
clasificador y (ii) hacer el SBRD tan compacto como sea
posible (en número de reglas) para favorecer la interpretabili-
dad [9]. Inspirados por [4], utilizamos un algoritmo genético
como proceso de optimización del SBRD. Nos centramos en
optimizar dos elementos del SRBD:

Estructura superficial. Define la regla como la relación
entre las variables de entrada y salida. Consta de dos
elementos clave: (i) los modificadores lingüı́sticos, y (ii)
las premisas de una regla. La optimización puede alterar
el modificador lingüı́stico correspondiente a una premisa
p = ⟨Fi, vi,zi⟩, el conjunto difuso vi,zi asociado con p,
y si Fi aparece o no en una regla.
Estructura profunda. Es una descripción más especı́fica
que expande la estructura superficial con las definiciones
de las funciones de pertenencia. La optimización sólo
afecta a dichas funciones. Cabe destacar que el uso de

un algoritmo metaheurı́stico puede reducir notablemente
la explicabilidad de un sistema en pos de una mayor pre-
cisión. Controlamos esto mediante la preservación de la
forma de las particiones difusas (particiones triangulares
de Ruspini) como se explica en la Sección II.

Configuración. Cada configuración C del proceso de op-
timización representa una teorı́a de explicación E, mostrada
gráficamente en la Figura 2. Para este propósito, usaremos una
configuración de cuatro partes (CF + CR + CH + CU ):

CF es la codificación de las variables difusas. Asumimos
que los valores mı́nimo y máximo del dom(Xi) son
conocidos. Como ejemplo, en la Figura 1a conocemos
ki = 3, min = 15 y max = 40, luego tene-
mos un valor libre (25) para codificar los tres conjun-
tos difusos: {(15, 15, 25); (15, 25, 40); (25, 40, 40)}. Tan
solo cambiando el valor 25 por 20, modificamos la
semántica de la variable, obteniendo una nueva par-
tición: {(15, 15, 20); (15, 20, 40); (20, 40, 40)}. Ası́, CF

tiene una longitud de (
∑ncont

i=1 ki) − 2 elementos, todos
números reales.
CR es la codificación de las reglas. Tiene una longitud
de n · |E| elementos, donde |E| es el número de reglas
en la teorı́a de explicación. Cada n elementos consecu-
tivos codifican una regla tomando valores del conjunto
{0, . . . , ki}, donde 0 representa que la i-ésima variable no
aparece en la regla y 1 hasta ki identifican cada conjunto
difuso o valor de la variable Fi, dependiendo de si Xi es
numérica o categórica.
CH es la codificación de los modificadores lingüı́sticos.
Tiene una longitud de ncont · |E| elementos, que perte-
necen al conjunto {−1, 0, 1} representando que no hay
modificador lingüı́stico (-1), muy (0) o algo (1), para la
variable continua (difusa) asociada a esa posición.
CU es la codificación de las reglas usadas. Tiene |E|
elementos que indican si una regla se usa en el SBRD
(1) o no (0).

III-C. Generación de la Teorı́a de Explicación Global

Al tener simultáneamente que (i) simular el clasificador b()
de forma precisa, y que (ii) obtener un SBRD compacto,
la función objetivo debe tener en cuenta ambos aspectos.
Medimos el primer objetivo como la curva bajo el área
ROC (AUC) para tener en cuenta los conjuntos de datos no
balanceados, y medimos el segundo objetivo como el número
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Figura 2: Representación de una codificación de un SBRD

de reglas utilizado en el sistema. Ası́, la función objetivo f(C)
a maximizar es la siguiente:

f(C) = α · (1−
∑|CU |−1

i=0 CU [i]

|CU |
) + (1− α) ·AUC

usando α para balancear los dos valores a optimizar. Otras
posibles funciones objetivo tendrı́an cabida en la metodologı́a
propuesta.

FLocalX puede usar cualquier algoritmo metaheurı́stico
como optimizador para obtener la teorı́a de explicación global
EG. En este trabajo, hemos utilizado un algoritmo genéti-
co [12], cuyo diseño se muestra a continuación.

Población inicial. La población inicial de tamaño ρ+1 se
genera de manera informada alterando una configuración
conocida (CEC ). Dada una configuración inicial que
representa un SBRD, CF , CR, CH y CU , se generan
⌈ρ/4⌉ cromosomas aplicando el operador de mutación
a cada parte (detallado a continuación). La configuración
original también se incluye en la población inicial.
Mutación. Se seleccionan los cromosomas que se van a
mutar usando probabilidad pmut. La mutación en cada
parte se realiza aplicando una operación a una única
posición C[i] de cada parte del cromosoma:
• Para CF , el valor se genera de manera aleatoria mues-

treando un número real de una distribución uniforme
en el rango de la variable continua.

• Para CR, el valor se obtiene aleatoriamente del con-
junto {0, · · · , ki} \ C[i].

• Para CH , el valor se obtiene aleatoriamente del con-
junto {−1, 0, 1} \ C[i].

• Para CU se obtiene como 1−C[i] (negación binaria).
Cruce. Se seleccionan pares de cromosomas que se cru-
zan con una probabilidad pcross. Debido a la codificación
adoptada, el cromosoma se divide en dos, y se aplican
diferentes operadores a cada una de las partes:
• Se aplica un cruce aritmético-min-max [10] a la parte
CF , generando cuatro hijos.

• Se aplica un cruce de seis puntos al resto del cromo-
soma, eligiendo dos puntos de cruce en cada parte (es
decir, dos puntos para CR, dos para CH , y dos para
CU ). Este proceso de cruce genera dos hijos.

Tras recombinar ambas partes, se generan ocho hijos, de
los que se seleccionan los dos mejores para mantener
constante el tamaño de población.
Selección. Se utiliza una selección basada en ranking.
Reemplazo. Se utiliza un reemplazo con elitismo (man-
teniendo la mejor configuración previa).
Criterio de Parada. El algoritmo genético se detiene
cuando el fitness del mejor individuo no ofrece suficiente
mejora (de acuerdo a un umbral ϵ) durante un periodo de
κ iteraciones consecutivas.

IV. EXPERIMENTOS

Hemos evaluado FLocalX utilizando tres conocidos data-
sets multi-clase: Iris2, Wine3 y Beer4. Se utilizan datasets
pequeños, ya que el objetivo de este trabajo es mostrar una
metodologı́a general de generación de explicaciones globales,
no la implementación especı́fica de la misma. Dado que los
algoritmos metaheurı́sticos son procesos costosos tanto en
recursos como en tiempo, generalmente requieren ajustes y
optimizaciones especı́ficas para cada caso y algoritmo para
abordar diversos problemas. Al utilizar datasets más sim-
ples, podemos centrarnos en ilustrar las capacidades de la
metodologı́a, como trabajar con distintos tipos de explica-
ciones locales (i.e. FLARE, LORE) e imitar una variedad
de clasificadores. Este es el primer paso en una lı́nea de
investigación de una experimentación más compleja, donde
se utilizarán múltiples algoritmos metaheurı́sticos optimizados
para esta metodologı́a y ası́ abordar problemas mucho más
complejos. FLocalX ha sido programado en Python 3.10,
utilizando librerı́as como numpy y scikit-learn para
gestionar las estructuras de datos y generar las explicaciones
eficientemente. La implementación de FLocalX está disponible
en GitHub5.

Detalles de la experimentación. Hemos adoptado las
siguientes métricas para evaluar el rendimiento de FLocalX
y el resto de clasificadores utilizados como referencia:

2https://archive.ics.uci.edu/dataset/53/iris
3https://archive.ics.uci.edu/dataset/109/wine
4https://gitlab.citius.usc.es/jose.alonso/xai
5https://github.com/Kaysera/flocalx. Para garantizar la reproducibilidad, to-

dos los experimentos se han publicado también en un repositorio separado
https://github.com/Kaysera/ida2024-experiments.
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Figura 3: Transformación de un intervalo de LORE a un
conjunto difuso

Precisión. Medimos la precisión del clasificador original
(Acc-B), de la teorı́a de explicación formada por la unión
de las explicaciones locales (Acc-U), y de la teorı́a de
explicación global después de aplicar FLocalX (Acc-F).
Fidelidad. Mide la capacidad de la teorı́a de explicación
global para imitar al clasificador [8]. Medimos la fidelidad
de la teorı́a de explicación formada por la unión de
las explicaciones locales (Fid-U) y la de la teorı́a de
explicación global resultante de aplicar FLocalX (Fid-F).
Número de Reglas. Mide el número total de reglas del
sistema. Más reglas indican un sistema más complejo y
por tanto menos interpretable. Medimos el número de
reglas antes (R) y después (RF ) de aplicar FLocalX.
Número de premisas. Mide el número de premisas en el
antecedente de las reglas. Más premisas se perciben algu-
nas veces (erróneamente) como más útiles [14], ası́ que
acortar las reglas junto con una comunicación correcta
de la importancia de los atributos es una buena práctica.
Medimos el número de premisas antes (P ) y después
(PF ) de aplicar FLocalX.

Se utiliza una partición entrenamiento-validación-test
(60%-30%-10%) para la experimentación. Con la partición
de entrenamiento se entrenan los clasificadores con los hi-
perparámetros por defecto. Con la partición de validación se
buscan los hiperparámetros de los métodos de explicación lo-
cales, y se extraen las explicaciones locales (EL). La partición
de test se ha utilizado para medir la precisión para todos los
algoritmos. El algoritmo genético se ha repetido 20 veces,
alterando la semilla aleatoria, y se muestra la media de los
resultados. Los parámetros se han seleccionado de manera
empı́rica. Para estos datasets, un gran tamaño de población
ρ = 128 (y múltiplo de 4) muestra mejores resultados y
una baja presión del tamaño α = 0.1 permite una rápida
convergencia y alta precisión. Los parámetros se han fijado
a valores estándar: número de conjuntos difusos ki = 5;
#iteraciones κ = 20; umbral de parada ϵ = 0.01; pmut= 0.15
y pcross=0.8. Los conjuntos difusos para Iris y Wine han sido
obtenidos usando particiones de igual anchura, mientras que
los conjuntos difusos para Beer se han tomado de [21].

Se consideran las siguientes alternativas en la experimenta-
ción:

Modelos de caja negra (BB): Se escogen SVM, Redes
Neuronales (NN) y Random Forest (RF) como clasifi-
cadores de referencia utilizando su implementación en
scikit-learn.
Modelos basados en reglas: Algoritmos de los que se
puede extraer un conjunto de reglas y pueden ser usados

para predicción y explicación. Se utilizan como sistemas
de explicación globales. Los algoritmos utilizados son
Árbol de Decisión Difuso (FDT) [18], LORE (LO) [8]
y FLARE (FL) [7].
Métodos de transformación Local a Global: Utilizan
explicaciones locales para fusionarlas en una teorı́a de
explicación global que es capaz de predecir y explicar
instancias del dataset:
• FLocalX + LORE: Se usa LORE para extraer las ex-

plicaciones locales y después aplicar FLocalX. Como
FLocalX necesita reglas difusas, se generan conjuntos
difusos considerando los intervalos como un α-corte
de 0.5. Por ejemplo, el intervalo [1, 3] se transforma
en el conjunto difuso (0, 2, 4) en la Figura 3.

• FLocalX + FLARE: Se usa FLARE para extraer las
explicaciones locales y después aplicar FLocalX.

Tabla I: Rendimiento y Explicabilidad de los distintos modelos

Met. BB Fid-U Fid-F Acc-B Acc-U Acc-F R RF P PF
Ir

is

FDT - - - - 1.00 - 12.00 - 1.42 -

FL
NN 0.97 0.93 1.00 0.95 0.91 32.00 5.05 1.31 1.27
RF 0.94 0.91 0.93 0.94 0.91 26.00 4.16 1.81 1.70

SVM 0.93 0.95 1.00 0.95 0.92 19.00 4.47 1.26 1.32

LO
NN 0.93 0.94 1.00 0.94 0.93 45.00 4.79 1.96 1.55
RF 0.97 0.93 0.93 0.97 0.93 45.00 4.16 2.07 1.85

SVM 0.92 0.95 1.00 0.94 0.92 45.00 4.37 1.58 1.36

W
in

e

FDT - - - - 0.94 - 36.00 - 3.00 -

FL
NN 0.86 0.76 0.89 0.82 0.77 48.00 8.68 1.42 1.54
RF 0.61 0.61 1.00 0.61 0.61 41.00 2.89 1.39 1.23

SVM 0.99 0.73 0.67 0.71 0.76 17.00 4.95 1.00 1.32

LO
NN 0.77 0.78 0.89 0.76 0.76 54.00 4.79 2.52 1.94
RF 0.90 0.88 1.00 0.90 0.88 54.00 6.21 3.19 3.02

SVM 0.93 0.76 0.67 0.68 0.71 52.00 5.05 1.02 1.56

B
ee

r

FDT - - - - 1.00 - 69.00 - 2.42 -

FL
NN 0.69 0.71 0.80 0.67 0.79 128.00 20.42 1.85 1.78
RF 0.87 0.88 1.00 0.87 0.88 129.00 26.68 2.34 2.18

SVM 0.86 0.77 0.85 0.85 0.82 99.00 15.21 1.96 1.93

LO
NN 0.74 0.76 0.80 0.70 0.80 119.00 13.42 2.01 1.98
RF 0.92 0.89 1.00 0.92 0.88 119.00 14.63 2.54 2.60

SVM 0.78 0.82 0.85 0.67 0.86 119.00 15.58 2.02 2.07

Resultados. Comparamos las teorı́as de explicación global
generadas por FLocalX para los dos métodos de explicación
local con la unión trivial de las explicaciones locales, y
usamos un método de caja blanca basado en reglas (FDT)
como referencia. La Tabla I muestra los resultados de la
experimentación. En negrita se resalta el mejor resultado por
base de datos para la fidelidad (Fid-U y Fid-F), la precisión
(Acc-U y Acc-F) y el número de reglas (RF) y premisas (PF)
después de aplicar FLocalX.

Como un objetivo del proceso de optimización es la re-
ducción del tamaño del sistema basado en reglas, compro-
bar su impacto en el rendimiento es necesario. En algunos
problemas con Acc-U muy alta (> 0.9), Acc-F disminuye
ligeramente, posiblemente porque la mayorı́a de las reglas son
necesarias para alcanzar ese grado de precisión. Por otro lado,
en problemas más complejos donde el punto de partida no
es tan bueno (el dataset Beer para FLARE y NN, o LORE
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y SVM, son claros ejemplos), el algoritmo es incluso capaz
de mejorar la precisión del punto de partida. Esto sugiere que
una aproximación metaheurı́stica, aunque costosa en tiempo,
beneficia problemas difı́ciles de resolver. Finalmente, las reglas
de LORE suelen ser un mejor punto de partida para FLocalX
que las reglas de FLARE. Este descubrimiento sugiere que
quizás más premisas proporcionan un mejor punto de partida
(lo que ocurre en el caso crisp), aunque consideramos que
es necesario ampliar la experimentación para explorarlo con
detenimiento.

En cuanto a la complejidad de las explicaciones, pode-
mos observar que se obtiene una reducción de entorno al
85%− 90% de las reglas de partida. Beer muestra las teorı́as
de explicación más grandes (unas 20 reglas para FLARE y
unas 14 para LORE), que aun ası́ son legibles por humanos.
Además, hay una gran reducción con respecto al clasificador
de referencia, siendo necesarias un 40% de las reglas en data-
sets más simples y sobre un 20%−30% para problemas más
complejos. El número de reglas generado por el FDT aumenta
con la complejidad de los problemas, es decir, es válido para
Iris y Wine, pero es demasiado largo (70 reglas) para Beer.
Por otro lado, mirando el número de premisas, generalmente
nos encontramos con 1-3 premisas por regla, muy aceptable
para lectores humanos. #PF solo es ligeramente mayor que
#P , ya que f(C) no tiene en cuenta la longitud de la regla.
Finalmente, observamos que las explicaciones globales de
LORE generalmente tienen menos reglas que las de FLARE,
aunque con alguna premisa más por regla.

Los resultados de esta experimentación preliminar, con un
único algoritmo de optimización (el algoritmo genético) y
datasets pequeños, muestran la flexibilidad de la metodologı́a,
el cual puede generar explicaciones globales compactas y
fiables que pueden resultar útiles para un lector humano.

V. CONCLUSIONES Y TRABAJO FUTURO

Este trabajo introduce FLocalX, una metodologı́a para ex-
traer una teorı́a de explicación global agnóstica al modelo
partiendo de una serie de explicaciones locales difusas me-
diante un proceso de optimización. Hemos llevado a cabo
una experimentación utilizando un algoritmo genético como
proceso de optimización, y observamos que FlocalX es capaz
de generar teorı́as de explicaciones globales cortas y precisas,
mejores que la unión trivial de las explicaciones locales de
partida y que el clasificador de caja blanca de referencia.
Las futuras lı́neas de trabajo pasan por un mayor estudio
experimental de los hiperparámetros, operadores y funciones
objetivo para el algoritmo genético. También planteamos un
estudio de otros algoritmos metaheurı́sticos como procesos
de optimización. Finalmente, la diferencia de rendimiento
mostrada entre el uso de FLARE y el de LORE para generar
la teorı́a de explicación local, da pie a experimentar con otros
explicadores locales.
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Resumen—En este trabajo se investigan las funciones de
implicación discreta que satisfacen el Modus Ponens con respecto
a una uninorma discreta. De este estudio, y de manera análoga
al caso de funciones de implicación definidas en el intervalo
unidad, se obtiene que las uninormas a considerar deben de ser
conjuntivas. En esta investigación, se estudiarán las funciones de
implicación residuadas derivadas de una uninorma conjuntiva
discreta. En particular, se analizará el caso de las derivadas de
uninormas de la familia de Umı́n y de la familia de uninormas
idempotentes discretas Uide.

Palabras Clave—Uninormas discretas, Funciones de implica-
ción discreta, U-Modus Ponens, Reglas de inferencia

I. INTRODUCCIÓN

Las funciones de implicación borrosas [1], [7] son ope-
radores clave en el control borroso y en el razonamiento
aproximado, ası́ como también en los diferentes campos donde
se aplican estas teorı́as. Esto es debido principalmente a que
estas funciones de implicación se utilizan para modelizar los
condicionales borrosos de la forma “Si ... entonces”, ası́ como
para modelar reglas de inferencias clásicas como es el caso
del Modus Ponens y del Modus Tollens. Muchos de los
estudios realizados con funciones de implicación tratan sobre
propiedades adicionales que en cada caso o contexto puedan
ser deseables. La mayorı́a de ellas provienen de tautologı́as
de la lógica clásica que, traducidas al ámbito de la lógica
borrosa, se convierten en ecuaciones funcionales. En este
marco, la propiedad Modus Ponens [14] se vuelve esencial
para realizar inferencias directas y es bien sabido que esta
regla de inferencia está garantizada cuando la conjunción y
la función de implicación utilizadas en el proceso satisfacen
la desigualdad funcional correspondiente. Esta desigualdad
[13], [14] se ha estudiado ampliamente para muchos tipos
de funciones de implicación cuando la conjunción se modela
mediante una t-norma

T (x, I(x, y)) ≤ y para todo x, y ∈ [0, 1]. (1)

Isabel Aguiló y Juan Vicente Riera estan parcialmente subvenciona-
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co y a la Gestión de Emergencias (HESOCODICE)”, financiado
por MCIN/AEI/10.13039/501100011033/ P. Fuster-Parra está parcialmen-
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Sin embargo, el uso de uninormas conjuntivas para modelar
conjunciones es una opción cada vez más extendida en siste-
mas difusos y por ello se ha investigado el Modus Ponens
respecto de una uninorma conjuntiva U en lugar de una t-
norma T (ver [5], [11]), dando lugar a la propiedad llamada U-
Modus Ponens (o también U-condicionalidad). Lo primero que
se deriva de estos trabajos es que las implicaciones usuales,
como las R, (S, N), QL y D implicaciones derivadas de t-
normas y t-conormas o las implicaciones de Yager, no satis-
facen la U- condicionalidad. Ası́ los candidatos posibles para
satisfacer el U-Modus Ponens aparecen entre las implicaciones
derivadas de uninormas. Se ha estudiado y resuelto ya para el
caso de RU-implicaciones en [4], [11] y también para el caso
de (U,N)-implicaciones [9].

Por otro lado, el estudio de operaciones definidas en escalas
finitas, habitualmente denotadas como Ln = {0, . . . , n}, es
un área de creciente interés. Principalmente, porque permite
tratar con familias finitas de etiquetas lingüı́sticas evitando
interpretaciones numéricas (necesarias en el enfoque de lógica
difusa). Las implicaciones discretas [5], [6] muestran nuevas
posibilidades para el razonamiento aproximado con familias
finitas de etiquetas lingüı́sticas, con sus consecuentes aplica-
ciones en la computación con palabras.

El estudio del Modus Ponens ha sido estudiado para im-
plicaciones discretas derivadas de t-normas discretas [8], [10].
Por el contrario, no se ha realizado un estudio en el caso
de uninormas discretas similar al elaborado para uninormas
definidas en el intervalo unidad. En este trabajo, se analiza
en profundidad esta regla del inferencia para el caso de
uninormas conjuntivas discretas, que seguiremos llamando U-
Modus Ponens y expresado funcionalmente como

U(x, I(x, y)) ≤ y para todo x, y ∈ Ln. (2)

Análogamente al caso del intervalo unidad, se investiga en
detalle el U-Modus Ponens respecto de una uninorma discreta.
En particular, se estudia el caso de implicaciones residuales
derivadas de uninormas de Umin y de la familia de uninormas
idempotentes Uide.

II. PRELIMINARES

En esta sección solo recordaremos los resultados y defini-
ciones necesarias para que el trabajo sea lo más autocontenido
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posible. Trabajos sobre operadores de agregación discreta se
pueden encontrar en [2], [3], [12]. Es sabido (ver [12]) que
para el estudio de funciones de agregación binarias ası́ como
para el estudio de funciones de implicación todas las cadenas
finitas con el mismo número de elementos son equivalentes.
Por ello, utilizaremos la más simple de ellas con n + 1
elementos:

Ln = {0, 1, 2, . . . , n}

y, para todo a, b ∈ Ln con a ≤ b, utilizaremos la notación
[a, b] para denotar la subcadena dada por [a, b] = {x ∈ Ln |
a ≤ x ≤ b}.

Definición 1: [12]
Una función f : Ln → Ln se dice que es suave cuando
| f(x)− f(x− 1) | ≤ 1 para todo x ∈ Ln con x ≥ 1.
Una operación binaria F sobre Ln se dice que es suave
cuando sus secciones, vertical y horizontal, lo son.

La importancia de la condición de suavidad radica en el
hecho de que generalmente esta caracterı́stica es usada en
el caso discreto de manera equivalente a la continuidad en
el intervalo [0, 1], propiedad equivalente a la de divisibilidad
(para una t-norma T , x ≤ y si y solo si existe z ∈ Ln tal que
T (y, z) = x), ver también [12].

Proposición 2: [12] La única negación suave (equivalen-
temente fuerte o estrictamente decreciente) sobre Ln es la
negación clásica dada por

N(x) = n− x para todo x ∈ Ln.

Definición 3: [2], [3] Una uninorma discreta es una aplica-
ción U : L2

n −→ Ln asociativa, commutativa, creciente en
cada variable y tal que existe un elemento e ∈ Ln, llamado
elemento neutro, tal que U(e, x) = x para todo x ∈ Ln.

Evidentemente, una uninorma con elemento neutro e = n es
una t-norma discreta y una uninorma con elemento neutro e =
0 es una t-conorma. Para cualquier otro valor e ∈ Ln∖{0, n}
la operación se comporta como una t-norma en [0, e]2, como
una t-conorma en [e, n]2 y toma valores entre el mı́nimo y el
máximo en el conjunto A(e) dado por

A(e) = [0, e[× ]e, n] ∪ ]e, n]× [0, e[.

Denotaremos de forma habitual una uninorma con elemento
neutro e, t-norma y t-conorma subyacentes T y S, respec-
tivamente, por U ≡ ⟨T, e, S⟩. Cualquier uninorma discreta
satisface que U(0, n) ∈ {0, n}; cuando U(n, 0) = 0, se dice
que la uninorma U es conjuntiva, mientras que si U(n, 0) = n,
se dice que es disyuntiva. A continuación, se recuerda la
estructura de las dos familias de uninormas discretas que serán
utilizadas en este trabajo.

Las uninormas discretas de la familia de Umı́n han sido
caracterizadas, tal como muestra el siguiente resultado.

Teorema 4: [3] Una operación binaria U de Ln con elemento
neutro 0 < e < n es una uninorma discreta de Umı́n si y sólo
si su expresión viene dada por

U(x, y) =

 T (x, y) si x, y ∈ [0, e]
S(x, y) si x, y ∈ [e, n]
mı́n(x, y) en caso contrario,

siendo T una t-norma discreta sobre la cadena [0, e] y S es
una t-conorma discreta sobre la cadena [e, n].

La familia de uninormas idempotentes discretas, es decir,
aquellas que verifican U(x, x) = x para todo x ∈ Ln fueron
caracterizadas en [2] de la siguiente forma.

Teorema 5: [2] Una operación binaria U definida en Ln

con elemento neutro 0 < e < n es una uninorma idempotente
discreta si y sólo si existe una función decreciente g : [0, e] →
[e, n] con g(e) = e tal que

U(x, y) =

{
mı́n(x, y) si y ≤ g(x) y x ≤ g(0)
máx(x, y) en otro caso,

donde g es la única extensión de g que es simétrica con
respecto a la diagonal principal y viene dada por la expresión

g(x) =

 g(x) si x ≤ e
máx{z ∈ [0, e] | g(z) ≥ x} si e < x ≤ g(0)
0 si x > g(0).

En estos casos, se dice que g es la función asociada a la
uninorma idempotente U , y será denotada por U = (e, g),
siendo 0 < e < n su elemento neutro.

Recordemos que las familias de uninormas conjuntivas
discretas son las uninormas de Umı́n y las uninormas idempo-
tentes discretas tales que g verifica la condición g(0) = n.

Definición 6: [5] Un operador binario I : Ln × Ln → Ln

se denomina función de implicación discreta, o implicación,
si satisface:

(I1) I(x, z) ≥ I(y, z) cuando x ≤ y, para todo z ∈ Ln.
(I2) I(x, y) ≤ I(x, z) cuando y ≤ z, para todo x ∈ Ln.
(I3) I(0, 0) = I(n, n) = n y I(n, 0) = 0.

Notar que, a partir de la definición, se verifica que I(0, x) =
n y además se tiene que I(x, n) = n para todo x ∈ Ln

mientras que los valores simétricos I(x, 0) y I(n, x) no se
pueden deducir a partir de la definición.

Hay muchas otras propiedades que se exigen a las funciones
de implicación dependiendo del contexto, entre ellas queremos
destacar:

El principio de neutralidad,

I(n, y) = y para todo y ∈ Ln. (NP )

El principio de identidad,

I(x, x) = n para todo x ∈ Ln. (IP )

I(x, y) = n si y sólo si x < y.
Definición 7: Sea I una función de implicación discreta. La

función NI definida como NI(x) = I(x, 0) para todo x ∈
Ln, es siempre una negación borrosa, denominada negación
natural de I .

En la literatura [5], [6] existen diferentes métodos de
construcción de funciones de implicación discreta. Entre ellas,
la implicación residuada derivada de una t-norma discreta T
y construidas a partir del operador

IT (x, y) = máx{z ∈ Ln | T (x, z) ≤ y}, x, y ∈ Ln,
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Una generalización de este operador se puede considerar si,
en vez de utilizar una t-norma discreta, se utiliza una uninorma
discreta U con elemento neutro 0 < e < n.

Definición 8: [4] Sea U : L2
n → Ln una uninorma discreta,

su operador residual IU : L2
n. → Ln, vendrá dado por

IU (x, y) = máx{z ∈ Ln | U(x, z) ≤ y}, x, y ∈ Ln.

En este caso, el operador resultante no siempre verifica
las condiciones de ser una función de implicación discreta
y dependerá de la elección de la uninorma.

Proposición 9: [4] Dada una uninorma discreta U : L2
n →

Ln, su operador residual IU es una función de implicación
discreta si y sólo si U es conjuntiva, esto es, si y sólo si
U(n, 0) = 0.

Este familia de funciones de implicación han sido estudiadas
y caracterizadas para el caso de uninormas discretas de Umı́n

y para el caso de uninormas idempotentes discretas tales que
su generador verifica la condición g(0) = n (para más detalles
ver [4]).

III. MODUS PONENS RESPECTO DE UNA UNINORMA
DISCRETA

En esta sección vamos a investigar el Modus Ponens res-
pecto de una uninorma U discreta, o simplemente el U -Modus
Ponens, para una función de implicación discreta I . Para ello,
empecemos dando la definición formal del U -Modus Ponens.

Definición 10: Sea I una implicación borrosa discreta y
U una uninorma discreta. Diremos que I verifica el Modus
Ponens respecto de U (o simplemente el U -Modus Ponens),
o también que I es un U -condicional si

U(x, I(x, y)) ≤ y para todo x, y ∈ Ln. (3)

Un primer paso será investigar qué condiciones debe de
satisfacer la función de implicación discreta I ası́ como la
uninorma discreta U para que I sea U -condicional.

De manera semejante al caso de funciones de implicación
y uninormas definidas en el intervalo unidad [11], se tienen
los siguientes resultados.

Lema 11: Sea I una función de implicación discreta y U
una uninorma discreta. Si I es U -condicional entonces U es
conjuntiva.

El resultado anterior, nos dice qué tipo de uninormas discre-
tas deberemos considerar. A continuación se estudiarán algu-
nas propiedades necesarias que deberán verificar la uninormas
conjuntivas ası́ como las funciones de implicación discreta.

Proposición 12: Consideremos una uninorma conjuntiva
discreta U con elemento neutro 0 < e < n y supongamos
que I es una función de implicación discreta tal que I es U -
condicional. En estas condiciones, se verifican las siguientes
propiedades:

1. I(e, y) ≤ y para todo y ∈ Ln.
2. U verifica U(x,NI(x)) = 0 para todo x ∈ Ln.
3. La negación natural NI verifica

NI(x) = 0 para todo x ≥ e y NI(x) < e para todo
0 < x < e. En particular, NI no puede ser suave.

4. I(x, y) < e para todo x > y ≥ e. En particular,
I(n, y) < e para todo y < n.

5. U(n, I(n, y)) ≤ y para todo y ∈ Ln.
Este último resultado nos da condiciones necesarias que

deberá cumplir la uninorma U ası́ como la función de im-
plicación I para que se verifique que I sea U -condicional.
En primer lugar, notar que la propiedad 4 es incompatible
con la propiedad I(n, y) = y para todo y ∈ Ln, propiedad
que verifican entre otras, las cuatro clases más usuales de
funciones de implicación discreta, a saber, R, (S,N), QL o D
implicaciones (ver por ejemplo [6], [8]). Sin embargo, no es el
caso de las implicaciones residuadas derivadas de uninormas
discretas ya que satisfacen IU (e, y) = y para todo y ∈ Ln

(ver proposición 2 en [4]). Por ello, y a partir de ahora, toda
nuestra investigación se centrará en considerar este tipo de
funciones de implicación.

Un primer resultado que se obtiene del hecho de considerar
funciones de implicación derivadas de uninormas conjuntivas
discretas es la relación existente entre sus elementos neutros.

Proposición 13: Sean U,U0 dos uninormas discretas con-
juntivas cuyos elementos neutros son e, e0 ∈ Ln ∖ {0, n}
respectivamente y consideremos IU0

la implicación residuada
discreta derivada de U0. Si IU0

es U -condicional entonces
e0 ≤ e.

Por otra parte, sabemos (ver proposición 2 en [4]) que si U
es una uninorma conjuntiva discreta, se tiene que IU siempre
es U -condicional. Por ello, se tiene el siguiente resultado.

Proposición 14: Sean U,U0 dos uninormas conjuntivas
discretas cuyos elementos neutros son e, e0 ∈ Ln ∖ {0, n}
respectivamente. Si U ≤ U0 entonces se tiene que IU0

es U -
condicional.

Ejemplo 15: Consideremos U la menor uninorma con
elemento neutro e ∈ Ln∖{0, n}, que puede verse representada
en la figura 1, donde TD representa la t-norma drástica en
la región [0, e] × [0, e]. Entonces, IU0 es U -condicional para
cualquier uninorma conjuntiva U0 con el mismo elemento
neutro e ya que U ≤ U0.

TD mı́n

mı́n máx

0

e

n

e n

Figura 1. Estructura de la uninorma más pequeña con elemento neutro e ∈
Ln ∖ {0, n} .

En la siguiente sección se estudiará el caso particular de
implicaciones residuadas derivadas de una uninorma discreta
de la familia de Umı́n.
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IV. U -MODUS PONENS PARA IMPLICACIONES
RESIDUALES OBTENIDAS DE UNINORMAS DE Umı́n

Consideremos una uninorma U0 ∈ Umı́n, y su implicación
residual IU0

; queremos estudiar cuando IU0
es U -condicional

con respecto a una uninorma conjuntiva U . Para ello, recorde-
mos la estructura general de una implicación residual derivada
de una uninorma discreta de Umı́n.

Proposición 16: [4] Sea U0 ≡< T0, e0, S0 >mı́n una
uninorma discreta de Umı́n con elemento neutro e0 ∈ (0, n).
Entonces su operador residual IU0 es siempre una función de
implicación y ésta vendrá dada por

IU0
(x, y) =



n si 0 ≤ x < e0 con x ≤ y
IT (x, y) si 0 ≤ x ≤ e0 con x > y
y si y < e0 < x
e0 − 1 si e0 ≤ y < x
IS(x, y) si e0 ≤ x ≤ n, e0 ≤ y ≤ n

con x ≤ y.

Para esta clase de RU -implicaciones, el siguiente resultado
nos da condiciones necesarias para que IU0

sea U -condicional.
Proposición 17: Sea U una uninorma discreta con elemento

neutro e ∈ Ln ∖ {0, n} y U0 ≡< T0, e0, S0 >mı́n una
uninorma discreta de Umı́n con elemento neutro e0 tal que
e0 < e . Si la RU -implicación IU0

es U -condicional entonces
se verifica U(x, y) = mı́n(x, y) para todo x, y ∈ R0 donde la
región R0 viene dada por

R0 = [0, e0]× [e, n] ∪ [e, n]× [0, e0].

Imponiendo algunas restricciones sobre las condiciones que
deben de cumplir las componentes de las correspondientes
uninormas U y U0, se obtienen condiciones necesarias y
suficientes, tal como se puede ver en el siguiente resultado.

Proposición 18: Sea U ≡< TU , e, SU > una uninorma
discreta con elemento neutro 0 < e < n y sea U0 ≡<
T0, e0, S0 >mı́n una uninorma de Umı́n con elemento neutro
e0 tal que e0 < e. Supongamos que T0 = mı́n y que
SU = máx. Entonces la RU -implicación IU0

es U -condicional
si y solo si U(x, y) = mı́n(x, y) para todo x, y ∈ R0 =
[0, e0]× [e, n] ∪ [e, n]× [0, e0].

Ejemplo 19: Consideremos U ≡< TU , e,máx > y sea
U0 ≡< mı́n, e0,máx >mı́n, siendo e0 < e. En este caso, y
de acuerdo a la proposición anterior IU0

es U -condicional. Se
puede ver la estructura de la uninorma U ası́ como la estructura
de la función de implicación IU0

en la figura 2.
Finalmente, si imponemos condiciones sobre los elementos
neutros tendremos:

Teorema 20: Sea U ≡< TU , e, SU > una uninorma discreta
con elemento neutro 0 < e ≤ n y sea U0 ≡< T0, e0, S0 >mı́n

una uninorma de Umı́n con elemento neutro e0 tal que e0 < e.
Supongamos que U(e0, e0) = e0 (en este caso, U viene dada
por una t-norm T1 en la región [0, e0]

2) y que U0(e, e) = e
(en este caso, U0 viene dada por una t-conorma , S1 en la
región [e, n]2).

Entoces, la RU -implicación IU0 es U condicional si y solo
si se verican las siguientes condiciones:

y

y

n
e0 − 1

�
�
�

�
�
�

�
�
�

�
�
�
�

0

e

e0

n

e0 e n

TU

mı́n

mı́n máx

0

e

e0

n

e0 e n

Figura 2. Estructura de la uninorma de U (abajo) y de la función de
implicación IU0

(arriba).

i) U(x, y) = mı́n(x, y) para todo x, y ∈ R0 siendo R0 =
[0, e0]× [e, n] ∪ [e, n]× [0, e0].

ii) La implicación residual derivada de la t-norma T0, IT0
,

verifica

T1(x, IT0
(x, y) ≤ y para todo y < x ≤ e0.

iii) SU (x,RS1
(x, y)) ≤ y para todo x ≤ y.

V. U -MODUS PONENS PARA IMPLICACIONES
RESIDUALES OBTENIDAS DE UNINORMAS IDEMPOTENTES

En esta sección se estudiará el U -Modus Ponens para
funciones de implicación residuadas derivadas de uninormas
idempotentes discretas. Para ello, recordemos la estructura
general de una implicación residual derivada de una uninorma
idempotente.

Proposición 21: [2] Sea U0 ≡< g0, e0 >ide una uninor-
ma idempotente con elemento neutro e0 ∈ (0, n) tal que
g0(0) = n. Entonces su operador residual IU0

es una función
de implicación y vendrá dada por

IU0
(x, y) =

{
máx(g0(x), y) si x ≤ y
mı́n(g0(x), y) si x > y,

o, equivalentemente,

IU0
(x, y) =

 g0(x) si x < e0 con x ≤ y < g0(x)
g0(x) si x > e0 con g0(x) ≤ y < x
y en cualquier otro caso.
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Un primer resultado que nos da condiciones necesarias es
el siguiente.

Proposición 22: Sea U una uninorma conjuntiva discreta
con elemento neutro e ∈ Ln∖ {0, n}, U0 ≡< g0, e0 >ide una
uninorma idempotente discreta con elemento neutro e0, siendo
(0 < e0 ≤ e) y sea IU0 la implicación residual derivada de U0.
Si IU0 es U -condicional entonces la t-conorma subyacente de
U debe ser SU = máx.

Imponiendo la condición g0(e) = 0, se tiene la siguiente
caracterización.

Proposición 23: Sea U una uninorma conjuntiva discreta
con elemento neutro e ∈ Ln∖ {0, n}, U0 ≡< g0, e0 >ide una
uninorma idempotente con elemento neutro 0 < e0 < e tal
que g0(e) = 0. Sea IU0

la implicación residual derivada de
U0. Entonces, IU0 es U -condicional si y solo si la t-conorma
subyacente de U es SU = máx.

Ejemplo 24: Si consideramos la única uninorma discreta U0

de la familia de Umı́n que es idempotente con elemento neutro
e0, sabemos que su implicación residual viene dada por

IU0
(x, y) =

 n si 0 ≤ x < e0 con x ≤ y
e0 − 1 si e0 ≤ y < x
0 en cualquier otro caso.

Si consideramos cualquier uninorma discreta U con elemen-
to neutro e > e0 que tenga como estructura la representada
en la figura 3, de acuerdo al resultado anterior, IU0

es U -
condicional.

TU

mı́n

mı́n máx

0

e

e0

n

e0 e n

Figura 3. Estructura de la uninorma de U con elemento neutro e.

VI. CONCLUSIÓN

En este trabajo se ha investigado, una de las reglas de infe-
rencia más importantes, el Modus Ponens, también llamada
t-condicionadad dada en la expresión (1). Para ello, se ha
sustituido la t-norma discreta T por una uninorma discreta
U , dando lugar, a una generalización de la misma, que hemos
llamado, U -condicionalidad (de manera semejante al estudio
hecho en el invervalo unidad) y que viene dada por la fórmula
2. Se ha demostrado, que dicho operador necesariamente debe
de ser conjuntivo y que las funciones de implicación discretas
a considerar no pertenenecen a las familias más clásicas,
como es el caso de las R, (S,N), D o Q-implicaciones. Por
ello, se han estudiado las implicaciones residuadas derivadas

de uninormas conjuntivas discretas haciendo especial incapié
para el caso de dos familias importantes de las mismas, las
obtenidas a partir de uninormas discretas de la familia de Umı́n

y de la familia de las uninormas idempotentes. Como trabajo
futuro, queremos investigar caracterizaciones para el caso de la
familia de uninormas idempotentes, ası́ como investigar dicha
propiedad, para el caso particular, en que las t-normas y t-
conormas subyacentes sean suaves

AGRADECIMIENTOS
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cialmente subvencionada por el Ministerio de Ciencia, Inno-
vación y Universidades con el proyecto PID2022-139248NB-
I00 subvencionado por MCIN/AEI/10.13039/501100011033 y
“ERDF A way of making Europe”.

REFERENCIAS

[1] M. Baczynski, B. Jayaram, Fuzzy Implications. Studies in Fuzziness and
Soft Computing, vol. 231. Springer, Berlin Heidelberg, 2008.

[2] B. De Baets, J. Fodor, D. Ruiz-Aguilera and J. Torrens, “Idempotent
uninorms on finite ordinal scales,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 17 pp. 1–14, 2009.

[3] M. Mas, G. Mayor and J. Torrens, “t-Operators and uninorms on a finite
totally ordered sets,” J. Intell. Systems, vol.14, pp. 909–922 (1999).

[4] M. Mas, G. Mayor, M. Monserrat and J. Torrens, “Residual Implications
from Discrete Uninorms. A Characterization,” in L. Magdalena et.
(Eds.), Enric Trillas: A Passion for Fuzzy Sets, Studies in Fuzzines and
Soft Computing, Springer 2015, pp. 27–40.

[5] M. Mas, M. Monserrat and J. Torrens, “S-implications and R-
implications on a finite chain,” Kybernetika, vol.40, pp. 3–20, (2004).

[6] M. Mas, M. Monserrat and J.Torrens,“ On two types of discrete
implications,” International Journal of Approximate Reasoning, vol. 40,
pp. 262–279, 2005.

[7] M. Mas, M. Monserrat, J. Torrens, E. Trillas, “A survey on fuzzy
implication functions,” IEEE Transactions on Fuzzy Systems, 15(6),
1107–1121, 2007.

[8] M. Mas, M. Monserrat and J. Torrens, “Modus ponens i modus tollens in
discrete implications,” International Journal jof Approximate Reasoning,
vol.49, pp. 422–435, 2008.

[9] M. Mas, M. Monserrat, D. Ruiz-Aguilera, J. Torrens “RU and (U,N)-
implications satisfying Modus Ponens,” International Journal of Appro-
ximate Reasoning, 73, 123-137, 2016.

[10] M. Mas, D. Ruiz-Aguilera, J. Torrens, “On a generalization of the Modus
Ponens: U-conditionality,” in Proceedings of IPMU-2016, Part I, CCIS
610, J.P. Carvalho et al. Eds. 2016, pp. 1–12.

[11] M. Mas, D. Ruiz and J. Torrens, “Uninorm based residual implications
satisfying the Modus Ponens property with respect to a uninorm, Fuzzy
Sets and Systems, vol. 359, pp. 22–41, 2019.

[12] G. Mayor and J. Torrens, Triangular norms in discrete settings, in:
E.P. Klement and R. Mesiar (Eds.), Logical, Algebraic, Analytic, and
Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam, 2005,
pp. 189–230.

[13] E. Trillas, M. Mas, M. Monserrat and J. Torrens, “On the representation
of fuzzy rules, International Journal of Approximate Reasoning,” vol.
48, pp. 583–597, 2008.

[14] E. Trillas, L. Valverde, “On Modus Ponens in fuzzy logic,” in 15th Inter-
national Symposium on Multiple-Valued Logic, pp. 294–301. Kingston,
Canada, 1985.

XX Conferencia de la Asociación Española para la Inteligencia Artificial 262



Sistema Difuso TSK Escalable 
 

 

Javier Martín Moreno 
Centro de Estudios Avanzados 

en Física, Matemáticas y 

Computación (CEAFMC) 

Universidad de Huelva 

Huelva, España 

javier.martin@dti.uhu.es 

Francisco Alfredo  

Márquez Hernández 
Centro de Estudios Avanzados 

en Física, Matemáticas y 

Computación (CEAFMC) 

Universidad de Huelva 

Huelva, España 

alfredo.marquez@dti.uhu.es 

Francisco José  

Moreno Velo 

Centro de Estudios Avanzados 

en Física, Matemáticas y 

Computación (CEAFMC) 

Universidad de Huelva 

Huelva, España 

francisco.moreno@dti.uhu.es 

Antonio Peregrín Rubio 
Instituto Andaluz 

Interuniversitario en Data 

Science and Computational 

Intelligence (DaSCI) 

Centro de Estudios Avanzados 

en Física, Matemáticas y 

Computación (CEAFMC) 

Universidad de Huelva 

Huelva, España 

peregrin@dti.uhu.es 

 

 

 
Resumen—En la actualidad, el avance tecnológico ha 

derivado en la generación masiva de datos, impulsada por la 

expansión de Internet y la presencia generalizada de sensores, 

donde, además, las personas contribuyen de manera activa a esta 

generación de datos mediante el uso de dispositivos móviles y 

redes sociales. Ante la dificultad que enfrentan las técnicas 

convencionales de Inteligencia Artificial al procesar volúmenes 

de datos tan elevados, se recurre a las tecnologías de Big Data 

para abordar estos desafíos de manera escalable. Este trabajo se 

centra específicamente en el desarrollo de un Sistema Basado en 

Reglas Difusas de tipo TSK, que sea escalable, relativamente 

sencillo y fácilmente reproducible. 

Palabras clave—Big Data; Spark; Sistema Basado en Reglas 

Difusas TSK; Algoritmo Evolutivo; RPROP 

I.  INTRODUCCIÓN 

Los Sistemas Basados en Reglas Difusas (SBRD) han sido 
ampliamente utilizados para resolver problemas que requieren 
modelar el conocimiento de una manera similar a cómo lo 
percibe el ser humano. Este enfoque permite procesar 
correctamente información incompleta y/o imprecisa, 
particularmente en entornos dinámicos de incertidumbre [1]. 

El proceso de aprendizaje de reglas a partir de un conjunto 
de ejemplos conlleva un coste computacional proporcional a la 
magnitud de dicho conjunto. Los algoritmos utilizados para 
esta labor encuentran limitaciones en la cardinalidad del 
problema. En respuesta a esta problemática, surge la necesidad 
de aplicar técnicas de Big Data con el fin de desarrollar un 
modelo paralelo y distribuido que sea escalable, abordando así 
eficazmente las demandas computacionales inherentes en los 
grandes conjuntos de datos [2]. 

Diversas propuestas se han llevado a cabo en el ámbito de 
los SBRD escalables. Inicialmente, surgieron iniciativas en el 
campo del agrupamiento difuso, destacando las contribuciones 
de T. C. Havens et al., quienes proponen una implementación 
del algoritmo C-Means diseñada para procesar grandes 
volúmenes de datos [3]. Por otro lado, S. del Río et al. 
proponen un clasificador difuso basado en el algoritmo Chi, 

enfocado en resolver problemas de clasificación difusa en estos 
grandes conjuntos de datos [4]. En cuanto al dominio de la 
regresión difusa, cabe resaltar entre otros el trabajo de I. 
Rodríguez-Fernández et al. [5], quienes proponen un 
sofisticado SBRD evolutivo para resolver problemas de 
regresión de gran escala. 

La complejidad computacional asociada al diseño de 
SBRDs reside en la generación y ajuste de la Base de 
Conocimiento. En la literatura podremos encontrar diversas 
metodologías para abordar este desafío. Estos métodos se 
clasifican en: 

• Métodos evolutivos (Genetic Fuzzy Systems - GFS): 
Estos enfoques, comúnmente conocidos como sistemas 
difusos genéticos, han sido ampliamente explorados [6]. 
La utilización de algoritmos bioinspirados para llevar a 
cabo la búsqueda de parámetros presenta como ventaja 
principal su capacidad de exploración, si bien es cierto 
que requieren más tiempo de ejecución. 

• Métodos basados en la teoría de aprendizaje de redes 
neuronales (Neuro Fuzzy Systems – NFS): Estos 
métodos, habitualmente denominados sistemas 
neurodifusos, han destacado en la literatura [7]. La 
aplicación de algoritmos basados en búsquedas de 
parámetros guiadas por el descenso del gradiente ofrece 
soluciones efectivas de manera más rápida, aunque 
ocasionalmente pueden quedar atrapados en mínimos 
locales. 

En este trabajo se propone un SBRD TSK escalable y 
distribuido llamado TSKEvoRPROP, diseñado específicamente 
para abordar problemas de regresión donde la precisión del 
modelo desempeña un papel fundamental. El objetivo principal 
de este modelo es garantizar su reproducibilidad, siguiendo una 
filosofía sencilla que facilite tanto su comprensión como su 
implementación práctica. Además, se asegura la escalabilidad a 
medida que aumenta el volumen de las instancias procesadas 
en la etapa de aprendizaje y ajuste del SBRD, apoyándose en 
técnicas de Big Data para lograrlo, como son el 
almacenamiento distribuido del conjunto de datos en 
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particiones de menor tamaño y el procesamiento en paralelo de 
cada subconjunto de datos. 

Este trabajo sigue la siguiente estructura: La Sección II 
aborda los modelos TSK desde la perspectiva de la 
escalabilidad. En la Sección III se define el modelo TSK 
escalable propuesto. La Sección IV se centra en el análisis de 
los resultados obtenidos. Finalmente, en la Sección V se 
presentan las conclusiones principales de este trabajo. 

II. MODELOS TSK Y LA ESCALABILIDAD 

En esta sección, se presentan de forma concisa las 
características de los SBRD TSK. Posteriormente, se lleva a 
cabo un breve análisis de la literatura en el ámbito de la 
escalabilidad de estos modelos. 

Como es bien sabido, los SBRD TSK emplean reglas con 
antecedentes representados por etiquetas lingüísticas y 
consecuentes expresados como polinomios en función de las 
variables de entrada. La estructura común de las reglas TSK es 
la siguiente: 

Rj Si X1 es A1 y  y Xn es An entonces 
 Z = p1 · X1 +  + pn · Xn + p0 

Donde X representa el conjunto de entradas al sistema 
compuesto por n variables, A denota el conjunto de etiquetas 
lingüísticas que componen el antecedente de la regla, Z es el 
resultado del consecuente de la regla y p constituye el conjunto 
de componentes del polinomio del consecuente, siendo p0 el 
término independiente. El subíndice j refiere el número de 
regla, y el i es el número de variable. 

Dada la entrada X, el grado de pertenencia de Xi a su 
correspondiente etiqueta Ai se calcula usando el método de 
fuzzificación no puntual, expresado como hi = f (Ai , Xi), siendo 
hi un valor decimal entre 0 y 1. 

 hi = f (Ai  Xi) () 

El grado de activación de la regla Rj dada una entrada X se 
representa como Hj = μA(X), siendo habitual el operador de 
conjunción Mínimo.  

 Hj = min(h1  hn) () 

A continuación, se calcula la salida de la regla Rj.  

 Zj = ∑(Xi · pi) + p0 () 

Finalmente, el resultado Y’ generado por el sistema se 
calcula mediante la media ponderada de los consecuentes, 
multiplicados por el grado de activación de cada regla: 

 Y' = ∑ Zj · Hj  ∑ Hj () 

En sistemas de este tipo, el aprendizaje de los consecuentes 
se realizará necesariamente mediante algoritmos. Asimismo, 
los antecedentes se generan mediante métodos guiados por 
cubrimiento de ejemplos y se ajustan posteriormente. Para 

ajustar estos parámetros, se debe minimizar el error cuadrático 
medio de las predicciones del modelo sobre el dataset.  

Debido a la complejidad computacional inherente a los 
grandes conjuntos de datos, se ha abordado previamente la 
problemática desde una perspectiva escalable. Inicialmente, 
antes de la aparición de las tecnologías Big Data, se recurrió a 
técnicas de preprocesamiento como la reducción del conjunto 
de datos para hacer frente a este desafío. En la literatura se 
destacan trabajos como los de M. J. Gacto et al. quienes 
proponen un método para modelar un sistema difuso preciso 
capaz de abordar problemas de regresión de gran magnitud 
denominado METSK-HDe [8]. La contribución principal de 
este trabajo radica en la integración el filtro de Kalman con el 
ajuste del SBRD TSK basado en dispersión, lo que resulta en 
una mejora significativa de la eficiencia del algoritmo. 

No obstante, en épocas más recientes con la aparición de 
tecnologías Big Data, ha surgido la posibilidad de abordar estos 
desafíos procesando estas grandes cantidades de datos 
mediante la escalabilidad horizontal de la capacidad de 
cómputo. Este nuevo paradigma permite resolver problemas de 
manera eficiente sin recurrir a técnicas de selección ni 
dispersión, las cuales pueden resultar en pérdidas de 
información no deseadas. En este contexto, cabe destacar la 
contribución de I. Rodríguez-Fernández et al. quienes proponen 
un sistema difuso genético distribuido y escalable para resolver 
problemas de regresión, denominado S-FRULER [5]. La 
principal aportación de este trabajo se encuentra en la 
subdivisión del problema en particiones más reducidas que se 
procesan de manera distribuida, ofreciendo así una solución 
escalable. Sin embargo, es importante señalar que estas 
soluciones suelen incorporar diversas etapas que integran 
múltiples técnicas de optimización, haciendo el modelo muy 
complejo y de difícil reproducibilidad. 

En este trabajo se propone una implementación sencilla y 
más fácilmente reproducible de un SBRD TSK basado en 
tecnología Big Data para resolver problemas de gran magnitud.  

Para abordar el desafío de la optimización paramétrica 
asociada al ajuste de los antecedentes y los consecuentes de la 
Base de Reglas, se ha optado por un algoritmo determinista que 
emplea modelos matemáticos basados en la teoría del descenso 
por el gradiente. De esta manera, se busca mejorar 
iterativamente la precisión del SBRD mediante la modificación 
de los parámetros en la dirección óptima de la derivada del 
error cuadrático medio.  

En cuanto a la escalabilidad del modelo, se ha logrado 
mediante la adaptación de este al paradigma de procesamiento 
en paralelo sobre datos distribuidos. El modelo propuesto 
exhibe la capacidad de ejecutarse en múltiples nodos de 
cómputo, llevando a cabo cada una de estas tareas en paralelo 
sobre particiones individuales de los datos. Con el objetivo de 
preservar la consistencia del modelo distribuido, su diseño se 
ha concebido de tal manera que el resultado final de la 
ejecución del algoritmo sea idéntico, ya sea ejecutándolo en 
paralelo sobre varios nodos del clúster o sobre un solo nodo de 
forma secuencial. Esta consistencia se asegura al optar por la 
paralelización de las etapas más costosas, realizando cálculos 
parciales que se agregarán posteriormente para mantener la 
integridad de los resultados del algoritmo original.  
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III. MODELO PROPUESTO: TSKEVORPROP 

En esta sección se presenta TSKEvoRPROP, un SBRD 
TSK-1 escalable que permite resolver problemas de regresión 
de gran magnitud. A grandes rasgos, el modelo se compone de 
tres etapas secuenciales. En primer lugar, un algoritmo 
evolutivo aborda la búsqueda de la granularidad de cada una de 
las variables de entrada, dividiendo el universo de discurso y 
generando así la Base de Datos inicial. A continuación, se 
genera la Base de Reglas inicial mediante un algoritmo de 
cubrimiento de ejemplos. Posteriormente, esta Base de Reglas 
se ajusta de manera iterativa mediante técnicas de descenso por 
gradiente, tratando de minimizar el error cuadrático medio de 
las predicciones del SBRD sobre el conjunto de datos. 
Finalmente, se obtiene como resultado la Base de Reglas 
ajustada que mejor rendimiento ha ofrecido. La Figura 1 ilustra 
el diagrama del modelo propuesto. 

A continuación, se profundiza en los detalles de cada una 
de las fases del modelo. 

A. Algoritmo evolutivo para escoger granularidad 

En particular, se ha seleccionado el algoritmo genético 
CHC [9] como técnica evolutiva para determinar la 
granularidad del SBRD. Este algoritmo destaca por su balance 
entre la exploración y la explotación del espacio de búsqueda. 
Para lograrlo, combina técnicas de elitismo, que enfocan la 
búsqueda en las zonas prometedoras mediante presión 
selectiva, con técnicas de prevención de incesto, que evitan la 
convergencia prematura, y con técnicas de rearranque, que 
diversifican las áreas de búsqueda.  

Para identificar la mejor granularidad, este algoritmo utiliza 
cromosomas con tantos genes como variables de entrada tenga 
el problema. Los valores de los genes están comprendidos en el 
rango de granularidades de 3 a 7, y se añade el valor 0 para 
aplicar una selección de variables implícita en la búsqueda de 
la mejor granularidad para cada variable. Dado que los valores 
de los genes son enteros, se ha optado por un cruce HUX, 
asegurando que cada cromosoma hijo contenga un gen con el 
valor de cada padre. De este cruce se generan dos hijos, cada 
uno con un gen de cada padre. La prevención de incesto 
consiste en que los padres que no superen cierto umbral de 
cruce, no se cruzan, manteniendo así la diversidad genética a lo 
largo de las generaciones. Nótese que, al tratarse de un espacio 
de búsqueda reducido, el coste computacional será bajo. 

Fig. 1.  Diagrama TSKEvoRPROP 

B. Generación de la Base de Reglas por cubrimiento 

Después de obtener la Base de Datos inicial a partir de la 
granularidad, se utilizan estas etiquetas para generar reglas 
cuyos antecedentes cubran cada ejemplo del conjunto de datos. 
La técnica de cubrimiento seleccionada es la clásica propuesta 
por Wang y Mendel [10].  

Este algoritmo está orientado a generar la base de reglas a 
partir de una base de datos predefinida. Basándose en criterios 
de cobertura, genera una regla que cubra cada ejemplo dado. Se 
calcula a qué término lingüístico pertenece cada parámetro del 
ejemplo de entrada, generando así el antecedente de la regla 
que lo cubre. Una vez generada una regla que cubra a cada 
ejemplo, se eliminan las reglas duplicadas, obteniendo así la 
base de reglas inicial por cubrimiento de los ejemplos dados. 

C. Aprendizaje de consecuentes 

En el caso de los sistemas TSK-1, el algoritmo de Wang y 
Mendel no puede calcular el consecuente, ya que fue concebido 
para generar sistemas tipo Mamdani, donde el consecuente 
también se define mediante una etiqueta lingüística. Por lo 
tanto, para la optimización paramétrica se ha optado por un 
algoritmo heurístico de descenso por gradiente, en lugar de 
otras técnicas conocidas como los algoritmos evolutivos. 
Aunque más complejo, se busca potenciar la velocidad y la 
precisión del modelo aprendido mediante el uso del algoritmo 
matemático Resilient Propagation (RPROP) [11]. Se trata de 
una técnica de aprendizaje supervisado, donde a partir de un 
conjunto de datos etiquetados, se ajustan los valores de los 
parámetros del sistema para obtener el resultado deseado. 

A los sistemas difusos que hacen uso de técnicas de 
aprendizaje se les denomina sistemas neuro-difusos debido a la 
relación demostrada entre las redes neuronales y los sistemas 
difusos. En este caso nos enfocamos en los algoritmos de 
descenso por gradiente, los cuales utilizan el gradiente de la 
función de error para encontrar su mínimo local. Para 
aplicarlos al aprendizaje de reglas consideraremos cada 
configuración de los parámetros a ajustar, en este caso el 
conjunto de los parámetros de los polinomios de los 
consecuentes, como un punto en el espacio de búsqueda. La 
Figura 2 muestra gráficamente cómo el algoritmo RPROP 
ajusta los parámetros sobre la función de error en tan sólo 22 
iteraciones, mientras el algoritmo de descenso por gradiente 
original necesita 598 iteraciones. 
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Fig. 2. Función de error: RPROP vs BackPropagation 

El algoritmo RPROP soluciona los problemas 
fundamentales del algoritmo backpropagation clásico, 
acelerando su convergencia. Por un lado, utiliza un factor de 
aprendizaje dinámico en lugar de constante, y por otro, emplea 
un factor de aprendizaje individual para cada parámetro, 
permitiendo que cada uno se actualice según sus necesidades 
específicas. 

Este algoritmo se fundamenta en el algoritmo Manhattan 
para realizar la actualización de los parámetros. En lugar de 
usar el valor de la derivada, se emplea únicamente su signo, 
mejorando así el comportamiento al acercarse al mínimo. La 
heurística utilizada para acelerar la convergencia del algoritmo 
implica considerar el valor de las derivadas de iteraciones 
sucesivas al realizar la actualización de cada parámetro. De 
esta manera, cada parámetro mantiene su propio factor de 
aprendizaje e incorpora información de segundo orden. Por 
tanto, para calcular los pasos de actualización de cada 
parámetro se usa la siguiente ecuación, que describe el 
desplazamiento del parámetro en función de su evolución con 
respecto al instante anterior: 

             p(t−)·+  si ∂E∂p t− · ∂E∂p t   

 p(t)      p(t−)·− si ∂E∂p t− · ∂E∂p t   () 

              p(t−)  si ∂E∂p t− · ∂E∂p t =  

A continuación, para actualizar los parámetros se utiliza la 
siguiente ecuación, que modifica el parámetro utilizando sólo 
el signo de la derivada del error respecto al parámetro: 

 pij
(t+) = pij

(t) − signo ( ∂E∂p t) · ij
(t) () 

Por tanto, el algoritmo RPROP se fundamenta en la 
derivada de la función de error respecto de cada parámetro para 
calcular el desplazamiento de cada uno de ellos. Debido a la 
estructura interna de los SBRD, es necesario usar la regla de la 
cadena para calcular las derivadas de cada parámetro. Para 
calcular el gradiente de la función de error, es necesario seguir 

de manera inversa los cálculos realizados por el sistema difuso 
en el proceso de inferencia, partiendo de la función del error 
cuadrático medio. En primer lugar, se define la derivada de la 
función de error cuadrático medio del SBRD respecto de cada 
parámetro como: 

 ∂E∂p = ∑ ∂ei∂p () 

Luego, se calcula la derivada del error del SBRD para cada 
ejemplo respecto a las funciones de pertenencia y al grado de 
activación de cada regla: 

 ∂ei∂p =  · (f(px)−y)·∂f(px)∂p () 

A partir del grado de activación se puede calcular la 
derivada respecto al valor de activación de cada variable de 
entrada utilizando las derivadas de los operadores difusos. Por 
último, se calculan las derivadas del grado de activación de 
cada variable respecto de cada parámetro. Por lo tanto, para 
calcular las derivadas de la función de error respecto a cada 
parámetro será necesario derivar los operadores difusos y las 
funciones de pertenencia que componen el proceso de 
inferencia. 

D. Tunning de antecedentes 

Además del aprendizaje de los consecuentes, se ha 
empleado RPROP para llevar a cabo el ajuste o tunning de los 
antecedentes usando el modelo 3-tuplas [12]. Este método 
consiste en ajustar tanto la posición como la anchura de cada 
una de las etiquetas lingüísticas de los antecedentes de las 
reglas. Para ello, al igual que los parámetros del consecuente, 
se ha calculado la derivada de la función del error respecto a la 
posición y la anchura de cada antecedente mediante la regla de 
la cadena. 

E. Implementación escalable 

Una vez explicadas las diferentes etapas del algoritmo 
propuesto, se analizan las características que lo hacen 
escalable. Para hacer frente a grandes conjuntos de datos se ha 
implementado siguiendo la filosofía Big Data que consiste en 
procesar los datos en paralelo de manera distribuida. Para ello, 
se ha dividido el conjunto de datos en particiones que se han 
distribuido en diferentes nodos de cálculo. Cada uno de estos 
nodos procesa la parte más pesada de los algoritmos descritos 
anteriormente en paralelo sobre su propia partición de datos. 
Posteriormente, estos resultados parciales de cada nodo se 
agregan continuando el flujo de resultados hacia la siguiente 
etapa. La Figura 3 muestra el diagrama del modelo escalable, 
indicando qué etapas se ejecutan de manera escalable en 
paralelo sobre las particiones de datos distribuidas. 

La primera etapa consiste en ejecutar el algoritmo genético 
CHC, cuyo objetivo es evaluar la granularidad que ofrece 
mayor precisión. En esta fase, los cromosomas se evalúan 
secuencialmente en el nodo central, siendo la evaluación de 
cada cromosoma, es decir, el cálculo del error cuadrático medio 
sobre el conjunto de datos, la parte pesada que se realiza en 
paralelo sobre las diferentes particiones del conjunto de datos. 
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Fig. 3. Arquitectura del Modelo TSKEvoRPROP paralelo y distribuido 

La evaluación del cromosoma se puede desglosar en las 
siguientes etapas: 

• Generar la Base de Datos a partir de la granularidad 
representada por el cromosoma en el nodo central. 

• Generar la Base de Reglas inicial por cubrimiento 
usando el algoritmo de Wang y Mendel en paralelo 
sobre cada partición y agregar las reglas posteriormente. 

• Ajustar la Base de Reglas haciendo uso el algoritmo 
RPROP en paralelo sobre cada partición. 

• Calcular el error cuadrático medio del SBRD en 
paralelo y agregar los errores posteriormente. 

• Evaluar el siguiente cromosoma del algoritmo CHC. 

• Obtener la Base de Reglas con mayor precisión. 

En resumen, este trabajo propone un modelo de regresión 
integral que utiliza una implementación paralela y distribuida 
basada en Big Data, brindando escalabilidad horizontal. Este 
modelo genera un SBRD TSK-1, garantizando una alta 
precisión en los resultados. Se ha priorizado la sencillez y la 
reproducibilidad del modelo, utilizando un algoritmo genético 
CHC para la búsqueda eficiente de la granularidad y el 
algoritmo de aprendizaje supervisado RPROP para acelerar el 
ajuste de los parámetros. 

IV. ESTUDIO EXPERIMENTAL 

En esta sección se presentan los resultados derivados de la 
experimentación llevada a cabo con el propósito de someter a 
evaluación la implementación del modelo TSKEvoRPROP. El 
enfoque central es valorar los resultados en términos de 
precisión y escalabilidad, proporcionando así un análisis 
detallado de la efectividad y la capacidad de adaptación del 
modelo propuesto en el contexto de problemas de regresión de 
grandes dimensiones. 

Se ha evaluado la capacidad predictiva del modelo sobre un 
conjunto de datasets representativos. Se ha llevado a cabo una 
comparación exhaustiva con otros algoritmos de vanguardia en 
el ámbito de los SBRDs escalables para regresión. La 
evaluación de la precisión del modelo se ha medido mediante 
el error cuadrático medio sobre el conjunto de prueba. 

Primero, se muestran los datasets utilizados en este estudio 
experimental. Posteriormente, se detalla la configuración del 
entorno de experimentación. Finalmente, se muestran los  

 
 
resultados obtenidos y se realiza la comparativa con otros 
modelos. 

A. Datasets 

Se han seleccionado diversos datasets de gran magnitud, 
los cuales se han obtenido del repositorio KEEL. La Tabla I 
muestra las principales características de los problemas de 
regresión elegidos para realizar el estudio experimental. 

TABLA I.  DATASETS UTILIZADOS EN EL ESTUDIO EXPERIMENTAL 

Problema Abr.  Variables Instancias 

Delta Ailerons DELAIL 5 7129 

Delta Elevators  DELELV 6 9517 

California Housing CAL 8 20640 

Mv Artificial Domain MV 10 40768 

House HOU 16 22768 

Elevators ELV 18 16599 

Computer Activity CA 21 8192 

Pole Telecommunications POL 26 14998 

Pumadyn PUM 32 8192 

Airelons AIL 40 13750 

Tic TIC 85 9822 

B. Entorno de experimentación 

Para la ejecución de las pruebas reales, se ha configurado 
un clúster Hadoop/Spark formado por 6 servidores. Este clúster 
HPC permite validar la escalabilidad del modelo con una 
capacidad de cómputo de 200 núcleos a 2.2 GHz y 1.25 TB de 
memoria RAM en total. 

La configuración de los hiperparámetros del modelo ha sido 
ajustada en base a la experiencia en ensayos controlados. El 
algoritmo CHC se ha configurado con un tamaño de población 
de 6 cromosomas y un límite de 60 cruces. Por otro lado, el 
algoritmo RPROP se ha configurado con un límite de 150 

iteraciones y un desplazamiento inicial (0) del 0,05% del 
universo de discurso de cada variable.  

Sería necesario realizar un estudio de mayor profundidad 
para afinar los hiperparámetros, pero hemos considerado tanto 
el algoritmo genético CHC como el algoritmo RPROP como 
herramientas con configuraciones fijas. Sin embargo, 
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probablemente se deban considerar configuraciones adaptativas 
para cada dataset o, al menos, diversas configuraciones 
prediseñadas para datasets similares en número de variables y 
complejidad. Respecto a la configuración de RPROP, se ha 
detectado que, para diferentes datasets, funcionan mejor 
diferentes configuraciones. Se han usado estos hiperparámetros 
debido a que son los empleados en el trabajo original y aunque 

son efectivos, cabe destacar que el hiperparámetro 0 tiene un 
impacto significativo en el resultado. A pesar de que 

teóricamente no debe influir demasiado, ya que  se ajustará 
progresivamente, se observan casos en los que el algoritmo 
RPROP puede llegar a converger prematuramente en mínimos 

locales debido al valor de 0. 

C. Resultados 

En comparación con algoritmos del estado del arte en el 
ámbito de los SBRDs escalables para regresión, la Tabla II 
recoge los resultados obtenidos sobre los conjuntos de prueba 
tanto de TSKEvoRPROP, como del algoritmo S-FRULER. Los 
mejores resultados para el conjunto de prueba se encuentran 
resaltados. 

TABLA II.  COMPARATIVA DE RESULTADOS 

Dataset TSKEvoRPROP S-FRULER 

ECM Ent ECM Pru ECM Pru 

DELAIL 0,80·10-8 1,65·10-8 1,44·10-8 

DELELV 0,34·10-6 2,50·10-6 1,12·10-6 

CAL 3,30·108 3,45·108 2,18·109 

MV 0,18·10-4 2,13 0,05 

HOU 2,57·108 2,65·108 8,20·108 

ELV 0,06·10-5 1,64·10-5 3,20·10-6 

CA 1,29 2,27· 10 4,60 

POL 3,21 3,24·104 1,24·102 

PUM 0,10·10-9 4,71·10-4 0,34·10-4 

AIL 0,38·10-8 1,99·10-8 1,40·10-8 

TIC 2,61·10-2 2,73·10-2 - 

 

En comparación con S-FRULER, TSKEvoRPROP muestra 
una mayor precisión sobre los datasets CAL, y HOU. Es 
probable que aún no se alcance la precisión deseada en este 
estudio preliminar debido a la necesidad afinar la configuración 
de los hiperparámetros del modelo. Se anticipa que el modelo 
propuesto proporcionará mejores resultados al controlar el 
evidente sobreaprendizaje en este momento.  Para abordar este 
desafío, se propone reducir la intensidad de RPROP en general, 
regulándola a lo largo de la búsqueda para que el modelo tenga 
una mayor capacidad de exploración al principio y una mejor 
capacidad de explotación en la fase final. 

En definitiva, hemos logrado resultados prometedores. Es 
crucial destacar que nuestro objetivo es mantener la 
reproducibilidad de nuestro modelo. Por lo tanto, como primera 
aproximación consideramos que el resultado ha sido un éxito. 

V. CONCLUSIONES 

En este trabajo se propone un SBRD TSK-1 denominado 
TSKEvoRPROP, escalable en instancias, que destaca por su 
relativa sencillez y reproducibilidad frente a otras alternativas 
que también hacen uso de las tecnologías de Big Data para 
ofrecer una alta escalabilidad. Nuestra propuesta combina un 
algoritmo evolutivo con un algoritmo de descenso por 
gradiente optimizado para acelerar la convergencia de las 
soluciones dentro del espacio de búsqueda. 

Si bien los resultados actuales aún no son óptimos, éstos se 
sitúan bastante próximos a los de modelos más complejos, pues 
se ha priorizado la escalabilidad y la simplicidad del modelo 
para facilitar su reproducibilidad y empleabilidad práctica. 
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Resumen—El aprendizaje federado facilita la colaboración 

entre dispositivos ubicuos para desempeñar tareas de 

aprendizaje automático de manera distribuida. Este enfoque 

aprovecha el aumento en la capacidad de cómputo de estos 

dispositivos, combinado con la optimización los algoritmos de 

aprendizaje automático, lo que permite realizar la adquisición de 

conocimiento de manera local. Además, el uso de Sistemas 

Basados en Reglas Difusas permite la modelización del 

conocimiento extraído de forma interpretable para los seres 

humanos. Este trabajo propone el ajuste paramétrico de modelos 

difusos en el propio dispositivo, seguido de su federación con el 

objetivo de mejorar su precisión de forma colaborativa. 

Palabras clave—Aprendizaje Federado; Sistema Basado en 

Reglas Difusas; Internet of Things; TinyML; Regresión 

I.  INTRODUCCIÓN 

La generación constante de datos por parte de dispositivos 
con recursos limitados es una realidad común en el ámbito del 
Internet de las Cosas (IoT) [1]. Estos dispositivos, al estar 
interconectados, forman una red de datos que requiere 
procesamiento. Tradicionalmente, debido a las restricciones de 
recursos de los dispositivos IoT, estos datos se han enviado a la 
nube para su posterior análisis. Sin embargo, con la creciente 
preocupación por la privacidad de los datos, surge el concepto 
de Edge Computing [2], que propone llevar a cabo el 
procesamiento de los datos en el propio dispositivo. A medida 
que mejora la capacidad de cómputo de los dispositivos IoT, 
aumenta la posibilidad de implementar diversos algoritmos de 
procesamiento de datos en estos dispositivos. 

Siguiendo esta evolución, surge el TinyML, que emerge de 
la optimización de los modelos clásicos de aprendizaje 
automático (Machine Learning – ML) con el fin de adaptarlos a 
los requisitos específicos de los dispositivos IoT [3]. Esta 
adaptación permite implementar algoritmos de Inteligencia 
Artificial (IA) en el borde de manera local, sin necesidad de 
comunicar los datos con el exterior. El uso de esta metodología 
deriva en varias ventajas en comparación con el procesamiento 
de datos en la nube [4]: 

• Privacidad de los datos: Cuando la privacidad de los 
datos es primordial, procesar los datos en el propio 
dispositivo reduce el riesgo de ataques. 

• Tiempo de respuesta real: En aplicaciones de control y 
monitorización, la reducción de la latencia al procesar 
los datos localmente evita los retrasos asociados con el 
envío de estos a través de la red y la espera de una 
respuesta. 

• Eficiencia energética: A medida que aumenta la 
potencia de los centros de datos, también lo hace la 
demanda energética. La optimización de algoritmos 
para su ejecución en dispositivos IoT contribuye a 
disminuir el consumo energético asociado al 
procesamiento de datos. 

Es importante tener en cuenta que, en un principio, la 
filosofía de TinyML se propone considerando que la etapa más 
costosa del proceso, esto es, el aprendizaje o el ajuste de los 
modelos, se realiza fuera del dispositivo. De esta manera, sólo 
es necesario adaptar el modelo obtenido para su ejecución en el 
dispositivo. Esto implica que el dispositivo puede ejecutar el 
modelo entrenado para realizar inferencia localmente en un 
tiempo de respuesta mínimo, manteniendo los datos en el 
dispositivo. Este enfoque consigue preservar la privacidad de 
los datos y reduce la necesidad de transmitir información a 
través de la red para su procesamiento en el exterior. 

Posteriormente, surgió la metodología On Device Learning 
(ODL), que busca adaptar, además, la propia etapa de 
aprendizaje o ajuste satisfaciendo las restricciones de los 
dispositivos de recursos limitados [5], utilizando los datos 
locales. En ciertas situaciones esta capacidad es esencial, ya 
que permite actualizar los modelos en tiempo real en entornos 
dinámicos donde los datos y las condiciones cambian con 
frecuencia, garantizando que los modelos estén siempre 
actualizados y sean más efectivos en su desempeño.  

 Por otro lado, se denomina Tiny Online Learning (TinyOL) 
a una subárea del ODL, que se caracteriza por la adaptación de 
la etapa de ajuste a dispositivos de recursos limitados, inspirada 
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en la filosofía de aprendizaje incremental [6]. Esta técnica se 
basa en el análisis de flujos de datos en tiempo real, de manera 
que los datos no se almacenan, y por tanto se satisface la escasa 
capacidad de almacenamiento. Considerando un modelo 
inicial, se realiza la actualización de manera iterativa en cada 
dispositivo mediante el uso de ventanas de datos adaptadas a 
los requisitos específicos del dispositivo en cuestión. 

 Por último, en este sentido, cabe destacar que la capacidad 
de ajuste en el propio dispositivo está condicionada por la 
localidad de los datos. Para superar esta limitación es necesario 
implementar técnicas de colaboración entre múltiples 
dispositivos aislados. El Aprendizaje Federado (Federated 
Learning – FL) surge como respuesta a esta necesidad, 
combinando los resultados del ajuste local de diferentes nodos 
para generar un modelo global colaborativo [7]. Esta 
metodología mantiene las ventajas de ambas filosofías, 
permitiendo el ajuste del modelo sobre diversas fuentes de 
datos mientras se preserva su privacidad. Además, se aumenta 
la escalabilidad de la capacidad de cómputo global, ya que cada 
dispositivo puede procesar sus datos de manera local, lo que 
facilita el procesamiento de grandes volúmenes de datos de 
manera distribuida.  

 Por otro lado, como es bien sabido, los Sistemas Basados 
en Reglas Difusas (SBRD) han sido ampliamente utilizados 
para resolver problemas que requieren modelar el conocimiento 
de manera similar a la percepción humana. Este enfoque 
permite procesar correctamente información incompleta y/o 
imprecisa, particularmente en entornos dinámicos de 
incertidumbre. Los SBRDs permiten resolver problemas de 
aprendizaje supervisado, tanto de clasificación como de 
regresión, y problemas de aprendizaje no supervisados como 
clustering. 

En la actualidad, la importancia de generar modelos de IA 
transparentes, interpretables y explicables, ha propiciado que se 
mantenga la atención y el interés en los SBRDs [8], pues son 
relevantes en un en el marco de la Inteligencia Artificial 
Explicable (Explainable Artificial Intelligence – XAI). 

El desafío en el diseño de SBRDs consiste en obtener una 
Base de Conocimiento (BC) que pueda realizar predicciones 
precisas. Tradicionalmente se han utilizado algoritmos de 
optimización paramétrica para abordar el problema. En la 
literatura se proponen diversas metodologías para resolverlo, 
como los algoritmos difusos evolutivos (Genetic Fuzzy 
Systems – GFS) [9], o los algoritmos neuro-difusos (Neuro 
Fuzzy Systems – NFS) [10]. En ambos casos, el objetivo es 
optimizar la capacidad predictiva del modelo, ya sea para 
tareas de clasificación, regresión o clustering, mediante la 
modificación de los parámetros que componen la BC.  

El objetivo de este trabajo es proponer la implementación 
de un nuevo modelo federado cuyos nodos realizan el ajuste de 
SBRDs locales de forma también novedosa mediante TinyOL, 
denominado FedFuzzy-OL. 

La organización de este trabajo es la siguiente: La Sección 
II aborda el ajuste federado de modelos difusos. En la Sección 
III se define el modelo difuso TinyOL federado propuesto. La 
Sección IV ilustra la utilidad del modelo propuesto mediante la 

resolución de un problema real. Finalmente, en la Sección V se 
presentan las conclusiones principales de este trabajo. 

II. AJUSTE FEDERADO DE MODELOS DIFUSOS 

Debido a su naturaleza liviana, los SBRDs han estado 
presentes en los dispositivos de IoT históricamente [11]. Sin 
embargo, en estos casos el modelo siempre se ha mantenido 
estático, con la BC aprendida/ajustada fuera del dispositivo en 
unidades de cómputo más potentes. Esta solución no es la 
idónea en entornos dinámicos, pues los modelos pueden quedar 
obsoletos ante cambios en el entorno. Para superar este desafío, 
es esencial ajustar el modelo en el propio dispositivo, 
procesando los datos en tiempo real.  

La filosofía ODL propone la adaptación de los algoritmos 
de ajuste paramétricos tradicionales, como GFS o NFS, a los 
recursos disponibles en los dispositivos IoT. Esto implica 
acercar el procesamiento a la fuente de datos, evitando la 
necesidad de exportar los datos para su procesamiento en el 
exterior. No obstante, esta tarea no es trivial, ya que la 
adaptación del algoritmo puede variar significativamente según 
el tipo de algoritmo y el entorno de aplicación en cuestión.  

La Figura 1 simboliza el ajuste paramétrico de la BC de un 
modelo difuso en el propio dispositivo mediante ODL. 

 

Fig. 1. Representación del ajuste paramétrico de la BC en el dispositivo. 

Una forma de implementar soluciones ODL es a través del 
aprendizaje incremental. La metodología TinyOL, se basa en el 
procesamiento de datos en tiempo real, sin tener que 
almacenarlos. Utilizando una ventana de datos, el modelo se 
ajusta de manera iterativa, ejecutando el algoritmo sobre los 
datos generados. De esta manera, se elimina la necesidad de 
almacenar un gran conjunto de datos, ya que estos se procesan 
gradualmente a medida que se generan, lo que reduce el coste 
computacional del algoritmo al operar sobre particiones de 
datos menores.  

Este enfoque, combinado con otras técnicas de 
optimización como la reducción del espacio de búsqueda 
mediante la discretización o la delimitación del espacio de 
búsqueda, permite la implementación de algoritmos de ajuste 
paramétrico directamente en el propio dispositivo. 

 En entornos donde los datos generados en el dispositivo no 
sean suficiente para alcanzar buena precisión adecuada, se 
recurre a técnicas de aprendizaje colaborativo como el FL. Esta 
estrategia permite mejorar la precisión del modelo mientras se 
mantiene el bajo coste computacional en dispositivos con 
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recursos limitados. Por otro lado, desde un punto de vista ético, 
se incrementa la privacidad del usuario compartiendo el 
modelo difuso en lugar de los datos. 

La Figura 2 representa la colaboración mediante FL de 
múltiples dispositivos difusos que han realizado el ajuste 
paramétrico del modelo localmente. 

 

Fig. 2. Federación de múltiples dispositivos para alcanzar un modelo global 

de BC ajustada. 

La filosofía de FL nos lleva a plantear una arquitectura 
compuesta por múltiples nodos, donde cada nodo ajusta su 
propio modelo local de manera independiente. Posteriormente, 
estos modelos locales se comparten para crear un modelo 
global que integre el conocimiento de todos los nodos. 
Finalmente, este modelo global se distribuiría nuevamente a los 
nodos, quienes actualizarían sus modelos locales con las 
aportaciones del modelo global. Este ciclo de actualización se 
repite de manera iterativa a lo largo del tiempo, permitiendo 
que el modelo global se beneficie continuamente de la 
evolución alcanzada por todos los nodos. 

La implementación de esta metodología supone ciertas 
decisiones de diseño: 

• Arquitectura del sistema: En función de la presencia o 
ausencia de un nodo central encargado de la agregación 
de las aportaciones de los demás nodos, se pueden 
clasificar en modelos centralizados [7] o 
descentralizados [12].  

• Coordinación del sistema: Si la agregación de los 
modelos locales no se realiza hasta que todos hayan 
participado se denomina sistema síncrono [7]; por el 
contrario, si la agregación se realiza cuando se cumple 
cierta condición, como, por ejemplo, transcurrido cierto 
tiempo, se considera un sistema asíncrono [13]. 

• Distribución de los datos en el sistema: Si los datos de 
los nodos comparten las mismas variables, se considera 
un sistema horizontal [7], mientras que, si los nodos 
tienen diferentes variables, pero corresponden a las 
mismas instancias, se trata de un sistema vertical [14].  

• Método de agregación del sistema: Dependiendo de la 
técnica empleada para combinar el conocimiento de los 
modelos se pueden distinguir diferentes enfoques, 
siendo el más habitual el promedio (FedAvg) [7], 
comúnmente utilizado en arquitecturas de redes 
neuronales, donde los pesos del modelo global son 

calculados como el promedio de los pesos de los 
modelos locales. Se puede considerar también el uso de 
la agregación ponderada (PW) [15], en la que los pesos 
del modelo global son el promedio de los modelos 
locales ponderado a su respectiva precisión.  

• Tipo de modelos aprendidos: Si todos los nodos 
aprenden el mismo tipo de modelo o no, se distingue 
entre sistemas homogéneos [7] y heterogéneos [16]. 

• Propósito: En determinadas ocasiones, el enfoque se 
centra en optimizar los resultados del modelo local, 
centrados en el consumidor, donde la prioridad es 
ajustar el modelo para adaptarse mejor a las necesidades 
específicas de cada dispositivo [17]. En otros casos, el 
objetivo principal es mejorar el modelo global, 
centrados en el proveedor [7]. Además, existe el 
concepto de FL personalizado, donde el objetivo es 
adaptar el modelo global para abordar la heterogeneidad 
entre los datos de los dispositivos, de manera similar a 
los sistemas centrados en el consumidor [18]. 

• Tipo de nodo: El FL puede realizarse en nodos con una 
gran capacidad de cómputo, denominados sistemas 
cross-silo, donde cada nodo puede estar compuesto por 
una o varias computadoras que posteriormente 
compartirán su modelo local entrenado sobre sus 
propios datos [19]. Por otro lado, también puede 
implementarse en dispositivos IoT de bajos recursos, 
denominados sistemas cross-device, donde estos tienen 
una capacidad de cómputo más reducida, pero un mayor 
número de nodos [7]. 

• Variedad de los nodos: Si todos los nodos tienen las 
mismas características la arquitectura es homogénea [7]; 
en caso contrario, se trata de una arquitectura 
heterogénea [20]. 

• Ubicación del aprendizaje: Normalmente el 
entrenamiento del modelo se lleva a cabo íntegramente 
en los dispositivos, y luego se agregan todos los 
modelos en el servidor central [7], pero es posible, en 
determinadas situaciones, utilizar la técnica divide y 
vencerás para realizar en cada nodo sólo una parte del 
entrenamiento, de modo que el servidor central se 
encargue de agregar todos estos cálculos parciales y 
completar las demás etapas del entrenamiento [21].  

Otros factores adicionales que se deben considerar son: la 
cantidad de pasos de comunicación en cada ronda de 
aprendizaje, la posible aplicación de un proceso de selección de 
nodos participantes, la frecuencia con la que se actualiza el 
modelo, la implementación de medidas para proteger la 
privacidad de los datos, así como el refuerzo de la seguridad 
con técnicas de defensa ante ataques. 

En la siguiente sección se desarrolla el modelo propuesto 
teniendo en cuenta los aspectos anteriores esenciales para 
garantizar la eficacia y la integridad del sistema federado. 

III. MODELO PROPUESTO: FEDFUZZY-OL 

En esta sección se presenta FedFuzzy-OL, un SBRD 
TinyOL Federado. La representación del conocimiento se 
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realizará mediante el diseño de un SBRD, utilizado tanto para 
inferir la salida del sistema frente a problemas de regresión, 
como para predecir la clase frente a problemas de clasificación. 
Este SBRD se ajustará en tiempo real en el propio dispositivo 
de manera local mediante una metaheurística liviana que 
optimiza los resultados de las predicciones. Posteriormente, se 
combinarán los SBRDs ajustados localmente en los 
dispositivos dando lugar a un SBRD global federado que 
integra el conocimiento adquirido en todos los dispositivos. 
Este modelo global se comparte con los dispositivos, 
reemplazando los modelos locales previos. 

A. Ajuste del Modelo Local 

En cada dispositivo, de manera local, se utiliza el modelo 
en tiempo real para dar respuesta a los datos de entrada. Estos 
datos de entrada se almacenarán temporalmente en un buffer. 
Cuando se considera que el modelo está desfasado debido a la 
evolución del entorno, se ajustará en el propio dispositivo para 
mantener la precisión de las predicciones. El ajuste se basará en 
la metodología de aprendizaje incremental TinyOL. Se utiliza 
el pequeño conjunto de datos almacenado en el buffer para 
ajustar el modelo local previo. Mediante una metaheurística 
liviana que se ajusta a los requerimientos del dispositivo, se 
realiza la actualización del modelo local. Dependiendo de la 
implementación del modelo, se puede configurar un umbral 
que defina cuándo el modelo local requiere ser actualizado, o 
definir un período de tiempo de actualización. 

El sistema partirá de un SBRD inicial proporcionado por un 
experto, el cuál compartirán todos los nodos al inicio. Cuando 
el SBRD se considera obsoleto, se ejecuta el método de ajuste 
en el propio dispositivo sobre sus propios datos locales, 
evitándose la latencia provocada por el tráfico de datos, 
preservando su privacidad. Para el ajuste del modelo se 
propone el empleo de una técnica evolutiva configurada acorde 
a las restricciones del dispositivo, aunque se hace hincapié en 
que esta propuesta no se refiere a un mecanismo de ajuste en 
concreto.  

Siguiendo el enfoque del aprendizaje incremental de la 
filosofía TinyOL, no será necesario ejecutar esta técnica de 
manera exhaustiva, ya que se efectuará varias veces a lo largo 
del tiempo, sobre ventanas de datos relativamente pequeñas. 
De esta forma, el algoritmo evolutivo no es necesario que 
complete la búsqueda de la solución en una sola pasada, sino 
que se dividirá en varias ejecuciones a lo largo del tiempo, lo 
que permitirá ajustar gradualmente el SBRD y adaptarlo a los 
cambios en las tendencias de los datos.  

El ajuste de la BC del SBRD utiliza etiquetas lingüísticas 
codificadas mediante 3-tuplas lingüísticas: los parámetros para 
optimizar son la posición y la anchura de cada etiqueta. 

Un reducido número de parámetros supone una longitud de 
población reducida en el algoritmo evolutivo, en el que cada 
cromosoma representa un SBRD, cuyos genes son los 
parámetros del modelo.  

B. Agregación del Modelo Global 

Una vez que cada nodo ha ajustado su modelo localmente 
evaluándolo sobre sus propios datos, este se comparte con los 

demás nodos del conjunto mediante comunicación directa. Para 
evitar la centralización, se propone la implementación de un 
sistema donde la agregación del modelo sea descentralizada. 
De manera asíncrona, cuando cada nodo cumpla las 
condiciones establecidas, agregará las aportaciones de los 
modelos locales disponibles.  

Concretamente, un nodo recibirá los modelos locales de 
varios nodos vecinos, y cuando el modelo local se considere 
obsoleto, se actualiza teniendo en cuenta las aportaciones de 
los demás nodos que hayan compartido su SBRD hasta ese 
momento. Por tanto, la agregación descentralizada y asíncrona 
en cada nodo consistirá en combinar varios SBRD. La 
agregación propuesta consiste en promediar los valores de 
posición y anchura de las etiquetas de los diferentes modelos, 
de tal modo que cada nodo genera su propio modelo global. 

Para finalizar la etapa de ajuste federado del modelo, cada 
nodo evaluará el nuevo modelo global sobre su ventana de 
datos temporal y escogerá entre el modelo local previo o el 
modelo global actualizado, en función de cuál obtenga una 
mejor evaluación. Al implementar esta técnica de elitismo, en 
lugar de sustituir siempre el modelo local por el global 
independientemente de la precisión, se fomenta la filosofía 
centrada en el consumidor, priorizando la precisión del modelo 
local, personalizando el modelo a cada dispositivo. 

El modelo actualizado será utilizado durante la siguiente 
etapa de inferencia, tomando decisiones cada vez que se 
disponga de datos de entrada para generar una salida, hasta que 
vuelva a quedar obsoleto. En ese momento, se actualizará 
localmente de nuevo y se volverá a agregar con las 
aportaciones de los demás nodos. 

En definitiva, se ha implementado un SBRD ajustado en el 
propio dispositivo mediante TinyOL, apoyado en el 
aprendizaje federado, mediante un sistema cross-device 
homogéneo descentralizado y asíncrono, con una arquitectura 
de datos horizontal. Además, se ha propuesto un método de 
agregación promedio. El sistema se ha enfocado en la precisión 
de los nodos utilizando una política de reemplazo elitista. 

Con objeto de mostrar la utilidad del modelo propuesto, a 
continuación, se ilustra con un problema real. 

IV. ESTUDIO EXPERIMENTAL 

Un modelo difuso generado de manera federada en 
dispositivos IoT puede ser útil en gran variedad de 
aplicaciones. En este trabajo, proponemos como ejemplo de 
aplicación un sistema federado de gestión de fuentes de energía 
eléctrica para instalaciones de energía renovable en viviendas 
dotadas de sistemas fotovoltaicos (paneles solares y 
almacenamiento en baterías) no aislados, es decir, con 
conexión a la red eléctrica. Este modelo es de gran interés, ya 
que en lugar de depender de grandes baterías como haría un 
sistema autónomo, que suelen ser el elemento más costoso de 
estas instalaciones, utiliza una cantidad de almacenamiento 
menor y más económica, para reducir la factura energética. 

El objetivo de este modelo, implementado en dispositivos 
IoT, es tomar decisiones sobre el consumo energía renovable o 
convencional de la red eléctrica, de manera que se optimice el 
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coste para el usuario de la vivienda. Las decisiones se basarán 
en factores relevantes para nuestro objetivo, utilizando como 
entradas el consumo esperado de energía en la vivienda, la 
energía renovable disponible almacenada, la radiación solar 
esperada y el coste de la energía convencional; por ejemplo, si 
se dispone de suficiente energía renovable, el consumo 
esperado es bajo y el coste de la energía convencional es 
elevado, se preferirá usar energía renovable. La Figura 3 ilustra 
el entorno de experimentación, formado por tres dispositivos, 
cada uno ubicado en cada vivienda. 

 

Fig. 3. Entorno de experimentación. 

Adicionalmente, de manera periódica, las viviendas 
compartirán su modelo local para ser agregados en un modelo 
global, de manera que cada vivienda pueda beneficiarse de lo 
aprendido por los dispositivos de las demás. 

El conjunto de datos distribuido se ha generado 
especialmente para ilustrar esta aplicación. Por un lado, se han 
obtenido los datos de coste de la electricidad usando la API de 
ESIOS, expresados en euros por kilovatios por hora. Por otro 
lado, para simular el rendimiento de la instalación fotovoltaica, 
se han empleado los datos de la Agencia Andaluza de la 
Energía sobre la radiación solar de la zona, medida en vatios 
por hora por metro cuadrado. Estos datos se compartirán por 
todos los nodos, ya que serán comunes para la zona a la que 
pertenecen. Los datos privados de cada dispositivo serán los 
relacionados con el consumo de cada vivienda. Para ello, 
hemos extraído los consumos medidos en kilovatios hora 
usando los recursos que cada distribuidora eléctrica pone a 
disposición de sus clientes. La Figura 4 ilustra la 
representación gráfica de los datos pertenecientes a un día en 
un solo nodo. 

 

Fig. 4. Representación gráfica de los datos usados en la experimentación. 

Para facilitar la labor del ajuste del SBRD se ha optado por 
una agregación de variables, lo que permite transformar el 
conjunto de datos de entrada inicial formado por cuatro 
variables, en un nuevo conjunto con solo dos variables: el 
precio de la electricidad y el equilibrio energético. Para ello, se 
han combinado las variables relacionadas con el consumo 
eléctrico, la radiación solar y la energía almacenada en una sola 
variable que indica si el equilibrio energético en conjunto 
tiende a ser renovable o no. Así, un equilibrio energético 
positivo indica que se dispone de suficiente energía renovable 
para afrontar el consumo energético esperado, mientras que 
uno negativo indica que es necesario recurrir además al 
suministro de energía tradicional. Adicionalmente, se han 
aplicado otras decisiones para favorecer el procesamiento en el 
dispositivo, como la normalización, discretización y limitación 
del universo de discurso de ambas variables, usando valores 
enteros entre 0 y 100. 

Se parte de un SBRD con una Base de Datos (BD) 
compuesta por dos variables de entrada y una de salida, cuya 
Base de Reglas (BR) será definida por un experto. Se emplean 
tres etiquetas lingüísticas por variable, dando lugar a una BR de 
cubrimiento completo con 9 reglas. 

La reducción deliberada de parámetros tiene como objetivo 
reducir el espacio de búsqueda del algoritmo evolutivo 
encargado de ajustar la BD, para el que se ha optado por 
modelo de tipo CHC. La configuración de este algoritmo tiene 
en cuenta que se ejecutará varias veces a lo largo del tiempo 
siguiendo la filosofía TinyOL, por lo que usa una población 
reducida de 10 cromosomas y sólo 100 evaluaciones. 

El citado ajuste local del SBRD se lleva a cabo diariamente, 
y dado que los datos se generan cada hora, se realiza el ajuste 
con una ventana de 24 instancias. Una vez ajustado, se envía a 
los demás nodos, los cuales agregan todos los SBRD recibidos 
de los nodos del sistema cuando consideren que su modelo 
local está obsoleto.  

Finalmente, se evalúa la precisión del nuevo SBRD global 
sobre los datos almacenados en el buffer, y en el caso de que 
mejore las predicciones del SBRD local previo, se sustituye, 
manteniendo actualizado así el SBRD para la nueva llegada de 
datos del día siguiente. Si bien es cierto que lo más habitual es 
que el modelo local presente mejores resultados que el modelo 
global, en determinadas ocasiones, si el entorno ha variado lo 
suficiente y los dispositivos cercanos han anticipado mejor esa 
circunstancia, el sistema se beneficia del aprendizaje 
colaborativo. 

La medida de precisión usada para evaluar los SBRDs es el 
porcentaje de ahorro derivado de las decisiones de usar energía 
renovable o no. Con objeto de comparar los resultados se ha 
considerado como modelo base la gestión del sistema 
fotovoltaico mediante el SBRD inicial definido por el experto 
de manera estática, sin ajuste local ni federado. La Figura 5 
muestra el porcentaje de ahorro diario de un nodo en el mes de 
mayo de 2022 obtenido por FedFuzzy-OL, mientras que la 
Figura 6 muestra el porcentaje de ahorro mensual de un nodo 
obtenido por FedFuzzy-OL, en ambos casos frente al modelo 
base. En líneas generales, el modelo propuesto logra mejorar 
los resultados obtenidos por el modelo base, por tanto, se 
optimiza el consumo, lo que se traduce en un incremento del 
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porcentaje de ahorro en la mayoría de los casos, 
proporcionando así un mayor beneficio para los clientes que 
colaboran en el sistema federado. En general, todos los nodos 
logran mejorar su porcentaje de ahorro acorde a sus perfiles de 
consumo, que pueden ser diferentes en cuanto a cantidad o 
tramos horarios. 

 

Fig. 5. Porcentaje de ahorro diario durante el mes de mayo de 2022. 

 

Fig. 6. Porcentaje de ahorro mensual. 

V. CONCLUSIONES 

En entornos distribuidos, donde la preservación de la 
privacidad de los datos pueda ser fundamental, es necesario 
que el procesamiento de datos se realice en cada dispositivo. 
Estos dispositivos pueden beneficiarse del conocimiento 
adquirido por otros dispositivos al comunicar el modelo 
ajustado en lugar de sus datos. Los sistemas difusos son un 
elemento clásico para dotar de inteligencia a los dispositivos de 
bajos recursos que destaca por su explicabilidad inherente.  

Este trabajo aborda preliminarmente una forma sencilla de 

potenciar los SBRDs adaptándolos a la filosofía de TinyOL, 

utilizando mecanismos de ajuste en línea que se puedan 

integrar en lugar de ser estáticos, combinado con técnicas de 

aprendizaje colaborativo entre dispositivos a través del FL. 
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Abstract—Este artı́culo presenta una innovadora propuesta
para los portales de comercio electrónico, centrada en el apoyo
a las pequeñas y medianas empresas (PYMEs), integrando el
concepto de “negocios satélite” en los portales. El objetivo
es promover una relación simbiótica entre compras en lı́nea,
compras en negocios fı́sicos y actividades de ocio. El portal
animará a la compra o recogida en tiendas o en puntos locales
especı́ficos, con los beneficios que esto tiene para el medio
ambiente y el fortalecimiento de las economı́as locales. Además,
generarán y propondrán “planes de ocio” personalizados basados
en el perfil del usuario a realizar en los negocios satélite. Esto
último enriquecerı́a la experiencia del usuario aportando un
avance significativo en la evolución de los portales de comercio
electrónico.

Index Terms—Perfilado de usuario, Generador planes de ocio,
Portales de Comercio electrónico.

I. INTRODUCCIÓN

En el contexto empresarial actual, el comercio electrónico
desempeña un papel crucial al actuar como un impulsor
clave para las empresas que buscan expandir su presencia
en el mercado y mejorar su eficiencia operativa [1]. Es-
pecı́ficamente, permite a las pequeñas y medianas empresas
(PYMEs) competir con empresas más grandes [2]. Aunque las
ventajas del comercio electrónico son evidentes, especialmente
en la era posterior a COVID-19 [3], también presenta desafı́os
notables, especialmente para las PYMEs.

Uno de los desafı́os principales que enfrentan las PYMEs
es la brecha en habilidades digitales. Esta deficiencia dificulta
su crecimiento y competitividad al obstaculizar la eficiencia,
la innovación y la adaptación a las tendencias del mercado.

Además, la financiación insuficiente para la transformación
digital es otro problema crı́tico que enfrentan las PYMEs. La
falta de recursos financieros necesarios para llevar a cabo dicha
transformación y desarrollar su presencia en lı́nea, obstaculiza
su capacidad para adaptarse a la era digital, donde la presencia
en lı́nea es cada vez más crucial para llegar a los clientes y
competir en el mercado.

Ası́ pues todas empresas, independientemente de su tamaño
–grandes, medianas y pequeñas– deberı́an no sólo tener pre-
sencia en la web, sino también vender a través de ella. Para
lograrlo, las empresas tienen dos alternativas principales: una
es desarrollar su propia solución de comercio electrónico y la
otra es vender a través de portales de comercio electrónico
que dependen de terceros. Estos les permiten vender a través

de su plataforma a cambio de alguna forma de compensación
económica, p.e. comisión por venta (e.g. Amazon, AliExpress,
Alibaba). Cada una de estas alternativas tiene sus pros y sus
contras. Sin embargo, la segunda alternativa permite tener
una presencia web más inmediata al usar una solución ya
desarrollada. Además, estas soluciones cuentan con un alto
nivel de madurez e implementación de las tecnologı́as actuales.
Estar al tanto de las novedades tecnológicas e incorporarlas al
portal es fundamental para los propietarios del portal, ya que
es un elemento diferenciador que les ayudará a atraer negocios
a su portal y ser competitivos en el mercado. Por ello, no sólo
deben estar al tanto de las nuevas tecnologı́as que se están
proponiendo, sino también proponer nuevas funcionalidades.

En cuanto a la incorporación de nuevas tecnologı́as, habrı́a
que tener en cuenta la Inteligencia Artificial (IA) y la Rea-
lidad Virtual (RV). La IA permite la personalización [4],
optimización [5] y automatización [6] de varios aspectos del
comercio. La RV permite mejorar la experiencia de compra en
lı́nea del cliente, acercándola a la experiencia de una tienda
fı́sica, resolviendo ası́ las limitaciones de espacio y de tiempo
disponibles [7]. Al adoptar e integrar estas tecnologı́as se
consigue una ventaja competitiva con respecto a otros portales
competidores.

Tras esta introducción, el resto del artı́culo se organiza de
la siguiente manera. En la Sección II se presenta la idea de
portal sobre el que se podrı́a implementar la idea propuesta
en este trabajo. En la Sección III se define cómo se realiza el
perfilado del usuario, fundamental a la hora de elaborar el plan
de ocio. El algoritmo sugerido para obtener los planes de ocio
se presenta en la Sección IV. Un ejemplo de uso del algoritmo
será incluido en la Sección V. Finalmente, en la Sección VI
se presentan nuestras conclusiones y el trabajo futuro.

II. PORTAL DE COMERCIO ELECTRÓNICO

En este trabajo se propone una nueva funcionalidad que
puede ser de interés para los portales de comercio electrónico
del futuro, que harán uso de IA y RV. Esta funcionalidad in-
novadora pretende dar respuesta a la nueva generación de con-
sumidores, más responsables y crı́ticos con el proceso de com-
pra, intentando reducir el impacto del comercio electrónico
en el medio ambiente y en los negocios tradicionales y
prosperidad de las economı́as locales [8]. En el portal de
comercio electrónico propuesto convivirán tiendas online y
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fı́sicas con negocios y lugares de ocio, entretenimiento y
cultura, tales como bares, restaurantes, teatros, cines, museos,
clubs deportivos, gimnasios, salas de exposiciones, entre otros.
A este tipo de negocios se les denominan como “negocios
satélite” y se definirán formalmente como:

NS = (id, nombre, dirección, latitud, longitud, email, pwd)
(1)

Los campos de datos cruciales incluyen un identificador (id)
que distingue a cada negocio de manera única, el nombre del
negocio (nombre) para fines de identificación, la dirección
fı́sica para una ubicación precisa (dirección) e información
geográfica como latitud y longitud para facilitar una re-
presentación espacial precisa (latitud y longitud). Además,
las credenciales del negocio, que incluyen correo electrónico
(email) y contraseña (pwd), se almacenan para garantizar
seguridad y autenticación en las interacciones con el portal.

Todos los negocios satélite en la ciudad que deseen
ofrecer actividades de ocio podrán registrarse en el por-
tal. De esta manera, existirá un número de negocios
satélite en el portal, a los que nos referiremos como LNS
(LNS = {NS1, NS2, . . . , NSn}).

Cada negocio satélite (NSi) podrá proponer cuantas ac-
tividades de ocio desee, éstas irán desde la asistencia a un
evento deportivo hasta la asistencia a una obra de teatro,
una exposición o un concierto, pasando por actividades tan
cotidianas como disfrutar de una cena, una comida o un
aperitivo. En general, actividades de ocio destinadas a cautivar
y mejorar la experiencia de un usuario. El portal tendrá una
lista de actividades de ocio, nos referiremos a ella como LAC,
donde se podrá almacenar y proporcionar la información
necesaria para cada actividad de ocio (ACi).

Cada actividad de ocio (ACi) tendrá un identificador único
(id) y una descripción detallada de la actividad (descripcion),
estando asociada al negocio satélite que la ofrece (idns) y
relacionada con una o varias de las categorı́as de productos
existentes en el portal (categoria). Esta categorización per-
mite a los usuarios explorar fácilmente una amplia gama de
actividades, y será de utilidad a la hora de elaborar planes de
ocio para usuarios basados en sus intereses. La inclusión de
la fecha en la que tendrá lugar el evento (fecha), junto con
las horas de inicio y fin precisas (inicio y fin), es también
fundamental a nivel informativo y para elaborar los planes.
También se tiene en cuenta el precio de la actividad de ocio
(precio). Formalmente, una actividad de ocio (AC) se puede
definir respectivamente como sigue:

AC = (id, descripcion, idns, categoria, fecha, inicio, fin, precio)
(2)

De esta manera, existirá un número de actividades de ocio
en el portal, al que nos referiremos como LAC (es decir,
LAC = {AC1, AC2, . . . , ACm}).

La idea del portal es promover, siempre y cuando sea
posible, que el comprador vaya caminando a comprar (o
recoger) los productos que ha adquirido a través del portal a

un negocio local o punto de recogida y a la vez pueda disfrutar
de un plan de ocio recomendado por el portal en función del
perfil del comprador, de la compra realizada y del punto de
compra o recogida y momento de recogida seleccionado.

Los puntos de recogida son lugares en los que los usuarios
podrán recoger sus productos comprados a través del por-
tal. Estos puntos pueden ser seleccionados por el usuario
o recomendados por el portal. Formalmente, los puntos de
recogida (PR) pueden definirse como:

PR = (id, nombre, latitud, longitud, email, pwd) (3)

almacenando su identificador único (id), el nombre del punto
(nombre), sus coordenadas geográficas (latitud y longitud)
y su información de credenciales (email y pwd).

Lo primero que hará el portal será comprobar si el usuario
que ha realizado la compra pertenece a la nueva generación
de consumidores: responsables y crı́ticos con el proceso de
compra. Esto se sabe en función de su historial de compras.
Si es ası́, le mostrará primero en la lista de resultados en sus
búsquedas, los productos que se venden en locales cercanos a
él y/o con recogida en puntos de la localidad.

Si el usuario decide comprar o recoger en local, el portal
elaborará para él un plan de ocio en función de la oferta
de actividades que existen en la localidad y el perfilado del
usuario.

III. PERFILADO DE USUARIO

El perfilado de usuarios se obtendrá mediante un algoritmo
de clustering difuso, que obtendrá un conjunto de agrupaciones
de usuarios similares. Esta agrupación se realizará en función
de diferentes aspectos de los usuarios, aspectos clave para la
elaboración de planes, como por ejemplo las preferencias del
usuario en las diferentes categorı́as de productos que se venden
en el portal, la edad y el gasto que realizan en el portal. Hacer
el perfilado del usuario, es decir comprender qué compran o
qué le interesa del portal, cómo se comportan los usuarios
en función de su edad o del gasto que realizan en el portal
es importante para el análisis de la similitud entre usuarios
y para el funcionamiento de los sistemas de recomendación
(tratándose de un filtrado colaborativo en este caso) y para la
generación y recomendación de planes en particular. Veamos
cómo se hace ese perfilado de usuarios.

Primero, calculamos las diferentes matrices de similitud
para las caracterı́sticas relevante del usuario (es decir, sus
preferencias, su edad y su gasto previo en el portal). En este
caso, calculamos las siguientes matrices de similitud:

• Preferencias del usuario en categorı́as de productos
del portal (MP ). Esta matriz captura la similitud entre
usuarios basada en sus preferencias en las diferentes cate-
gorı́as de productos de C (es decir, C = {c1, c2, . . . , cr}).
Previamente, se obtendrá para cada usuario su matriz de
preferencias en las diferentes categorı́as de productos del
portal. Estas pueden ser explı́citas o implı́citas, ambas
con valores normalizados. Las preferencias explı́citas
se obtienen de la retroalimentación directa del usuario
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sobre las categorı́as de interés, obtenidas a través de un
cuestionario que se le realiza cuando se da de alta en el
portal, y generando un vector EP de dimensión |C|. Las
preferencias del usuario ux para cada categorı́a ci de C
se almacenan en EPux

[i]. Se utilizará un valor de 0 en
las categorı́as donde el usuario no tenga interés y un valor
mayor que 0 en aquellas en las que el usuario sı́ tenga
algún interés (es decir, EPux [i] ∈ [0, 1]).
Por otro lado, las preferencias implı́citas se obtendrán
a partir de su comportamiento en el portal, teniendo
en cuenta aspectos como el historial de compras (HC),
manipulación de productos en 3D (M3D), visualización
de productos (V P ) y teleportación (TE3D) del usuario
en cada categorı́a ci ∈ C. Las preferencias implı́citas
en cada categorı́a se almacenan en IPux [i] y se calculan
considerando los comportamientos del usuario en el por-
tal sobre la categorı́a ci de C (BHux

[i]) (ver ecuación
4), ponderado con coeficientes de importancia para cada
aspecto (α para HC, β para M3D, γ para TE3D y θ para
VP), como se puede observar en la Ecuación 5. De esta
forma se puede dar mayor o menor importancia a cada
uno de los aspectos considerados.

BHux
[i] = HCux

(ci)× α+M3Dux
(ci)× β+

V Pux
(ci)× γ + TE3Dux

(ci)× θ (4)

IPux [i] =
BHux[i]∑C
j=1 BHux

[j]
(5)

Para obtener la matriz de preferencias del usuario ux en
las categorı́as del portal C, denominada UPux , se consi-
derarán las preferencias explı́citas EPux

y las implı́citas
IPux

del usuario ponderadas conforme a la siguiente
ecuación 6.

UPux [i] = αIP × IPux [i] + αEP × EPux [i] (6)

donde αIP y αEP son dos parámetros que nos permiten
determinar la importancia de cada una de las dos prefe-
rencias implı́citas y explı́citas, respectivamente.
Una vez calculadas las matrices de preferencias de cada
usuario en las categorı́as del portal UPux ya se puede
calcular la matriz que captura la similitud entre usuarios
del portal, se denomina MP y se calcula de acuerdo con
la ecuación 7.

MP [ux, uy] =

|C|∑
i=1

|UPux
[i]− UPuy

[i]| (7)

• Edad del Usuario (ME). Esta matriz captura la similitud
entre usuarios según su edad y se calcula empleando la
similitud coseno, tal y como se indica en la ecuación
8. Se emplea lógica difusa para definir el grupo de
edad al que pertenece cada usuario, empleando los
valores lingüı́sticos: CE={‘niño’, ‘adolescente’, ‘joven’,
‘adulto’, ‘mediana edad’ ,‘mayor’} (ver Figura 1).

Fig. 1. Función de membresı́a de la variable edad (µ).

ME(ux, uy) =

∑|CE|
i=1 µi(E(ux))× µi(E(uy))√∑|CE|

i=1 µi(E(ux))2
√∑|CE|

i=1 µi(E(uy))2

(8)
donde E(ux) es una función que devuelve la edad
numérica del usuario ux.

• Gasto Monetario del Usuario (MG). Esta matriz al-
macena la similitud entre los usuarios en función de sus
patrones de gasto en el portal dentro de cada categorı́a de
producto del portal utilizando la similitud del coseno (ver
ecuación 9). Se vuelven a emplear valores lingüı́sticos
para categorizar a los usuarios en niveles de gasto en cada
categorı́a ci ∈ C: CGi= {‘bajo’, ‘medio’, ‘alto’} (ver
Figura 2, donde G(ux,i) es una función que devuelve el
gasto monetario realizado por el usuario ux en productos
de la categorı́a ci). La definición de estos conjuntos se
realizará de manera automática mensualmente en función
del gasto medio que se realice en el portal y en cada
categorı́a.

Fig. 2. Función de membresı́a de la variable gasto (ρi), siendo i una categorı́a.

A partir de estas matrices se calcula una matriz compuesta
(M ) utilizando la ecuación 10. Como se puede comprobar esta
matriz se calcula a partir de una ponderación de las matrices
previamente calculadas, donde la matriz de preferencias (MP )
tendrá más importancia, y las matrices de edad (ME) y gasto
(MG) serán empleadas en caso de haber poca información
sobre las preferencias en categorı́as.

M [ux, uy] =αMP ×MP [ux, uy] + αME ×ME[ux, uy]

+ αMG ×MG[ux, uy]
(10)

Una vez que se obtiene la matriz ponderada M de dis-
tancias entre usuarios, se aplica el algoritmo de clustering
difuso c-means. Elegimos |C| como el número de grupos que
deseamos obtener (que coincidirá con el número de categorı́as
disponibles en el portal). Cada grupo estará representado por
su centroide.
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Por otra parte para cada usuario tendremos un vector
(GPux ) con dimensión |C| que muestra los grados de perte-
nencia del usuario ux a cada uno de los grupos (es decir, a
cada categorı́a). En GPux

[i] se almacena la pertenencia de ux

al grupo i e informa del interés del usuario en la categorı́a ci.

IV. GENERACIÓN DE PLANES DE OCIO

Los planes de ocio se generan dinámicamente en función
del perfilado del usuario, se comprueba a qué grupo pertenece
para ver qué categorı́as les interesan y en función de esto
construir un plan de ocio para él.

Cada plan de ocio (PO) comprenderá sugerencias perso-
nalizadas de actividades de ocio (ACs). PO se de-
fine como una colección de estas actividades (es decir,
PO = ACx, ACy, . . . , ACk), cada una elegida para alinearse
con los intereses únicos del usuario y el cronograma de las
actividades (es decir, ACs ∈ PO están ordenadas en función
de sus tiempos (inicio y fin)).

En esta sección se presenta un algoritmo diseñado es-
pecı́ficamente para la generación de planes de ocio. Se sugerirá
un plan de ocio ajustado al usuario, en función de su perfilado
(es decir, del clúster al que pertenece) y las actividades de ocio
disponibles.

Para iniciar el proceso, el primer paso implica determinar el
clúster o clústers a los que pertenece el usuario ux. Para ello
se usará el vector GPux . Se comprobará si el usuario está muy
interesado en una única categorı́a ci (es decir GPux

[i] supera
el umbral α). Si no es ası́, se verifica si la diferencia entre
varios valores de GPux

es menor que otro umbral β. Si es ası́,
el usuario está asociado con varios clústers; de lo contrario, el
usuario se asigna al clúster con el grado de pertenencia más
alto. Todo esto se realiza en el algoritmo 1.

Datos: GPux , α, β
Resultado: Categorı́a/s relevantes para el usuario

(CAT ).
max val = max

i=1...|C|
(GPux [i])

CAT = ∅;
si max val > α entonces

CAT = CAT ∪ {i |max
i

{GPux [i]}}
en otro caso

para i = 1 en |C| hacer
si |GPux

[i]−max value| < β entonces
CAT = CAT ∪ {i}

fin
fin

fin
devolver CAT

Algoritmo 1: Algoritmo de clúster dominante.

Con la información de las categorı́as dominantes del usuario
ux que ha realizado la compra (es decir, CAT ), se ejecutará
el algoritmo que genera el plan de ocio, teniendo en cuenta
el punto de recogida, la fecha y hora en la que el usuario lo
recogerá (ver algoritmo 2).

El algoritmo 2 emplea un proceso de filtrado multifacético.
En primer lugar, asegura que las actividades de ocio se alineen
con la fecha de recogida especificada por el usuario. Luego,
incluye selectivamente actividades que caen bajo las categorı́as
representadas por las preferencias dominantes del usuario
(CAT ). A continuación, el algoritmo calcula las distancias
entre cada actividad de ocio y el punto de recogida designado.
El enfoque incluye selectivamente solo actividades de ocio que
estén dentro de una proximidad razonable, asegurando que
las distancias calculadas no excedan el umbral especificado
α. Esto mitiga el potencial malestar del usuario asociado
con ubicaciones distantes. Finalmente, se excluyen cualquier
actividad de ocio que ocurra antes de la hora de recogida
especificada por el usuario.

Datos: CAT , α, β y punto de recogida PR, fecha y
hora de la recogida, LAC

Resultado: Plan de Ocio PO.
PO = LAC;
para cada ACi en PO hacer

si ACi.fecha ̸= fecha entonces
PO = PO − {ACi}

fin
fin
para cada ACi en PO hacer

si ACi.categorı́a ∩ CAT = ∅ entonces
PO = PO − {ACi}

fin
fin
para cada ACi en PO hacer

si distancia(ACi, PR) ==′ lejos′ entonces
PO = PO − {ACi}

fin
fin
para cada ACi en PO hacer

si ACi.inicio < hora entonces
PO = PO − {ACi}

fin
fin
LP = organizar(LP, β)
devolver LP ;

Algoritmo 2: Algoritmo Generador de Planes de Ocio

Dentro del algoritmo 2, distancia es una función difusa
que calcula la distancia entre el lugar donde se lleva a cabo
la actividad de ocio y el punto de recogida distinguiendo

ME(ux, uy) =

∑|C|
i=1

∑|CG|
j=1 ρij(G(ux, i))× ρij(G(uy, i))√∑|C|

i=1

∑|CG|
j=1 ρij(G(ux, i))2

√∑|C|
i=1

∑|CG|
j=1 ρij(G(uy, i))2

(9)
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TABLE I
NEGOCIOS SATÉLITE Y PROPUESTAS DE ACTIVIDADES.

Nombre del negocio Categorı́a Actividad de ocio
Centro Ayurveda Fusionatur Belleza Sesión de masaje

Primor Belleza Curso de maquillaje
Biblioteca de Ciudad Real Cultura Sábado de videojuegos

Auditorio de la Granja Cultura Concierto: Pablo López
Antiguo Casino Hogar Casa y Jardı́n Expo 2023
Pabellón Ferial Hogar ExpoHogar
Plaza Mayor Moda Fashion Trend Showcase 2023

Moda re- Ciudad Real Moda Recogida de ropa para la caridad
Polideportivo Rey Juan Carlos Deportes Torneo provincial de natación

Quijote Arena Deportes Partido de balonmano Caserı́o CR vs Sinfin
Espacio Serendipia Tecnologı́a Machines learning, humans on alert

Living Room Tecnologı́a Math Street Fighter: Maths vs Humans
A’Pares * -

Entretapas * -

en 3 conjuntos: ‘cerca’, ‘medio’ y ‘lejos’. Y organizar es
una función que selecciona aleatoriamente un número de
actividades de ocio diferentes de la lista y las organiza según
sus tiempos de inicio y fin, asegurando que no se superpongan
y que haya un margen de tiempo entre ellas para permitir el
desplazamiento (β).

La implementación de estos pasos conduce a la creación de
un plan de ocio personalizado basado en las preferencias del
usuario, asegurando una experiencia atractiva y personalizada.

V. EJEMPLO ILUSTRATIVO DEL ALGORITMO PROPUESTO

Para este caso de uso especı́fico dentro del portal, nuestro
enfoque se reduce a 14 negocios satélites (NS) seleccionados
en Ciudad Real, descritos en la tabla I. Cada ubicación actúa
como un centro representativo, ofreciendo actividades de ocio
únicas en seis categorı́as diferentes C - belleza, cultura, hogar,
moda, deporte y tecnologı́a. También hemos incluido dos
establecimientos que se consideran restaurantes o cafés que
pertenecen simultáneamente a múltiples categorı́as.

Presentamos al usuario X como un usuario representativo,
ofreciendo una visión de sus compras e interacciones dentro
del portal. El usuario X, llamado Ana, una joven de 25 años
interesada en deportes y tecnologı́a, nos ofrece una perspectiva
detallada para evaluar qué tan efectivo es nuestro sistema.

Después de recopilar los datos de Ana, procedemos a cons-
truir su perfil de usuario utilizando el algoritmo de clustering.
Los resultados obtenidos para cada grupo se presentan en la
Tabla II.

TABLE II
RESULTADOS INICIALES DEL GRADO DE PERTENENCIA (GP ).

Belleza Cultura Moda Hogar Deportes Tecnologı́a
0.112596 0.076077 0.081246 0.075429 0.340955 0.313697

Como era de esperar, se observan valores más altos en
los grupos asociados con deportes y tecnologı́a, reflejando
con precisión las preferencias iniciales de Ana. Después de
varias interacciones con productos de interés, como vistas de
artı́culos relacionados con deportes y tecnologı́a, ası́ como
manipulaciones en 3D para cada uno, Ana finalmente decide

comprar un producto tecnológico. Utilizando el algoritmo 1,
Ana tiene 2 grupos dominantes: deportes y tecnologı́a (ver
Tabla II). La compra del producto desencadena diferentes
actividades de ocio, teniendo en cuenta las restricciones
temporales, la distancia desde el punto de recogida hasta
el negocio satélite y el perfil del usuario, los resultados se
organizan en la Tabla III. El resultado para el primer plan de
ocio es “Espacio Serendipia“ de la categorı́a de tecnologı́a.

TABLE III
PROPUESTAS PARA LA PRIMERA ACTIVIDAD DE OCIO.

Negocio satélite Actividad de ocio Categorı́a
Espacio Serendipia Machines learning, humans on alert Tecnologı́a

Living Room Math Street Fighter: Maths vs Humans Tecnologı́a
Polideportivo Rey Juan Carlos Torneo provincial de natación Deportes

Bar Entretapas - *
Quijote Arena Partido de balonmano Caserı́o CR vs Sinfin Deportes

A Pares - *

Posteriormente, tiene lugar la generación del segundo plan
de ocio. Los resultados se representan en la Tabla IV. En este
caso, se tiene en cuenta la distancia desde la primera actividad
de ocio generada, el perfil del usuario y las restricciones tem-
porales. Como resultado, “Bar Entretapas“ se presenta como la
opción recomendada, ofreciendo una secuencia de actividades
personalizada que no solo se ajusta a las preferencias de
Ana, sino que también considera aspectos prácticos para una
experiencia fluida y agradable.

TABLE IV
PROPUESTAS PARA LA SEGUNDA ACTIVIDAD DE OCIO.

Negocio satélite Actividad de ocio Categorı́a
Bar Entretapas - *
Quijote Arena Partido de balonmano Caserı́o CR vs Sinfin Deportes

A Pares - *

Finalmente, el plan de ocio generado para Ana consiste
en recoger el producto comprado en el punto de recogida
“PCBox“, seguido de una visita a “Espacio Serendipia“ para
una charla sobre tecnologı́a. Posteriormente, hay oportunidad
de relajarse y disfrutar de refrescos en “Bar Entretapas“.
Este itinerario cuidadosamente diseñado se visualiza en la
Figura 3, presentando una secuencia de actividades fluida
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Fig. 3. Representación de las actividades de ocio.

adaptada a las preferencias de Ana. Esta serie de actividades
no solo garantiza la satisfacción de Ana al coincidir con
sus intereses, sino que también impulsa la economı́a local al
fomentar la participación en eventos cercanos. Este enfoque
de recomendación personalizada, adaptado a las preferencias
y comportamientos de Ana, resalta la capacidad de nuestro
modelo para ofrecer experiencias únicas para cada usuario.

VI. CONCLUSIONES Y TRABAJO FUTURO

Este artı́culo presenta una idea innovadora para la evolución
de los portales de comercio electrónico, con el objetivo de apo-
yar a las pequeñas y medianas empresas (PYMEs), fomentar
las economı́as locales y reducir el impacto medioambiental
del comercio electrónico. La integración de “negocios satélite”
diversifica el enfoque tradicional centrado en el producto
del comercio electrónico, fomentando una relación sinérgica
entre las compras en lı́nea y las actividades de ocio fı́sicas.
Los usuarios pueden recoger compras en puntos locales es-
pecı́ficos, simplificando la logı́stica y ayudando al medio
ambiente. Esto también promueve la generación de “planes
de ocio” personalizados que tienen en cuenta las ofertas de
actividades de ocio que realizan estos negocios satélite.

Como un esfuerzo de investigación futuro, se propone
mejorar la función de perfilado, teniendo en cuenta también
las experiencias o planes aceptados previamente por el usuario
y el feedback proporcionado sobre ellas por él u otros usuarios
similares y la organización de actividades dentro del algoritmo
2 (organizar). El objetivo es desarrollar un método más sofisti-
cado que optimice la organización de actividades de ocio, en
función de la proximidad, las temporalidad, el histórico y el
feedback. Esta mejora busca enriquecer aún más la experiencia
de los usuarios proporcionando recomendaciones de ocio más
personalizadas alineadas con sus preferencias especı́ficas.
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Abstract—Uno de los principales retos al trabajar con sistemas
multi-robot consiste en asignar, en cada instante de tiempo, la
tarea a realizar más adecuada para cada robot. En muchas
situaciones reales, estas tareas tienen ligados unos plazos de
tiempo lı́mite, que se tienen que cumplir. Dada su probada
efectividad a la hora de lidiar con el problema que nos concierne,
en este artı́culo, nos inspiramos en los métodos de umbral de
respuesta (“Response-Threshold Methods”), los cuales son un caso
particular de los métodos de enjambre (“Swarm-like Methods”).
Siguiendo esta metodologı́a, los robots deciden cuál es la tarea
que deben realizar basándose en los estı́mulos procedentes tanto
de la tarea que están llevando a cabo en ese momento, como
de la tarea a la cual consideran desplazarse. De esta forma,
planteamos una alternativa innovadora a las estrategias de
asignación de tareas existentes actualmente en la literatura, que
tiene la capacidad de manejar tareas con plazos de tiempo lı́mite
asociados. Más concretamente, los estı́mulos percibidos por los
robots son modelados mediante conjuntos difusos, de manera que
el robot es capaz de determinar cuál es la tarea más apropiada
en cada momento a través de la célebre técnica de optimización
difusa de Bellman y Zadeh.

Con el objetivo de poder evaluar el nuevo enfoque matemático,
hemos llevado a cabo un extenso número de simulaciones. Ası́,
hemos podido comprobar que la alternativa propuesta es capaz de
modelar la evolución de un sistema de enjambre cuando existen
tareas con plazos lı́mite de ejecución.

Index Terms—sistemas multi-robot, problema de asignación
de tareas, conjuntos difusos, técnica de optimización difusa de
Bellman-Zadeh.

I. INTRODUCCIÓN

En los últimos años, los sistemas multi-robot han ganado
popularidad y los continuos avances en este campo han
permitido una amplia serie de aplicaciones. No obstante, los
problemas ligados a los sistemas multi-robot tienden a ser
desafiantes y matemáticamente complejos. En este artı́culo,
nos centraremos en uno de los problemas más importantes
que pueden surgir al trabajar en esta temática: la asignación de
tareas en sistemas multi-robot (“Multi-Robot Task Allocation”
o MRTA en su forma abreviada).

Esta investigación forma parte del proyecto PID2022-139248NB-I00 finan-
ciado por MICIU/AEI/10.13039/501100011033 y “FEDER Una manera de
hacer Europa”.

La MRTA consiste en asignar a cada grupo de robots
las tareas a realizar teniendo en cuenta, por una parte, las
caracterı́sticas de los robots y, por otra, las caracterı́sticas
de las tareas. Dado que este problema es tı́picamente NP-
complejo, la mayorı́a de los algoritmos MRTA están diseñados
para tener una gran eficiencia computacional, a la vez que
proporcionan resultados tan próximos como sea posible a los
óptimos. Entre las distintas metodologı́as desarrolladas por los
investigadores en los últimos años, destacan las metodologı́as
MRTA descentralizadas. En particular, el trabajo presentado
en este artı́culo está inspirado en los enfoques tipo enjambre,
más concretamente en los métodos de umbral de respuesta
(“Response-Threshols Methods” o RTMs). Los RTMs asumen
que cada tarea está asociada a un estı́mulo, del cual los agentes
son capaces de captar información. Posteriormente, se sigue
un proceso de toma de decisiones probabilı́stico, dando una
mayor probabilidad de transición a aquellas tareas que generan
un estı́mulo de mayor intensidad. Tı́picamente, estos procesos
de toma de decisión han sido modelados matemáticamente
mediante cadenas de Markov. Es importante destacar que estos
métodos son bastante simples, lo cual restringe el rango de
tareas que pueden realizar.

En este artı́culo, el modelo matemático que proponemos ha
sido desarrollado aprovechando el marco teórico basado en
conjuntos difusos introducido en [1]–[3]. En las referencias
mencionadas, se utilizan conjuntos difusos para modelar las
funciones de respuesta y la asignación de tareas se lleva a
cabo mediante cadenas de Markov posibilı́sticas. Este enfoque
presenta diversas ventajas frente a la aproximación clásica
probabilı́stica. Entre ellas, cabe destacar las siguientes. Por
un lado, la convergencia del sistema a una distribución esta-
cionaria se realiza en un número finito de pasos, y no de modo
asintótico. Por otro lado, la predicción del comportamiento
del sistema mejora enormemente en presencia de vaguedad
en las mediciones tomadas por parte de los robots de las
diferentes caracterı́sticas del sistema como, por ejemplo, las
distancias entre tareas. Inspirados por estos hechos, en la
estrategia de asignación de tareas para RTMs que presentamos,
los estı́mulos percibidos por los robots son modelados a
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través de conjuntos difusos como en las referencias [1]–[3].
Sin embargo, siguiendo con el planteamiento dado en [4],
nuestro enfoque trata con tareas que tienen plazos de tiempo
lı́mite y el proceso de toma de decisiones es implementado
como un problema de optimización. Ası́, permitimos que la
decisión en cada momento del tiempo sea obtenida mediante la
técnica de optimización de Bellman y Zadeh [5]. Este enfoque,
utilizando conjuntos difusos, tiene numerosas ventajas, de
entre las cuales destacan las siguientes: la sencillez del sistema
de comunicación requerido (compatible con el de cualquier
sistema de enjambre); el bajo coste computacional del proceso
de toma de decisión; y la capacidad de poder modelar objetivos
y restricciones de nuestro problema que no estén claramente
definidos en términos precisos. Los resultados obtenidos de
los experimentos de simulación realizados demuestran que
el enfoque propuesto es capaz de modelar eficazmente la
evolución de un sistema de enjambre, cuando se tienen en
cuenta plazos lı́mite de tiempo para las tareas. Cabe decir
que nuestro planteamiento presenta ciertas diferencias con el
establecido en [4], las cuales serán clarificadas en la Sección
III.

Con respecto al resto del artı́culo, en la Sección II ofrece-
mos una explicación más detallada del proceso de toma de
decisiones. Posteriormente, en la Sección III presentaremos la
formulación matemática del problema que intentamos abordar
y el modelo propuesto para la estrategia MRTA. En la Sección
IV, se evalúa el rendimiento del modelo mediante un extenso
número de simulaciones, analizando los resultados obtenidos.
Finalmente, en la Sección V, resumimos las conclusiones que
hemos podido sacar e indicamos algunas propuestas de trabajo
futuro.

II. PROCESO DE TOMA DE DECISIONES

El objetivo de esta sección es introducir la metodologı́a para
la toma de decisiones en entornos difusos que hemos incor-
porado en nuestra estrategia MRTA. En particular, hablamos
de la célebre técnica de optimización de Bellman y Zadeh, la
cual hace uso de conjuntos difusos y funciones de agregación.
Asumimos que el lector está familiarizado con las nociones
básicas de esta técnica (véase [6]). Aún ası́, resumiremos su
funcionamiento para facilitar el entendimiento de las secciones
posteriores.

De acuerdo con [5], consideremos un objetivo G a alcanzar
y una restricción C que limite su consecución. Denotemos
por Ĝ el objetivo difuso (versión difusa del objetivo), por Ĉ
la restricción difusa (versión difusa de la restricción) y por D̂
la decisión difusa (versión difusa del conjunto de soluciones
del problema bajo estudio). Sea X el conjunto de todas las
posibles alternativas, conteniendo la decisión óptima. Sean
µĜ : X → [0, 1] y µĈ : X → [0, 1] las funciones de
pertenencia de Ĝ y Ĉ, respectivamente. Entonces, los valores
de µĜ(x) y µĈ(x) con x ∈ X pueden ser interpretados como
el nivel con el que la alternativa x satisface el objetivo G y la
restricción C.

Por supuesto, la solución al proceso de toma de deci-
siones tiene que satisfacer simultáneamente el objetivo y la

restricción. Esto se modela en el entorno difuso a través del
conjunto decisión difusa D̂. Con este objetivo, dicho conjunto
se describe mediante una función de pertenencia obtenida
mediante la agregación de las funciones de pertenencia del
objetivo y de la restricción. Ası́ pues, dada una función de
agregación F (véase [7] para una exposición detallada sobre
la teorı́a de funciones de agregación), la función de pertenencia
de una decisión difusa D̂ sobre X , µD̂ : X → [0, 1],
se obtiene mediante µD̂(x) = F (µĜ(x), µĈ(x)) para todo
x ∈ X . Notemos que la función de agregación es simétrica, de
manera que el papel que juegan el objetivo y la restricción son
intercambiables. Este hecho resulta fundamental en aquellos
casos en los que la frontera entre ellos no es clara y, por
ese motivo, ambos pueden ser tratados simplemente como
aspectos del problema sin establecer una distinción precisa
entre ellos.

Recordemos que, a pesar que la solución difusa proporciona
el nivel de adecuación de cada una de las diferentes alter-
nativas, es necesario seleccionar la solución más apropiada
para el problema bajo consideración. Dado que µD̂(x) pro-
porciona para cada x ∈ X el nivel de satisfacción combinado
de µĜ(x) y µĈ(x), en [5] la metodologı́a de Bellman y
Zadeh establece que la alternativa óptima x∗ ∈ X es la que
maximiza la función de pertenencia de D̂, en otras palabras,
x∗ = argmax(µD̂).

III. FORMULACIÓN MATEMÁTICA DEL PROBLEMA

En lo que sigue, vamos a describir el problema de asig-
nación de tareas que nos proponemos abordar, ası́ como el
enfoque matemático que usaremos para modelar el compor-
tamiento individual de los robots, que conducirá a la colabo-
ración necesaria de la que emergerá la inteligencia enjambre
que permitirá solucionar dicho problema.

A. Descripción del problema

Sea R = {a1, ..., an} el conjunto de todos los robots y
T = {t1, ..., tm} el conjunto de todas las tareas que se
tienen que llevar a cabo, siendo n,m ∈ N y n ≤ m. En
cada instante de tiempo t, considerando el tiempo discreto,
necesitamos asignar a cada tarea tj ∈ T un subconjunto
de robots RA(t) ⊆ R. El objetivo del sistema de enjambre
es completar cada tarea cumpliendo con el plazo de tiempo
lı́mite que tiene asociado, que denotaremos por tj,dl ∈ N.
Para alcanzarlo, se recompensa al sistema con una cantidad
variable de utilidad por cada tarea completada. Si la tarea
se consigue completar en un tiempo menor o igual a tj,dl,
entonces se proporciona la máxima utilidad posible para esa
tarea, tj,u ∈ [0, 1]. Por contra, si se completa en un tiempo
superior a tj,dl, se logra una proporción (menor) de tj,u.

Adicionalmente, denotaremos por ak,wc ∈ N a la cantidad
de trabajo que es capaz de realizar el robot ak por unidad de
tiempo. Cabe destacar que ak,wc es independiente de la tarea
a ejecutar. Ası́, supondremos conocido el tiempo, tj,et ∈ N,
que necesitarı́a un único robot con capacidad de trabajo igual
a uno, ak,wc = 1, para completar la tarea tj . En consecuencia,
el tiempo necesario para ejecutar la tarea tj dependerá tanto
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de tj,et como del conjunto de robots que estén trabajando en
ella.

Al inicio, cada robot tendrá una ubicación especı́fica, la
cual podrá ser la misma para todos los robots, o bien cada
robot podrá tener una posición diferente dentro del entorno.
En cada instante de tiempo posterior, se utilizará el proceso de
optimización difuso descrito en la Sección II para determinar
la tarea más adecuada para cada robot, en el instante de
tiempo t. Para poder llegar a las tareas, cada robot es capaz
de desplazarse a una velocidad constante ak,v ∈ N.

La idoneidad con la que percibe el robot cada tarea en
un instante de tiempo t se obtiene a partir de tres estı́mulos
distintos: la capacidad de terminar la tarea antes de su plazo
lı́mite —urgencia— sdlak,tj (interpretado como un objetivo
del problema); la cantidad máxima de robots que pueden
trabajar simultáneamente en una misma tarea —interferencia
fı́sica— IL,tj ; y la voluntad de un robot de quedarse en la
tarea actual hasta ejecutarla por completo —inercia— INcl,tj ,
siendo cl la ubicación actual del robot (IL,tj e INcl,tj inter-
pretados como restricciones del problema). Esta información
es percibida por cada robot ak, en cualquier instante de tiempo
t, como un único estı́mulo global sk,cl,j(t) calculado usando
una función de agregación. Una vez el robot ak dispone del
estı́mulo procedente de cada tarea, este aplica la técnica de
optimización de Bellman y Zadeh para seleccionar la tarea a
realizar. Esto significa que la tarea seleccionada tj∗ será la
que satisfaga sk,cl,j∗(t) = maxj∈{1,...,m} sk,cl,j(t).

Notemos que, aunque los robots sean heterogéneos en
términos de velocidad y capacidad de trabajo por unidad de
tiempo, todos ellos reciben y procesan los estı́mulos de la
misma manera, tomando la decisión óptima del mismo modo,
es decir, a partir de la misma función de agregación.

B. Modelo Matemático

Ahora, ya estamos en condiciones de introducir las expre-
siones matemáticas para todos los estı́mulos previamente men-
cionados y la metodologı́a exacta para la toma de decisiones
en entornos difusos. No obstante, en primer lugar, definiremos
el conjunto difuso Utj : N → [0, tj,u] que nos proporciona la
utilidad conseguida por el sistema al completar la tarea tj en
el instante de tiempo t del modo siguiente:

Utj (t) =

{
tj,u si t ≤ tj,dl
tj,u · 0.07·tj,dl

(t−tj,dl)+0.07·tj,dl si t > tj,dl
(1)

Seguidamente, presentamos las expresiones matemáticas
propuestas para cada uno de los tres estı́mulos considerados:
urgencia, interferencia fı́sica e inercia. Por un lado, la urgen-
cia, al igual que sucede con la utilidad, tiene que decrecer a
medida que el tiempo de ejecución requerido para completar
una tarea se aleja más allá del plazo lı́mite. Por otra parte, en
el caso de que una tarea no haya sido completada, el estı́mulo
tiene que ser cada vez mayor a medida que se acerca el plazo
lı́mite, puesto que el tiempo del que se dispone para terminarla

es cada vez menor. Siguiendo esta idea, el conjunto difuso para
la urgencia, sdlak,tj : N → [0, tj,u], viene dado por:

sdlak,tj (t) =



tj,u · tj,dl
(tj,dl−(t+ftak,tj

(t)))+tj,dl
si t+ ftak,tj (t) ≤ tj,dl

y tj,ret(t) > 0

tj,u · 0.07·tj,dl
(t+ftak,tj

(t)−tj,dl)+0.07·tj,dl si t+ ftak,tj (t) > tj,dl

y tj,ret(t) > 0

0 si tj,ret(t) = 0
(2)

donde:
• ftak,tj (t) =

dcl,j

ak,v
+

tj,ret(t)
ak,wc

es el tiempo que le llevarı́a
al robot ir desde su ubicación actual hasta la tarea tj y,
también, terminar individualmente esa tarea.

• dcl,j es la distancia entre la ubicación actual del robot y
la tarea tj .

• tj,ret(t) es el tiempo restante para finalizar la tarea tj ,
en el instante de tiempo t. Se puede calcular restando a
tj,et el total de trabajo realizado por los robots sobre la
tarea tj hasta el instante de tiempo t.

Notemos que, en las expresiones (1) y (2), se ha utilizando
un caso particular de la llamada casi-métrica difusa estándar
(véase, por ejemplo, [8]). Observemos también que la ex-
presión (2) supone una diferencia importante entre nuestro
enfoque y el llevado a cabo en [4], puesto que, en lugar de
utilizar conjuntos difusos distintos para modelar los estı́mulos
de distancia y urgencia para posteriormente agregarlos, uti-
lizamos un único conjunto difuso, el cual codifica información
de ambos estı́mulos, pero no se deriva a priori de ningún
proceso de agregación.

El siguiente estı́mulo que detallaremos es la interferencia
fı́sica, IL,tj . Supondremos que existe una cantidad máxima
de robots que pueden trabajar simultáneamente en una tarea
tj , que denotaremos por tj,pt ∈ N. Entonces, el conjunto
difuso considerado para IL,tj : Ntj → [0, 1], siendo Ntj =
{0, 1, ..., tj,pt} y xtj (t) ∈ Ntj el número de robots trabajando
en la tarea tj en el instante de tiempo t, viene dada por:

IL,tj (xtj (t)) = 1−
xtj (t)

tj,pt
(3)

Solo falta por detallar el estı́mulo de la inercia, INcl,tj (t),
entendido como la necesidad que siente un robot de quedarse
en su posición actual en el instante de tiempo t. El conjunto
difuso propuesto para INcl,tj : N → {0, p}, donde p ∈ (0, 1],
es:

INcl,tj (t) =

{
p si cl = tj y tj,ret(t) > 0
0 de lo contrario (4)

Ahora, ya estamos en condiciones de explicar cómo se
obtiene el estı́mulo global único que percibe un robot a partir
de la agregación de los estı́mulos de urgencia, interferencia
fı́sica e inercia. Sea A : [0, 1] × [0, 1] → [0, 1] una función
de agregación con la particularidad que A(x, 0) = A(0, x) =
0 ∀x ∈ [0, 1]; es decir, 0 es un elemento absorbente para
A (véase [6] o [7]). Nótese que imponemos dicha condición
para prevenir que un robot decida ir a una tarea completada o
a una tarea en la que ya está trabajando la cantidad máxima de
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robots permitida. Entonces, ∀t ∈ N, el estı́mulo global viene
dado por:

sk,cl,j(t) = max{A
(
sdlak,tj (t), IL,tj (xtj (t))

)
, INcl,tj (t)}

(5)
En este sentido, el robot ak decidirá cuál es la tarea óptima,

tj∗ , a ser ejecutada en el siguiente instante de tiempo siguiendo
un caso particular de la técnica de optimización de Bellman
y Zadeh, presentada en la Sección II.

IV. EVALUACIÓN EXPERIMENTAL

En esta sección, nuestro objetivo será evaluar el rendimiento
de un RTM basado en el modelo matemático formulado
en la sección anterior que aborde la estrategı́a MRTA. Para
poder hacerlo, empezaremos especificando cinco funciones de
agregación, A, distintas. Estas serán versiones modificadas del
mı́nimo, el producto, la media armónica (Hmean), la media
ponderada ordenada (“Ordered Weighted Averaging” u OWA)
y del máximo (OWA con peso w1 = 1). Estas funciones
toman su valor original siempre que min{x, y} ̸= 0, y en
otro caso forzamos a que valgan cero, es decir, consideramos
versiones de las funciones de agregación con 0 como elemento
absorbente debido a la razón ya indicada en la Sección III.
Por último, cabe recalcar que para el cálculo de sk,cl,j(t) y
sk,cl,j∗(t) en la sección anterior, max representa la versión
ordinaria (sin modificar) de la función de agregación máximo.

Se ha llevado a cabo un extenso número de simulaciones,
considerando una gran variedad de escenarios posibles, con
el fin de poner a prueba el RTM propuesto. Estos escenarios
consisten en conjuntos de robots y tareas heterogéneos, en el
sentido que los robots poseen diferentes habilidades (ak,wc y
ak,v) y las tareas pueden variar en términos de tj,u, tj,et, tj,dl
y tj,pt. Además, consideraremos las siguientes métricas para
poder medir la eficacia del RTM:

• TTC es el tiempo total requerido para terminar todas las
tareas.

• U es la proporción media de la utilidad máxima con-
seguida. Para calcularla, utilizaremos la expresión: U =∑m

j=1

Utj

tj,u·m , donde Utj indica la cantidad de utilidad
lograda para la tarea tj .

• D es la distancia total media recorrida por cada robot.
Esta se puede obtener como D =

∑n
k=1

ak,d

n , siendo
ak,d la distancia total de viaje del robot ak. Obsérvese
que valores más bajos de D suponen un menor consumo
de recursos.

• TbDL determina, en promedio, el tiempo por debajo del
plazo de tiempo lı́mite. Este se puede calcular mediante
TbDL =

∑m
j=1

tj,dl−tj,c
m , donde tj,c es el tiempo en el

que la tarea tj fue completada.
Conocer las limitaciones de un RTM basado en un sistema

de enjambre es indispensable para poder entender el motivo
de la selección de las métricas presentadas para evaluar su
rendimiento. En situaciones reales, la duración de las baterı́as
de los robots suele ser bastante limitada, de manera que D y
TTC son dos de las métricas más importantes a considerar.
Tenerlas en cuenta es la mejor forma de prevenir la recarga

TABLE I
RESULTADOS DE LAS MEDIAS DE LAS MÉTRICAS PARA LAS

CONFIGURACIONES MENCIONADAS, ESPECÍFICAMENTE EN EL CASO FC.

FC

A TTC U TbDL D
min 48.22 98.99 32.21 1655.91
product 59.90 92.96 28.26 22485.67
Hmean 59.23 94.03 28.26 2485.67

p = 1 OWA: w1 = 1 60.67 88.64 27.61 2546.10
OWA: w1 = 0.75 63.67 90.45 26.82 2766.10
OWA: w1 = 0.50 60.33 92.39 28.00 2515.55
min 151.09 69.40 -24.33 9736.75
product 531.96 20.99 -260.00 38323.15

p = 0 Hmean 368.43 21.55 -172.87 26158.67
OWA: w1 = 1 824.55 4.12 -523.49 59863.09
OWA: w1 = 0.75 805.77 18.25 -439.09 58687.02
OWA: w1 = 0.50 684.51 25.43 -328.87 49646.75

de baterı́as de los robots durante la ejecución del problema.
Por otra parte, dado que tenemos plazos de tiempo lı́mite para
completar las tareas, es importante comparar cómo de cercano
ha sido el rendimiento obtenido al ideal. Esta información
puede ser estimada gracias a la combinación de las métricas
U y TbDL.

A. Resultados de las simulaciones

El código desarrollado para ejecutar todas las simulaciones
se ha escrito utilizando la versión 3 del lenguaje Python1. Estas
simulaciones se han llevado a cabo fijando n = 10 robots
y m = 20 tareas, distribuyendo estos robots y estas tareas
aleatoriamente en un entorno de 640×480 pı́xeles. Los valores
concretos de los parámetros que configuran a los robots y
a las tareas han sido seleccionados aleatoriamente dentro de
los siguientes intervalos: tj,u ∈ [0.75, 1.00], tj,et ∈ [4, 30],
tj,dl ∈ [2.5 · tj,et, 4.0 · tj,et], tj,pt = 3, ak,v ∈ [65, 85] (las
unidades utilizadas para la velocidad son pı́xeles por unidad
de tiempo) y ak,wc ∈ {1, 2}.

También se han planteado diferentes configuraciones con
respecto al proceso de toma de decisiones, calculando mil
simulaciones para cada configuración. Para empezar, hemos
considerado la posibilidad de tener inercia completa o falta
total de inercia, es decir, hemos configurado el estı́mulo
INcl,tj con p = 1 o p = 0 respectivamente. En relación al
operador OWA, los diferentes conjuntos de pesos estudiados
son: w = {1, 0}, w = {0.75, 0.25} y w = {0.50, 0.50},
donde w = {w1, w2}. Finalmente, se han explorado dos
situaciones distintas en términos de las capacidades en la toma
de decisiones de los robots: FC (siendo los robots capaces de
cambiar la decisión con respecto a la mejor tarea a ejecutar
mientras se están moviendo de una tarea a otra) y RC (no
permitiendo que los robots cambien de decisión con respecto
a su destino mientras viajan). Los resultados obtenidos en las
condiciones mencionadas pueden encontrarse en las Tablas I
y II.

Empecemos notando que cuando TbDL es negativo nos
indica que, en promedio, el tiempo en el que se ha comple-

1El pseudocódigo, el código y otra información relevante
puede ser encontrada en el siguiente repositorio de GitHub:
https://github.com/BielJM1/MRTAOptima
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TABLE II
RESULTADOS DE LAS MEDIAS DE LAS MÉTRICAS PARA LAS

CONFIGURACIONES MENCIONADAS, ESPECÍFICAMENTE EN EL CASO RC.

RC

A TTC U TbDL D
min 36.57 99.61 37.03 817.04
product 33.89 99.65 37.47 671.15
Hmean 34.33 99.65 37.37 692.42

p = 1 OWA: w1 = 1 32.68 97.17 37.51 602.83
OWA: w1 = 0.75 33.61 99.67 37.56 655.92
OWA: w1 = 0.50 33.62 99.65 37.52 661.04
min 84.67 86.95 2.84 4916.95
product 105.05 58.09 -20.16 6702.61

p = 0 Hmean 106.95 58.68 -19.75 6803.40
OWA: w1 = 1 102.82 29.97 -19.17 6558.48
OWA: w1 = 0.75 105.39 50.12 -21.01 6758.35
OWA: w1 = 0.50 103.77 57.13 -20.16 6623.49

tado una tarea tj ha sido mayor que tj,dl. En consecuencia,
podemos ver de las Tablas I y II que, en promedio, cuando
no se considera el estı́mulo de inercia (p = 0), las tareas
no se terminan dentro del plazo deseado, al ser prácticamente
todos los valores de TbDL negativos. Además, si este estı́mulo
es considerado en su máxima expresión (p = 1), el mı́nimo
es la función de agregación que mejores resultados ha pro-
porcionado en la situación FC, mientras que en el caso RC
no hay un claro vencedor. Más especı́ficamente, cuando nos
encontramos en el caso RC con p = 1, el OWA modificado
con pesos w = {1, 0} (máximo modificado) ha sido la función
de agregación que mejores resultados ha proporcionado para
las métricas TTC y D, pero para las métricas U y TbDL
la mejor función de agregación ha sido el OWA modificado
con pesos w = {0.75, 0.25}. Por este motivo, en el caso de
tener recursos limitados, serı́a más adecuado usar la versión
modificada de la función de agregación máximo, pero si fuera
indispensable terminar todas las tareas a tiempo, sin importar
los recursos consumidos, serı́a mejor usar el OWA modificado
con pesos w = {0.75, 0.25}.

Como podemos observar, con los resultados presentados
en las Tablas I y II es muy difı́cil comparar directamente
el rendimiento de las diferentes configuraciones, porque en
muchos casos este está fuertemente relacionado con la métrica
bajo consideración. Por este motivo, en las Tablas III y IV
ofrecemos la posición obtenida por cada una de las configura-
ciones en un ranking elaborado para cada una de las métricas
propuestas. Además, calculamos la suma de dichas posiciones
para cada configuración. De esta manera, uno podrı́a afirmar
que la mejor configuración será aquella cuya suma sea lo
menor posible, puesto que esa será la que tenga globalmente la
mejor posición entre todas las métricas. Evidentemente, otras
metodologı́as podrı́an ser consideradas para poder escoger la
configuración óptima para el problema planteado, dando más
importancia a las métricas que ayuden más a las necesidades
especı́ficas del usuario. El motivo por el cual hemos decidido
usar el método del ranking es porque este nos proporciona la
configuración más versátil.

Comparando los resultados obtenidos en las tablas III y IV,
lo primero que llama la atención es el gran salto de eficiencia
que se obtiene cuando INcl,tj ̸= 0. De hecho, tanto es ası́ que

TABLE III
RESULTADOS DE LAS MÉTRICAS SEGÚN EL MÉTODO DE EVALUACIÓN POR

RANKING EN EL CASO FC.

FC

A TTC U TbDL D Sum
min 7 6 7 7 27
product 9 9 9 9 36

p = 1 Hmean 8 8 8 8 32
max 11 12 11 11 45
OWA: w1 = 0.75 12 11 12 12 47
OWA: w1 = 0.50 10 10 10 10 40
min 19 14 19 19 71
product 21 22 21 21 85

p = 0 Hmean 20 21 20 20 81
max 24 24 24 24 96
OWA: w1 = 0.75 23 23 23 23 92
OWA: w1 = 0.50 22 20 22 22 86

TABLE IV
RESULTADOS DE LAS MÉTRICAS SEGÚN EL MÉTODO DE EVALUACIÓN POR

RANKING EN EL CASO RC.

RC

A TTC U TbDL D Sum
min 6 5 6 6 23
product 4 4 4 4 16

p = 1 Hmean 5 3 5 5 18
OWA : w1 = 1 1 7 3 1 12
OWA : w1 = 0.75 2 1 1 2 6
OWA : w1 = 0.50 3 2 2 3 10
min 13 13 13 13 52
product 16 16 16 16 64

p = 0 Hmean 18 15 15 18 66
OWA : w1 = 1 14 19 14 14 61
OWA : w1 = 0.75 17 18 18 17 70
OWA : w1 = 0.50 15 17 17 15 64

la peor configuración considerando p = 1 es claramente mejor
que la mejor configuración considerando p = 0. De la misma
manera, restringir las capacidades de toma de decisiones de los
robots mientras están viajando —situación RC— hace que el
sistema sea mucho más eficiente. De estos hechos, deducimos
que no permitir que los robots cambien su destino mientras
viajan, y obligarles a quedarse en la tarea hasta terminarla, se
traduce en mucho menos tiempo invertido en desplazarse y
en que más tareas se terminen a tiempo, permitiendo ası́ que
las puntuaciones en las distintas métricas sean mejores. Para
terminar, notemos que, en base a nuestro método de evaluación
por ranking, el mejor rendimiento se obtiene con el operador
OWA modificado bajo la situación RC y con p = 1. Más
concretamente, los mejores resultados se han conseguido con
los pesos w = {0.75, 0.25}, los segundos mejores con los
pesos w = {0.50, 0.50}, y los terceros mejores con los pesos
w = {1, 0} (máximo modificado).

V. CONCLUSIONES Y TRABAJO FUTURO

En este artı́culo, hemos presentado una estrategia para
métodos de umbral de respuesta (RTM) que permite afrontar
tareas con plazos de tiempo lı́mite asociados en problemas
de tipo MRTA. Con esta estrategia, se modelan los estı́mulos
que reciben los robots mediante conjuntos difusos, lo cual
permite que se decida la mejor tarea a realizar solucionando
un problema de optimización difuso mediante la técnica de
Bellman y Zadeh.
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Para poder evaluar la mencionada metodologı́a, se han
llevado a cabo una extensa cantidad de simulaciones, con-
siderando distintos parámetros, ası́ como cinco posibles fun-
ciones de agregación diferentes. Los parámetros que se han
ajustado afectan tanto a la detección del estı́mulo procedente
de la inercia, como a la capacidad de cambiar la tarea objetivo
mientras se está viajando. Los resultados obtenidos demuestran
que el enfoque matemático propuesto es capaz de modelar
el tipo de sistema deseado manejando tareas con plazos de
tiempo lı́mite. Concretamente, el mejor rendimiento se ha
obtenido cuando los robots sienten la necesidad de quedarse
en la tarea en la que se encuentran en ese momento hasta
terminarla y sin tener la capacidad de cambiar su destino
mientras se están desplazando. Además, la mejor asignación
de tareas se ha conseguido utilizando una versión modificada
del operador OWA.

Recordemos que, aunque todos los robots son heterogéneos
en términos de su conjunto de habilidades, el proceso de toma
de decisiones es homogéneo para todos los robots. Como
propuesta de trabajo futuro, planeamos introducir un mayor
nivel de heterogeneidad, personalizando para cada robot la
función de agregación y los conjuntos difusos usados para
modelar los distintos estı́mulos.
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Universidad Pública de Navarra
31006, Pamplona

Email: lafuente@unavarra.es

Xabier Gonzalez-Garcia
Departamento de Estaı́stica, Informática y Matemáticas
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Resumen—En este trabajo presentamos una nueva clase de
funciones de agregación. Para la definición de estas nuevas
funciones nos inspiramos en el método de construcción de las
integrales Choquet, reemplazando las medidas por funciones
adecuadas. Tras discutir la definición de las nuevas funciones,
estudiamos algunas de su propiedades básicas y consideramos
su relación con otras funciones de agregación utilizadas en la
literatura, como los estadı́sticos de orden o las funciones de
overlap y grouping.

I. INTRODUCCIÓN

La fusión de información es un paso crucial en la resolución
de la mayor parte de los problemas cientı́ficos. Por este mo-
tivo, se han dedicado grandes esfuerzos a desarrollar técnicas
apropiadas para abordar este problema. Entre los métodos más
utilizados se encuentran los que hacen uso de las funciones
de agregación [2], [1], [10]. Recordemos que las funciones
de agregación son funciones monótonas crecientes que están
habitualmente definidas en el intervalo unidad [0, 1] y que
proporcionan un valor único, también en el intervalo unidad,
como representante de un conjunto de datos numéricos de
entrada.

Las funciones de agregación se han usado con éxito en
problemas muy diversos, incluyendo el aprendizaje automático
[13], la toma de decisiones [9] o la neurociencia compu-
tacional [8], entre muchos otros. Una familia particular de
funciones de agregación, las llamadas integrales difusas, ha
experimentado un amplio desarrollo en los últimos años, ya
que, por medio de medidas difusas, pueden tener en cuenta
relaciones entre diferentes datos para elegir un valor que los
represente de una forma adecuada.

Posiblemente el ejemplo más representativo de las inregrales
difusas lo constituyen las integrales de Choquet [5] y sus
generalizaciones [16], [17], [7], [15]. Muchas de estas gene-
ralizaciones se han obtenido considerando operaciones más
generales que la suma, el producto, el máximo o el mı́nimo
utilizados en la definición original de integrales difusas [6], o
reemplazando la resta en esas mismas definiciones por otras
medidas de información, como, por ejemplo, disimilitudes [3],
lo que, a su vez, ha permitido la extensión de estos operadores
de agregación a marcos más generales que el numérico.

El principal objetivo de este trabajo es proponer una nueva
forma de construir funciones de agregación que se inspira en
la definición de integral Choquet y reemplaza las medidas
por funciones más generales. Estas funciones, al igual que
las medidas, son dependientes de los datos a fusionar en cada
caso. En concreto, consideramos una combinación convexa
de los datos de entrada, haciendo que los pesos de dicha
combinación sean también dependientes de las entradas.

La estructura del trabajo es la siguiente. Comenzamos
presentado algunos conceptos y resultados preliminares ne-
cesarios para el desarrollo del trabajo. En la Sección III,
introducimos la definición de la nueva familia de funciones
inspiradas en la integral Choquet. En la Sección IV estudiamos
algunas primeras propiedades de estas funciones y, en la
Sección V, consideramos su relación con algunas funciones
de agregación bien conocidas. Terminamos con unas breves
conclusiones y referencias.
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II. PRELIMINARES

Dado n ≥ 2, denotamos N = {1, . . . , n}. 2N denota el
conjunto de todos los subconjuntos de N .

Si n ≥ 3, dados i, j ∈ {1, . . . , n} con i 6= j y dado x =
(x1, . . . , xn) ∈ [0, 1]n, denotamos por x̂i,j el resultado de la
proyección P(i,j) : [0, 1]n → [0, 1]n−2 en la que se omiten las
componentes i y j .

Dado (x1, . . . , xn) ∈ [0, 1]n, denotamos por (i) la posición
i-ésima de una permutación de N tal que:

x(1) ≤ x(2) ≤ · · · ≤ x(n) .

Para x = (x1, . . . , xn) ∈ Rn, escribimos:

‖x‖ =

n∑
i=1

|xi| ,

esto es, la norma L1 usual en Rn.
Recordamos a continuación algunos de los conceptos bási-

cos para este trabajo.
Definición 2.1: Una función de agregación n-dimensional

es una función A : [0, 1]n → [0, 1] monótona creciente y tal
que A(0, . . . , 0) = 0 y A(1, . . . , 1) = 1.

Recordemos que una función de agregación es simétrica
si se verifica que A(x1, . . . , xn) = A(xσ(1), . . . , xσ(n)) para
cualquier permutación σ de N .

Definición 2.2: Una función de agregación GO : [0, 1]n →
[0, 1] es una función de overlap si es simétrica, continua y tal
que:

1. GO(x1, . . . , xn) = 0 si y solo si x1 · · ·xn = 0, y
2. GO(x1, . . . , xn) = 1 si y solo si x1 · · ·xn = 1.
Definición 2.3: Una función de agregación GG : [0, 1]n →

[0, 1] es una función de grouping si es simétrica, continua y:
1. GG(x1, . . . , xn) = 0 si y solo si x1 = · · · = xn = 0, y
2. GG(x1, . . . , xn) = 1 si y solo si existe i ∈ {1, . . . , n}

tal que xi = 1.
A continuación, recordamos la definición de los operadores

OWA [18].
Definición 2.4: Sea n ≥ 2. Un vector de pesos es una

n-tupla (w1, . . . , wn) ∈ [0, 1]n. A lo largo de este trabajo,
impondremos además, que w1 + · · ·+ wn = 1.

Definición 2.5: Sea n ≥ 2 y fijemos un vector de pesos
w = (w1, . . . , wn) ∈ [0, 1]n. El operador OWA definido por
w es la función Fw : [0, 1]n → [0, 1] dada por:

Fw(x1, . . . , xn) = w1x(n) + w2x(n−1) + · · ·+ wnx(1)

para todo (x1, . . . , xn) ∈ [0, 1]n.
Finalmente, recordamos la noción de integral Choquet [5].
Definición 2.6: Sea n ≥ 2 and N = {1, . . . , n}. Una medida

difusa en N es una función m : 2N → [0, 1] tal que:
1. m(∅) = 0 y m(N) = 1;
2. si A ⊆ B ⊆ N , entonces m(A) ≤ m(B)

Definición 2.7: Sea m : 2N → [0, 1] una medida difusa.
La integral de Choquet definida por m es la función Cm :

[0, 1]n → [0, 1] dada, para cada x = (x1, . . . , xn) ∈ [0, 1]n,
por:

Cm(x) =

n∑
i=1

(x(i) − x(i−1)) ·m(A(i))

donde Ai = {(i), (i+1), . . . , (n)} y donde se define x(0) = 0.

III. FUNCIONES DE AGREGACIÓN INSPIRADAS EN LA
INTEGRAL CHOQUET

La definición fundamental de este trabajo es la siguiente.
Definición 3.1: Sea n ≥ 3 y sea F : [0, 1]n−2 → [0, 1] una

función simétrica y creciente. Definimos la función (inspirada
en Choquet) CIF : [0, 1]n → [0, 1] como:

CIF (x1, . . . , xn) = x(1) +

n−1∑
i=1

(x(i+1) − x(i))F (x̂(i+1),(i))

(1)
donde, como se ha indicado anteriormente, (·) una permuta-
ción de {1, . . . , n} tal que:

x(1) ≤ x(2) ≤ · · · ≤ x(n)

Nótese que la función CIF está bien definida incluso si
existe más de una posible permutación creciente (·) para x,
debido a la simetrı́a de F .

Al igual que sucede en el caso de la integral Choquet
usual, la expresión de CIF dada por Eq. (1) puede también
reescribirse de la forma siguiente:

CIF (x1, . . . , xn) = x(1)(1− F (x(1),(2))) (2)

+

n−1∑
i=2

x(i)(F (x(i−1),(i))− F (x(i),(i+1)))

+ x(n)(F (x(n−1),(n)))

Es decir, CIF puede verse como una combinación convexa
de las entradas con coeficientes variables. Dichos coeficientes
son dependientes de los propios datos de entrada.

Ejemplo 1: Sea k ∈ [0, 1]. Consideremos la función constan-
te F ≡ k (que es trivialmente simétrica y creciente). Entonces,
para cualquier n ≥ 3 y para cualquier x1, . . . , xn ∈ [0, 1], es
fácil calcular que:

CIF (x) = (1− k) mı́n(x1, . . . , xn) + kmáx(x1, . . . , xn) .

Esto es, recuperamos una combinación convexa del mı́nimo y
el máximo con coeficiente k. En particular:

Si k = 0, recuperamos el mı́nimo.
Si k = 1, recuperamos el máximo.

Ejemplo 2: Sea n = 4. Para cualquier función F : [0, 1]2 →
[0, 1] simétrica y creciente:

CIF (x1, x2, x3, x4) = x(1) + (x(2) − x(1))F (x(3), x(4))

+ (x(3) − x(2))F (x(1), x(4)) + (x(4) − x(3))F (x(1), x(2))

En particular, si F (x, y) = x+y
2 , entonces tenemos que:

CIF (x1, x2, x3, x4) = x(1)(1−
x(2) + x(3)

2
)+x(4)(

x(2) + x(3)

2
)
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Es decir, de nuevo CIF es una combinación convexa (o,
equivalentemente, una media aritmética ponderada) de los
valores extremos, pero en este caso los pesos vienen dados
por los valores intermedios (centrales) de la entrada.

IV. ALGUNAS PROPIEDADES DE LAS FUNCIONES DE
AGREGACIÓN INSPIRADAS EN LA INTEGRAL CHOQUET

En esta sección, estudiamos algunas primeras propieda-
des de las funciones inspiradas en la integral Choquet que
acabamos de definir. Empezamos probando que, de hecho,
las funciones resultantes son funciones de agregación y que
además son idempotentes.

Proposición 4.1: Sea F : [0, 1]n−2 → [0, 1] simétrica
y creciente. Entonces, CIF es una función de agregación
idempotente.
Demostración.

La idempotencia es directa, y de e3lla se deducen de
forma directa las condiciones de contorno. Probemos, pues,
la monotonı́a. Sean (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n tales
que xi ≤ yi para todo i ∈ {1, . . . , n}. Podemos asu-
mir, sin pérdida de generalidad, que tenemos dos n-tuplas
(x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n que:

x1 ≤ x2 ≤ . . . xn y y1 ≤ y2 ≤ . . . yn .

y existe i0 ∈ {1, . . . , n} con yi0 = xi0 + δ para algún δ > 0
y xi = yi para cualquier i 6= i0.

Consideremos los tres casos siguientes:
1.- Si i0 = 1, entonces:

CIF (y1, . . . , yn)− CIF (x1, . . . , xn)

= (x1 + δ) + (x2 − (x1 + δ)F (ŷ(1),(2))

+
n−1∑
i=2

(xi+1 − xi)F (ŷ(i+1),(i))

− x1 − (x2 − x1)F (x̂(1),(2))

−
n−1∑
i=2

(xi+1 − xi)F (x̂(i+1),(i)))

Como F (ŷ(1),(2)) = F (x̂(1),(2)) (porque solo x1 6= y1),
tenemos que:

(x1 + δ) + (x2 − (x1 + δ)F (ŷ(1),(2))

− x1 − (x2 − x1)F (x̂(1),(2))

= δ(1− F (x̂(1),(2))) > 0

Como:
n−1∑
i=2

(xi+1 − xi)F (ŷ(i+1),(i)) ≥
n−1∑
i=2

(xi+1 − xi)F (x̂(i+1),(i))

por la monotonı́a de F , vemos que CIF (y1, . . . , yn) −
CIF (x1, . . . , xn) ≥ 0.

2.- Si i0 = n, podemos aplicar un argumento similar,
teniendo en cuenta que:

(xn + δ− xn−1)F (ŷ(n),(n−1)) ≥ (xn − xn−1)F (x̂(n),(n−1)))

3.- Finalmente, si 1 < i0 < n, tenemos que:

(xi0 + δ − xi0−1)F (ŷ(i0),(i0−1))

+ (xi0+1 − xi0 − δ)F (ŷ(i0+1),(i0))

− (xi0 − xi0−1)F (x̂(i0),(i0−1))

− (xi0+1 − xi0)F (x̂(i0+1),(i0))

que es mayor o igual que cero porque

δF (ŷ(i0),(i0−1)) ≥ δF (ŷ(i0+1),(i0))

por la monotonı́a de F . �
El siguiente resultado es directo
Proposición 4.2: Sea F : [0, 1]n−2 → [0, 1] una función

simétrica creciente y continua y sea CIF definida por la
Ec. (1). Entonces, CIF es continua.

Ejemplo 3: En general, la función inspirada en Choquet
CIF no tiene por qué ser continua para una F arbitraria, no
continua. Por ejemplo, sea n = 3, y tomemos la función F :
[0, 1]→ [0, 1] dada por:

F (x) =

{
0 si x < 1

2

1 en otro caso.

Entonces CIF (0, 0,4, 0,5) = 0,4, mientras que, si tomamos
ε ∈]0, 0,1], CIF (0, 0,4, 0,5 − ε) = 0 , luego la función
resultante no es continua en este caso.

A continuación consideramos el comportamiento de las
funciones CIF cuando F viene dada por una combinación
convexa de dos funciones F1 and F2. En particular, tenemos
el siguiente resultado:

Proposición 4.3: Sean F1, F2 : [0, 1]n−2 → [0, 1] dos
funciones simétricas crecientes, y 0 < k < 1. Entonces, para
todo (x1, . . . , xn) ∈ [0, 1]n, se verifica que:

CIkF1+(1−k)F2
(x1, . . . , xn)

= kCIF1
(x1, . . . , xn) + (1− k)CIF2

(x1, . . . , xn)

Demostración. Basta observar que::

CIkF1+(1−k)F2
(x1, . . . , xn) = x(1)

+

n−1∑
i=1

(x(i+1) − x(i))(kF1(x̂(i+1),(i))

+ (1− k)F2(x̂(i+1),(i)))

= kx(1)

+
n−1∑
i=1

(x(i+1) − x(i))(kF1(x̂(i+1),(i))

+ (1− k)x(1) +

n−1∑
i=1

(x(i+1) − x(i))((1− k)kF2(x̂(i+1),(i))

= kCIF1
(x1, . . . , xn) + +(1− k)CIF2

(x1, . . . , xn) �

Corolario 4.4: Sea (w1, . . . , wr) ∈ [0, 1]r tal que∑r
i=1 wi ≤ 1. Entonces, para cualquier familia de funciones
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simétricas crecientes F1, . . . , Fr : [0, 1]n−2 → [0, 1], y para
cualquier (x1, . . . , xn) ∈ [0, 1]n, se verifica que:

CI∑r
j=1 wjFj

(x1, . . . , xn) = (1−
r∑
j=1

wj)x(1) +
r∑
j=1

wjCIFj
.

Nota 1: Nótese que, si F1+F2 ≤ 1, entonces CIF1+F2
(x) =

CIF1
(x) + CIF2

(x)− x(1).
Pasamos ahora a considerar la propiedad de homogeneidad.

Recordemos que una función M : [0, 1]n → [0, 1] es ho-
mogénea positiva si , para cada x ∈ [0, 1]n y λ > 0 tal que
λx ∈ [0, 1]n, se verifica que:

M(λx) = λM(x) .

Para una función simétrica creciente F y para x ∈ [0, 1]n

y λ > 0 tales que λx ∈ [0, 1]n, vemos que:

CIF (λx) = λx(1) +
n−1∑
i=1

(λx(i+1)−λx(i))F (λx̂(i+1),(i)) (3)

Por tanto, tenemos el siguiente resultado:
Proposición 4.5: Sea F : [0, 1]n−2 → [0, 1] una función

simétrica creciente. Entonces, CIF es homogénea positiva si
y solo si F es constante.
Demostración.

Si F es constante, el hecho de que CIF es positiva
homogénea se sigue directamente de la Ec.(3).

Para ver el recı́proco, supongamos que CIF (λx) =
λCIF (x). Entonces:

n−1∑
i=1

(λx(i+1) − λx(i))F (λx̂(i+1),(i))

= λ
n−1∑
i=1

(x(i+1) − x(i))F (x̂(i+1),(i))

De la monotonı́a de F , si F no es constante, existe λ > 0 y
(y1, . . . , yn−2) ∈ [0, 1]n−2 tales que :

F (λy1, . . . , λyn−2) 6= F (y1, . . . , yn−2)

Supongamos que λ < 1 . Entonces, de nuevo a partir de la
monotonı́a de F , tenemos que:

F (λy1, . . . , λyn−2) < F (y1, . . . , yn−2) .

Por la simetrı́a de F podemos asumir, sin pérdida de genera-
lidad, que y1 ≤ y2 ≤ · · · ≤ yn−2.

Consideremos la n-tupla y = (0, y1, y1, . . . , yn−2) ∈
[0, 1]n. Entonces:

CIF (λy) = λ

n−2∑
i=1

(y(i+1) − y(i))F (λŷ(i+1),(i))

< y1F ( y1, . . . , yn2
) +

n−2∑
i=1

(y(i+1) − y(i))F (ŷ(i+1),(i))

de nuevo por la monotonı́a de F .
Como podemos repetir un argumento similar para λ > 1,

simplemente dando la vuelta a la desigualdad, tenemos el
resultado. �

V. ALGUNOS CASOS ESPECÍFICOS

En primer lugar, vamos a considerar el caso de los estadı́sti-
cos de orden. Es decir, dado i ∈ {1, . . . , n−2}, consideramos:

F (y1, . . . , yn−2) = Qi(y1, . . . , yn−2) = y(i)

Un cálculo directo muestra que:

CIF (x) = x(1) +
i∑

j=1

(x(j+1) − x(j))x(i+2)

+
n−1∑
j=i+1

(x(j+1) − x(j))x(i)

donde alguno de los sumatorios podrı́a ser vacı́o. Esta expre-
sión es equivalente a:

CIF (x) = x(1) + (x(i+1) − x(1)).x(i+2)

+ (x(n) − x(i+1)).x(i) = x(1).(1− x(i+2))

+ x(i+1).(x(i+2) − x(i)) + x(n).x(i)

Para i = 1 obtenemos:

CIF (x) = x(1) + (x2) − x(1))x(3) +

n−1∑
j=2

(x(j+1) − x(j))x(1))

En particular,
si x(1) = 0, obtenemos que

CIF (x) = x(2)x(3) .

Más generalmente, si x(i) = 0, tenemos que x(j) = 0
para 1 ≤ j ≤ i, y si tomamos F = Qi

CIF (x) = x(i+1)x(i+2) .

Por otra parte, el operador OWA es simplemente una
combinación convexa de operadores estadı́sticos de orden. Por
tanto, tenemos el siguiente resultado, cuya prueba es directa

Proposición 5.1: Sea w = (w1, . . . , wn−2) ∈ [0, 1]n−2 un
vector de pesos y sea Fw : [0, 1]n−2 → [0, 1] el operador
OWA definido por w. Entonces:

CIFw(x1, . . . , xn) =
n∑
i=1

wiCIQn−i+1
(x1, . . . , xn)

En cuanto a la relación con las funciones de overlap y
grouping, tenemos, en primer lugar, el siguiente resultado.

Proposición 5.2: Para cualquier fumnción simétrica crecien-
te F : [0, 1]n−2 → [0, 1], la función CIF no tiene divisores
de cero
Demostración. Basta observar que, para cualquier n-tupla x
con todas sus componentes estrictamente positivas, se verifica
que x(1) > 0, y, por tanto, CIF (x) ≥ x(1) > 0. �

Claramente, en general CIF no es una función de overlap
(porque ni siquiera tiene por qué ser continua). Más aún,
tenemos el siguiente resultado:

Proposición 5.3: Sea n > 2 y F : [0, 1]n−2 → [0, 1] una
función de overlap. Entonces, CIF (x) = 0 si y solo si x(1) =
x(2) = 0.
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Demostración.
Si x(1) = x(2) = 0, es directo que CIF (x1, . . . , xn) = 0.
Para ver el converso, si F es una función de overlap,

entonces F (y1, . . . , yn−2) = 0 siempre que y1 · · · · ·yn−2 = 0.
Como todos los términos en la Ec. (1) son no negativos,
CIF (x) = 0 implica que:

1. x(1) = 0, y
2. (x(2) − x(1))F (x̂(2),(1)) = 0

Si x(2) = x(1), tenemos el resultado. En otro caso, para que 2.
se verifique, ha de cumplirse que F (x̂(2),(1)) = 0. Pero esto
no es posible porque todas las componentes de x̂(2),(1) son
mayores y iguales que x(2) (y, por tanto, positivas) y F es
una función de overlap. �

De hecho, podemos caracterizar cuándo CIF es una función
de overlap.

Teorema 5.4: La función CIF : [0, 1]n → [0, 1] es una
función de overlap si y solo si la función F es idénticamente
cero.
Demostración.

Tomemos (0, x2, x3, . . . , xn) ∈ [0, 1]n con 0 < x2 <
x3 < . . . < xn. Si CIF es una función de overlap, entonces
CIF (0, x2, . . . , xn) = 0. Pero:

CIF (0, x2, . . . , xn) = x(2)F (x̂(2),(1))

+
n−1∑
i=2

(x(i+1) − x(i))F (x̂(i+1),(i))

que, por la definición de F y la elección de
(0, x2, x3, . . . , xn),es siempre cero si y solo si F es
idénticamente cero.

El recı́proco es directo. �
Corolario 5.5: CIF es una función de overlap si y solo si

CIF (x1, . . . , xn) = mı́n(x1, . . . , xn).
Con respecto a las funciones de grouping, tenemos el

siguiente resultado.
Teorema 5.6: Sea F : [0, 1]n−2 → [0, 1] una función simétri-

ca creciente y continua. La función CIF : [0, 1]n → [0, 1] es
una función de grouping si y solo si la función F es tal que:

1. F (x1, . . . , xn−2) = 1 siempre que x(n−2) = 1, y
2. si F (x1, . . . , xn−2) = 0, entonces x1 = · · · = xn−2 =

0.

Demostración.
La continuidad se sigue de las hipótesis. Sin pérdida de

generalidad, supongamos que existe (x1, x2, x3, . . . , xn−2) ∈
[0, 1]n−2 tal que x1 ≤ x2 ≤ · · · ≤ xn−2 con xn−2 = 1 y tal
que F (x1, . . . , xn−2) < 1. Entonces, de la monotonı́a de F ,
se sigue que F (0, . . . , 0, 1) < 1. Pero, en este caso:

CIF (0, 0, . . . , 0, 1) = x(n)F (x̂(n),(n−1)) < 1

lo que contradice la definición de función de grouping. Por
tanto, debe tenerse que F (x1, . . . , xn−2) = 1 siempre que
x(n−2) = 1.

Además, si existe (x1, . . . , xn−2) ∈ [0, 1]n con x(n−2) > 0
y tal que F (x1, . . . , xn−2) = 0, por la monotonı́a y la simetrı́a
de F tenemos que F (0, . . . , 0, x(n−2)) = 0. De donde:

CIF (0, 0, . . . , 0, x(n−2), x(n−2), x(n−2))

= x(n−2)F (0, . . . , 0, x(n−2)) = 0

que, de nuevo, es una contradicción.
El recı́proco es directo. �

VI. CONCLUSIONES

En este artı́culo hemos propuesto una familia de funciones
de agregación inspiradas en la integral Choquet. Estas funcio-
nes están definidas en términos de una combinación convexa
donde los pesos dependen de las entradas consideradas.

Este enfoque puede verse como un primer paso en el
desarrollo de un marco general que englobe integrales difusas,
por una parte, y otras funciones de agregación, por otra. Cabe
esperar, por tanto, que sean aplicables en un amplio abanico
de problemas.
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Abstract—Despite the efforts of the Process Mining community,
the understanding of process mining results and reports by non-
technical users still remains an open challenge. For this reason, an
increasing need for endowing, integrating and enriching process
mining tools and pipelines with mechanisms able to convey the
most salient aspects of a process in an understandable manner,
arises. Within this context, natural modalities of communication,
such as Natural Language, have proven as effective ways to
convey information to users in an understandable manner in
multiple domains. In this paper, we present a human-in-the-
loop approach for the interactive generation of Natural Language
Explanations of Processes. The system allows non-technical users
to interact, query and retrieve relevant and understandable
natural language explanations of a process. Based in process
mining algorithms and techniques, the proposed architecture
employs fuzzy set theory for capturing the relevant semantics of
a process within an ontology-driven system, capable of handling
and reasoning with imprecise knowledge. We show the validity
of our approach through the generation of a series of natural
language explanations for a healthcare process, which have
already been proven correct, relevant and understandable in the
literature.

Index Terms—Process mining, Natural Language Generation,
Fuzzy Quantification, Process Querying, Fuzzy Querying

I. INTRODUCTION

Process mining is a process-centric data-oriented discipline
aimed at exploiting event data recorded during the execution
of a process, allowing to discover, monitor and ultimately un-
derstand and enhance processes [2]. Process discovery is one
of the core tasks of process mining, whose aim is to discover
understandable and human-interpretable process models [13].
However, in real life scenarios, processes usually turn to be ex-
tremely complex. This difficulty, calls for technical knowledge
(process analysis, data science, statistics and related) to be able
to understand and utilize process mining tools, hindering the
accessibility of process mining for non-technical users, whom
are not specialized in data analytics and which are in turn the
usual stakeholders in organizations [13]. This raises the need
for novel ways of conveying the results of process mining to
users in a clear, direct and understandable way. In this sense,

This research is part of the R+D+i project TED2021-130295B-C33, funded
by MCIN/AEI/10.13039/501100011033/ and the “European Union NextGen-
erationEU/PRTR”. It also contributes to the PID2020-112623GB-I00 project
funded by MCIN/AEI/10.13039/501100011033/ and by “ESF Investing in
your future”. The support from the Consellerı́a de Educación, Universidades
e Formación Profesional (Xunta de Galicia) and ERDF/FEDER program
through grants ED431G2019/04 and ED431C2022/19 is also acknowledged.

being the intrinsic way of communication for humans, natural
language does not rely on users capabilities to extract relevant
information from data or graphs.

Natural Language Generation (NLG) systems, in particular
Data-to-Text (D2T) are primarily aimed at generating natural
language descriptions from non linguistic input data [16].
These systems have been used to facilitate the understanding
of information in multiple domains and application areas. In
the process mining domain, natural language descriptions have
been proved to help on understanding process mining results
[7].

In this paper we propose a new reference ontology-based
architecture to support the interactive generation of natural
language explanations of processes aiming to improve the
understandability and transparency of process mining for non-
technical users. Based on process mining and through the
use of fuzzy sets in fuzzy quantified sentences, the system is
capable of modeling process semantics in a linguistic manner
and reason with them, thus effectively generating natural
language explanations of processes. The main contributions
of this paper are:

• A novel architecture for the interactive generation of nat-
ural language explanations of processes, which is based
on process mining and ontology-driven. This architecture
facilitates a structured approach to extracting and con-
veying process-related information in a comprehensible
natural language format.

• A specialized ontology that integrates fuzzy set the-
ory and process mining. This ontology is designed to
model and semantically reason about processes in a
linguistically coherent manner. Additionally, the ontology
is designed to be user-extendable, which supports the
dynamic generation of tailored natural language expla-
nations based on user interactions and extensions.

• Based on the proposed architecture, we develop an al-
gorithm that interprets fuzzy queries and maps them to
the developed ontology, generating intermediate logical
representations. This allows for the interactive generation
of accurate and contextually relevant natural language
explanations of processes.

• A proof-of-concept of the generation of natural language
explanations of processes which have been already iden-
tified as relevant in the healthcare domain.
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II. RELATED WORK

A. Responsible Process mining

Multiple research initiatives exist on methods that can be
grouped under the name of responsible data science. These
initiatives seek to create awareness about potential negative
consequences of data and knowledge misuse, and propose
a series of principles to ensure its responsible use [13].
Responsible Process Mining (RPM) aims on developing a
framework to make process mining more trustworthy, fair
and transparent. Based on the FACT (Fairness, Accuracy,
Confidentiality, Transparency) principles, RPM poses a series
of challenges that process mining has to face and (potentially)
solve in the present or immediate future; granting the fairness,
trustworthiness and transparency of process mining [13]. One
of the challenges in the RPM framework is focused on the
explainability and understandability of process models and
process mining results i.e., “How to ensure accurate inter-
pretation of complex results by domain experts?”.

B. Natural Language in Process Mining

Previous to the proposal of the RPM framework, the need
for better ways of conveying process mining results was
already identified [7], [18]. As potential solutions, different
approaches try to harness the strengths of natural language
for enhancing the understandability, usability and ubiquity of
process mining.

1) Process Mining Querying: Works based in the idea of
Natural Language Interfaces to Databases propose querying
process information through natural language. In [9], authors
extend the ontology-based ATHENA system [19] with a
method that derives a domain ontology from process data
to support natural language queries over event logs stored
in an ElasticSearch database. Authors in [3] take a similar
approach, proposing a natural language interface that allows
to query existing process mining tools. They introduce a
reference architecture for a conversational interface to process
mining (only addressing the querying part) that translates
natural language queries into logical representations that are
ultimately translated into API calls to process mining tools.

2) Natural Language Generation: Classical NLG systems
are pipeline-based, and use domain knowledge as well as lin-
guistic knowledge in order to automatically generate texts that
summarize the most insightful aspects of some non-linguistic
input data [16]. In particular, D2T systems are concerned
with natural language generation from numeric input data
[15]. In the process mining domain, authors in [11], [12]
propose a pipeline for generating natural language descriptions
of process models in order to maintain stable representations of
process models during their life-span. Focusing on supporting
process model validation and inconsistency detection through
natural language.

Previous to NLG approaches, Fuzzy Set Theory [23] was
introduced with the aim of modeling and managing the un-
derlying uncertainty naturally present in natural language. In
this approach, the semantics of linguistic terms are modeled

through fuzzy sets. Then, these fuzzy sets are integrated into
predefined structures or templates, known as protoforms, in
a way that allows to summarize data (with some degree of
uncertainty present on them) in a linguistic manner, in the form
of fuzzy quantified sentences [21], [22]. In the literature, au-
thors in [4], [20] propose the use of fuzzy quantified sentences
to summarize event log data. By modeling the semantics of
event log data through fuzzy sets, linguistic summaries can be
generated. However, as no other process mining techniques are
applied (discovery, replay, etc.), the summarized information
is constrained to that present on an event log; lacking control-
flow or time related information that may be of utter interest.

Combining both perspectives, authors in [6], [7], propose a
framework for the generation of natural language descriptions
of processes based on a series of protoforms introduced in
[5]. Leveraging process mining techniques, not only control-
flow (process model) information is used, but descriptions are
enriched with quantitative and qualitative information about
past process execution extracted by mining and replaying event
logs. These descriptions were evaluated as valid, understand-
able and insightful by domain experts, effectively helping non-
technical users to better understand processes.

We can conclude that current proposals are limited to the
static generation of natural language descriptions of a process,
and predominantly focused on process model or event log
descriptions, which do not provide a complete understanding
of what is actually happening in a process. To the best of
our knowledge, the approach presented in [7] is the only
one supporting all process mining perspectives 1 and thus
providing users with complete, informative descriptions of a
process. Based on these ideas, in this paper, we propose a
new reference ontology-based architecture leveraging process
mining techniques and fuzzy set theory for the interactive
generation of natural language explanations of processes. The
use of an ontology allows to define semantic entities and their
relationships in the process mining and fuzzy sets domain,
allowing non-technical users to query the system for natural
language explanations of processes.

III. AN ONTOLOGY-BASED ARCHITECTURE FOR THE
EXPLANATION OF PROCESSES

This section introduces our proposal, centered around an
ontology-based architecture designed for the interactive gen-
eration of natural language explanations of processes. The
core of our system is this ontology, which encapsulates the
semantic relationships and properties within the process do-
main, integrating concepts from fuzzy set theory to handle
linguistic uncertainty. The proposed architecture, depicted in
Figure 1, supports both online and offline modes of interaction
through a user-friendly web-based interface. Online interaction
allows users to input queries and receive natural language
explanations in real-time. Conversely, in the offline mode,
expert users can enhance the system by adding new semantics

1Each of the dimensions in which a process can be analyzed: organizational,
control-flow, case, and time perspectives [2].
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Figure 1. Architecture overview of the proposed system

to the ontology, further refining the explanation capabilities of
the system.

A. Ontology

The domain ontology is a central piece in the architecture,
as it captures a semantic description of the process and
fuzzy quantification domains in terms of relevant entities and
their relationships. Based in a simplified version of the XES
meta-model [1], we extend the ontology with concepts from
fuzzy set theory, which allow to capture the semantics of
linguistic terms (words or sentences) via fuzzy sets. Having
the semantics of these linguistic terms modeled in the ontology
is what allows the system to ”understand” the terms used in
a query, and then use these semantics for generating fuzzy
quantified sentences from an event log. The semantics of these
terms are modeled in the ontology by a domain expert during
the design phase, or by a user during the so-called offline
interaction. Furthermore, on the ontology building stage, the
system automatically populates the ontology from the event
log data.

B. Feature engineering: Event log enrichment

As a previous stage to the proposed system, event log
enrichment may take place. Applying different process mining
techniques (process discovery, replay, etc.) new features of a
process can be discovered and be used as new process, case
or event attributes. Through feature engineering and feature
selection, the original event log is enriched for example with
temporal or control-flow related information derived from the
original log. This would definitely allow for the generation of
more interesting natural language explanations.

C. Fuzzy Quantified Sentences

Fuzzy quantified sentences provide a way of handling
uncertainty and expressing it in natural language, allowing for

the quantification of the most relevant characteristics of some
data.

1) Linguistic Variable: Summarizer, qualifier and quantifier
are defined as linguistic variables, used to model the partition-
ing of the domain of a non-linguistic variable into several
linguistic values. Being a linguistic value a linguistic term
with a label (word or sentence) and some semantics modeled
through a fuzzy set. A fuzzy set A in a referential X is
identified by a membership function µA, that assigns to each
element x ∈ X a grade of membership in [0,1] i.e. the degree
to which x satisfies the property indicated by A.

Among many others, linguistic quantifiers can be relative or
absolute: a relative linguistic quantifier relates the proportion
of elements of the referential that fulfill the property declared
by the summarizer e.g., ”most”, ”almost all”, and is repre-
sented as a fuzzy set Q ∈ [0, 1]; absolute linguistic quantifiers
denote absolute quantities in an imprecise way e.g., ”about
three”, ”much more than five”, and are defined as fuzzy sets
in the non-negative real line Q ∈ R+.

2) Generation of Fuzzy Quantified Sentences: The genera-
tion of fuzzy quantified sentences consists in the instantiation
of a protoform with some linguistic values for the quantifier,
qualifier and summarizer, and computing the truth degree of
the sentence to the summarized data. We will be using Zadeh’s
quantification model [22] for the truth degree evaluation,
although any other valid model could be used [8]. Assume
Z is some case attribute which can take values (numeric
or non-numeric) in V = ⟨v1, v2, ....⟩ e.g. cost, sex, etc.
X = ⟨x1, x2, ..., xn⟩ is the set of n cases from an event
log that show attribute Z, we use zi to indicate the value of
attribute Z for case xi. Then, Z = {z1, z2...} is the collection
of observations of attribute Z for the cases in Y . If we define
a summarizer A in V , and a quantifier Q, they can be used
to linguistically summarize attribute Z for the referential X .
T indicates the truth of the statement that Q elements of the
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collection X satisfy the sentence S.
For a type-I sentence, Zadeh’s quantification model is

defined as:

T = µQ

(
1

n

n∑
i=1

µA(zi)

)
(1)

Inside the parentheses, the membership degree sum of all
elements of a referential to a fuzzy set is called absolute
cardinality; if divided by the total number of elements in the
referential n, is called relative cardinality.

Notice, than more than one attribute can be used as sum-
marizer e.g. ”most students are tall and young”. In this case,
the membership degrees to both attributes are aggregated, in
our case t-norm minimum, denoted with the ”∧” operator.

For type-II sentences, a qualifier B of V is added. For this
type of sentence, Zadeh’s quantification model is as follows:

T = µQ

(∑n
i=1 µA(zi) ∧ µB(zi)∑n

i=1 µB(zi)

)
(2)

As before, more than one attribute can be used as qualifier
e.g. ”most students that are tall and young play basketball”.
Also, it may be interesting to not use a quantifier at all; we will
refer to sentences like this as qualitative sentences, and use
as its truth value, the relative cardinality of the summarizer.
The challenge then is to automatically generate true fuzzy
quantified sentences from an enriched event log. Usually,
this is done by performing an exhaustive search through the
semantic space2. However, this search can be computationally
prohibitive, thus why we employ Kacprzyk and Zadrozny’s
proposal of an interactive approach for the generation of fuzzy
quantified sentences [10].

3) Fuzzy Quantified Sentences in the NLG pipeline: The
NLG pipeline consists of 3 modules each of which is subdi-
vided in different tasks [16]. The content determination task is
focused on deciding what information should be conveyed in
the final generated text. As protoforms are relatively fixed, the
purpose of a protoform-based approach is mainly to determine
appropriate linguistic values for the summarizer, qualifier and
quantifier (and any other possible element) i.e. what informa-
tion is relevant and should be conveyed. In this sense, the
generation of fuzzy quantified sentences is mainly concerned
with this task. Nevertheless, fuzzy quantification protoform-
based approaches are valid in the framework of more complex
NLG systems, as fuzzy quantification techniques provide ways
of handling uncertainty in natural language, they can be used in
the content determination stage, aiding on the summarization
of the most relevant aspects of the non-linguistic input data
[14]. Furthermore, through the use of a human-computer
interaction interface (as we propose), and with the use of
protoforms, interactive and more sophisticated texts can be
generated without the need of a heavy user-interaction.

2The power set of all the defined semantics: quantifiers, qualifiers and
summarizers

Figure 2. Example of a taxonomy of protoforms.

D. Querying the system

To query the system, the user directly employs linguistic
terms whose semantics are modeled in the ontology; then
a semantic parsing module is in charge of retrieving the
semantics associated to each term. Before a linguistic term
may be used in a query, it has to be modeled and ”stored”.
This modeling is performed beforehand by a domain expert,
however, users can add its own syntax and semantics through
the offline-interaction with the system. By modeling the se-
mantics of different linguistic terms in the ontology, their re-
utilization is possible. For modeling the queries, we consider
the summarizer and qualifier as abstract fuzzy sentences like
”X is A”, where X is a linguistic variable describing an
attribute of referential Y and A is one of its possible values
e.g., X = age, A = young yield ”age is young”. The value
of A can also be left empty, only indicating which linguistic
variable is of interest and querying for its possible values. The
derivation of protoforms from a query then proceeds as:

1) The user formulates a query as a protoform of interest
and assigns linguistic variables and values as desired,
leaving the elements of the protoform to which is
looking for, empty. For example: “In Q cases where
admission is emergency, A”. This query would allow
to quantify how emergency admission affects any other
features of the process.

2) The system retrieves the semantics associated to each
term in the query from the ontology and parses the query.
The fuzzy set associated to each of the input terms is
retrieved.

3) Then, instantiates the input protoform in all possible
ways, replacing abstract symbols i.e. A and Q in the
example query, with the semantics that are in the on-
tology. Following Zadeh’s calculus of fuzzy quantified
propositions, all fuzzy quantified sentences compatible
with the query are generated and its truth value is
computed.

4) All valid sentences are returned to the user ordered by
truth value.

So, when the user inputs a query, the system has to instanti-
ate all possible protoforms in the semantic space that comply
with the query, giving place to a protoform taxonomy, in which
at each level, more protoform elements are instantiated and
protoforms are less abstract. An example can be seen in Figure
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Table I
CLASSIFICATION OF POSSIBLE QUERIES.

Query Given Sought Intent
In cases, attribute waiting time is long. S Q Summaries through ad-hoc queries
In cases where attribute waiting time is short, at-
tribute age is much older than 80.

S B Q Conditional summaries through ad-hoc queries

In many cases, attribute waiting time is . Q Sstructure Svalue Simple value oriented summaries
In many cases, attribute is . Q S Exploration value oriented summaries
In some cases where attribute admission is emergency,
attribute waiting time is .

Q B Sstructure Svalue Conditional value oriented summaries

In some cases where attribute admission is emergency,
attribute is .

Q B S Conditional consequence oriented summaries

In some cases where attribute is , attribute waiting
time is long.

Q S B Cause of given feature oriented summaries

In cases, attribute is . Nothing S B Q General fuzzy rules

2. At the top of we have a completely abstract protoform, in
the next level, we have instantiated the referential as the cases
in a process.

On the right branch qualifier B is instantiated to ”admission
is emergency”, below, linguistic variable ”waiting time” is
selected for the summarizer, but no linguistic value is chosen.
In the left branch, only the linguistic variable has been selected
for the qualifier.

The more abstract the query is, the less we assume, the
more sentences are returned to the user. To limit the search
and reduce the computational cost, we limit the generation to
sentences with a maximum of two aggregated attributes per
qualifier and summarizer, and with a truth degree of 0.7 or
above. Also, we define a set of proportional quantifiers e.g.
”almost none, some, many, etc.” as a series of positive, non-
monotonous fuzzy sets (trapezoids), reducing the redundancy
of the generated sentences.

The input query then is constructed through a wizard-like
web-based interface, were the user parts from an empty proto-
form (he/she can choose what type of protoform to use) and
assigns linguistic variables and values where desired. Table I
shows a series of queries, with the given inputs, the sought
elements that the system has to complete, and a description
of the user intent for each type of query. This classification
is based on the classification proposed by Kacprzyk and
Zadrozny’s in [10].

IV. PROOF-OF-CONCEPT

As a proof-of-concept we illustrate how some explanations
already validated can be generated. These explanations were
generated in the context of a pipeline for the generation of
natural language descriptions of healthcare processes. Particu-
larly, of the Aortic Stenosis Integrated Care Process (AS ICP)
implemented in the Cardiology Department of the University
Hospital of Santiago de Compostela [7]. First, we identify the
underlying protoforms from the generated explanations:

• In approximately half (52.72%) cases, patient had a wait
time between its CT scanning and its intervention lower
than expected.

• In approximately half (56.28%) cases, where patients
were intervened via TAVI, a CT scan is performed short
after its corresponding heart team meeting.

Figure 3. Generation of explanations of the AS ICP based on its underlying
protoforms.

From these examples, we can identify type-I ”In Q cases,
R” and type-II ”In Q cases with attribute C, R” protoforms.
Where R makes reference to a temporal relation between two
activities. These temporal relations are additional attributes
computed in the log enrichment phase, where through process
discovery and replay, temporal and frequency information can
be discovered. In these examples, more complex summarizers
than those seen until now are used; these kind of non-trivial,
more elaborated summarizers are the most interesting. As their
semantics are still human-modeled, and domain semantics are
usually shared among users in a particular domain (for ex-
ample, in the healthcare domain, clinical guides shared by all
experts allow to define stable semantics for linguistic variables
and values), these more complex summarizers are still human-
consistent and allow for the generation of richer explanations.
In Figure 3 we illustrate how the underlying protoforms of
the generated informative explanations are generated following
the taxonomy of protoforms that the system generates with an
input query.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a process-mining-based,
ontology-driven architecture and a system for the interac-
tive generation of natural language explanations of processes
through fuzzy quantified sentences. The ontology supporting
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the architecture models the semantics of the process mining
and fuzzy quantification domains, allowing to reason with pro-
cess related data in a linguistic manner. Furthermore, utilizing
fuzzy linguistic terms allows for the modeling of the inherent
imprecision present in natural language, a really useful tool
for summarizing data. The presented ontology is initially
modeled by domain experts, however, through an web-based
interface, expert users can add their own syntax and semantics
to the ontology, making the system user-extendable, reusable
and easily maintainable. We provide a novel ontology-driven
algorithm for the interactive generation of natural language
explanations. A proof-of-concept is presented, showing the
capabilities of this approach to generate useful, understand-
able and informative explanations of processes from different
domains.

As future work, the proposed architecture should be ex-
tended, both from the processing and generation sides. A
deeper natural language processing pipeline as in [3], [9]
can be implemented, giving support to queries in natural
language. As we have seen, protoforms represent a pow-
erful concept to formulate multiple types of sentences in
a uniform way. However, this structure can be enriched
with additional information: by modeling the semantics of
protoforms into the system’s underlying ontology, users could
modify protoforms in a more flexible way. Adding the rest
of the NLG pipeline stages to the system would also allow
for richer natural language explanations: different phrasing
of the same information, referring expression generation or
aggregating phrases to generate more complex summaries.
From the process standpoint, the ontology proposed in [17]
can be incorporated into the proposed ontology, giving support
to the event log enrichment stage. Furthermore, supporting
natural language queries relating not yet discovered features,
effectively computing the new feature (attribute) the user is
interested in, and generating a natural language explanation
summarizing it.
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Abstract—El método por el que un pasajero compra un billete
de tren es crucial para que las compañı́as ferroviarias puedan
ofertar servicios adecuados, tanto al pasajero como al operador
de la infraestructura. En este trabajo se estudia cómo se pueden
utilizar los Sistemas de Reglas Difusas para modelar el proceso
de toma de decisiones de un pasajero de tren a la hora de
comprar un billete. Más concretamente, se han utilizado un
método de generación de sistemas de reglas difusas que permite
al experto diseñar estos sistemas. Se presentan dos ejemplos que
ha permitido definir el comportamiento de dos tipos de pasajeros
muy distintos en una primera aproximación muy preliminar.
Estos modelos serán incorporados a nuestro simulador ROBIN
para poder estudiar su comportamiento en detalle y el ajuste de
los mismos.

Index Terms—Modelo difuso de pasajeros, modelos de decisión,
sistemas de reglas difusas, conjuntos difusos

I. INTRODUCCIÓN

La Unión Europea ha propuesto la liberalización de los
mercados ferroviarios como medio de mejorar la utilización de
las infraestructuras. Se trata de permitir que varias empresas
ferroviarias operen en la misma red ferroviaria. Inicialmente,
la mayorı́a de los paı́ses europeos mantenı́an una estructura
monopolı́stica del mercado ferroviario. Sin embargo, en las
últimas tres décadas, la legislación europea, empezando por
la Directiva 91/140 de 1991 [1], ha animado a varios paı́ses
a adoptar un enfoque de mercado ferroviario compartido. En
el caso concreto de España, el proceso de liberalización del

Este trabajo ha contado con el apoyo de las ayudas PID2020-
112967GB-C32 y PID2020-112967GB-C33 financiadas por
MCIN/AEI/10.13039/501100011033 y por FEDER Una forma de hacer
Europa y, el Departamento de Tecnologı́as de la Información y Sistemas y
el Vicerrectorado de Investigación de la Universidad de Castilla-La Mancha.
Se realizó cuando E.A. Villarrubia-Martı́n era becario predoctoral en la
Universidad de Castilla-La Mancha financiado por el Fondo Social Europeo
Plus (FSE+)..

mercado ferroviario se inició con la promulgación de la Ley
39/2003 del sector ferroviario. Sin embargo, no fue hasta
2021 [2] cuando la primera empresa ferroviaria extranjera
comenzó a operar en un corredor ferroviario español de alta
velocidad. Desde entonces, España ha implantado un modelo
de mercado verticalmente separado, con un administrador de
infraestructuras (ADIF) encargado de gestionar la capacidad de
infraestructura. Simultáneamente, varias empresas ferroviarias
(Renfe, Ouigo e Iryo) gestionan sus servicios de forma inde-
pendiente. Para más detalles sobre las distintas estructuras de
mercado [3].

Esta liberalización obliga a las empresas a estudiar y
modelizar el comportamiento del mercado para poder realizar
las mejores propuestas al administrador de infraestructuras de
forma que le resulten más beneficiosas. Dentro de este entorno
resulta de interés la obtención de modelos que sean capaces de
representar el comportamiento de los pasajeros en la compra
de billetes, lo que permite realizar las ofertas más adecuadas
a lo que el pasajero desea en función de las caracterı́sticas
que considera en el proceso de compra del billete, tales como:
precio, lugares de origen y destino, comodidad, etc. Dado que
cada tipo de pasajero realiza la compra del billete considerando
diferentes prioridades, por ejemplo, no es lo mismo la forma
de comprar un billete de un estudiante que la de un CEO de
una empresa. Para modelar esto se utilizará, se utilizará el
concepto de “perfil de pasajero”, que indica las preferencias
consideradas por el pasajero en la compra del billete. En
el diseño de estos perfiles se considerarán un conjunto de
caracterı́sticas que serán modeladas por un grupo de variables
que permiten modelar la forma en que un pasajero toma la
decisión de compra de un billete.

Para obtener estos modelos se pueden utilizar diferentes
técnicas de modelización. Una forma común de hacerlo con-
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Fig. 1. Logo del simulador ROBIN.

siste en utilizar funciones matemáticas que calculen un valor
de utilidad para el pasajero [4]. Otra posibilidad puede ser
el uso de la lógica difusa (FL) [5], que se ha utilizado con
éxito en un gran número de problemas y dominios diferentes.
Además, la FL es muy útil para modelar perfiles de pasajeros
gracias a la riqueza semántica que permiten los conjuntos difu-
sos y las etiquetas lingüı́sticas [6]. Por todo ello, proponemos
el uso de Sistemas de Reglas Difusas (FRS) para la creación
de un modelo de decisión de pasajeros. Estos sistemas son
eficaces, representan correctamente la incertidumbre inherente
al comportamiento de los pasajeros y son fáciles de entender.
Además, son explicables, lo que es absolutamente necesario
en los modelos de Inteligencia Artificial utilizados actualmente
en los sistemas automáticos.

ROBIN (Rail mOBIlity simulatioN) es un simulador mi-
croscópico para simular la movilidad ferroviaria en régimen
de competencia. El simulador es parametrizable y lo sufi-
cientemente general como para simular flujos de pasajeros
en sistemas ferroviarios en competencia. Además, permite
modelizar de forma desagregada el comportamiento de los
viajeros y sus elecciones de viaje en un mercado ferroviario
competitivo. Dentro de este simulador, se utiliza una función
de utilidad para modelizar la compra de un billete. Las
Figuras 1 y 2 muestran su logo y la estructura de su
kernel respectivamente. En este trabajo se propone utilizar
FRS tipo TSK. Por ello, hemos diseñado un método para
generar automáticamente un modelo de decisión que sirva
de apoyo a una entidad en el proceso de toma de decisiones
[7]. Admite variables de entrada que pueden tomar distintos
valores (crisp, difusos o categóricos). El procedimiento genera
automáticamente un conjunto de reglas difusas (FRS) que
simulan el funcionamiento de la entidad en relación con la
decisión a tomar. Este modelo se comporta de una forma
similar a los modelos del tipo TSK. Las reglas de este modelo
indican la importancia de las variables de entrada a la hora
de generar el valor de salida. Finalmente, destacar que los
modelos obtenidos tienen una alta interpretabilidad.

Se presentarán un par de ejemplos tipo de los modelos
generados por nuestro método, analizando su comportamiento
con el fin de mostrar que representan lo que se pretendı́a que
modelaran. También se mostrará cómo un experto con pocos
conocimientos de FL puede inducir un modelo a partir del
método propuesto.

El resto del trabajo se estructura de la siguiente manera.
En la Sección II se detallan algunas variables a considerar
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Fig. 2. Funcionamiento del kernel del simulador ROBIN.

para la realización del modelo del pasajero y cómo pueden ser
representadas para que el método presentado pueda generar el
modelo. Se mostrarán dos ejemplos de FRS inducidos para la
toma de decisiones sobre el perfil del pasajero. Finalmente, en
la Sección III se proponen las conclusiones y el trabajo futuro.

II. DISEÑO DE FRS PARA EL MODELO DEL PASAJERO

En el diseño de cualquier sistema de modelado es muy im-
portante representar correctamente la entidad que se pretende
modelar. Para esto se deben estudiar las caracterı́sticas que
definen la entidad y cómo se pueden definir. En nuestro caso,
se deben considerar las caracterı́sticas para modelar el proceso
de toma de decisiones de un determinado perfil de pasajero a
la hora de la compra de un billete de tren.

Dentro de este problema, el billete es un concepto clave ya
que es lo que valorará el modelo de decisión. Para modelizar
correctamente el billete, se pueden considerar algunas carac-
terı́sticas definitorias. Cada caracterı́stica estará representada
por una o varias variables. En esta primera aproximación se
utilizará una única variable para cada una de las caracterı́sticas.
Se utilizarán las siguientes caracterı́sticas:

1) Temporal: seleccionan las fechas preferidas de viaje.
2) Económica: se refieren principalmente al coste de la

plaza. Vendrán definidos por la capacidad económica del
pasajero, ası́ como por la imagen que quiera transmitir.

3) Imagen y reputación de las compañı́as: consideran la
imagen de la compañı́a para el pasajero.

Para cada una de las variables que forman parte de las
caracterı́sticas, se diseñarán conjuntos difusos que se utilizarán
en las reglas FRS. Cada uno de estos conjuntos se define
dentro de un dominio. Por simplicidad, se utilizarán conjuntos
difusos trapezoidales. Este tipo de conjuntos son ampliamente
utilizados porque son computacionalmente eficientes en la
implementación de estos sistemas. Además, son bastante intu-
itivos en su definición y en la interpretación de su significado.
Las variables utilizadas en esta primera aproximación son el
horario (SC - schedule) y el precio del viaje (P - price),
junto con la reputación de la empresa para el pasajero (RE -
reputation).

Para trabajar con el horario de viaje, proponemos el uso
de conjuntos difusos que representan el intervalo de tiempo
en el que el pasajero desea realizar el viaje. Por ejemplo,
supongamos un pasajero que desea realizar un viaje de unas 2
horas de duración y prefiere salir temprano por la mañana
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Fig. 4. Conjunto difuso utilizado para modelar las preferencias de precio.

y llegar con tiempo suficiente para comer al destino. Esto
se puede modelizar mediante un conjunto difuso trapezoidal
(denominado PASSC) que define, en un extremo, un intervalo
de tiempo de salida y, en el otro, el intervalo de tiempo de
llegada. La Figura 3 muestra un conjunto difuso que puede
modelar este caso. Como puede observarse, el pasajero prefiere
realizar el viaje entre las 8:30 y las 10:30 (instantes con
pertenencia máxima), y admite salir sobre las 7:00 como
muy temprano (primera hora con pertenencia mayor que 0),
y llegar, como muy tarde, sobre las 12:00, última hora con
pertenencia mayor que 0. Las horas estarán representadas por
la tupla fecha = (year,month, day, hour,minute, second).
Este conjunto admite dos tipos de pertenencia, a un valor real
v y a un intervalo schedule = [init, end]. En este trabajo
utilizaremos la pertenencia al intervalo.

El valor de pertenencia de [init, end] a SC se obtiene
mediante la Ecuación 1 que calcula el grado de pertenencia
medio de los valores vi tomados de n en n minutos en el
intervalo [init, end] a SC.

µSC([init, fin]) =

∑end
i=inic µSC(vi)

end− init
(1)

Por ejemplo, dejemos que schedule = [init, fin] =
[08:15,10:45] sea la tupla que define el horario de un viaje con-
creto, donde init es la hora de inicio del viaje y end es la hora
de finalización del viaje. En este caso, el tren sale a las 08:15
y llega a destino a las 10:45. Por ejemplo, si se toman valores
cada 15 minutos, se obtiene la siguiente secuencia de valores
de grado de pertenencia [0.83, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.83]
para cada elemento de la lista de horas [8:15, 8:30, 8:45, 9:00,
9:15, 9:30, 9:45, 10:00, 10:15, 10:30, 10:45] que da el valor
agregado 0.97.

Para la modelización del precio, se utiliza la variable Precio
(P ), que toma un valor real definido en [0, 100] donde los
valores cercanos a 0 representan los precios más baratos y
100 será el billete más caro posible. Por lo tanto, el precio del
billete debe normalizarse entre 0 y el precio máximo del billete
considerado. En el modelo, esta variable será un conjunto
difuso que modela los precios admitidos por el pasajero. Por
ejemplo, supongamos que un pasajero de bajos ingresos desea
viajar, su preferencia en relación con la variable P puede

0.0 55.0

70.0 100.0

100.0

Fig. 5. Conjunto difuso para modelar las preferencias de la reputación de la
compañı́a.

modelizarse mediante el conjunto difuso que se muestra en
la Figura 4. Como puede verse, sus preferencias se aproximan
al valor 0, lo que indica que desea un billete barato.

Por último, con respecto a la reputación de la empresa,
se definirá un conjunto difuso que define la reputación de la
empresa definida con un soporte de 0 a 100. Un valor más alto
indica una mejor reputación para el pasajero, por ejemplo, el
conjunto representado en la Figura 5 muestra una empresa que
tiene una reputación alta para el pasajero.

Tras detallar cómo modelar las preferencias de los pasajeros,
se mostrará la modelización de dos tipos de pasajeros muy
diferentes: un estudiante y un director general de una gran
empresa. Se han seleccionado los FIS (sistemas de inferencia
difusa) TSK [8]. Se ha utilizado un método de inducción
que genera reglas similares a las reglas de los TSK FIS
que constan de un fuzzificador, un conjunto de reglas TSK
y un motor de inferencia. El motor de inferencia realiza
procesos de inferencia basados en las variables de entrada
utilizando el conjunto de reglas TSK para generar el valor
de salida final. La clave para la inducción automática de
TSK FIS es la generación de reglas [9]. Se pueden encontrar
muchos métodos en la literatura, como el presentado por
Salimi y Mehdi [10]. Pensamos que estos sistemas pueden
ser adecuados para ser generados automáticamente ya que
el valor del consecuente es una función de las variables de
entrada. Esta dependencia puede ayudar a la inducción de estos
sistemas de reglas. Concretamente, hemos utilizado el método
presentado en [7] para la inducción de los modelos que se
presentará a continuación.

TABLE I
DISEÑO DE PERFILES DE PASAJERO

STD (estudiante)
STDSC STDP STDRE

[00:00, 08:00, 19:00, 24:00] [0, 0, 15, 20] [0, 0, 100, 100]
CEO (CEO)

STDSC STDP STDRE

[7:00, 8:30, 10:30, 12:00] [0, 0, 100, 100] [80, 90, 100, 100]
SC (horario), P (Precio), RE (reputación).

El perfil del estudiante se caracteriza por una baja capacidad
económica y disponibilidad de tiempo para realizar el viaje ya
que tiene una residencia en el destino donde permanecerá un
tiempo. Además, no le importa la reputación de la compañı́a
si le ofrece un billete barato. Por todo esto, a nuestro método
de inducción se le indica la aparición de variables de forma
individual, no con otras en el antecedente y que el consecuente
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debe tener más peso en la regla relativa a P . El modelo
inducido que representa a un estudiante es el siguiente:

R1 : IF SC is STDSC THEN 20
R2 : IF P is STDP THEN 80

Por otro lado, deben diseñarse los conjuntos STDP y
STDSC para cada uno de los estudiantes que utilicen el
modelo. La Tabla I muestra un ejemplo concreto que refleja
las caracterı́sticas expuestas anteriormente: poca capacidad
económica y le importa poco el horario. STDP debe tomar
valores cercanos a 0, 0, por ejemplo, puede ser STDP =
[0, 0, 15, 20]. En cuanto a STDSC dependerá del tiempo que
el alumno quiera estudiar, por ejemplo, supongamos que no
quiere madrugar demasiado y llegar a destino antes de que
anochezca. La duración del viaje no le importa mucho. En
este caso podrı́a ser STDSC = [00:30, 08:00, 19:00, 24:00].
El FRS no cuenta con ninguna regla asociada a la reputación
debido a que no le importa al estudiante.

El perfil del CEO está marcado por una gran capacidad
económica, no le importa el coste del billete y tiene un gran
interés en que el viaje se realice a las horas que él desea.
Además, le importa la imagen que tiene de la empresa, si
no confı́a en la empresa no quiere viajar con ella, no puede
fallar en su viaje. En este caso ocurre algo similar al caso
anterior, no interesa la aparición conjunta de variables en los
antecedentes, y, la variable más destacada para el CEO es SC,
luego tendrán un peso más destacado en el consecuente. Este
puede ser su modelo:

R1 : IF SC is CEOSC THEN 70
R2 : IF RE is CEORE THEN 30

En este caso, el CEO utiliza las variables SC y RE, la
variable P no se utiliza porque no le importa (Tabla I). El
CEO viaja temprano y supongamos que el viaje dura aproxi-
madamente 2 horas. En este caso podrı́a ser STDSC =[7:00,
8:30, 10:30, 12:00]. Además, quiere una reputación alta de la
empresa, por lo que STDRE deberı́a tomar valores cercanos a
100, 0, por ejemplo, podrı́a ser STDRE = [80, 90, 100, 100].

Se han diseñado dos FRS con el método propuesto para
proporcionar algunas ideas para modelizar la compra de un
billete de tren de acuerdo al ”perfil del pasajero“. Estas
consideraciones son:

1) El FRS generado utiliza en el antecedente las variables
en las que está interesado el pasajero según su perfil. Las
variables que no le interesan no se hace uso de ellas en
el antecedente.

2) El consecuente ofrece un mayor valor de salida en las
reglas que utilizan las variables que más interesan al
pasajero y está ponderado entre 0 y 100 (si consideramos
las reglas) por la forma de funcionar del método de
inducción utilizado. Esto indica claramente las prefer-
encias del pasajero estudiando el consecuente.

3) La combinación de las variables de entrada para calcular
automáticamente el valor de salida es importante en
los FRS generados. Si bien en este documento no se
ha mostrado ningún ejemplo por la temprana fase de
desarrollo en la que nos encontramos.

III. CONCLUSIONES

Este artı́culo se ha presentado la utilización de un método de
inducción para generar FRS que modelan perfiles de pasajeros
a la hora de la compra de un billete. Los modelos generados
pueden ser útiles para ayudar a las compañı́as a representar
los perfiles de los distintos pasajeros. Pueden ser muy útiles
en simuladores del mercado ferroviario para la modelización
de los diferentes tipos de usuarios de trenes.

Las TSK FIS son adecuadas para este fin, ya que el valor
del consecuente de las reglas es función de las variables
del antecedente, lo que permite calcularlas automáticamente.
Además, se han identificado tres consideraciones que ayudarán
en el diseño de este sistema automático.

Como trabajo futuro, pretendemos la creación de FRS más
detallados que consideren más variables para definir de una
forma más precisa el comportamiento del pasajero. Además,
debemos integrar dichos modelos en nuestro simulador [4]
reemplazando la función de utilidad que utilizamos en la
actualidad. El entorno versátil que ofrece el simulador per-
mitirá comprobar la eficacia de los modelos obtenidos para
cada perfil de pasajero, ası́ como su ajuste a las diferentes
situaciones.
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Abstract—In decision-making, we face a situation where we
have to decide whether it is worth performing an investment or
not, based on a multitude of variables. The Net Present Value
(NPV) indicates the profit that our investment will produce over a
series of time periods within a fixed time horizon. Its computation
begins with certain data or variables from which we can obtain
a cash-flow for each time period under consideration. Some
of these variables involved in the aforementioned computation
can take values within an interval of possibilities whose end-
points are their pessimistic forecast (PF) and their optimistic
one (OF). From these values, the expert subjectively generates
two distinct cash-flow projections: the Optimistic Cash Flow
(OCF) and the Pessimistic Cash Flow (PCF). The Net Present
Value (NPV) is then computed using a cash-flow obtained as
the arithmetic mean of both projections. However, there are
infinite possible intermediate cash-flows that could be considere
to obtain the NPV. Given the lack of an analytical reason to
select the arithmetic mean cash-flow as the most appropriate
one, and considering that such a choice could be derived from
an appropriate aggregation function, in this paper we introduce
a new decision-making method for the assessment of investments
and companies. This method is based on the use of fuzzy mid-
points and aggregation functions. Moreover, the new methodology
incorporates a penalization, fixed following an analytical proce-
dure and thus reducing subjectivity, for the elapsed time and
for the discrepancy between OCF and PCF in order to generate
the NPV. Finally, all methodologies are tested by applying them
to a paradigmatic example where real data is considered and
the NPV of a five-year hotel assessment is computed. Here, it is
illustrated that the proposed methodologies could be appropriate
for the assessment of investments and companies, particularly
when operating under uncertainty.

Index Terms—Aggregation Function, Decision-Making, Com-
pany Assessment, Investment, Mid-Point, Time-Dispersion Penal-
ization.

This research is part of project PID2022-139248NB-I00 funded by MI-
CIU/AEI/10.13039/501100011033 and “ERDF A way of making Europe”.

I. INTRODUCTION

The Net Present Value indicates the profit that our invest-
ment will produce over a series of time periods within a fixed
time horizon. First of all, we need some data or variables from
which we can obtain a cash-flow for each time period under
consideration. These variables can take values in an interval
of possibilities whose end-points are the pessimistic forecast
(PF) and the optimistic one (OF).

Many times, the expert or decision maker provides two
distinct projections of cash-flows: the Optimistic Cash-Flow
(OCF) and the Pessimistic Cash-Flow (PCF). Now, we are in
front of infinite different possible forecasts, all those values
between the OCF and the PCF, and the expert in charge needs
to determine which data is more appropriate or representative
among them in order to make his/her final decision, i.e., in
order to fix a concrete value as suitable forecasting for that
cash-flow. The NPV is then computed using an intermediate
cash-flow determined through subjective judgments. Certainly,
this process can be approached in various ways and generally,
there is no analytical method to determine the aforementioned
intermediate cash-flow value. Typically, such a value is set
heuristically according to the expert’s criteria. In order to avoid
this handicap, a typical approach is to set such a value by
taking the arithmetic mean between the PCF and OCF.

The classical methodology, based on the Certainty Equiv-
alent, assumes that the generation of each flow involved
in the NPV computation is independent, on the one hand,
of the year in which it is generated and, on the other, of
the dispersion or discrepancy between the values PCF and
OCF. The classical methodology operates by estimating some
reduction coefficients, which are subjectively determined by
the expert in charge. These coefficients are used to penalize
the forecasts of the intermediate cash-flow corresponding to
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more distant periods, due to the uncertainty associated with
them. Depending on the estimation of the aforementioned
reduction coefficients, it can lead to very different results and
thus, the final assessment is highly sensitive to the choice of
the coefficients. Observe that such a NPV value may not be
the most reasonable and credible forecasting, since it has been
fixed by means of subjective judgments.

Motivated by exposed facts, the objective of this study is to
propose an analytical technique based on the use of L-fuzzy
sets in the sense of [1], aggregation functions and mid-points,
and thus applying fuzzy logic. This new methodology operates
similarly to the classical one. It considers two distinct projec-
tions of cash-flows obtained for each year under consideration:
the Optimistic Cash-Flow (OCF) and the Pessimistic Cash-
Flow (PCF). Consequently, we are in front of infinite different
possible intermediate cash-flow forecasts and we need to
determine which one is more appropriate among them in order
to make the final decision. The mentioned intermediate cash-
flow is stated by means of the use of aggregation functions.
Moreover, in contrast to the classical methodology, the new
technique incorporates two penalizations: one for the elapsed
time and the second one for the discrepancy between the
PCF and the OCF in order to generate the NPV. The afore-
mentioned penalizations are incorporated in the mathematical
computation by means of weights that, unlike the case of
the Certainty Equivalent, are constructed analytically and not
through subjective estimations.

The originality of our study lies in its application of fuzzy
logic to the field of financial forecasting, offering an analytical
and structured alternative to the subjective estimations used
traditionally. Consequently, it introduces a new methodology
based on the use of aggregation functions and fuzzy mid-
points for dealing with the inherent uncertainties of financial
forecasting.

The presented methodology is tested applying it to a
paradigmatic example where real data is considered and the
NPV of a five-year hotel assessment is computed. Such an
example illustrates that the proposed methodologies could be
appropriate for the assessment of investments and companies,
particularly when operating under conditions of uncertainty.

The structure of this study is as follows: Section II presents
a brief literature review on the subject in question. Section III
explains the key concepts necessary to understand investment
theory. Section IV presents our time-dispersion penalization
methodology. This is followed by Section V, which showcases
a practical application to a company assessment. Finally, in
Section VI closing conclusions are provided.

II. LITERATURE REVIEW

The necessity of handling the aforesaid uncertainty in
problem-solving has generated a large amount of literature.
Over the years, research has shown that traditional tools issued
from probability theory were felt to be insufficient to handle
uncertainty [2]. In contrast, the fuzzy set theory developed by
Zadeh [1], [3] presents a new point of view when operating
with uncertainty. This theory was particularly designed to

mathematically represent uncertainty and vagueness. More-
over, it provides formalized tools for dealing with many real
problems where uncertainty takes place [4].

Since investment decision-making implies uncertainty, the
fuzzy set theory appears to be an appropriate framework. A
wide literature review on fuzzy investment decision-making
is given in [5]. In the aforementioned reference, most of the
works on fuzzy investment decision-making are related to the
usage of discounted fuzzy cash-flows.

In this light, our study contributes to and increases the
number of researches conducted based on the aforementioned
premises. It demonstrates how investment criteria, which
incorporate fuzzy logic through aggregation functions for
decision-making, allow us to deal better with uncertainty. This
is because the computation relies entirely on an analytical
procedure, thereby subjectivity is reduced.

III. INVESTMENT THEORY

A. Net present value

When we face an assessment of an investment or company,
it is essential to determine its profitability. For this reason, we
need a measure so as to have a reference for the assessment
or to decide whether it is profitable to proceed or not with the
investment.

The Net Present Value (NPV) of an investment is defined as
the sum of the present values of incoming (benefits) and outgo-
ing (costs) cash-flows over a period of time. The computation
of NPV takes into account the cash-flow chronology. This is
accomplished by using a discount rate in order to homogenize
the different cash-flows at different moments of time. In other
words, the NPV is the value of an investment discounted to the
present and therefore, it is useful to determine how much an
investment is worth [6]. The computation of NPV is performed
by the following formula: NPV = −A+

∑n
i=1

Qi

(1+k)i , where
A is the Initial disbursement, Qi is the cash-flow or difference
between payments and collections generated by the investment
associated to period i, n (n ∈ N) is the Duration of the
investment measured in years and k is the Cost of capital
(discount rate).

B. Terminal Value

When we are in front of an investment project or a company
assessment, the first step is to define the period of time that
will be studied.

The terminal value is the project value at the end of the
defined period of time, in other words, the price by which we
understand that we could sell or transfer it. For this reason,
to assess our project we must take into account not only the
total cash-flows generated through the project life, but also the
terminal value at its end (see [6]).

Regarding a company assessment, we usually consider that
it will continue to generate income sine die, meaning that its
end is not defined. In that case, it is impossible to make such
long-term projections so we must define the terminal value as
follows: TV = Qn·(1+q)

(k−q) , where q is the Expected Cash-flow
growth.
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C. Classical methodology: the certainty equivalent

The classical methodology uses a technique that allows
introducing risk and uncertainty in the analysis of investment
projects. This methodology is based on the use of the Certainty
Equivalent. Remember that when we obtain a cash-flow, it
incorporates a certain level of risk because it is obtained from
expected variables, as mentioned before, set in many cases
by subjective expert judgments. Following [7], in view of
the preceding fact, the methodology consists in reducing the
expected cash-flows of an investment treating its risk level
individually.

To apply this technique, we must assign a reduction co-
efficient αn for each period of time n (β for the terminal
value). The coefficient values αn are obtained by a subjective
estimation of an expert and they will oscillate between 0 and
1 (αn ∈ (0, 1]). Moreover, such coefficients are inversely
proportional to the risk perceived by the expert for the period
in which the cash-flow is estimated. Finally, we multiply each
of the estimated net cash-flows at different periods of time by
its associated reduction coefficient as follows:

NPV = −A+
α1 ·Q1

(1 + k)1
+

α2 ·Q2

(1 + k)2
+· · ·+ αn ·Qn

(1 + k)n
+

β · TV
(1 + k)n

.

IV. TIME-DISPERSION PENALIZATION METHODOLOGY

Before presenting the core concepts of our new methodol-
ogy, it is crucial to recognize that it follows the fundamental
principles of fuzzy logic philosophy. Each cash-flow involved
in the computation of the NPV takes values in a closed interval
and, hence, according to [1], they are considered as L-fuzzy
sets, where L is a closed interval of non-negative real numbers.
On account of [8], the considered aggregation functions are
defined over an interval of non-negative real numbers which
are not necessarily the unit interval. Notice that aggregation
functions deal with interpolation within a range of values and
such an interpolation provides the mid-point between OCF and
PCF as L-fuzzy sets.

A. Aggregation functions

As exposed in Sections I and III-C, in order to compute
the NPV value, the expert provides two distinct projections
of cash-flows: the Optimistic Cash-Flow (OCF) and the Pes-
simistic Cash-Flow (PCF). This is achieved by establishing
an optimistic forecast (OF) and a pessimistic forecast (PF)
for those variables which inherently involve uncertainty. Later
he/she computes the NPV by means of an intermediate cash-
flow, between the OCF and the PCF, fixed by means of sub-
jective judgments. Of course, this can be done in many ways
and, in general, there is not an analytical method to determine
the aforesaid intermediate NVP value. Typically, such a value
is set heuristically according to the expert’s criteria. So this
provides that the estimation can be set heuristically as any
value between the PCF and the OCF. In order to reduce the
subjectivity to some extend, sometimes this value is fixed as
the arithmetic mean value between OCF and PCF. In any case,
the value taken by the expert as the most reasonable or credible

forecasting is in fact a mid-point between PCF and OCF. Here,
aggregation functions arise as a natural mathematical tool in
order to merge PCF and OCF. Notice that aggregation func-
tions capture mathematically the mid-point notion. Taking this
into account it seems natural to consider aggregation functions
as a suitable candidate to express mid-point selections in the
estimation of the intermediate cash-flows and, hence, in the
computation of NPV.

In the remainder of this section, we introduce the notion
of aggregation function, which will play a central role in our
time-dispersion penalization methodology. Let us recall that,
according to [8] (see also [9]), an aggregation function is a
function f : [a, b]2 → [a, b] satisfying the following properties:
(i) f(a, a) = a and f(b, b) = b,

(ii) f(x, y) ≤ f(z, w) provided that x ≤ z and y ≤ w.
Of course, in the preceding definition we denote by R+

the set of nonnegative real numbers and, in addition, we are
assuming that a, b ∈ R+ with a < b.

Notice that we are considering aggregation functions only
with two arguments because this is enough for our purpose.
For a fuller treatment of averaging aggregation functions we
refer the reader to [8] and [9].

Among aggregation functions, we will focus our attention
on the so-called averaging aggregation functions which gener-
alize the classical arithmetic mean. In fact, the arithmetic mean
is a concrete example of this kind of functions. An aggregation
function f is said to be averaging provided that the following
inequality holds for all x, y ∈ R+:

min(x, y) ≤ f(x, y) ≤ max(x, y).

In the computation of the aforesaid mid-points we will
use only a few celebrated instances of averaging aggregation
functions with the aim of illustrating our new methodologies
for estimating the NPV: the Hurwicz Operator, the Minimum
Operator and the Maximum Operator. Furthermore, the Arith-
metic Mean will be used as a reference when comparing
all numerical obtained results. Let us recall such aggregation
functions for the convenience of the reader.

• The Arithmetic Mean M , where, given x, y ∈ R+,

M(x, y) =
x+ y

2
.

• Maximum operator Max and Minimum operator Min,
where, given x, y ∈ R+, we have

Max(x, y) = xmax, Min(x, y) = xmin.

Notice that xmax and xmin denote the greatest and the low-
est values of the vector input (x, y), respectively. Observe
that, in this scenario, both the Maximum Operator and the
Minimum Operator provide a mid-point equal to the one
that an expert would give applying directly the Optimistic
and Pessimistic Decision-Making Criteria which provide
the extreme estimations, i.e., OCF and PCF respectively
(see [10]).

• Hurwicz Operator HC, where, given x, y ∈ R+, this
aggregation function finds a value between the optimistic
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xmax and pessimistic xmin positions, from a coefficient
α (α ∈ [0, 1]) known as coefficient of realism. This co-
efficient measures the degree of optimism of the decision
maker, so it depends on the expert inclination. It ranges
between 0 and 1 being 0 when the decision maker is
totally pessimistic and 1 when he/she is totally optimistic
(see [10] and [9]). Therefore, the mathematical expression
is the following one:

HC(x, y) = αxmax + (1− α)xmin.

Observe that for α = 1
2 , the Hurwicz operator becomes

the Arithmetic Mean. Moreover for α = 1 and α = 0,
it retrieves the maximum and the minimum operators,
respectively.

B. Time-dispersion cash-flow penalization methodology

For each year n we compute two cash-flows. Both are com-
puted as in the classical way. The first one OCFn is obtained
considering only the optimistic forecasts of those variables
that admit both pessimistic and optimistic estimations. The
second one PCFn is obtained considering only the pessimistic
forecasts of those variables that admit both pessimistic and
optimistic estimations. Those variables that do not admit two
estimations are treated as in the classical methodology.

Taking into account the exposed facts, the new methodology
is based in the following four steps:

1) For each year n, we compute the Cash-Flows PCFn and
OCFn.

2) For each year n, from both Cash-Flows (PCFn, OCFn),
we obtain a weight wn which only depends on the
elapsed time n, PFCn and OCFn. A few examples
proposed for analyzing the numerical example will be
detailed later. Observe that this weight can be interpreted
as a time-dispersion penalty of both cash-flows estima-
tions, PCFn and OCFn.

3) Consider the value HC(PCFn,OCFn) as the mid-point
(realism estimation) of the Cash-Flow associated to year
n, where the realism coefficient is fixed as wn.

4) The NPV is obtained as in the classical case using
the new mid-point calculated cash-flows and setting the
reduction coefficients equal to 1.

Notice that the value of HC(PCFn,OCFn) will decay fol-
lowing the time-dispersion penalization. However, this applies
only to variables which are related to an income. In contrast,
variables which represent an expense, will behave in an
opposite manner since when the penalization is applied, the
HC(PCFn,OCFn) will be increased over time and dispersion.

C. A few possible realism weights

We end this section exposing different possible weights that
can be applied to get the realism coefficient mentioned above.
Of course, they are only instances that captures time-dispersion
penalty. However, other weights could be set by the expert as
realism coefficients for the assessment so that they adjust in
the most appropriate way to the investments or company under
consideration.

If (vp, vo, n) is a vector where vp represents a pessimistic
value, vo an optimistic value and n the elapsed time pe-
riod (years), the following examples are instances of time-
dispersion penalties:

w1(vp, vo, n) =


1 if n = 1

min

{
α

n−1 ,
1

|vp−vo|
vo

+1

}
if n > 1

,

w2(vp, vo, n) =

1 if n = 1
α

n−1 · 1
|vp−vo|

vo
+1

if n > 1 ,

w3(vp, vo, n) =
1

(n−1)+(
|vp−vo|

vp
)+1

.

V. PRACTICAL APPLICATION TO THE ASSESSMENT OF
COMPANIES

Now that the methodologies to be tested are already ex-
plained, we propose a practical example with real data so that
we can apply all the different methodologies, the classical one
(arithmetic mean) and the time-dispersion cash-flow penaliza-
tion methodology. Concretely, it is an example of a five-year
hotel assessment.

The main objective is to obtain different NPVs with the
different explained methodologies and to confirm that the
estimation provided by the new methodology is reasonable
and could be considered as suitable as that provided by the
classical methodology, but now with the advantage of avoiding
the high dependence of the NPV estimation caused by the
reduction weights imposed by the certainty equivalent and
chosen subjectively by the expert in charge.

Table I summarizes the values of the different variables
that describe the company in the example. Notice that the
cells represent, for each variable, an interval whose limits
are the pessimistic and the optimistic forecasts respectively
provided by an expert in charge and, thus, such a variable can
be considered as an L-fuzzy set. Let us note again that those
variables involved in the cash-flows computation that do not
admit pessimistic and optimistic forecasts are not exposed in
the aforementioned table because they are treated as in the
classical case (see the GitHub repository).1.

TABLE I
VARIABLES SUMMARY.

Year 1 Year 2 Year 3 Year 4 Year 5
Pax/room [2.8, 3.1] [2.795, 3.11] [2.79, 3.12] [2.78, 3.13] [2.77, 3.15]

OR1 [0.78, 0.81] [0.77, 0.82] [0.765, 0.825] [0.76, 0.83] [0.75, 0.835]

AIS2 [35.5, 37] [36, 38] [36.25, 38.5] [36.5, 39] [36.75, 39.5]
GOP/Sales [0.225, 0.27] [0.22, 0.28] [0.215, 0.285] [0.213, 0.29] [0.21, 0.3]

Taxes/Sales3 [0.04, 0.02] [0.04, 0.02] [0.04, 0.02] [0.04, 0.02] [0.04, 0.02]

IG4 [0.04, 0.01] [0.04, 0.01] [0.04, 0.01] [0.04, 0.01] [0.04, 0.01]
1 Occupancy Rate. 2 Average Income per Stay. 3 Fees, Insurances, other

Taxes / Sales. 4 Investment Growth.

Once we have determined the PF and OF values for each
variable exposed in Table I, it is the time to calculate the

1All necessary data regarding the company description, the values of
all involved variables and all calculations required for the methodologies
considered, both the classical and the newly introduced one, can be con-
sulted in the documentation which can be downloaded from the following
GitHub repository: https://github.com/mserrauibcat/A-new-decision-making-
method-for-the-assessment-of-investments-and-companies-.git
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profit-and-loss account for each year, which is necessary to
obtain the various Qn values. Depending on the methodol-
ogy, such values match up with the PCFn, the OCFn or
M(PCFn, OCFn). All the calculations which are necessary
to apply the different methodologies can be consulted step by
step in the aforementioned Excel source code (see the GitHub
repository). From now on, we will only present the results as
a summary to facilitate reading.

The results

As extreme estimations, in the following we show the
results after computing the NPV of the investment applying
the Maximum and Minimum Operators (special cases of the
Hurwicz operator). The values of the variables used to perform
the aforementioned computations are shown in Table II for the
Minimum Operator and Table III for the Maximum Operator.

A. Minimum operator

Notice that this is the equivalent to the pessimistic scenario,
in other words, the pessimistic value of each variable have
been used to calculate each cash-flow, resulting in the fol-
lowing estimation NPV = 50642.14 e. All PCFs (Qmin) are
summarized in Table IV.

TABLE II
VARIABLES SUMMARY

Year 1 Year 2 Year 3 Year 4 Year 5
Pax/room 2.800 2.795 2.790 2.780 2.770
OR1 0.780 0.770 0.765 0.760 0.750
AIS2 35.500 36.000 36.250 36.500 36.750
GOP/Sales 0.225 0.220 0.215 0.213 0.210
Taxes/Sales3 0.040 0.040 0.040 0.040 0.040
IG4 0.040 0.040 0.040 0.040 0.040

1 Occupancy Rate. 2 Average Income per Stay. 3 Fees, Insurances, other
Taxes / Sales. 4 Investment Growth.

B. Maximum operator

Notice that this is the equivalent to the optimistic scenario,
in other words, the optimistic value of each variable have been
used to calculate each cash-flow, resulting in the following
estimation NPV = 15412651.12e. All OCFs (Qmax) are
summarized in Table IV.

TABLE III
VARIABLES SUMMARY

Year 1 Year 2 Year 3 Year 4 Year 5
Pax/room 3.100 3.110 3.120 3.130 3.150
OR1 0.810 0.820 0.825 0.830 0.835
AIS2 37.000 38.000 38.500 39.000 39.500
GOP/Sales 0.270 0.280 0.285 0.290 0.300
Taxes/Sales3 0.020 0.020 0.020 0.020 0.020
IG4 0.010 0.010 0.010 0.010 0.010

1 Occupancy Rate. 2 Average Income per Stay. 3 Fees, Insurances, other
Taxes / Sales. 4 Investment Growth.

C. Arithmetic mean

Having presented the pessimistic and the optimistic scenar-
ios, it is also interesting to present, as a reference with which to

compare, the mid-scenario which corresponds with the appli-
cation of the Arithmetic Mean between the OCF and the PCF
(the mid-point provided by the classical methodology and,
again, a particular case of the Hurwicz operator). The obtained
NPV estimation is the following one: NPV = 7731646.63 e.
Thus, from each OCF and PCF a QAM is obtained. These are
summarized in Table IV.

TABLE IV
PESSIMISTIC, OPTIMISTIC AND MID CASH-FLOWS SUMMARY

Year 1 Year 2 Year 3 Year 4 Year 5
Qmin 913 877.50C 880 388.41C 845 869.20C 820 617.35C 788 593.32C
Qmax 1 318 076.06C 1 436 587.55C 1 499 351.62C 1 563 860.84C 1 666 695.19C
QAM 1 115 976.78C 1 158 487.98C 1 172 610.41C 1 192 239.09C 1 227 644.26C

D. Time-dispersion cash-flow penalization methodology
Notice that, from now on, H denotes the mid-point value

obtained through the Hurwicz operator, in other words, the
application of the Hurwicz to the optimistic and pessimist
forecasts for the cash-flow under consideration using as the
coefficient of realism one of the weights proposed in Subsec-
tion IV-C. Next, we apply the methodology introduced in Sub-
section IV-B testing the aforesaid weights. Recall that in this
methodology we compute the Pessimistic Cash-Flow (Qmin)
and the Optimistic Cash-Flow (Qmax) and, later, we apply
the Hurwicz operator to get a mid-point QH . The coefficient
of realism is one of the proposed weights in Subsection IV-C.
Table IV summarizes the optimistic and pessimistic cash-flows
obtained for each year.

1) Weight 1 (w1): After the application of the methodology
with the current weight, we have obtained the cash-flows
shown in Table V. The obtained NPV estimation is the
following one: NPV = 4583834.59 e.

TABLE V
MID-POINTS CASH-FLOWS SUMMARY

Year 1 Year 2 Year 3 Year 4 Year 5
w1 1.000 0.721 0.500 0.333 0.250
QH 1 318 076.06C 1 281 348.92C 1 172 610.41C 1 068 365.18C 1 008 118.79C

2) Weight 2 (w2): After the application of the methodology
with the current weight, we have obtained the cash-flows
shown in Table VI. The obtained NPV estimation is the
following one: NPV = 3286214.27 e.

TABLE VI
MID-POINTS CASH-FLOWS SUMMARY

Year 1 Year 2 Year 3 Year 4 Year 5
w2 1.000 0.721 0.348 0.226 0.164
QH 1 318 076.06C 1 281 348.92C 1 073 429.68C 988 552.16C 932 369.83C

3) Weight 3 (w3): After the application of this methodology
with the current weight, we have obtained the cash-flows
shown in Table VII. The obtained NPV estimation is the
following one: NPV = 2945672.16 e.

TABLE VII
MID-POINTS CASH-FLOWS SUMMARY

Year 1 Year 2 Year 3 Year 4 Year 5
w3 0.693 0.380 0.265 0.204 0.164
QH 1 194 125.34C 1 091 729.09C 1 019 089.21C 972 123.06C 932 226.48C
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E. Summary results and discussion

To facilitate comparison of the different NPVs obtained
through the application of the methodologies under discussion,
we compile them in Table VIII.

TABLE VIII
NPV ESTIMATIONS SUMMARY.

Methodology Net Present Value
Minimum Operator 50 642.14 e
Maximum Operator 15 412 651.12 e

Arithmetic Mean 7 731 646.63 e
Hurwicz Operator: w1 4 583 834.59 e
Hurwicz Operator: w2 3 286 214.27 e
Hurwicz Operator: w3 2 945 672.16 e

Table VIII shows that the minimum and maximum operator
results delimitate the extreme values that our analysis can
give us, which have been fixed by the expert. Among these
values, we find the results obtained after the computation of
the proposed methodologies. This fact indicates that the new
NPV values provided by our new methodology are reasonable
and they could be equally appropriate for the assessment of
investments and companies as those induced by the classical
one (specially that given by the arithmetic mean).

Recall that the classical methodology operates under the
estimation of some reduction coefficients fixed subjectively
by the expert in charge for penalizing those forecasts of the
cash flow corresponding to more distant periods. Of course,
depending on the estimation of the aforementioned reduction
coefficients, it can lead to very different results. This fact
means that the estimation is highly sensitive to the choice
of the aforementioned reduction coefficients. So there is not
any analytical reason that allows us to conclude that the NPV
estimation provided by the classical method (in particular by
means of the Arithmetic mean) is the most appropriate. In
fact, such an appropriateness is validated by the expert based
on his/her experience and feeling.

Observe that w1 gives us an estimation close to that of the
Arithmetic Mean. However, the remainder estimations given
by w2 and w3 could also provide us realistic perspectives (even
more realistic than those obtained by the classical one) of
our investment or company assessment. This is because the
classical methodology operates regardless of the discrepancy
between the optimistic and pessimistic forecasts.

Remember that results given by the Arithmetic Mean have
been obtained considering the reduction coefficients equal to
1 but these reduction coefficients αn for each period of time
n ( β for the terminal value) oscillate between 0 and 1 (αn ∈
(0, 1]). Moreover, such coefficients are inversely proportional
to the risk perceived by the expert for the period in which the
cash-flow is estimated.

VI. CONCLUSIONS AND FURTHER RESEARCH

We have introduced an analytical technique based on the
use of aggregation functions and fuzzy mid-points to select an
estimation of the NPV of an investment or company assess-
ment. In contrast to the classical methodology, based on the

certainty equivalent, the new one incorporates a penalization,
fixed following an analytical procedure and thus reducing
subjectivity, for the elapsed time and for the discrepancy
between pessimistic PFC and optimistic forecasts OFC in
order to generate the NPV. This fact constitutes an advantage
in front of the classical methodology, where the reduction
coefficients are determined by the subjective estimation of
an expert and, as a consequence, the final assessment is
highly sensitive to the choice of the coefficients. The new
technique has been tested processing real data and computing
NPV estimations of a five-year hotel assessment which are
between the pessimistic and optimistic forecasts and, hence,
being reasonable and could be appropriate for the assessment
of investments and companies in general.

As a further work a study about what kind of weights
could be more useful according to the investment type will
be made. It also seems interesting to develop a software
tool, implemented in Python, which could be incorporated in
the expert’s control panel with the aim of analyzing various
scenarios by simply changing the desired value of variables
and weights and, thus, giving the expert more support for
decision-making. Moreover, another idea is to consider pre-
aggregation functions and their utilities in order to apply them
in our study. These functions generalize aggregation functions,
which fulfill the same boundary conditions but demand only
directional monotonicity [11]. Finally, it is important to note
that in the literature, not only are fuzzy sets used to deal with
uncertainty, but interval-valued fuzzy sets are also well-suited.
The latter are a generalization of classical fuzzy sets where
the membership values are intervals [12]. Hence, it could be
interesting to analyze how to rewrite our study in this interval-
valued setting.
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Resumen—En Inteligencia Artificial existe una creciente 

necesidad de contar con modelos capaces de lidiar con un amplio 
espectro de tareas de aprendizaje sobrepasando las limitaciones de 
los sistemas diseñados para una única tarea. La reciente aparición 
de los Sistemas de Inteligencia Artificial de Propósito General 
(General-Purpose Artificial Intelligence Systems, GPAIS) plantea 
desafíos de configuración y adaptabilidad del modelo a escalas de 
complejidad mucho mayores que el diseño de los modelos 
tradicionales de aprendizaje automático. La Lógica Difusa ha sido 
una herramienta muy práctica para el diseño y la optimización de 
modelos de aprendizaje automático, dotándolos de la capacidad de 
adaptarse a la incertidumbre de la tarea considerada. Por tanto, 
su aplicación a GPAIS es una elección natural. En esta 
contribución se analiza la importancia de la Lógica Difusa en el 
diseño de GPAIS. Se examinan varios casos donde la Lógica Difusa 
puede ayudar a diseñar estos sistemas u optimizarlos para mejorar 
su rendimiento en un mundo abierto. También se presentan 
diferentes estrategias seguidas para este fin, discutiendo áreas 
tangenciales, contribuciones recientes, identificando nichos y 
delineando potenciales líneas de investigación. Como caso 
particular, se discute la integración de la Lógica Difusa con el 
Aprendizaje de Cero Ejemplos que muestra como la potencia 
combinada de las fortalezas de ambas impacta directamente en el 
rendimiento mejorado del sistema resultante. Esta combinación 
promete revolucionar la Inteligencia Artificial, desplegando un 
panorama nuevo de nuevas aplicaciones que aprovechan la 
sinergia entre la Lógica Difusa y los GPAIS. 

Palabras clave — Inteligencia Artificial, Propósito General, 
Lógica Difusa, Aprendizaje de Cero Ejemplos, Grandes Modelos de 
Lenguaje, Aprendizaje Automático. 

I.  INTRODUCCIÓN 
La principal característica del ser humano que le diferencia 

del resto de seres vivos es la capacidad de razonar. Dada una 
serie de premisas, el ser humano es capaz de extraer 
conclusiones en base al uso de operadores lógicos para deducir 
la veracidad de afirmaciones que han sido construidas a partir de 
las anteriores. Podemos considerar esos operadores dentro de la 
lógica clásica y trabajar con enunciados que son ciertos o falsos 
[1]. Cuando se desea representar el razonamiento lógico sobre 
aspectos dinámicos de la vida real, en ocasiones, necesitamos 
otras lógicas [2]. La Lógica Difusa, ideada por Lofti Zadeh [3], 
es una extensión de la lógica clásica que gestiona información 
imprecisa, siendo útil en contextos inciertos. Se basa en 

conjuntos con grados de pertenencia variables, lo que permite 
expresar valores de verdad más allá del simple binomio 
verdadero/falso. Esta lógica es aplicada en Inteligencia Artificial 
(IA) para crear sistemas que pueden manejar y aprender de la 
ambigüedad y ha dado lugar a sistemas expertos de tipo difuso, 
como p. ej. los sistemas de control automático [1]. 

El Aprendizaje Automático (Machine Learning, ML) es un 
subcampo de la IA enfocado en el desarrollo de modelos capaces 
de aprender patrones a partir de los datos. La optimización de 
estos modelos es un área de insistente investigación. La 
diversidad de objetivos considerados hasta la fecha refleja que 
las capacidades de optimización de los modelos de ML 
dependen de diferentes criterios. Avances recientes en diferentes 
áreas de investigación de ML, como Aprendizaje Profundo [4], 
Procesamiento del Lenguaje Natural [5] y los Grandes Modelos 
de Lenguaje (Large Language Models, LLMs) [6], incluyendo 
chatbots de rendimiento sin precedentes como ChatGPT [7] 
indican un cambio notable hacia sistemas de IA con mayor 
capacidad de generalización. Estos Sistemas de IA de Propósito 
General (GPAIS) han ganado especial importancia debido a que 
son capaces de ejecutar tareas para las que no fueron 
explícitamente entrenados [8]. Es importante remarcar que 
potencialmente, estos sistemas pueden presentar ciertas 
limitaciones como, por ejemplo, el sesgo presente en los datos 
de entrenamiento, la falta de comprensión profunda real del 
contenido que producen, las alucinaciones generadas 
gramaticalmente coherentes, pero factualmente incorrectas, etc. 
Por consiguiente, siempre que sea factible, su implementación y 
uso deberían estar supervisados por un humano. 

El objetivo de la presente contribución es mostrar el 
potencial de la integración de la Lógica Difusa con GPAIS para 
mejorar la capacidad de generalización y manejo de la 
incertidumbre en sistemas de IA. A través de la revisión de la 
literatura reciente, ejemplos aplicados y un análisis crítico, se 
busca proporcionar una perspectiva innovadora sobre cómo la 
combinación de ambas puede superar las limitaciones actuales y 
abrir nuevas posibilidades en el campo de la IA. Dicha sinergia 
promete revolucionar la forma en la que las máquinas 
comprenden y procesan información, abriendo nuevas 
posibilidades a la IA del futuro. 

A continuación, la Sección 2 realiza un breve recorrido por 
las diferentes aplicaciones de la Lógica Difusa en IA, la Sección 
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3 muestra las fundaciones de los GPAIS y la Sección 4, el 
alineamiento entre ambas. En la Sección 5, se pone foco en un 
caso de estudio para mostrar potenciales sinergias entre la 
Lógica Difusa y el Aprendizaje de Cero Ejemplos (Zero-Shot 
Learning, ZSL). Terminamos la contribución exponiendo las 
principales ventajas de combinar la Lógica difusa y GPAIS. 

II. PRELIMINARES 

A. La Lógica Difusa en Machine Learning 
La Lógica Difusa es particularmente útil en situaciones 

donde la información es ambigua o incierta, como en la toma de 
decisiones humanas o en la percepción sensorial. La Lógica 
Difusa puede manejar la imprecisión inherente a muchos 
problemas del mundo real y proporcionar soluciones más 
flexibles y adaptativas. Sus principales ventajas son:  

1) Maneja la incertidumbre e imprecisión, facilita la 
representación de conocimiento impreciso o vago, ofrece 
flexibilidad en la toma de decisiones al considerar grados de 
pertenencia, permite una interpretación más intuitiva y cercana 
a la forma en que los humanos razonan, es útil en sistemas 
donde las reglas son difíciles de definir de manera precisa. 

2) Modela sistemas complejos, puede usar reglas 
lingüisticas para crear grados de pertenencia, reduce la 
complejidad de sistemas no lineales, integra con sistemas 
expertos para mejorar la toma de decisiones. 

3) Permite una mayor robustez de las aplicaciones frente a 
ruido y variabilidad de los datos. 

Existen dos tipos principales de Lógica Difusa: Tipo I y Tipo 
II. La lógica difusa de Tipo I asigna grados de pertenencia entre 
0 y 1 a elementos en conjuntos difusos con funciones de 
membresía fijas, facilitando el manejo de incertidumbre en 
diversas aplicaciones. El Tipo II añade más incertidumbre al 
permitir funciones de membresía difusas, útiles cuando los datos 
o reglas son aún más imprecisos. Ambos tipos son valiosos para 
sistemas que procesan verdades parciales en lugar de absolutas. 

La Lógica Difusa ha sido empleada en diferentes casos de 
uso de ML. Los sistemas basados en reglas difusas son los más 
ampliamente extendidos, de entre los que destacan Sistemas 
Difusos Genéticos, Sistemas Difusos Jerárquicos, Sistemas 
Neuro Difusos y Sistemas Evolutivos Difusos [9]. No obstante, 
lo lógica difusa se puede usar en otros contextos que no sean 
reglas. A modo de ejemplo, podemos encontrar modelos difusos 
para mejorar modelos no supervisados como el k-medias, o 
PCA, para modelos tradicionales supervisados, como el 
algoritmo de los vecinos más cercanos, entre muchos otros.  

Además del uso de la Lógica Difusa para mejorar el 
rendimiento de muchos de los algoritmos, se puede destacar su 
uso para mejorar la explicabilidad de algoritmos de caja negra 
es ampliamente estudiado [10], lo cual puede llegar a ser aún 
más relevante en GPAIS. 

B. GPAIS: definición y taxonomía. 

De acuerdo con [8], los GPAIS se definen como “sistemas 
avanzados de IA capaces de realizar eficazmente una serie de 
tareas distintas. Su grado de autonomía y habilidad viene 

determinado por varias característica clave, como la capacidad 
de adaptarse o realizar bien nuevas tareas que surjan en el 
futuro, la demostración de competencia en ámbitos para los que 
no ha sido intencionada y específicamente entrenado, la 
capacidad de aprender a partir de datos limitados y el 
reconocimiento proactivo de sus propias limitaciones con el fin 
de mejorar su rendimiento, la habilidad para aprender de datos 
limitados y el reconocimiento proactivo de sus propias 
limitaciones para mejorar su rendimiento”.  

Los GPAIS se convierten en un paso adelante en la 
optimización del aprendizaje automático y se clasifican en dos 
categorías diferentes [8], que se ilustran en la Figura 1: 

 

Fig. 1. GPAIS: mundo abierto vs mundo cerrado (adaptado de [8]) 

• GPAIS de mundo cerrado: asume que todas las tareas 
que realiza el sistema están predeterminadas en la fase 
de entrenamiento. Es la forma más sencilla en la que el 
GPAIS es capaz de acometer más de una tarea. El 
GPAIS reentrena todo su modelo ML cuando surge una 
nueva tarea. Esto se hace normalmente poniendo foco 
en las variables de diseño del modelo, tomando la 
asunción de disponer de suficientes datos para el 
reentrenamiento. Este tipo de sistemas pueden estar 
limitados a la hora de generalizar a nuevas tareas que 
estén fuera de su ámbito de entrenamiento. 

• GPAIS de mundo abierto: se refiere a escenarios donde 
el sistema de IA opera en un entorno más dinámico y en 
evolución. Estos sistemas reconocen la presencia de 
tareas desconocidas e imprevistas que pueden surgir con 
el tiempo y se adaptan a ellas mediante el ajuste del 
modelo o modelos existentes sin asumir que se disponen 
de suficientes datos. De este modo, el GPAIS se centra 
en la diversidad de modelos más que en el ajuste de la 
configuración del modelo, por lo que puede utilizarse en 
distintos problemas, incluso en ausencia de datos 
suficientes para las nuevas tareas. Así, estos sistemas 
tienen un alto grado de generalización, flexibilidad y 
capacidad de aprendizaje en entorno de incertidumbre 
en la cantidad de datos. Para dicha generalización, el 
GPAIS aprovecharía lo que aprendió antes para 
adaptarse más rápidamente a las nuevas tareas. 

Las propiedades intrínsecas de los GPAIS pueden dar lugar 
a posibles problemas o conflictos durante su diseño o incluso 
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mientras el sistema está funcionando. Por lo tanto, debemos 
asegurarnos de que existan mecanismos específicos para superar 
estas dificultades. Aquí radica la justificación del paradigma IA 
potenciada por IA (AI-powered AI) que pretende paliar la 
dificultad inherente al diseño, la construcción y la adaptación de 
los GPAIS para abordar eficazmente nuevas tareas emergentes. 
La IA potenciada por IA implica aprovechar una técnica de IA 
para diseñar o mejorar otro modelo de IA [8]. 

III. GPAIS: TAXONOMÍA DE MÉTODOS 
Atendiendo a la taxonomía propuesta en [8] describiremos 

alguna de las principales tendencias de investigación en que se 
están desarrollando GPAIS. Es importante tener en cuenta que 
puede existir cierto grado de solapamiento entre categorías, y 
que ciertas estrategias podrían facilitar la transición entre 
categorías, por ejemplo, añadir ciertos elementos a un sistema 
para evolucionarlo de mundo cerrado a mundo abierto. 

Con el objetivo de la IA sea más autosuficiente y capaz de 
aprender sin intervención humana, la comunidad de IA ha 
seguido muchas estrategias para proporcionar capacidades de 
generalización. En términos generales, se observan dos enfoques 
distintos: IA potenciada por IA y enfoque de modelo único. 

• IA potenciada por IA: Consiste en la aplicación de 
técnicas de inteligencia artificial para mejorar y 
optimizar el desarrollo y el rendimiento de otros 
sistemas de IA [11]. Esto puede incluir, por ejemplo, el 
uso de algoritmos de aprendizaje automático para 
seleccionar y optimizar hiperparámetros de modelos de 
IA, o el uso de técnicas de procesamiento de lenguaje 
natural para mejorar la interacción humano-máquina. 

• Modelo único: No todos los avances en GPAIS 
necesitarían siempre utilizar un modelo de IA adicional 
para ayudar a generalizar. En lugar de ello, sus 
capacidades de generalización proceden del aprendizaje 
a partir de diversas tareas y/o grandes cantidades de 
datos. Se incluirían en esta categorización los modelos 
fundacionales y el aprendizaje multitarea.  

La Figura 2 representa gráficamente la taxonomía 
multidimensional propuesta en [8] para las diferentes categorías 
de GPAIS, aproximaciones y áreas de investigación. 

1) IA potenciada por IA 
Se pueden categorizar las formas en las que una IA puede 

potenciar otros sistemas de IA, teniendo en cuenta su objetivo: 
diseñar un algoritmo de IA o enriquecer un algoritmo de IA para 
mejorar su aprendizaje/rendimiento: 

a) IA para diseñar IA 
Es habitual que las etapas del ciclo de vida del ML se 

vuelvan algo repetitivas, por lo que los expertos basan sus 
decisiones en su experiencia con problemas anteriores. Los 
algoritmos de IA pueden utilizarse para ayudar con todas esas 
decisiones de diseño, extrayendo conocimientos generales sobre 
cómo implementar un proceso de ML de forma más fácil y 
rápida dentro de un conjunto de tareas de ML. Dentro de la fase 
de construcción del algoritmo, cabe destacar AutoML-Zero que 
es un enfoque de aprendizaje automático que busca automatizar 
todo el proceso de desarrollo de modelos de IA, desde la 

selección de algoritmos y la ingeniería de características hasta la 
optimización de hiperparámetros y la evaluación de modelos 
[12]. La idea es democratizar el acceso a la IA, permitiendo que 
personas sin experiencia en aprendizaje automático puedan crear 
y desplegar modelos de IA de alta calidad. 

 
Fig. 2. Taxonomía de aproximaciones a GPAIS (adaptado de [8]) 

b) IA para enriquecer IA 
A menudo se combina la IA con otras técnicas de IA para 

enriquecer a ayudar en su proceso de aprendizaje. 
Aprovechando la potencia de varias técnicas de IA y su 
potencial colaboración, podemos potenciar sistemas de IA para 
que se conviertan en sistemas inteligentes más sólidos y capaces 
[13]. En este aspecto, cabe destacar diferentes técnicas 
utilizadas para el enriquecimiento: descubrimiento de nuevos 
comportamientos, generación de datos, aprender a aprender, 
aprendizaje activo, aprendizaje cooperativo y colectivo. 

2) Modelo Único 
Ejemplos de modelos únicos de IA que generalizan a 

múltiples tareas son: 
a) Aprendizaje Multitarea 

Es una técnica de aprendizaje automático en la que un 
modelo se entrena para realizar múltiples tareas 
simultáneamente, aprovechando las similitudes y diferencias 
entre las tareas para mejorar el rendimiento general [8]. El 
conocimiento y representación se optimizan en tareas múltiples 
para mejorar el rendimiento, a diferencia del aprendizaje 
automático tradicional que se enfoca en tareas únicas. Los 
modelos de aprendizaje multitarea, que suelen ser GPAIS de 
mundo cerrado, requieren reentrenamiento o ajustes para 
nuevas tareas. Estrategias como el preentrenamiento y ajuste 
fino facilitan la adaptación a entornos de mundo abierto, 
necesitando datos suficientes para la nueva tarea. 
Aproximaciones como metaheurística, aprendizaje por refuerzo 
y meta-transformer han tenido mucho éxito a la hora de reducir 
el riesgo de error y la baja eficiencia, cuando se comparan estos 
sistemas con modelos entrenados para tareas individuales. 
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b) Modelos Fundacionales 
Los modelos fundacionales se basan en el aprendizaje 

profundo estándar y en el aprendizaje por transferencia, y se 
definen como un modelo que “se entrena con gran cantidad de 
datos (generalmente usando autosupervisión a escala) que 
pueden ser adaptados (p.ej. mediante ajuste fino) a una amplia 
gama de tareas posteriores” [14]. Se argumenta en [8] que los 
GPAIS van más allá del aprendizaje por transferencia y el 
aprendizaje profundo, y que, por lo tanto, los modelos 
fundacionales se convierten en un subconjunto de los GPAIS. 

A modo de ejemplo, se entrenaría un modelo con grandes 
conjuntos de datos y, posteriormente, podría ser ajustado para 
realizar tareas específicas, como clasificación de imágenes, 
reconocimiento de voz y procesamiento de lenguaje natural, y 
por tanto son inherentemente multitarea. Son modelos que se 
han vuelto muy populares en los LLMs mostrando grandes 
capacidades de propósito general. Dentro de esta categoría, cabe 
destacar la IA Generativa que es un tipo de IA que puede crear 
ideas y contenidos nuevos, como conversaciones, historias, 
imágenes, videos y música. A diferencia de otros enfoques de 
IA que se centran en el análisis y la predicción, la IA generativa 
se enfoca en la creación de nuevos datos a partir de modelos 
aprendidos. Los modelos fundacionales pertenecen 
inherentemente a la clasificación de mundo abierto, pero con 
algunas limitaciones [8], dado que requiere de grandes 
cantidades de datos de calidad durante la fase de entrenamiento. 
Si no se dispone de esa cantidad de datos, para que puedan 
acometer nuevas tareas, deben hibridarse con otros modelos de 
IA, como por ejemplo el aprendizaje activo. 

IV. INTEGRACIÓN DE LA LÓGICA DIFUSA Y GPAIS: UNA 
VISIÓN GENERAL 

La integración de la Lógica Difusa puede ofrecer varias 
ventajas. En esta sección, sugerimos algunas posibilidades. 
Primero, la Lógica Difusa puede proporcionar un marco para 
manejar la incertidumbre en la información auxiliar utilizada en 
GPAIS [12]. Por ejemplo, las descripciones textuales de las 
clases pueden ser vagas o ambiguas, y la Lógica Difusa puede 
ayudar a modelar estas incertidumbres de manera efectiva. 

En segundo lugar, en vez de considerar los atributos como 
presentes o ausentes (binarios), la Lógica Difusa permite grados 
de pertenencia, lo que puede reflejar mejor la variabilidad y la 
riqueza de las características del mundo real. En [15] se 
muestran diferentes aplicaciones reales de sistemas que 
combinan la Lógica Difusa con aprendizaje evolutivo y por 
refuerzo. Teniendo en cuenta las fortalezas de la Lógica Difusa, 
integrarla en modelos de GPAIS permitiría que realizaran 
predicciones más precisas, mejorando su interpretación. 

Tercero, la combinación de ambas técnicas puede facilitar la 
creación de sistemas de IA más robustos y generalizables. La 
Lógica Difusa puede suavizar las decisiones de clasificación en 
GPAIS, lo que podría ser especialmente útil en escenarios de 
Aprendizaje Generalizado de Cero Ejemplos (Generalized Zero-
Shot Learning, GZSL) [16] donde el modelo debe funcionar bien 
tanto en clases vistas como no vistas. 

Finalmente, la Lógica Difusa puede ayudar a mejorar la 
interpretación y explicabilidad de los modelos de GPAIS. Al 

proporcionar un marco para razonar sobre la incertidumbre y la 
ambigüedad, los sistemas que integran Lógica Difusa pueden 
ofrecer explicaciones más intuitivas y comprensibles para las 
decisiones tomadas por el modelo. 

Integrando la Lógica Difusa dentro de GPAIS, se consigue 
manejar la incertidumbre y la imprecisión de los datos, lo que 
permite realizar predicciones y tomar decisiones más precisas en 
los sistemas de IA. La Tabla 1 expone puntos en común entre la 
Lógica Difusa y algunas de las principales técnicas de GPAIS. 

TABLA I – SINERGIAS ENTRE LA LÓGICA DIFUSA Y GPAIS 

Técnica / 
Ejemplo 
GPAIS 

Puntos en común con la Lógica Difusa 

IA potenciada 
por IA 

Puede utilizarse para detectar cambios en el entorno y 
adaptarse a ellos, transferir conocimientos de forma 
eficaz de un conjunto de tareas a una nueva tarea y 
transferir conocimientos o representaciones específicas 
de una tarea de origen para mejorar el rendimiento en 
una tarea de destino. 

Modelos 
Fundacionales 

Puede utilizarse para transferir conocimientos de forma 
eficaz de un conjunto de tareas a una nueva tarea, 
mejorando su capacidad de adaptación a nuevas tareas.  

IA Generativa Puede utilizarse para que un modelo se entrene 
simultáneamente en diferentes tareas, mejorando la 
calidad y la diversidad de las muestras generadas. 

Aprendizaje 
Multitarea 

Puede utilizarse para transferir conocimientos o 
representaciones específicas de una tarea de origen para 
mejorar el rendimiento en una tarea de destino. 

AutoMl-Zero Puede utilizarse para detectar cambios en el entorno y 
adaptarse a ellos, transferir conocimientos de forma 
eficaz de un conjunto de tareas a una nueva tarea y 
transferir conocimientos o representaciones específicas 
de una tarea de origen para mejorar el rendimiento en 
una tarea de destino. 

La Tabla II muestra posibles aportaciones, basadas en 
Lógica Difusa, a las limitaciones actuales de los sistemas 
GPAIS. 

TABLA II – POSIBLES APORTACIONES DE LA LÓGICA DIFUSA 

Limitación Potencial Aportación de la Lógica Difusa 
Dependencia de 
grandes conjuntos de 
datos. 

Puede ayudar a resolver incertidumbre cuando 
existen pocos datos de los que aprender. 

Sesgos en los datos de 
partida/alucinaciones. 

Reduciendo sesgos usando métricas difusas 
para cuantificar sesgos. 

Dificultad para 
manejar la 
incertidumbre y la 
imprecisión. 

Mejorando el rendimiento de los algoritmos de 
IA al proporcionar una representación más 
precisa del dominio del problema. 

Capacidad limitada 
para adaptarse a 
nuevas tareas. 

Mejorando la adaptabilidad de los modelos de 
fundamento único a nuevas tareas.  

Dificultad para 
gestionar tareas 
complejas. 

Manejando la complejidad de las tareas 
proporcionando una representación más precisa 
del dominio del problema. 

Dificultad para 
generar muestras de 
alta calidad. 

Mejorando la calidad de las muestras generadas 
al proporcionar una representación más precisa 
del dominio del problema. 

Control limitado 
sobre las muestras 
generadas. 

Proporcionando un mayor control sobre las 
muestras generadas al permitir una 
especificación más precisa del resultado 
deseado. 
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Dificultad para 
gestionar tareas con 
diferentes niveles de 
complejidad. 

Mejorando la capacidad del aprendizaje 
multitarea para gestionar tareas con diferentes 
niveles de complejidad al proporcionar una 
representación más precisa del dominio del 
problema. 

Capacidad limitada 
para transferir 
conocimientos entre 
tareas. 

Mejorando la capacidad del aprendizaje 
multitarea para transferir conocimientos entre 
tareas al permitir una especificación más 
precisa de las relaciones entre tareas. 

Dificultad para 
gestionar espacios de 
búsqueda complejos. 

Mejorando la capacidad de AutoML-cero para 
manejar espacios de búsqueda complejos al 
proporcionar una representación más precisa 
del dominio del problema. 

Capacidad limitada 
para incorporar el 
conocimiento del 
dominio. 

Mejorando la capacidad de AutoML-cero para 
incorporar el conocimiento del dominio al 
permitir una especificación más precisa del 
dominio del problema. 

En resumen, la integración de la Lógica Difusa con GPAIS 
tiene el potencial de crear sistemas de IA que no solo son 
capaces de reconocer clases no vistas, sino que también manejan 
la incertidumbre de manera más natural y proporcionan 
soluciones más flexibles y comprensibles. Esto representa un 
paso adelante en el desarrollo de sistemas de IA que pueden 
operar de manera efectiva en entornos del mundo real, donde la 
ambigüedad y la falta de datos completos son comunes. 

V. LÓGICA DIFUSA PARA ZERO-SHOT LEARNING 

 Dentro del mundo abierto en GPAIS, hay diversos 
paradigmas que intentan lidiar con situaciones desconocidas. 
Entre ellos destaca lo que se conoce como Reconocimiento de 
Conjuntos Abiertos, (Open Set Recognition, OSR). El OSR es 
una metodología dentro del ML que se encarga de lidiar con 
situaciones desconocidas, las cuales no fueron aprendidas por 
los modelos durante el proceso de entrenamiento. Se espera que 
los modelos de OSR no solamente sean capaces de rendir 
correctamente bajo situaciones conocidas, sino que también sean 
capaces de manejar otros sucesos con total incertidumbre [17]. 

 Hasta ahora, los modelos de OSR operan discerniendo qué 
situaciones son conocidas previamente, gracias a su 
entrenamiento, y cuales no, marcando estas últimas con una 
opción de rechazo sin intentar profundizar más [17]. Sin 
embargo, el ZSL y su variante más general, Aprendizaje de Cero 
Ejemplos Generalizado, son otros paradigmas que se encargan 
de enfrentar con más detenimiento estas situaciones 
inexploradas, bajo la asistencia de información semántica 
auxiliar de las situaciones que ya se conocen y las que no. 
Mientras que el ZSL, en la fase de prueba, trabaja únicamente 
en un entorno con el que no ha sido entrenado, el GZSL opera 
en un entorno más general al encontrarse con situaciones con las 
que fue entrenado y otras con las que no. 

 La información semántica juega un papel fundamental ya 
que, pese a que haya situaciones desconocidas para el modelo, 
brinda una descripción de éstas permitiendo establecer un nexo 
de unión entre la información que ya el modelo conoce y la que 
no, en aras de establecer una transferencia del conocimiento de 
las clases de un tipo a otro poder tratarlas posteriormente.  

A continuación, destacamos algunos ejemplos comentando 
potenciales aplicaciones de la Lógica Difusa en ZSL: 

• Complemento en la Incertidumbre:  En ZSL existe 
una incertidumbre inherente debido a la existencia de 
clases no vistas, la cual se transfiere al espacio 
semántico por ser el elemento sobre el que se apoya la 
clasificación. La Lógica Difusa puede ayudar a manejar 
esta incertidumbre tanto en dichos espacios como en los 
algoritmos que operan bajos éstos, por ejemplo, el 
vecino más cercano. 

• Explicabilidad: La explicabilidad en los modelos de 
ZSL no está muy desarrollada, sobre todo de cara a los 
modelos que emplean técnicas generativas. Por eso la 
interpretación intuitiva de la Lógica Difusa puede ser 
beneficiosa para explicar mejor los resultados. 

• Generalización y Robustez: La robustez y la 
generalización en ZSL son unos aspectos críticos dado 
que los modelos son entrenados con una cantidad 
limitada de información, siendo muy sensibles al resto 
de información que no han visto. De hecho, la mayoría 
de los modelos de ZSL no son capaces de generalizar 
bien. Además, los modelos de GZSL presentan cierto 
sesgo hacia las clases vistas. La Lógica Difusa puede 
mitigar dicha sensibilidad haciendo estos modelos más 
robustos y con una mayor capacidad de generalización 
frente a las clases no vistas. 

En literatura actual, se están empezando a ver algunos 
esfuerzos para combinar estas dos técnicas en aplicaciones 
prácticas. Destacamos los siguientes ejemplos:   

• La detección de objetos destacados en imágenes que 
contienen información de color y profundidad sobre las 
escenas es fundamental para la automatización que 
conduce a aplicaciones como la conducción autónoma 
de vehículos y la manipulación robótica. Se integran 
ambas técnicas mediante un enfoque de fusión de datos 
de color y profundidad para la detección de objetos 
destacados que aprovecha el aprendizaje profundo y 
una novedosa estrategia de entrenamiento basada en la 
teoría de conjuntos difusos que elimina la necesidad de 
ejemplos para el entrenamiento [18]. Este ejemplo de 
integración de ambas técnicas resuelve, entre otras, en 
la Tabla II, la dependencia de grandes cantidades de 
datos, la dificultad para generar muestras de calidad. 

• El diagnóstico de fallos de cero ejemplos ayuda a 
identificar fallos no vistos mediante la predicción de 
atributos. La integración realizada comprende un 
método de aprendizaje jerárquico difuso de cero 
ejemplos para resolver estos problemas. En primer 
lugar, los atributos se dividen en diferentes capas según 
la granularidad de grueso a fino a través del 
conocimiento experto, en lugar de tratarse por igual. A 
continuación, se diseña una estrategia de transferencia 
de conocimiento para transferir el conocimiento de los 
atributos de grano grueso a los de grano fino, lo que 
puede mejorar la precisión de la predicción de 
atributos. Por último, se desarrolla una estrategia de 
inferencia difusa para distinguir el efecto de atributos 
con distinta granularidad en la inferencia de fallos. Esta 
estrategia puede identificar los fallos paso a paso en un 
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orden de grano grueso a fino. La eficacia del método 
propuesto se verifica mediante el proceso de una 
central térmica real [19]. Este ejemplo resuelve la 
incertidumbre e imprecisión en los datos y la 
transferencia de conocimiento indicados en la Tabla II. 

• Replanteamiento de clasificadores, reemplazando los 
atributos binarios muy utilizados en ZSL, por otros que 
implementen la Lógica Difusa, denominados atributos 
difusos. De esta forma se eliminan las limitaciones en 
el aprendizaje y mejorando notablemente el 
rendimiento del clasificador. En [20] se propone un 
algoritmo “Fuzzy Zero-Shot Learning” y el uso de 
atributos difusos para expresar las características, 
especialmente las de la naturaleza. Un atributo difuso 
usa un numero para expresar el grado del atributo que 
tiene cada objeto. El uso de atributos difuso impacta 
directamente en el mejor rendimiento del modelo.  

La integración entre la Lógica Difusa y ZSL es un campo 
prometedor con aplicaciones prácticas que se benefician de la 
capacidad de manejar la incertidumbre y la ambigüedad, 
características inherentes al razonamiento humano y a muchos 
procesos del mundo real. La investigación futura en esta 
dirección no solo profundizará en el entendimiento teórico de la 
integración de estas técnicas, sino que también explorará nuevas 
aplicaciones prácticas en la resolución de problemas complejos. 

CONCLUSIONES 
Las conclusiones extraídas tras llevar a cabo este estudio 

confirman el potencial transformador que supone combinar 
técnicas avanzadas como la Lógica Difusa con GPAIS en el 
campo de la inteligencia artificial. La Lógica difusa permite 
manejar la incertidumbre y la imprecisión inherentes a muchos 
problemas del mundo real, lo que permite un razonamiento más 
flexible y cercano al pensamiento humano. Por otro lado, los 
GPAIS permiten reconocer clases o conceptos no vistos durante 
el entrenamiento, lo que permite generalizar el conocimiento 
adquirido a nueva categorías o conceptos, favoreciendo la 
versatilidad y escalabilidad de los sistemas. Aprovechando las 
fortalezas de ambos enfoques y superando sus limitaciones, esta 
fusión estratégica no solo muestra cómo mejorar 
significativamente la capacidad predictiva y generalización de 
los modelos, sino que también allana el camino hacia sistemas 
más adaptables e inteligentes capaces de abordar desafíos 
complejos con mayor eficiencia y precisión. A modo de 
resumen, las principales ventajas son: 

• Manejo de incertidumbre y generalización en los datos 
utilizados por los modelos GPAIS, mejorando su 
generalización y adaptación a nuevas categorías. 

• Interpretabilidad y transferencia de conocimiento, 
debido a que la Lógica Difusa proporciona una mejor 
interpretación de los conceptos y relaciones aprendidos 
por GPAIS facilitando la transferencia de 
conocimiento entre dominios. 

• Robustez y flexibilidad, al favorecer la creación de 
sistemas capaces de adaptarse a cambios en el entorno, 
nuevas situaciones y conceptos con mayor eficacia.  
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Abstract—El cambio climático afecta a las condiciones
medioambientales de las distintas regiones. La capacidad de
constatar estos cambios es una eficaz herramienta para adaptarse
a la evolución de las condiciones. Los datos meteorológicos se
generan continuamente en múltiples estaciones de todo el mundo,
proporcionando una valiosa información sobre la variabilidad
en el tiempo de los patrones climáticos. El estudio de este flujo
de datos nos permite comprender mejor los nuevos patrones
climáticos. Este trabajo explora, mediante un algoritmo de
agrupamiento de flujos de datos (stream clustering), el potencial
de emplear datos meteorológicos obtenidos en diferentes local-
izaciones geográficas para rastrear el cambio en los patrones
climáticos en la Comunidad Foral de Navarra durante los últimos
20 años. El estudio de caso mostró la aplicabilidad de los métodos
de flujos de datos a la segmentación incremental de regiones
geográficas en función de sus factores climatológicos.

Index Terms—data stream, clustering, clima

I. INTRODUCTION

El cambio climático hace referencia al aumento de la
temperatura global de la Tierra, que se está produciendo
con mayor rapidez que antes. Este cambio está causado
principalmente por las actividades humanas, que producen
grandes cantidades de CO2 [1]. El cambio climático tiene
un impacto directo en el medio ambiente: el aumento de
la desertificación, más olas de calor, incendios forestales y
sequı́as son sólo algunas de las repercusiones del cambio
climático en el medio ambiente [2], [3]. Comprender estos
cambios es una valiosa herramienta para hacer frente a las
nuevas condiciones meteorológicas.

El clustering ha sido empleado por diferentes autores para
trabajar con problemas climáticos y meteorológicos. Por ejem-
plo, En [4], los autores emplean un método de clustering de
consenso para identificar las diferentes regiones climáticas
de Estados Unidos. Calculan los clusters de temperatura y
precipitación de forma independiente y, a continuación, crean
los agrupamientos de consenso finales basándose en ellos. En

[5], emplean un método de agrupación en dos etapas con el
objetivo de determinar regiones homogéneas de temperatura
en la India. En [6], desarrollan un algoritmo de co-clustering
para analizar patrones espacio-temporales, concretamente en
relación con la temperatura de las estaciones meteorológicas
holandesas. En [7], examinan los cambios en la temperatura
diaria del aire de Europa Central mediante regresión cuantı́lica
y clustering jerárquico. Esta técnica permite estimar tendencias
en la distribución de los datos y patrones espaciales. En [8],
combinan el método de la función ortogonal empı́rica rotada
y la agrupación k-means para identificar regiones homogéneas
de temperaturas máximas diarias en China. En [23], proponen
un método de clustering jerárquico basado en una medida de
similitud para datos intervalo valorados, y lo emplean para
agrupar regiones españolas en función de sus temperaturas.

Los datos climáticos son producidos constantemente por
estaciones meteorológicas con una gran diversidad de fre-
cuencias. Estas estaciones registran continuamente diferentes
parámetros meteorológicos. Con el objetivo de identificar
los cambios en las diferentes zonas climáticas de Navarra,
en este estudio proponemos el uso de stream clustering. El
stream clustering no se limita a agrupar el conjunto de datos
disponibles en un momento concreto, sino que también permite
tratar con un flujo de datos en constante evolución. Estos
algoritmos están diseñados para tratar conceptos que evolu-
cionan, es decir, que la distribución de los datos cambia con
el tiempo. Esta capacidad nos permitirá estudiar la evolución
de las regiones climáticas a partir de una serie de datos
meteorológicos.

El objetivo principal de este trabajo es estudiar los cambios
en los patrones de temperatura en Navarra en los últimos 20
años con respecto a la temperatura media diaria en la estación
de verano. Para ello, utilizamos un método de stream cluster-
ing recientemente publicado llamado TFS-DBSCAN, que es
una versión difusa y adaptada a flujos de datos temporales del
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Fig. 1: Ubicación de las estaciones meterologicas selecionadas
en la región de Navarra.
Imagen modificada de https://commons.wikimedia.org/wiki/
File:Spain Navarre relief location map.svg CC BY-SA
Mguillen

algoritmo DBSCAN, un método de clustering de densidad que
tiene una baja sensibilidad a las influencias de valores atı́picos.

Este artı́culo está organizado como sigue: En la sección
II, presentamos los datos meteorológicos que se utilizarán
en el estudio y una descripción del algoritmo seleccionado
junto con el marco especı́fico para el experimento. La sección
III muestra los resultados obtenidos y una discusión de los
mismos. Para finalizar, en la Sección IV, destacamos las
principales conclusiones de este trabajo y proponemos algunas
lı́neas futuras de investigación.

II. DATOS Y METODOLOGÍA

A. Datos

La provincia de Navarra está situada en el norte de España;
su superficie es de 10.391 km2. Con respecto al clima, en el
norte de la región, que tiene una geografı́a montañosa y está
cerca del Golfo de Vizcaya, presenta un clima oceánico. En
el centro, el clima es mediterráneo, y en el sur, es fresco y
semiárido.

Las series temporales de la temperatura media diaria se
obtienen de la agencia meteorológica pública de Navarra (http:
//meteo.navarra.es). Entre las 153 estaciones meteorológicas
actuales, sólo se seleccionaron para este estudio 56 estaciones
que tenı́an algún dato de temperatura media entre 2004 y 2023.
Estas estaciones seleccionadas se pueden ver en la Figura
1. Teniendo en cuenta que en esta región las temperaturas
presentan una gran variabilidad entre las distintas estaciones,
hemos seleccionado únicamente información relativa a la
estación estival (julio y agosto).

Estos datos, compuestos por las coordenadas de longitud y
latitud y la temperatura media, se normalizan, y cada uno de
los 70.203 puntos se introduce cronológicamente en el sistema.

B. Stream Clustering

Stream clustering es un conjunto de algoritmos de agru-
pamiento que tratan con un flujo continuo de datos en lugar
de un conjunto de puntos estáticos.

Según Zubarovglu y Atalay [9], hay diferentes familias
de algoritmos, como los jerárquicos (ODAC [10], E-Stream
[11]) basados en particiones (CluStream [12], incremental
k-means [13]), basados en rejillas (GCHDS [14], GSCDS
[15]), basados en la densidad (DBSCAN incremental [16],
D-Stream [17]), y basados en modelos (CluDiStream [18],
SWEM [19]). Se han desarrollado varias adaptaciones difusas
basadas en estos algoritmos. Estas modificaciones permiten
una mayor flexibilidad en los lı́mites de los clústeres y las
distancias entre los puntos. Por ejemplo, d-FuzzStream [20]
se basa en el algoritmo CluStream y TSF-DBSCAN [22] en
DBSCAN. Otra clasificación de los algoritmos de aprendizaje
automático está relacionada con la disponibilidad de etiquetas
de salida conocidas para las entradas; si la etiqueta existe, lo
denominamos supervisado, mientras que si no hay etiqueta de
salida en el conjunto de datos de entrenamiento, se trata de
un método de aprendizaje no supervisado.

Entre los distintos algoritmos de stream clustering, se-
leccionamos el algoritmo TSF-DBSCAN, desarrollado por
Bechini et. al. en 2022. Este algoritmo basado en la densidad
determina las diferentes zonas climáticas sin necesidad de el
conocimiento previo del número de clusters. Y su naturaleza
difusa también permite clusters con bordes difusos y solapa-
dos. El algoritmo es no supervisado, ya que no sabemos de
antemano qué clusters corresponden a los datos de entrada;
de hecho, esa es la información que buscamos en este caso de
aplicación.

El algoritmo adopta el paradigma online-offline y un modelo
damped window, como se muestra en la Figura 2. Este
paradigma online-offline divide el procesamiento del flujo de
datos en dos etapas. La primera de ellas recibe cada uno de
los elementos y construye una estructura con ellos. Después,
la etapa offline genera los clusters cuando se le solicita,
basándose en la estructura generada en la etapa online. El
modelo de damped window asocia a cada objeto un peso que
disminuye con el tiempo; los objetos cuyo peso es inferior a
un umbral dado dejan de tenerse en cuenta, por lo que pueden
eliminarse de la memoria.

En este algoritmo, las dos etapas tratan el flujo de datos de
la siguiente manera:

• Etapa en lı́nea: En esta etapa, el algoritmo mantiene una
lista de los puntos que está considerando. Con la llegada
de cada nuevo punto de datos, éste se añade a la lista.
Cada uno de esos puntos tiene dos listas:

– Kernel: Que almacena los puntos de su vecindad que
están más cerca que σmin

– Shell: Que almacena los puntos de su vecindad que
están entre σmin y σmax.
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Fig. 2: Pasos principales de TSF-DBSCAN [22]. La estructura
de datos plist almacena los objetos más recientes. Cada objeto
p está asociado a dos conjuntos, con objetos en su vecindad
kernel y en su vecindad shell, respectivamente.

Para cada uno de los puntos añadidos a Kernel (o Shell),
su Kernel (o Shell) se actualiza con el nuevo punto.

• Etapa offline: Esta etapa se ejecuta cada Toffline puntos
de entrada y genera las particiones de datos basándose en
la información recogida en la etapa online. Sin embargo,
para hacer frente a la deriva de conceptos (concept drift)
en los datos recopilados en lı́nea, se emplea el modelo
damped window para disminuir la importancia de los
datos más antiguos con respecto a los puntos más nuevos.
Al comienzo de la etapa fuera de lı́nea, se aplica el
factor de decadencia, α, a cada uno de los puntos; esto
disminuye el peso de los más antiguos y los elimina si
su peso está por debajo del umbral especificado, θw. Para
determinar los conglomerados basados en la densidad, un
punto se identifica como kernel si la suma de los pesos
de los puntos pertenencientes a su kernel es mayor que
el peso mı́nimo. Wmin

C. Marco experimental

Para realizar el análisis del comportamiento de las regiones
climáticas, seleccionamos los siguientes atributos para el flujo
de datos:

• Temperatura media diaria registrada en la estación mete-
orológica.

• Latitud de la estación meteorológica.
• Longitud de la estación meteorológica.

Hemos seleccionado únicamente los datos de los meses de
julio y agosto entre los años 2004 y 2023, lo que supone
un total de 70.204 puntos de datos. No todas las estaciones
meteorológicas están activas a lo largo del periodo de tiempo
del estudio, y otras empiezan a funcionar después de la fecha
inicial de los datos recogidos. Los datos se normalizan antes
de introducirlos en el algoritmo. La fase offline del algoritmo

se calcula cada 7.000 puntos de datos, lo que equivale a unos
dos años de datos.

La tabla I muestra los parámetros seleccionados para el
algoritmo TSF-DBSCAN.

Parámetro Simbolo Valor

Periodo de evaluación offline Toffline 7000
Radio de los vecinos del kernel εmin 0.10
Radio de los vecinos de shell εmax 0.35

Umbral de peso θw 0.0015
Factor de decadencia α 0.3

Minı́ma suma de pesos Wmin 1

TABLE I: Parámetros del algorı́tmo TSF-DBSCAN

El código completo de este experimento puede consultarse
en: https://github.com/asieriko/ClimateStreamNavarra

III. RESULTADOS

Los clusters producidos por el algoritmo están formados por
los datos de flujo procedentes de las estaciones meteorológicas.
Para una mejor visualización, hemos coloreado la superficie de
Navarra, donde cada punto corresponde al color correspondi-
ente al cluster de las estaciones meteorológicas más cercanas.
Los pequeños pentágonos que aparecen en las imágenes rep-
resentan la ubicación de las estaciones meteorológicas.

Antes de comenzar el análisis de los resultados, es necesario
tener en cuenta que tal y como se observa en la Figura 1,
debido a las condiciones geográficas, principalmente montañas
y variaciones de altitud, algunas regiones del norte pueden
aparecer divididas aunque compartan las mismas condiciones
climáticas.

Para analizar los cambios en las regiones climaticas real-
izamos el paso offline del algoritmo 10 veces a lo largo de
la evolución del flujo de datos, en concreto para los años
2004, 2006, 2008, 2010, 2013, 2915, 2017, 2019, 2021 y
2023. Mostramos los resultados que destacan los cambios de
agrupación más relevantes en las siguientes figuras.

Inicialmente, tras la primera evaluación en el año 2004, el
algoritmo detecta 12 áreas diferentes, entre las cuales destaca
una región con una gran superficie que abarca desde el centro
de la región hasta el sur (Figura 3).

No hay cambios en el resultado hasta el año 2008, en el
que podemos ver cómo un grupo de regiones del oeste se
fusionan en una más grande (Figura 4). También se puede
obsercar como una pequeña región al sur de esta que estaba
incluida en la gran región central se diferencia de ambas en
este momento de evaluación.

Si bien no se ha mostrado en las figuras por ser un
cambio menor, en la evaluación correspondiente al año 2010 la
pequeña región situada al sur del área recientemente expandida
y que en 2004 pertenecia a la gran región central se une al
área occidental.

A continuación, en 2013, como puede verse en la Figura
5, esta gran región occidental combinada anteriormente se
fusiona con la gran región inicial del sur. Esta nueva zona
ocupa la mitad de la región de estudio.
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Fig. 3: Resultados de agrupamiento para datos anteriores a
2004

Fig. 4: Resultados de agrupamiento para datos anteriores a
2010

A medida que avanza el tiempo, no se producen grandes
cambios y se consolida la gran región formada anteriormente.
Sin embargo, en 2015 y 2021 comienzan a funcionar nuevas
estaciones meteorológicas en el norte de Navarra. En la Figura
6, se puede observar que dos regiones del norte se dividen en
4.

Resumiendo los resultados obtenidos, hemos visto como las
zonas climáticas de la región tienden a homogeneizarse. En la
Tabla II, vemos que hay una tendencia a reducir el número de
clusters hasta 2013. A partir de ese año, podrı́amos interpretar
erróneamente la tabla debido a que el aumento del número

Fig. 5: Resultados de agrupamiento para datos anteriores a
2013

Fig. 6: Resultados de agrupamiento para datos anteriores a
2023

Año 2004 2006 2008 2010 2013

Clusters 12 12 11 10 9

Año 2015 2017 2019 2021 2023

Clusters 10* 10* 10* 11** 12**

TABLE II: Número de clusters identificados por el algoritmo

de clusters en los años siguientes fue causado por las nuevas
estaciones meteorológicas introducidas en la zona norte de
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Navarra y no por cambios en los patrones climáticos. Esta
disponibilidad adicional de datos de arroyos permite dividir
dos clusters que antes eran más grandes debido a la falta de
datos.

IV. CONCLUSIONES Y TRABAJO FUTURO

En este trabajo nos hemos propuesto emplear el clustering
de flujos de datos como herramienta para analizar la evolución
de la temperatura a través de las estaciones meteorológicas
de Navarra. En particular, se ha seleccionado para la tarea
un algoritmo difuso basado en la densidad, denominado TSF-
DBSCAN.

Con nuestra metodologı́a, hemos demostrado cómo han
convergido las diferentes zonas climáticas de Navarra. En
concreto, las regiones sur y este, que se detectaron como
diferentes en cuanto a las temperaturas estivales a principios
de la década de 2000, se han fusionado en una más grande
en la década de 2010. El resto de las zonas han tenido un
comportamiento más consistente, que podrı́a estar relacionado
con la geografı́a de sus respectivos entornos. Este estudio
muestra la utilidad de los algoritmos de stream clustering
para la información geolocalizada y cómo la relación entre los
distintos puntos de localización se agrupa a lo largo del tiempo.
Esta investigación sirve de base para el estudio del impacto del
cambio climático mediante algoritmos de clustering de flujos
de datos.

Para este trabajo, sólo hemos estudiado la temperatura
media diaria de los meses de verano de julio y agosto.
Sin embargo, pueden estudiarse otros parámetros, como las
temperaturas máximas y mı́nimas y el nivel de precipitaciones.
Para un estudio más exhaustivo, habrı́a que tener en cuenta más
datos. La medida de distancia es otro aspecto importante del
algoritmo, y puede modificarse para que pondere los atributos
de coordenadas de forma diferente a los climáticos. En futuros
trabajos, estudiaremos cómo afecta a los resultados el hecho
de utilizar distintos métodos de stream clustering, ası́ como
las posibles fuentes de desacuerdo entre los diversos métodos
posibles. Asimismo, otro trabajo futuro es la evaluación de los
resultados integrando factores relacionados con la localización,
como la comprobación de efecto de los factores geográficos
en los agrupamientos.
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Resumen—En 1981, Borsı́k y Doboš investigaron el problema
de la agregación para espacios métricos. Ası́, caracterizaron
aquellas funciones que permiten combinar una colección de
métricas, cada una de ellas definidas en un conjunto, para obtener
una sola métrica definida en el espacio producto como resultado.

Posteriormente, en 1994, Matthews introdujo la noción de
espacio métrico parcial con el objetivo de proporcionar una
herramienta matemática adecuada para modelar ciertos procesos
que surgen de modo natural en ciencias de la computación y en
inteligencia artificial. Inspirados por la aplicabilidad mencionada
de los espacios métricos parciales y por el hecho de que
existen métricas parciales útiles en dicho campo que pueden ser
inducidas mediante agregación, en 2015 Alghamdi, Shahzad y
Valero exploraron el problema planteado por Borsı́k y Doboš
en el marco de los espacios métrico parciales. Sin embargo,
muchas de las métricas parciales empleadas en las aplicaciones
son acotadas. Motivados por el hecho de que dicho caso no
ha sido tratado desde el punto de vista de la agregación en
la literatura, en este trabajo ofrecemos una descripción general
de cómo agregar, mediante una función, una colección finita de
espacios métricos parciales acotados para obtener una métrica
parcial acotada definida en el espacio producto como resultado.
Ası́, una caracterización de dichas funciones es proporcionada.

Index Terms—Espacio métrico parcial, agregación, monotonı́a,
acotación

I. INTRODUCCIÓN Y PRELIMINARES

La agregación de información es de suma importancia ya
que nos permite tratar una gran cantidad de datos, pudiendo
ser estos de naturaleza muy distinta, reduciéndolos a un
único dato con el objetivo de poder llevar a cabo toma de
decisiones que permitan resolver el problema bajo estudio. Al
combinar diversas fuentes, potenciamos nuestra comprensión
de los datos y la extracción de patrones significativos que
nos faciliten la toma de decisiones. En última instancia, la
agregación nos capacita para obtener conocimientos útiles
a partir de piezas de información dispersas, impulsando la
innovación y el progreso en diversos campos (véase [1]).

En muchas ocasiones, los datos a agregar representan di-
ferentes distancias entre objetos. Con el objetivo de poder
cuantificar una medida de distancia que englobe la información
proporcionada por cada una de ellas, parece razonable trasladar

Esta investigación forma parte del proyecto PID2022-139248NB-I00 finan-
ciado por MICIU/AEI/10.13039/501100011033 y “FEDER Una manera de
hacer Europa”.

las ideas procedentes de la teorı́a de la agregación de la
información al caso métrico. Al combinar estas distancias, se
puede obtener una visión más completa y representativa de la
relación entre los elementos que intervienen en el problema
tratado. Esto puede ser útil en diversas aplicaciones, como
en la clasificación y detección de patrones en datos, donde
la evaluación de la disimilitud entre objetos juega un papel
fundamental, de modo que la integración de múltiples métricas
puede proporcionar una medida más robusta y precisa de la
distancia entre los objetos mencionados.

Varios autores han examinado minuciosamente qué funcio-
nes permiten combinar una colección de distancias cada una de
ellas definidas en un conjunto, para obtener una sola distancia
definida en el espacio producto como resultado. De hecho, en
1981 Borsı́k y Doboš investigaron a fondo dicho problema en
el caso métrico. En concreto, caracterizaron aquellas funciones
que permiten agregar una colección (no necesariamente finita)
de espacios métricos a partir de lo que definieron como
tripletes triangulares [2]. Dicho problema suscitó tanto interés
que posteriormente se publicó una monografı́a tratándolo en
profundidad (véase [3] y la referencias que contiene).

Desde que el problema de agregación de espacios métricos
fue tratado por Borsı́k y Doboš, diversos autores han planteado
y analizado el mismo problema en contextos más generales
(véase, entre otros, [4]–[11]).

En 1994, Matthews introdujo la noción de espacio métrico
parcial con el objetivo de proporcionar una herramienta ma-
temática adecuada para modelar ciertos procesos que surgen
de modo natural en ciencias de la computació y en inteligencia
artificial ( [12]–[17]). Recordemos que, dado un conjunto
no vacı́o X , una métrica parcial sobre X es una función
p : X × X → R+ (R+ denota el conjunto de los números
reales no negativos) que cumple para todo x, y, z ∈ X las
siguientes condiciones:

(P1) p(x, y) = p(y, x)
(P2) p(x, x) ≤ p(x, y)
(P3) p(x, x) = p(x, y) = p(y, y) ⇔ x = y
(P4) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z)

El par (X, p) se denomina espacio métrico parcial (EMP en
lo sucesivo).
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Inspirados por la aplicabilidad mencionada de los espacios
métricos parciales y por el hecho de que existen métricas
parciales útiles en dicho campo que pueden ser inducidas
mediante agregación, Alghamdi, Shahzad y Valero plantearon
el problema de Borsı́k y Doboš en el caso métrico parcial
en [18] (véase también [19]). Concretamente, obtuvieron una
caracterización de las funciones que agregan métricas parciales
en términos de lo que llamaron tripletas triangulares parciales.
Sin embargo, muchas de las métricas parciales empleadas en
las aplicaciones son acotadas. El estudio de cómo agregar una
colección de espacios métricos parciales donde cada una de
las métricas son acotadas no ha sido tratado desde el punto
de vista de la agregación en la literatura. Motivados por este
hecho, en este trabajo nos centramos en cómo agregar, me-
diante una función, una colección finita de espacios métricos
parciales acotados para obtener una métrica parcial acotada
definida en el espacio producto como resultado.

Con el objetivo de proporcionar la mencionada caracteriza-
ción definamos algunos conceptos que jugarán un papel clave.

Definición 1. Diremos que un EMP (X, p) está acotado si
para algún c ∈ R+ con c > 0 se tiene que, para todo
x, y ∈ X , se satisface que p(x, y) ≤ c. Para un EMP acotado,
el menor valor (ı́nfimo) de c para el cual se satisface la
desigualdad anterior se denomina constante de acotación, y
entonces se dice que (X, p) es un espacio métrico parcial
c-acotado.

El siguiente ejemplo proporciona una instancia de espacio
métrico parcial acotado que no es una métrica.

Ejemplo 1. Considérese el conjunto de todas las sucesiones
finitas e infinitas Σ∞ definidas a partir de un alfabeto no
vacı́o Σ. Dada v ∈ Σ∞, denotaremos por l(v) la longitud de
v. De este nodo l(v) ∈ N ∪ {∞} para toda v ∈ Σ∞. Fijemos
ΣF = {v ∈ Σ∞ : l(v) ∈ N} y Σ∞ = {v ∈ Σ∞ : l(v) = ∞}.
Claramente se tiene que Σ∞ = ΣF ∪ Σ∞. Definamos la
función pΣ : Σ∞ × Σ∞ → [0, 1] como pΣ(v, w) = 2−l(v,w)

para todo v, w ∈ Σ∞, donde l(v, w) denota la longitud
del prefijo común más largo entre v y w (obsérvese que
consideramos l(v, w) = 0 cuando v y w no tiene un prefijo
en común). Nótese que l(u, u) = l(u) para toda u ∈ Σ∞.
Obviamente hemos asumido que 2−∞ = 0. No es difı́cil
verificar que (Σ∞, pΣ) es un EMP 1

2 -acotado.

A continuación introducimos el concepto de función de
agregación de espacios métricos parciales acotados.

Definición 2. Dado c ∈ R+ con c > 0, diremos que una
función B : [0, c]n → R+ es una función de agregación de
espacios métricos parciales acotados (abreviada como FAEM-
PA) siempre que PB : X ×X → R+ sea una métrica parcial
acotada para cada familia de espacios métricos parciales c-
acotados {(Xi, pi) | i = 1, 2, . . . , n}, donde

PB(x̄, ȳ) = B(p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn))

= B((pi(xi, yi))
n
i=1)

para todo x̄ = (xi)
n
i=1, ȳ = (yi)

n
i=1 ∈ X =

∏n
i=1 Xi.

El resto del artı́culo está organizado del modo siguiente.
En la Sección II se presentan algunas propiedades básicas
que toda función de agregación de espacios métricos parciales
acotados debe satisfacer. La Sección 1 está dedicada a propor-
cionar una caracterización de dichas funciones. Finalmente,
en la Sección IV, se proporcionan alguna conclusiones y se
indican algunas propuestas de trabajo futuro.

II. FUNCIONES DE AGREGACIÓN DE ESPACIOS MÉTRICOS
PARCIALES ACOTADOS: ALGUNAS PROPIEDADES BÁSICAS

Es interesante observar que la Definición 2 es una adap-
tación de la dada para el caso no acotado en [18] (véase
también [19]). Nótese que en dicha definición tiene lugar
un proceso de agregación de métricas parciales acotadas de
tal modo que el resultado también es una métrica parcial
acotada. Conservar la propiedad de acotación es un hecho
valioso en aplicaciones prácticas donde necesitamos controlar
la magnitud de las distancias entre objetos.

La siguiente proposición garantiza un hecho que parece
natural que toda FAEMPA deberı́a cumplir, la acotación.

Proposición 1. Si B es una FAEMPA entonces B está acotada.

Demostración. Sea c ∈ R+ con c > 0. Supongamos que B :
[0, c]n → R+ es una FAEMPA. Consideremos el EMP acotado
([0, c],máx). Entonces ([0, c]n, PB) es un EMP acotado donde
PB viene dada, para todo x̄, ȳ ∈ [0, c]n, por

PB(x̄, ȳ) = B((máx{xi, yi})ni=1).

De este modo existe d ∈ R+ con d > 0 tal que PB(x̄, ȳ) ≤ d
para todo x̄, ȳ ∈ [0, c]n. Ahora, para todo ā ∈ [0, c]n,
consideremos 0̄ = (0, 0, . . . , 0), entonces

B(ā) = B((máx{ai, 0})ni=1) = PB(ā, 0̄) ≤ d

Deduciendo que B está acotada.

La proposición siguiente proporciona dos propiedades de las
FAEMPA que jugarán un papel crucial en la caracterizacióm
que posteriormente será introducida.

Proposición 2. Sea c ∈ R+ con c > 0 y sea B una FAEMPA.
Las siguientes afirmaciones se cumplen:

1. Si B(ā) = 0, entonces ā = 0̄.
2. B es monótona no decreciente.

Demostración. Consideremos el EMP acotado ([0, c],máx).
Supongamos que B(ā) = 0, entonces

PB(ā, 0̄) = B ((máx{ai, 0})ni=1) = B(ā) = 0.

Dado que PB es una métrica parcial, se tiene que ā = 0̄.
Veamos a continuación la monótona de B . Sean ā, b̄ ∈

[0, c]n tal que ā ≤ b̄ (ai ≤ bi para todo i = 1, . . . , n).
Consideremos, de nuevo, el EMP acotado ([0, c],máx). Dado
que PB es una métrica parcial, tenemos que

PB(ā, ā) ≤ PB(ā, b̄).
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Ası́,

B ((máx{ai, ai})ni=1) ≤ B ((máx{ai, bi})ni=1) .

Luego

B(ā) = B ((ai)
n
i=1) ≤ B ((bi)

n
i=1) = B(b̄).

Por lo tanto, B es monótona no decreciente.

Nótese que la propiedad de monotonı́a asegura que al
aumentar las distancias entre puntos individuales, la distancia
agregada también aumentará, lo cual está intimamente relacio-
nado con la propiedad (P2) de una métrica parcial. Además,
el hecho de que B(ā) = 0 está conectado con la propiedad de
separación (P3) que toda métrica parcial debe satisfacer.

III. FUNCIONES DE AGREGACIÓN DE ESPACIOS MÉTRICOS
PARCIALES ACOTADOS: UNA CARACTERIZACIÓN

En esta sección se proporciona una descripción completa
de las funciones de aquellas funciones que son útiles para
agregar los espacios métricos parciales acotados. Para ello
resulta necesario introducir el concepto de triplete parcial.

Definición 3. Sea R3
+ = {(x1, . . . , x3) : x1, x2, x3 ∈ R+}.

Diremos que (a1, a2, a3) ∈ R3
+ es un triplete parcial sobre

(b1, b2, b3) ∈ R3
+ si se cumplen las siguientes condiciones:

(i) a1 ≥ máx{b2, b3} y a1 + b1 ≤ a2 + a3
(ii) a2 ≥ máx{b1, b3} y a2 + b2 ≤ a1 + a3

(iii) a3 ≥ máx{b1, b2} y a3 + b3 ≤ a1 + a2

Obsérvese que las condiciones dadas en la defición anterior
pueden ser escritas de manera compacta para k = 1, 2, 3 del
modo siguiente:

ak ≥ máx
i̸=k

{bi} y ak + bk ≤
∑
i̸=k

ai.

Ahora que hemos definido el concepto de triplete parcial,
vamos a construir una métrica parcial acotada basada en éstos.
Esta construcción va a ser crucial para identificar y demostrar
las propiedades que determinan si una función es apta para
agregar espacios métricos parciales acotados.

Proposición 3. Sea ā = (a1, a2, a3) ∈ R3
+ un triplete parcial

sobre (b1, b2, b3) ∈ R3
+. Entonces, se puede inducir un espacio

métrico parcial acotado (X, pCāb̄).

Demostración. Dado que ak ≥ máxi̸=k{bi} para todo k =
1, 2, 3, tenemos que ak ≥ mı́ni̸=k{bi} para todo k = 1, 2, 3.
A continuación, distinguimos tres casos:

Caso 1. ak > mı́ni̸=k{bi} para todo k = 1, 2, 3. Considere-
mos X = {x, y, z}, donde x, y, z son todos diferentes dos a
dos. Definimos la función pCāb̄ : X×X → R+ de la siguiente
manera:

pCāb̄(x, y) = pCāb̄(y, x) = a1 pCāb̄(z, z) = b1

pCāb̄(x, z) = pCāb̄(z, x) = a2 pCāb̄(y, y) = b2

pCāb̄(y, z) = pCāb̄(z, y) = a3 pCāb̄(x, x) = b3

No es difı́cil comprobar que (X, pCāb̄) es un espacio métrico
parcial acotado.

Caso 2. Supongamos que ak = mı́ni̸=k{bi} para dos ı́ndices
k ∈ {1, 2, 3}. Podemos asumir sin pérdida de generalidad que
la igualdad anterior se cumple para k = 1, 2. Entonces se sigue
que a2 = a1 = a3 = b1 = b2 = b3. Establecemos X = {x}.
Definimos la función pCāb̄ : X × X → R+ de la siguiente
manera:

pCāb̄(x, x) = a1

Claramente, (X, pCāb̄) es un espacio métrico parcial acotado.
Caso 3. Supongamos que ak = mı́ni̸=k{bi} solo para un

ı́ndice k ∈ {1, 2, 3}. Podemos asumir sin pérdida de generali-
dad que la igualdad anterior se cumple para k = 1. Entonces
a1 = mı́n{b2, b3}, a2 > mı́n{b1, b3} y a3 > mı́n{b1, b2}. De
aquı́ se sigue que a1 = b2 = b3. Fijemos X = {x, y} con x e
y diferentes. Definamos la función pc̄āb̄ : X ×X → R+ de la
siguiente manera:

pCāb̄(x, y) = pCāb̄(y, x) = a2,

pC,āb̄(x, x) = b3, pC,āb̄(y, y) = b1.

Un cálculo sencillo muestra que (X, pC,āb̄) es un espacio
métrico parcial acotado.

En lo sucesivo, el espacio métrico parcial (X, pCāb̄) introdu-
cido en el resultado anterior será llamado espacio métrico par-
cial canónico inducido por el triplete parcial ā = (a1, a2, a3)
sobre b̄ = (b1, b2, b3).

Los siguientes resultados, que se basan en la proposición
anterior, nos proporcionan ciertas construcciones que nos
ayudarán en la anunciada caracterización.

Lema 1. Sea c ∈ R+ con c > 0. Entonces, para todo
a, b, e, f ∈ [0, c] tales que a+ b ≤ e+ f y b ≤ e, b ≤ f , existe
un espacio métrico parcial acotado (X, p) de modo que existen
x, y, z ∈ X tales que p(x, y) = a′, p(z, z) = b, p(x, z) = e y
p(y, z) = f , donde a′ = mı́n{e+ f − b, c}.

Demostración. Consideremos a′ = mı́n{e+f−b, c}. Tenemos
que a′ ≥ a y a′ + b ≤ e+ f . A continuación mostramos que
a′ + f − e ≥ 0. Si e+ f − b < c, entonces a′ = e+ f − b y
ası́ a′+ f − e = 2f − b ≥ 0. De lo contrario, e+ f − b ≥ c da
a′ = c. Ası́, a′ + f − e = c+ f − e ≥ 0 debido a que c ≥ e.

Por lo tanto, tenemos a′+f − e ≥ 0. De manera similar, se
puede mostrar que a′ + e− f ≥ 0. Entonces es fácil ver que
ā = (a′, e, f) es un triplete parcial sobre b̄ = (b, f, e). Nótese
que a′, b2, b3 ∈ [0, c]. Por la Proposición 3, concluimos que
el espacio métrico parcial canónico (X, pCāb̄) satisface que
p(x, y) = a′, p(z, z) = b, p(x, z) = e y p(y, z) = f .

Lema 2. Sea c ∈ R+ con c > 0. Entonces, para todo
a, b1, b2 ∈ [0, c] con a ≥ b1 y a ≥ b2, existe un espacio
métrico parcial acotado (X, p) de modo que existen x, y ∈ X
tales que p(x, y) = a, p(x, x) = b1 y p(y, y) = b2.

Demostración. Es fácil ver que ā = (a, a, a) es un triplete
parcial sobre b̄ = (0, b1, b2). La Proposición 3 establece que
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el espacio métrico parcial canónico (X, pCāb̄) satisface que
p(x, y) = a, p(x, x) = b2 y p(y, y) = b1.

A la vista de lo expuesto tenemos todas las herramientas
necesarias para poder introducir la caracterización de las fun-
ciones de agregación de espacios métricos parciales acotados.

Teorema 1. Sea c ∈ R+ con c > 0. Entonces, la función
B : [0, c]n → R+ es una FAEMPA si y solo si satisface las
siguientes condiciones:

(1) Si ā, b̄, ē, f̄ ∈ [0, c]n tal que b̄ ≤ ē, b̄ ≤ f̄ , ā+ b̄ ≤ ē+ f̄ ,
entonces B(ā) +B(b̄) ≤ B(ē) +B(f̄).

(2) Si ā, b̄1, b̄2 ∈ [0, c]n con b̄1 ≤ ā y b̄2 ≤ ā y B(ā) =
B(b̄1) = B(b̄2), entonces ā = b̄1 = b̄2.

Demostración. Supongamos que B : [0, c]n → R+ es una
FAEMPA.

(1) Consideremos ā, b̄, ē, f̄ ∈ [0, c]n tales que ā+ b̄ ≤ ē+ f̄ ,
b̄ ≤ ē y b̄ ≤ f̄ . Entonces para cada i ∈ {1, 2, . . . , n}
tenemos que ai + bi ≤ ei + fi, bi ≤ ei y bi ≤ fi, donde
ai, bi, ei, fi ∈ [0, c]. Por el Lema 1, existe un espacio
métrico parcial acotado (Xi, pi) y existen xi, yi, zi ∈ Xi

tales que pi(xi, yi) = a′i, pi(zi, zi) = bi, pi(xi, zi) = ei
y pi(yi, zi) = fi, donde a′i = ei + fi − bi ≥ ai.
Para el espacio métrico parcial X =

∏n
i=1 Xi con la

métrica parcial PB , tenemos que PB(x̄, ȳ) = B(ā′),
PB(z̄, z̄) = B(b̄), PB(x̄, z̄) = B(ē) y PB(ȳ, z̄) = B(f̄).
Dado que (X,PB) es un espacio métrico parcial, tene-
mos que PB(x̄, ȳ) + PB(z̄, z̄) ≤ PB(x̄, z̄) + PB(ȳ, z̄).
Por lo tanto,

B(ā′) +B(b̄) ≤ B(ē) +B(f̄)

Dado que ā ≤ ā′ y la Proposición 2 proporciona la
monotonı́a de B, obtenemos

B(ā) ≤ B(ā′) ≤ B(ē) +B(f̄)−B(b̄)

(2) Supongamos que para algunos ā, b̄1, b̄2 ∈ [0, c]n con
b̄1 ≤ ā y b̄2 ≤ ā tenemos que

B(ā) = B(b̄1) = B(b̄2)

Ahora, para cada i ∈ {1, 2, . . . , n}, tenemos b1i ≤ ai
y b2i ≤ ai. Por el Lema 2, existe un espacio métrico
parcial (Xi, pi) tal que

pi(xi, yi) = ai, pi(xi, xi) = b2i, pi(yi, yi) = b1i.

Para el espacio métrico parcial PB definido en X =∏n
i=1 Xi, tenemos

PB(x̄, ȳ) = B(ā), PB(x̄, x̄) = B(b̄2),

PB(ȳ, ȳ) = B(b̄1).

De donde se deduce que

B(ā) = B(b̄1) = B(b̄2).

Luego

PB(x̄, ȳ) = PB(x̄, x̄) = PB(ȳ, ȳ).

Por tanto, x̄ = ȳ y, ası́, ā = b̄1 = b̄2.
Para probar el recı́proco, sea B : [0, c]n → R+ una función

tal que se cumplen las afirmaciones (1) y (2).
Sea (Xi, pi)

n
i=1 una familia de espacios métricos parciales

c-acotados. Consideremos x̄, ȳ ∈ X =
∏n

i=1 Xi tales que

PB(x̄, ȳ) = PB(x̄, x̄) = PB(ȳ, ȳ),

es decir,

B ((pi(xi, yi))
n
i=1) = B ((pi(xi, xi))

n
i=1) = B ((pi(yi, yi))

n
i=1) .

El hecho de que, por un lado, se verifique que pi(xi, xi) ≤
pi(xi, yi) y pi(yi, yi) ≤ pi(xi, yi) para todo i ∈ {1, 2, . . . , n}
y que, por otro, se verifique la condición (2) implica
que pi(xi, yi) = pi(xi, xi) = pi(yi, yi) para todo i ∈
{1, 2, . . . , n}. Dado que cada (Xi, pi) es un espacio métrico
parcial, tenemos que xi = yi para todo i. Por lo tanto, x̄ = ȳ.
Luego PB verifica la condición (P1) de la definición de métrica
parcial.

Tomando b̄ = f̄ = 0̄ en la afirmación (2), obtenemos
que B es monótona. Ahora, para x̄, ȳ ∈ X , tenemos que
pi(xi, xi) ≤ pi(xi, yi) para todo i ∈ {1, 2, . . . , n}. Por
lo tanto, B ((pi(xi, xi)

n
i=1)) ≤ B ((pi(xi, yi))

n
i=1), lo que

implica que PB(x̄, x̄) ≤ PB(x̄, ȳ). Con lo cual PB verifica
la condición (P2) de la definición de métrica parcial.

Claramente, dado que pi(xi, yi) = pi(yi, xi), se tiene que
PB(x̄, ȳ) = PB(ȳ, x̄). Por lo tanto, PB verifica la condición
(P3) de la definición de métrica parcial.

Finalmente, para x̄, ȳ, z̄ ∈ X , tenemos que

pi(xi, yi) + pi(zi, zi) ≤ pi(xi, zi) + pi(yi, zi)

para todo i ∈ {1, 2, . . . , n}. La condición (1) entonces implica
que

B ((pi(xi, yi))
n
i=1) +B((pi(zi, zi))

n
i=1)

≤ B((pi(xi, zi))
n
i=1) +B((pi(zi, yi))

n
i=1)

Esto es equivalente a

PB(x̄, ȳ) + PB(z̄, z̄) ≤ PB(x̄, z̄) + PB(ȳ, z̄)

Por lo tanto, (X,PB) es un espacio métrico parcial. Nos falta
verificar que es acotado. Sin embargo, observemos que de la
condición (1), tomando b̄ = f̄ = 0̄ y ē = (c, . . . , c), se deduce
que B(ā) ≤ B(c, . . . , c). Luego B es una función acotada.
Por tanto, se tiene que

PB(x̄, ȳ) = B(((pi(xi, yi))
n
i=1) ≤ B(c, . . . , c)

para todo x̄, ȳ ∈ X . De donde concluimos que (X,PB) es un
espacio métrico parcial acotado. Se sigue entonces que B es
una FAEMPA.

El siguiente ejemplo proporciona una instancia de FAEM-
PA.

Ejemplo 2. Considérese la función B : [0, 1]2 → R+ definida
por B(ā) = a1+a2

4 + 1
2 para todo ā = (a1, a2) ∈ [0, 1]2. No

resulta difı́cil comprobar que B satisface las condiciones (1)
y (2) del Teorema 1. Por tanto, B es una FAEMPA. Obsérvese
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que dicha función induce un espacio métrico parcial acotado
cuya constante de acotación no coincide con la constante
de acotación de los espacios métricos parciales que agrega.
En efecto, consideremos el espacio métrico parcial acota-
do ([0, 1],máx). Sean ([0, 1], p1) y ([0, 1], p2) los espacios
métricos parciales acotados tales que p1(x, y) = p2(x, y) =
1
2 máx(x, y) para todo x, y ∈ [0, 1]. Claramente p1(x, y) ≤ 1

2
y p2(x, y) ≤ 1

2 par todo x, y ∈ [0, 1]. Sin embargo, el espacio
métrico parcial inducido a través de B al agregar ([0, 1]2, PB)
es 3

4 -acotado. Con lo cual, la función de agregación no
preserva la constante de acotación.

IV. CONCLUSIONES

Motivados por el creciente interés en las métricas parciales
acotadas y la importancia del problema de agregación de
distancias en problemas aplicados, en este trabajo hemos
planteado el problema de fusionar una colección de espacios
métricos parciales acotados dando como resultado un nuevo
espacio métrico parcial acotado definido en el producto. Para
ello, hemos introducido la noción de función de agregación
de espacios métricas parciales acotados y se ha dado una
caracterización de este tipo de funciones. Como consecuencia
se ha demostrado que deben ser monótonas no decrecientes,
acotadas y satisfacer una propiedad especial de separación. Sin
embargo, aún quedan algunas preguntas abiertas.

En términos generales la función de agregación induce un
espacio métrico parcial acotado cuya constante de acotación
no coincide con la constante de acotación de los espacios
métricos parciales agregados. Parece interesante analizar bajo
qué condiciones la función de agregación preserva la constante
de acotación.

Dado que toda métrica acotada es una métrica parcial
acotada, planeamos analizar la relación existente entre las
funciones que agregan espacios métricos parciales acotados
y aquellas que agregan espacios métricos acotados. Además,
prestaremos especial atención a la cuestión sobre cuándo las
primeras preservan los espacios métricos, es decir, cuándo al
agregar una colección de espacios métricos acotados induce
como resultado concretamente un espacio métrico acotado
sobre el producto.

Se explorará la posibilidad de extender el problema aborda-
do considerando una colección de espacios métricos parciales
acotados donde cada uno de ellos admite una constante de
acotación diferente, y se analizará cuál es la relación entre las
constantes de acotación originales y la obtenida mediante la
agregación.

Finalmente, exploraremos la posibilidad de aplicar la teorı́a
desarrollada al procesamiento de imágenes.
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Abstract—En este trabajo demostramos la conexión entre los
conceptos de incrustación y similitud. Proporcionamos una nueva
definición de medida de similitud entre intervalos basada en
cuán incrustados están cada uno de los intervalos considerados
en el otro. Medidas de similitud conocidas en la literatura
proporcionan una similitud cero a cualquier par de intervalos
que tengan intersección vacı́a. La novedad de nuestro enfoque
radica en el hecho de que definimos una medida de similitud
que puede distinguir si dos intervalos están cerca uno del otro a
pesar de no superponerse, ya que no proporciona un valor cero
cuando los intervalos tienen intersección vacı́a.

Index Terms—medida de similitud, función de agregación,
medida de incrustación, intervalos

I. INTRODUCCIÓN

El concepto de similitud es fundamental y ampliamente
utilizado en muchas de las disciplinas cientı́ficas. Algunas
de estas disciplinas incluyen la toma de decisiones, el re-
conocimiento de patrones, métodos de agrupamiento, entre
otras [4], [6], [7], [10], [11], [13], [18], [20]–[23]. Estas
numerosas aplicaciones han hecho que el concepto matemático
de similitud entre diferentes elementos haya sido ampliamente
estudiado en la literatura durante los últimos años (véanse [5],
[7], [8], [15], [20], entre muchos otros).

Se podrı́a decir que todas las medidas de distancia en la
recta real generan, mediante una transformación decreciente,
una medida de similitud entre números. No obstante, no es
tan evidente como cuantificar la similitud o cercanı́a entre una
extensión de números, como pueden ser los intervalos. Sin
embargo, hoy en dı́a los datos que vienen descritos mediante
intervalos aparecen en muchos campos, fruto de la obtención
de los mismos, siendo especialmente significativo su uso si los
datos son subjetivos y proceden de opiniones de personas. Es
evidente que los números reales no siempre son la solución
idónea en este campo, pudiendo ser demasiado inflexibles o
estrictos si se quiere reflejar el pensamiento humano de manera
fiel. Ası́, el uso de intervalos está siendo una alternativa exitosa
para expresar formalmente opiniones, grados de preferencia,
etc. Esta alternativa para representar algunos aspectos de la
vida real requiere todo un conjunto de nuevas herramientas
matemáticas que permitan trabajar con ellos de manera formal
y, en particular, se precisa de medidas de similitud entre
intervalos. A pesar de que la similitud entre intervalos no

Los autores han sido apoyados por el Proyecto del Ministerio de Ciencia
e Innovación de España PID2022-139886NB-l00.

es un tema nuevo y se pueden encontrar propuestas previas
en la literatura, hemos observado un inconveniente importante
en algunas de las definiciones de similitud más comúnmente
utilizadas. Generalmente, proporcionan resultados satisfacto-
rios cuando los intervalos tienen intersección no vacı́a, es
decir, dan resultados lógicos o cercanos a la intuición. Sin
embargo, son poco informativos cuando los intervalos son
disjuntos, no siendo capaces de distinguir si los intervalos
están o no cercanos entre sı́. Este trabajo surge con el objetivo
de dar medidas de similitud que sı́ tengan en cuenta esta
circunstancia. En concreto, nuestra propuesta se basará en el
concepto de medida de incrustación que presentamos en el
artı́culo [3].

Una función de incrustación es una función de valor real
que proporciona el grado en que un intervalo está contenido
en otro. Es bien sabido que el concepto de subconjuntos y
las medidas de similitud son ideas conectadas (véase, por
ejemplo, [16]). Presentamos una nueva manera de medir la
similitud basada en el concepto de incrustación. En una
primera propuesta presentamos una definición de similitud
basada en la agregación de medidas de incrustación. Sin
embargo, un análisis detallado de la nueva definición muestra
que no captura la idea de proximidad entre los intervalos
cuando son disjuntos. Abordamos este problema con una
segunda propuesta. Mostramos que esta segunda definición
permite medir la proximidad entre los intervalos tanto cuando
tienen intersección no vacı́a, como cuando son disjuntos.

El trabajo está organizado de la siguiente manera: en la
sección II introducimos algunos conceptos necesarios y es-
tablecemos la notación utilizada en las siguientes secciones. El
núcleo del manuscrito se encuentra en la sección III. Contiene
nuestras propuestas para medir la similitud entre intervalos y
una discusión sobre la idoneidad de cada definición. En la
sección IV presentamos algunas conclusiones y algunos de
los problemas abiertos que se derivan del contenido de este
trabajo.

II. PRELIMINARES

En esta sección, introducimos las notaciones y principales
conceptos que se utilizarán a lo largo de este trabajo.

Dado que la información que proporciona una persona se
formaliza mejor, en términos de capturar la imprecisión aso-
ciada al pensamiento humano, mediante un intervalo, vamos a
trabajar con dichos conjuntos. Solo consideramos, por ser un
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planteamiento habitual en este área, intervalos contenidos en
[0, 1]. Por lo tanto, llamamos L([0, 1]) a la familia de intervalos
cerrados incluidos en el intervalo unitario [0, 1]:

L([0, 1]) = {[a, a] | a, a ∈ [0, 1] y a ≤ a} (1)

Por otro lado, trabajamos con medidas de incrustación.
En [3], la incrustación para intervalos se presentó de la
siguiente manera:

Definición 2.1: [3] La función E : L([0, 1])2 → [0, 1]
es una medida de incrustación (embedding en inglés) en
L([0, 1]) si para cualesquiera a, b, c ∈ L([0, 1]) se satisfacen
las siguientes propiedades:
A.1 E(a, b) = 1 si y solo si a ⊆ b
A.2 Si a ∩ b = ∅, entonces E(a, b) = E(b, a) = 0
A.3 Si b ⊆ c, entonces E(a, b) ≤ E(a, c)
A.4 Si a ⊆ b ⊆ c, entonces E(c, a) ≤ E(b, a)

Un ejemplo de una medida de incrustación es aquella basada
en el ancho de los intervalos [3]:

Ew(a, b) =


1 si w(a) = 0 y a ∩ b ̸= ∅
0 si w(a) = 0 y a ∩ b = ∅
w(a∩b)
w(a) si w(a) ̸= 0

(2)

donde w denota la amplitud del intervalo, es decir,

w(a) = w([a, a]) = a− a. (3)

Como se puede deducir de la definición, estos operadores
permiten medir la inclusión de un intervalo en otro. Son una
forma de medir el grado de contenido entre intervalos. Estas
funciones alcanzan el valor máximo de 1 cuando el primer
intervalo está completamente incluido en el segundo y solo
en este caso. Proporcionan un valor en el rango (0, 1), que
representa el grado de inclusión, si la intersección entre ambos
intervalos es no vacı́a. Y, por último, da como resultado 0 si
ambos intervalos no tienen elementos en común.

Otro concepto importante en este trabajo son las normas
triangulares:

Definición 2.2: [12] Una función T : [0, 1]2 → [0, 1] es
una norma triangular si satisface las siguientes propiedades:

• es conmutativa,
• es asociativa,
• es creciente en cada componente y
• T (1, x) = x para todo x ∈ [0, 1].

Las normas triangulares, también denominadas t-normas,
surgieron en el entorno de los espacios métricos proba-
bilı́sticos, pero han sido ampliamente utilizadas para extender
el operador lógico “y” en el contexto de la lógica difusa. Como
hemos visto anteriormente, originalmente se definieron para
solo dos argumentos, pero pueden operar sobre cualquier tupla
de n argumentos con n ∈ N ya que son asociativas, es decir,

T (x1, . . . , xn) = T (. . . (T (T (x1, x2), x3), . . . , xn) (4)

Un miembro importante de esta familia de operadores es el
mı́nimo, que denotaremos en lo que sigue como min y viene
dado por min(x, y) = min{x, y}. Otras t-normas importantes
son el operador de Łukasiewicz:

TL(x, y) = max{x+ y − 1, 0} (5)

y el producto:
TP (x, y) = x · y. (6)

Las t-normas son una familia particular de funciones de
agregación. Recordamos la definición de esta familia más
general de operadores:

Definición 2.3: [1], [2], [14] Una función de agregación
M : [0, 1]n → [0, 1] es una función que satisface las siguientes
propiedades:

• es creciente en cada argumento y
• M(0, . . . , 0) = 0 y M(1, . . . , 1) = 1.

Es evidente que estos operadores son más generales que
las t-normas. No requieren conmutatividad ni asociatividad.
Si son conmutativos, se denominan simétricos:

Definición 2.4: [1] Una función de agregación M es
simétrica, si su resultado no depende de la permutación de
los argumentos, es decir,

M(x1, x2, . . . , xn) = M(xP (1), xP (2), . . . , xP (n)) (7)

para todo (x1, x2, . . . , xn) ∈ [0, 1]n y para toda permutación
P = (P (1), P (2), . . . , P (n)) de (1, 2, . . . , n).

Definición 2.5: [19] Una función de agregación M se
denomina 1-estricta cuando:

M(x1, x2, . . . , xn) = 1 (8)

solo si xi = 1 para todo i = 1, . . . , n.

Es claro que las t-normas son 1-estrictas. Esto se debe
a que T (x1, x2, . . . , xn) ≤ min(x1, x2, . . . , xn) para cada
(x1, x2, . . . , xn) ∈ [0, 1]n, entonces si T (x1, x2, . . . , xn) = 1
se tiene que (x1, x2, . . . , xn) = (1, . . . , 1), siendo la otra
implicación trivial. Por lo tanto, son una familia particular
de operadores de agregación simétricos (conmutativos) 1-
estrictos, teniendo además la propiedad de asociatividad.

El último concepto que necesitamos establecer antes de
comenzar con los nuevos resultados es el de medida de
similitud. La idea habitual que subyace es que es una función
de valor real que proporciona un valor que cuantifica cómo de
similares son los dos elementos bajo comparación. En nuestro
caso, los elementos a comparar son intervalos contenidos en
el intervalo [0, 1] y, como consecuencia de esto, el grado de
similitud está acotado en el intervalo unitario. Cuanto más
similares sean los dos intervalos, mayor será el resultado
de esta medida, alcanzándose el lı́mite superior (1) solo si
ambos intervalos son idénticos. Se han considerado diferentes
axiomas en la definición de una medida de similitud. La
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definición más básica se puede encontrar en [17] y la más
restrictiva en [11], donde se requieren hasta nueve axiomas.
Definimos la similitud considerando solo los cuatro axiomas
identificados en [11] como “las cuatro propiedades comunes”.
Cabe notar que aquı́ solo enumeramos explı́citamente tres de
esos axiomas porque el cuarto considerado en [11] es que la
similitud debe estar acotada entre 0 y 1 y eso ya se deduce
de forma implı́cita en nuestra definición:

Definición 2.6: Una medida de similitud entre intervalos
es una función S : L([0, 1])2 → [0, 1] tal que satisfice las
siguientes propiedades para cualesquiera a, b, c ∈ L([0, 1]):
S1: S(a, b) = S(b, a)
S2: S(a, b) = 1 si y solo si a = b
S3: Si a ⊆ b ⊆ c, entonces S(a, c) ≤ S(a, b) y

S(a, c) ≤ S(b, c)

Un ejemplo muy conocido de medida de similitud es el
ı́ndice de Jaccard [9], definido como:

J(a, b) =
w(a ∩ b)

w(a ∪ b)
(9)

Es fácil demostrar que este operador definido sobre L([0, 1])
es una medida de similitud ya que siempre toma valores en
[0, 1] y satisface los axiomas S1− S3.

Otro ejemplo muy conocido de medida de similitud es el
coeficiente de Sorensen, también llamado ı́ndice de Sorensen-
Dice o ı́ndice de Dice [5], que se define como:

D(a, b) =
2 w(a ∩ b)

w(a) + w(b)
(10)

También es fácil demostrar que es una medida de similitud
en el sentido de la definición 2.6.

III. SIMILITUDES BASADAS EN MEDIDAS DE
INCRUSTACIÓN

La idea principal de esta sección es introducir similitudes
basadas en medidas de incrustación. Es claro que, en el
contexto nı́tido, es absolutamente intuitivo pensar que dos
conjuntos (intervalos) son iguales si el primero está incluido
en el segundo y viceversa:

a = b ⇐⇒ a ⊆ b y b ⊆ a (11)

Pero esta definición es estricta en el sentido de que solo
podemos determinar si son iguales o no, pero no podemos
determinar los grados de igualdad o similitud que estamos
buscando. Si queremos permitir grados de similitud, podemos
reemplazar a ⊆ b por una medida de incrustación E(a, b) y
la conjunción clásica por el operador min obteniendo:

min(E(a, b), E(b, a)) (12)

Se puede demostrar que es una función de similitud de
acuerdo con la definición 2.6. La generalización natural de
esta definición es reemplazar la función min por cualquier
t-norma:

Definición 3.1: Sea E una medida de incrustación y T una
t-norma. La función SE

T : L([0, 1])2 → [0, 1] dada por:

SE
T (a, b) = T (E(a, b), E(b, a)) (13)

se llama similitud basada en t-norma según la incrustación.

Es conocido que TD ≤ T ≤ Tmin siendo TD la norma
drástica, T cualquier norma y Tmin la norma del mı́nimo. Por
lo tanto, SE

TD
≤ SE

T ≤ SE
Tmin

.
La definición 3.1 generaliza la medida de similitud basada

en subconjuntos bidireccionales introducida en [11]. La hemos
llamado “similitud” porque cumple con las propiedades de la
definición 2.6, como mencionamos en la siguiente proposición:

Proposición 3.1: Sea E una medida de incrustación y
T una t-norma. La similitud basada en t-norma según la
incrustación SE

T introducida en la definición 3.1 es una
medida de similitud para intervalos.

Sin embargo, la asociatividad no es necesaria y la condición
de frontera que satisfacen las t-normas (T (x, 1) = x) tampoco
es importante. Solo se utiliza la propiedad 1-estricto (junto con
la monotonı́a). Por lo tanto, podemos extender la definición
anterior a cualquier función de agregación 1-estricta de la
siguiente manera:

Definición 3.2: Sea E una medida de incrustación para in-
tervalos y M una función de agregación 1-estricta y simétrica.
La función SE

M : L([0, 1])2 → [0, 1] dada por:

SE
M(a, b) = M(E(a, b), E(b, a)) (14)

se denomina similitud basada en la función de agregación
según la incrustación.

La siguiente proposición muestra que el nombre consider-
ado es el adecuado, puesto que esta función es realmente una
medida de similitud.

Proposición 3.2: Sea E una medida de incrustación para
intervalos y M una función de agregación simétrica y
1-estricta. La similitud basada en la función de agregación
según la incrustación dada en la definición 3.2 y denotada
como SE

M es una medida de similitud para intervalos.

El resultado podrı́a extenderse aún más a operadores que
no necesariamente cumplen con la definición de función de
agregación, ya que la propiedad de frontera M(0, . . . , 0) = 0
no se utiliza. No obstante, nos vamos a centrar en el caso de
medidas generadas a partir de funciones de agregación, dada
la habitual importancia de las mismas en la literatura.

Una función particularmente importante en la familia de
operadores de agregación simétricos y 1-estrictos es la media
aritmética, la cual, por tanto, nos permite definir una medida
de similitud:
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Corolario 3.1: Sea E una medida de incrustación. La
función SE

AM : L([0, 1])2 → [0, 1] dada por:

SE
AM (a, b) =

E(a, b) + E(b, a)

2
(15)

es una similitud para intervalos.

La función de similitud introducida en la proposición 3.2
es una forma fácil y natural de medir cuánto se parecen dos
intervalos cuando tienen algunos elementos en común. El
siguiente ejemplo muestra este comportamiento.

Ejemplo 3.1: Examinemos la similitud entre el intervalo
x1 = [0.2, 0.5] y los intervalos x2 = [0.4, 0.8], x3 = [0.1, 0.8]
y x4 = [0.6, 0.9]. En la figura 1 se observa la representación
gráfica de cada uno de ellos.

Intervalo

0

0.2

0.4

0.6

0.8

1

x1 x2 x3 x4

Fig. 1. Representación gráfica de los intervalos x1, x2, x3 y x4.

Podemos visualizar la proximidad entre x1 y cada uno de
los otros intervalos. Nuestra intuición dice que la similitud
entre x1 y x3 deberı́a ser mayor que la similitud entre x1 y
x2, y esta mayor que la similitud entre x1 y x4.

Si consideramos la medida de incrustación basada en el
ancho de los intervalos dada en la ecuación 2, la tabla I
muestra la intersección entre los intervalos y la tabla II muestra
los valores de la medida de incrustación asociada.

Entonces, considerando como funciones de agregación el
mı́nimo y la media aritmética, obtenemos los valores de
similitud mostrados en la tabla III. Por lo tanto, los valores
obtenidos para las medidas de similitud son los esperados: en
ambos casos (mı́nimo y media aritmética), el mayor valor de
similitud está asociado a x1 y x3.

TABLE I
INTERSECCIÓN ENTRE LOS INTERVALOS

∩ x2 = [0.4, 0.8] x3 = [0.1, 0.8] x4 = [0.6, 0.9]

x1 = [0.2, 0.5] [0.4, 0.5] [0.2, 0.5] ∅

Tal y como dijimos, esta definición de similitud es una
forma fácil y natural de medir cuánto se parecen dos intervalos
cuando tienen algunos elementos en común. Pero falla en
capturar la idea de similitud cuando no tienen puntos en
común. En el ejemplo anterior obtuvimos SEw

min(x1, x4) = 0 y
SEw

AM (x1, x4) = 0. Habrı́amos obtenido el mismo resultado si

TABLE II
VALORES DE LA MEDIDA DE INCRUSTACIÓN ENTRE LOS INTERVALOS

Ew(x1, x2) = 1/3 Ew(x2, x1) = 1/4

Ew(x1, x3) = 1 Ew(x3, x1) = 3/7

Ew(x1, x4) = 0 Ew(x4, x1) = 0

TABLE III
VALORES DE LA SIMILITUD BASADA EN EL MÍNIMO Y EN LA MEDIA

ARITMÉTICA SEGÚN LA INCRUSTACIÓN

Intervals SEw
min SEw

AM

(x1, x2) 1/4 7/24

(x1, x3) 3/7 5/7

(x1, x4) 0 0

x4 = [0.5+ϵ, 0.9] para cualquier 0 < ϵ < 0.1. Es decir, incluso
considerando intervalos que estén tan cerca como se desee, la
medida de similitud es 0 siempre que no tengan intersección.
En una situación extrema, la similitud entre [0.5− ϵ, 0.5− ϵ

2 ]
y [0.5 + ϵ

2 , 0.5 + ϵ] es la misma que la similitud entre [0, ϵ]
y [1 − ϵ, 1], sin importar lo pequeño que sea ϵ. La figura 2
muestra gráficamente un ejemplo de la situación mencionada.

Intervalo

0

0.2

0.4
0.5
0.6

0.8

1

Fig. 2. Representación de los intervalos [0.5−ϵ, 0.5− ϵ
2
] y [0.5+ ϵ

2
, 0.5+ϵ]

en rojo y [0, ϵ] y [1− ϵ, 1] en azul.

A pesar de que esta desventaja también es compartida por
otras medidas de similitud importantes y ampliamente uti-
lizadas, como las similitudes de Jaccard o Dice, consideramos
que es una situación contraintuitiva y creemos que deberı́a ser
corregida.

Nuestro objetivo es proponer una medida de similitud
que pueda abordar la desventaja mencionada anteriormente.
Nuestra propuesta es involucrar algún tipo de unión de
los intervalos que estamos comparando para capturar su
proximidad en caso de que no tengan intersección. Sin
embargo, la unión clásica presenta una desventaja importante:
no es un intervalo cuando los intervalos de partida son
disjuntos. Por esta razón, no consideramos la unión clásica
de intervalos, sino la siguiente:

Definición 3.3: Dados dos intervalos a, b ∈ L([0, 1]), la
operación a⊔b se define como el menor elemento en L([0, 1])
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tal que a ⊆ a⊔b y b ⊆ a⊔b. Es decir, si a = [a, a] y b = [b, b],
se tiene que:

a ⊔ b =
[
min

{
a, b},max{a, b

}]
(16)

Esta operación se convierte en la unión cuando los intervalos
no son disjuntos. Sin embargo, no puede considerarse una
unión de manera clásica, ya que incluye elementos que no
están en ninguno de los intervalos originales si son disjuntos.
Dados los intervalos a = [0.2, 0.3] y b = [0.4, 0.5], el
intervalo a ⊔ b es [0.2, 0.5]. Incluye, por ejemplo, el valor
0.35 que no está en ninguno de los conjuntos originales. A
pesar de que no es una unión clásica, sirve para nuestros
propósitos. Permite proporcionar una medida alternativa de
proximidad entre intervalos que satisface la definición de
similitud.

Definición 3.4: Sea E una medida de incrustación para in-
tervalos y M una función de agregación 1-estricta y simétrica.
La función SE

M−⊔ : L([0, 1])2 → [0, 1], definida como:

SE
M−⊔(a, b) = M(E(a ⊔ b, a), E(a ⊔ b, b)) (17)

se denomina similitud basada en la función de agregación
según la ⊔-incrustación.

La siguiente proposición muestra que es una medida de
similitud en el sentido de la definición 2.6.

Proposición 3.3: Sea E una medida de incrustación para
intervalos y M una función de agregación simétrica y
1-estricta. El operador SE

M−⊔ dado en la definición 3.4 es
una medida de similitud para intervalos.

A continuación, mostramos que si consideramos la
incrustación basada en el ancho del intervalo dada por la
ecuación 2, la similitud introducida en la definición 3.4 supera
el problema descrito anteriormente, ya que es monótona con
respecto a la distancia entre los intervalos: cuanto más
cercanos sean los intervalos considerados, mayor será el valor
de la medida de similitud.

Proposición 3.4: Sea Ew la medida de incrustación basada
en el ancho del intervalo dada por la ecuación 2 y M una
función de agregación simétrica y 1-estricta. El operador
SEw

M−⊔ dado en la definición 3.4 es monótono con respecto a
la distancia entre los intervalos de igual ancho.

Por último, proporcionamos un ejemplo del resultado
anterior:

Ejemplo 3.2: Consideremos la medida de incrustación
basada en el ancho del intervalo dada en la ecuación 2 y
M = min (el resultado será el mismo para cualquier función
de agregación simétrica y 1-estricta que sea idempotente).

Sean aα = [α, α + 0.1] y bα = [0.9 − α, 1 − α] donde
α = {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}.

La tabla IV muestra los valores de la similitud SEw

M−⊔ entre
aα y bα para los diferentes valores de α. La figura 3 ilustra
gráficamente el comportamiento de la medida de similitud
SE
M−⊔ cuando la distancia entre los intervalos varı́a.

TABLE IV
VALORES DE LA SIMILITUD ENTRE aα Y bα

α aα bα S(aα, bα)
0 [0, 0.1] [0.9, 1] 0.1

0.05 [0.05, 0.15] [0.85, 0.95] 0.11
0.1 [0.1, 0.2] [0.8, 0.9] 0.12
0.15 [0.15, 0.25] [0.75, 0.85] 0.14
0.2 [0.2, 0.3] [0.7, 0.8] 0.17
0.25 [0.25, 0.35] [0.65, 0.75] 0.2
0.3 [0.2, 0.4] [0.6, 0.7] 0.25
0.35 [0.35, 0.45] [0.55, 0.65] 0.33

Fig. 3. Similitud entre los intervalos según su distancia

IV. CONCLUSIONES

En este artı́culo se han presentado similitudes basadas en
medidas de incrustación. Se identificaron dos tipos distintos de
similitudes. La primera, aunque cumple con las condiciones
para ser considerada como tal, presenta una limitación sig-
nificativa: no logra distinguir adecuadamente la proximidad
entre dos intervalos cuando su intersección es vacı́a. Esta
limitación se manifiesta en el hecho de que la similitud siempre
da como resultado cero cuando los intervalos tienen una
intersección vacı́a. Este inconveniente también lo presentan
similitudes ampliamente conocidas y utilizadas en la literatura,
como Jaccard y Dice. Sin embargo, consideramos que es una
desventaja importante en el sentido de que no capturan la
proximidad real entre los intervalos.

En respuesta a esta limitación, hemos propuesto una se-
gunda caracterización para las similitudes basadas en medidas
de incrustación que aborda esta deficiencia. Estas nuevas
similitudes son capaces de distinguir con mayor precisión la
proximidad entre intervalos, incluso cuando no tienen inter-
sección en común. Al asignar valores no nulos que aumentan
a medida que los intervalos se acercan, estas similitudes
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proporcionan una medida más robusta y precisa de la relación
entre intervalos.

Como trabajo futuro, proponemos explorar las propiedades
que esta nueva definición satisface. Especialmente aquellas
relacionadas con su comportamiento cuando se modifica la
distancia entre los intervalos.
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Abstract—La necesidad de herramientas que permitan resumir
grandes cantidades de información existe desde muy antiguo. No
obstante, los ordenadores y su capacidad para almacenar vastas
cantidades de datos han hecho que esa necesidad sea aún más
apremiante en los últimos años. Por otro lado, cuando se trabaja
con información imprecisa, por ejemplo si se manejan opiniones
o preferencias de personas, se suelen usar intervalos en lugar de
números, ya que permiten formalizar el concepto de imprecisión
de una forma más fiel. Este trabajo se centra en el estudio de
las funciones de agregación de intervalos. Más concretamente,
en el estudio de algunas funciones que generalizan a la (clásica)
media aritmética. En la primera parte de la contribución se
discute la definición de promedio y en la segunda, se demuestra
que, dependiendo del orden fijado, el comportamiento de las
generalizaciones de la media consideradas es diferente.

Index Terms—Datos intervalares, orden para intervalos, agre-
gación, promedio.

I. INTRODUCCIÓN

Cuando se tienen múltiples anotaciones/medidas/opiniones
sobre un mismo elemento, es necesario disponer de algún
procedimiento que nos permita sintetizar toda esa información
y proporcionar un único resultado final que sea representativo
del conjunto de datos del que se ha obtenido. Este procedi-
miento son las funciones de agregación [Grabisch et al., 2009],
[Beliakov et al., 2007], [Beliakov et al., 2016]. Las funciones
de agregación son fundamentales a la hora de resumir grandes
cantidades de datos. Su utilidad ha tenido especial relevancia
en las últimas décadas en las que la informatización de los
datos ha permitido recopilar y almacenar ingentes cantidades
de información sobre todo tipo de ámbitos.

El uso de intervalos en lugar de números reales para recoger
cierta información es un método ampliamente usado ya que,
sobre todo en el caso de modelar pensamiento humano, la
incertidumbre asociada a esa información puede no quedar
bien reflejada mediante un único valor. En muchas ocasiones
también son intervalos los α-cortes que caracterizan a los
números borrosos. De esta manera, la existencia de herramien-
tas para operar con intervalos, permitirı́a definir operaciones
entre números borrosos. Cuando se dispone de un volumen ele-
vado de información, son necesarias técnicas que nos permitan
resumir dicha información. También, si la información procede

Los autores querrı́an agradecer la ayuda recibida del Ministerio de Ciencia
e Innovación a través del proyecto PID2022-139886NB- l00.

de diferentes fuentes, como por ejemplo cuando diferentes
expertos expresan su opinión sobre un mismo producto, es
necesario obtener una valoración promedio, de consenso o
representativa de las distintas opiniones recibidas. Un axioma
fundamental a la hora de definir una medida de agregación es
la monotonı́a: si se agregan valores mayores, el resultado debe
ser mayor. El concepto subyacente a la idea de monotonı́a es el
de orden. Si no existe un orden entre los elementos a agregar,
no se puede definir la monotonı́a. En el caso de los números
reales existe un orden total (el orden natural entre números
reales) que sirve de base para hablar de monotonı́a. Sin
embargo, este no es el caso para intervalos. El principal escollo
al que debemos enfrentarnos al definir función monótona para
intervalos es que no disponemos de una única relación de
orden total que se use de manera estandarizada. La relación
de orden más habitual es el orden producto o reticular, que se
define comparando los extremos del intervalo y que no es un
orden total. Existen varios órdenes totales, pero ninguno que
se use de manera generalizada. Por ello, en este trabajo vamos
a considerar distintos tipos de órdenes totales y proponer
definiciones de crecimiento y función promedio dependientes
de la relación de orden elegida. Además, estudiaremos varios
operadores intervalares respecto al orden reticular [Fishburn,
1987] y a los órdenes ⪯α+ y ⪯α− definidos en [Bustince
et al., 2013].

II. PRELIMINARES

En esta sección se fijan algunos conceptos y la notación que
se usarán en las secciones siguientes.

Denotaremos por L(R) al conjunto de los intervalos cerra-
dos de números reales, esto es:

L(R) = {[a, b] | a, b ∈ R y a ≤ b}

y por K(R) al conjunto de los intervalos abiertos de números
reales. La notación L(R+) hará referencia al conjunto de los
intervalos cerrados de valores no negativos, esto es,

L(R+) = {[a, b] ∈ L(R) | 0 ≤ a}.

Salvo que se indique lo contrario, [a, b] denotará cualquier
intervalo cerrado de R, es decir, a, b serán dos números reales
cualesquiera satisfaciendo únicamente que a ≤ b.
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Comenzaremos recordando nociones relacionadas con la
agregación de números reales y posteriormente, pasaremos a
datos intervalares. En esta sección las funciones no estarán
definidas en toda la recta real, sino en intervalos para trabajar
con las condiciones de frontera impuestas en [Grabisch et al.,
2009].

La necesidad de agregar o resumir información es muy
antigua y la existencia de funciones como la media, también.
En 1821, Cauchy [Cauchy, 1821] formalizó la idea de función
de promedio. Simplemente exigı́a que fuese interna.

Definición 1. Se dice que una función f : [a, b]n −→ R es
interna si cumple que Min{x1, . . . , xn} ≤ f(x1, . . . , xn) ≤
Max{x1, . . . , xn} para cualquier tupla (x1, . . . , xn) ∈
[a, b]n.

Cauchy no exigı́a monotonı́a: la función f : [0, 1]2 → [0, 1]
definida como

f(x, y) =

 Max(x, y) si (x, y) ∈ [0, 0.5]× [0, 0.5]
o (x, y) ∈ [0.5, 1]× [0.5, 1]

Min(x, y) en otro caso.

es una función interna y por tanto, según Cauchy, serı́a un
promedio.

Max Min

Min Max

(0, 0) (1, 0)

(0, 1) (1, 1)

Fig. 1. Ejemplo de función de Cauchy.

Sin embargo, tal como se puede observar en su repre-
sentación gráfica (ver figura 1), la monotonı́a no parece ser
verificada. De hecho, el siguiente contraejemplo prueba que
esta función no es creciente en la segunda componente:
f(0.2, 0.45) = 0.45 > 0.2 = f(0.2, 0.6) .

No obstante, parece lógico requerir que cuanto mayores son
los valores que agregamos, mayor sea el resultado de dicha
agregación. Recordemos la definición formal de monotonı́a
creciente.

Definición 2. Se dice que una función f : [a, b]n −→ R es
monótona (creciente) si cumple que

f(x1, . . . xi, . . . , xn) ≤ f(x1, . . . x
′
i, . . . , xn)

para todo xi ≤ x′
i con i cualquier valor en {1, . . . , n}.

A lo largo de esta contribución no trabajaremos con fun-
ciones decrecientes, por lo que hablaremos simplemente de

función monótona/monotonı́a para referirnos a las funciones
monótonas crecientes.

Puesto que, como hemos comentado, la monotonı́a de la
función es una condición lógica a la hora de agregar la infor-
mación, la definición que surgió posteriormente de función de
agregación y que está ampliamente aceptada en la comunidad
cientı́fica, impone como axioma este requerimiento (véase, por
ejemplo, [Beliakov et al., 2007]):

Definición 3. Se dice que una función f : [a, b]n → R es una
función de agregación si:

• Monotonı́a: para todo xi ≤ x′
i con i cualquier valor

en {1, . . . , n} se tiene que f(x1, . . . xi, . . . , xn) ≤
f(x1, . . . x

′
i, . . . , xn).

• Condiciones frontera: f(a, . . . , a) = a y f(b, . . . , b) = b.

Es evidente que las condiciones anteriores siguen siendo
muy generales y, por tanto, verificadas por un amplio números
de familias de funciones. En concreto, las t-normas o las
t-conormas son funciones de agregación, pero no verifican
otra condición lógica que es la que impuso Cauchy: no
necesariamente son internas.

En su libro, [Grabisch et al., 2009] definen función prome-
dio a partir de las ideas de función idempotenciable y de
sección diagonal, que se recogen a continuación:

Definición 4. Se llama sección diagonal de una función f :
[a, b]n −→ R a la función δf : [a, b] −→ R dada por δf (x) =
f(x, . . . , x), ∀x ∈ [a, b].

Definición 5. Una función f : [a, b]n −→ R es idempoten-
ciable si su sección diagonal δf es estrictamente creciente y
satisface que ran(δf ) = ran(f), donde ran se refiere a la
imagen de la función.

La idea de función idempotenciable se obtiene de debilitar
la noción de función idempotente, que es central en el estudio
de las funciones promedio. Recordamos primero la definición
de función idempotente y luego vemos que existen funciones
idempotenciables que no son idempotentes.

Definición 6. Una función f : [a, b]n −→ [a, b] se dice
idempotente si verifica que f(x, . . . , x) = x, ∀x ∈ [a, b].

La definición anterior puede considerarse de igual modo
para funciones definidas de Rn en R.

Veamos ahora que no toda función idempotenciable es
idempotente. La función f : [0, 1]n → [0, 1] definida como

f(x1, . . . , xn) =
√
Mini{xi}

no es idempotente, pero sı́ idempotenciable porque su sección
diagonal es δf (x) =

√
x. Esta función es estrictamente

creciente y ran(δf ) = ran(f) = [0, 1].
Podemos presentar, entonces, la definición de función

promedio de [Grabisch et al., 2009].

Definición 7. Una función M : [a, b]n −→ [a, b] se llama
promedio en [a, b]n si existe una función creciente e idempo-
tenciable f : [a, b]n −→ R tal que f = δf ◦ M . Se dice,
entonces, que M es un promedio asociado con f en [a, b]n.
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Aunque las definiciones de [Grabisch et al., 2009] y Cauchy
parezcan alejadas, el siguiente resultado muestra la conexión.

Proposición 1. Sea f : [a, b]n −→ [a, b]. Las siguientes
condiciones son equivalentes:

i. f es idempotente y creciente.
ii. f es interna y creciente.

iii. f es una función promedio.

En la proposición anterior se puede ver que la monotonı́a
juega un papel central en la formalización de la idea de
promedio. A su vez, se pone de manifiesto que un concepto
básico en la formalización de la monotonı́a es el de orden.

Definición 8. Dado un conjunto X , una relación ≤ en X es
un orden si es reflexiva, antisimétrica y transitiva.

Es evidente que pueden existir para una relación de orden
elementos incomparables. En ese caso se dice que el orden es
parcial. En caso contrario que es total. Más en concreto,

Definición 9. Un orden ≤ en X se dice total si para todo par
de elementos x, y ∈ X se tiene que x ≤ y o y ≤ x.

El orden natural entre números reales es un orden total.
Cuando se trata con intervalos, surgen problemas relativos

al orden. Para empezar, hay diferentes propuestas de orden ya
que ninguno está universalmente admitido como “natural” o
“definitivo” y para continuar, el que se considera más intuitivo
y por tanto el que quizá se emplea más habitualmente en la
literatura, no es total, es decir, no permite comparar todos los
pares de intervalos. Algunos de los órdenes más habituales
para intervalos son:

Definición 10. Dados [a1, b1], [a2, b2] ∈ L(R):

• El orden reticular [Fishburn, 1987] también llamado
orden producto [Neggers and Kim, 1998], orden por
coordenadas [Davey and Priestley, 2002] o incluso orden
por componentes [Taylor, 1999] en L(R) se define como:

[a1, b1] ⪯LO [a2, b2] ⇔ a1 ≤ a2 y b1 ≤ b2.

Las letras LO hacen referencia al nombre en inglés:
“Lattice Order”.

• El orden lexicográfico de tipo 1 compara los extremos in-
feriores de los intervalos y si estos son iguales, compara
los extremos superiores. Formalmente se define como:

[a1, b1] ⪯Lex1 [a2, b2] ⇔ a1 < a2 o (a1 = a2 y b1 ≤ b2).

• El orden lexicográfico de tipo 2 invierte el orden con res-
pecto al orden lexicográfico de tipo 1: compara primero
los extremos superiores y en caso de igualdad, compara
los extremos inferiores. Formalmente:

[a1, b1] ⪯Lex2 [a2, b2] ⇔ b1 < b2 o (b1 = b2 y a1 ≤ a2)

• El orden de Xu y Yager [Xu and Yager, 2006] en L(R)
compara primero los puntos medios de los intervalos

y si estos son iguales, compara las amplitudes de los
intervalos. Formalmente se define como:

[a1, b1] ⪯XY [a2, b2]

⇕
a1 + b1

2
<

a2 + b2
2

o
a1 + b1

2
=

a2 + b2
2

y
b1 − a1

2
≤ b2 − a2

2

El orden más extendido a la hora de comparar intervalos es
el orden reticular. Sin embargo, este orden presenta un impor-
tante inconveniente y es que no es total, es decir, no permite
comparar todos los intervalos. Si consideramos por ejemplo,
los intervalo [2, 5] y [3, 4], se tiene que [2, 5] ̸⪯LO [3, 4] y
[3, 4] ̸⪯LO [2, 5]. Dicho de otro modo, los intervalos [2, 5]
y [3, 4] son incomparables de acuerdo con el orden reticular.
Sin embargo, se trata de un orden intuitivo. Por este motivo,
cuando hace falta que el orden con el que trabajamos sea
total, se consideran otros órdenes, pero que respetan la forma
de comparar del orden reticular.

Definición 11. [Bustince et al., 2013] Un orden admisible,
⪯ao, es un orden total que generaliza al orden reticular.
Esto es, si [a1, b1] ⪯LO [a2, b2], entonces se da también que
[a1, b1] ⪯ao [a2, b2].

Los órdenes lexicográficos de tipo 1 y 2 y el orden de Xu
y Yager son órdenes admisibles.

En el mismo trabajo en el que se da la definición anterior,
se propone una forma de generar órdenes admisibles, a los que
llaman órdenes admisibles generados, a partir de funciones de
agregación, del siguiente modo:

Definición 12. [Bustince et al., 2013] Se dice que un orden
admisible ⪯ao es un orden admisible generado si existen dos
funciones f, g : K(R) −→ R tales que para todo par de
intervalos [a1, b1], [a2, b2] ∈ L(R) se cumple que

[a1, b1] ⪯ao [a2, b2]

⇕
[f(a1, b1), g(a1, b1)] ⪯Lex1 [f(a2, b2), g(a2, b2)]

Es evidente que, tomando f como la proyección en la
primera componente (f(a, b) = a) y g como la proyección
en la segunda componente (g(a, b) = b), se obtiene el orden
lexicográfico de tipo 1, es decir el orden lexicográfico de
tipo 1 es un orden admisible generado. También lo son el
orden lexicográfico de tipo 2 y el de Xu y Yager. Para
obtener el orden lexicográfico de tipo 2 basta considerar
f como la proyección en la segunda componente y g la
proyección en la primera componente. Tomando f como la
media, f(a, b) = a+b

2 y g(a, b) = b − a, se obtiene el orden
de Xu y Yager.

Las funciones que permiten escribir los órdenes lexi-
cográficos y el orden de Xu y Yager como generados son
casos particulares de una familia más general, las funciones
{Kα}α∈[0,1] definidas por Atanassov en 1983 [Atanassov,
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1983], como Kα(a, b) = (1 − α)a + αb. Si tomamos Kα

y Kβ con α ̸= β, se obtiene el orden admisible generado
definido, para dos intervalos I1, I2 ∈ L(R), por

I1 ⪯α,β I2

⇕
kα(I1) < kα(I2)

o
kα(I1) = kα(I2) y kβ(I1) < kβ(I2).

En el mismo trabajo [Bustince et al., 2013] tambien prueban
que para cualquier α ∈ [0, 1), todos los órdenes ⪯αβ con
β > α coinciden y reciben el nombre de ⪯α+.

Análogamente, para cualquier α ∈ (0, 1], todos los órdenes
⪯αβ con β < α coinciden y se denotan por ⪯α−.

III. FUNCIONES PROMEDIO PARA DATOS INTERVALARES

Como se comentó brevemente en la sección anterior, la idea
de promedio de números reales se aproximó en la literatura
a través de conceptos que a primera vista pueden parecer
dispares, pero que revisados con calma acaban siendo equiva-
lentes. En este trabajo consideraremos la siguiente definición:

Definición 13. Una función f : [a, b]n → R es una función
promedio si es creciente e idempotente.

A. Función ⪯-creciente y ⪯-promedio. Definiciones.

El primer objetivo de esta contribución es dar una definición
de función promedio para datos intervalares. Atendiendo a los
números reales, se ve que la noción de función promedio está
ı́ntimamente ligada a la idea de crecimiento, por lo que nece-
sitamos tener una definición de crecimiento para funciones
definidas en L(R). Además, la definición de crecimiento está
asociada a un orden. En el caso de los números reales es el
orden natural. En el caso de los intervalos, como ya se comentó
en la sección previa, dado que no existe una única relación
de orden comúnmente utilizada para L(R), la definición de
monotonı́a tampoco es única, depende del orden considerado.

Definición 14. Dada una relación de orden ⪯ en L(R). Se
dice que una función f : L(R)n −→ L(R) es ⪯-creciente
cuando cumple que si [ai, bi] ⪯ [a′i, b

′
i], entonces

f([a1, b1], . . . , [ai, bi], . . . , [an, bn]) ⪯

f([a1, b1], . . . , [a
′
i, b

′
i], . . . , [an, bn])

para cualquier i ∈ {1, . . . , n}.

Una vez fijada una noción de crecimiento, estableciendo
un paralelismo con las definiciones sobre números reales,
generalizamos la definición de función idempotente de manera
directa como sigue:

Definición 15. Una función f : L(R)n −→ L(R) es
idempotente cuando cumple que

f([a, b], . . . , [a, b]) = [a, b],

para todo [a, b] ∈ L(R).

Una vez generalizados ambos conceptos, la definición de
promedio se extiende fácilmente, teniendo en cuenta, eso sı́,
que no será única, ya que hereda del concepto de monotonı́a
la dependencia del orden considerado.

Definición 16. Decimos que una función f : L(R)n −→
L(R) es una función ⪯-promedio, o simplemente un ⪯-
promedio, si es

i) idempotente y
ii) ⪯-creciente.

En el caso de agregar números reales, hemos visto que
se hicieron propuestas (a priori) diferentes y que luego se
demostró (proposición 1) que son equivalentes. Una de las
primeras dudas que nos surge es esa: ¿se puede extender la
proposición 1 al caso de intervalos? Para responder a esta
pregunta deberı́amos tener una definición de función interna
para intervalos, pero esa definición depende de los conceptos
de mı́nimo y máximo de un conjunto de intervalos y bajo
estos, vuelve a subyacer la idea de orden (entre intervalos).
En un primer momento se puede pensar que tendremos una
definición diferente de mı́nimo y máximo para cada orden con-
siderado, como sucedı́a con la definición de función monótona.
Lamentablemente, en este caso no se puede trabajar con
cualquier orden, este debe ser total.

Definición 17. Dado un orden total ⪯, definimos Min⪯ :
L(R)n −→ L(R) como

Min⪯([a1, b1], . . . , [an, bn]) = [aj , bj ],

con j ∈ {1, . . . , n} tal que [aj , bj ] ⪯ [ai, bi], ∀i ∈ {1, . . . , n}.

Definición 18. Dado un orden total ⪯, definimos Max⪯ :
L(R)n −→ L(R) como

Max⪯([a1, b1], . . . , [an, bn]) = [aj , bj ],

con j ∈ {1, . . . , n} tal que [ai, bi] ⪯ [aj , bj ], ∀i ∈ {1, . . . , n}.

Si el orden no es total, no se garantiza la existencia del
mı́nimo ni del máximo de un conjunto de intervalos como se
ve, por ejemplo, en el orden reticular tomando dos conjuntos
⪯LO-incomparables, [2, 5] y [3, 4]. No tiene sentido hablar de
mı́nimo (máximo) de esos dos intervalos según ⪯LO cuando
son incomparables según el mismo.

Si nos restringimos a órdenes totales, una vez definidos el
mı́nimo y el máximo de un conjunto de intervalos, la noción
de función interna se sigue de forma directa.

Definición 19. Dado un orden total ⪯ decimos que f :
L(R)n −→ L(R) es ⪯-interna siempre que verifique que

Min⪯([a1, b1], . . . , [an, bn]) ⪯

f([a1, b1], . . . , [an, bn]) ⪯

Max⪯([a1, b1], . . . , [an, bn]).

La noción de ⪯-promedio es más general que la de función
⪯-interna porque se puede dar para cualquier orden, no
necesariamente total. Sin embargo, cuando nos restringimos
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a órdenes totales, sı́ se tiene la equivalencia entre función
idempotente e interna.

Proposición 2. Sean ⪯ un orden total y f : L(R)n −→ L(R)
una función ⪯-creciente, entonces son equivalentes:

i) f es ⪯-interna.
ii) f es idempotente.

Además de considerar los operadores Min⪯ y Max⪯ para
los cuales es necesario que el orden subyacente sea total,
podrı́an considerarse los operadores Inf⪯ y Sup⪯ para los
que bastarı́a que el orden ⪯ induzca una estructura de retı́culo
sobre L(R) y se definirı́an del modo siguiente.

Definición 20. Si ⪯ es un orden que induce una estructura
reticular en L(R), definimos Inf⪯ : L(R)n −→ L(R)
como Inf⪯([a1, b1], . . . , [an, bn]) = [a0, b0], tal que [a0, b0] ⪯
[ai, bi] ∀i ∈ {1, . . . , n} y que si [a, b] ⪯ [ai, bi], ∀i ∈
{1, . . . , n}, entonces también [a, b] ⪯ [a0, b0].

Definición 21. Si ⪯ es un orden que induce una estructura
reticular en L(R), definimos Sup⪯ : L(R)n −→ L(R) como
Sup⪯([a1, b1], . . . , [an, bn]) = [a0, b0], tal que [a0, b0] ⪰
[ai, bi] ∀i ∈ {1, . . . , n} y que si [a, b] ⪰ [ai, bi], ∀i ∈
{1, . . . , n}, entonces también [a, b] ⪰ [a0, b0].

Obviamente, cuando el orden considerado es total, el ı́nfimo
de un conjunto de intervalos coincide con el mı́nimo y el
supremo, con el máximo.

Si se considera el orden reticular, hemos obtenido expre-
siones explı́citas para el ı́nfimo y el supremo:

Proposición 3. Dado el orden reticular ⪯LO, el operador
InfLO puede expresarse como

InfLO([a1, b1], . . . , [an, bn]) = [Mini{ai},Mini{bi}].

Nótese que el intervalo resultante no necesariamente es un
elemento del conjunto de intervalos de partida. Ası́,

InfLO([2, 5], [3, 4]) = [2, 4],

que no es ninguno de los intervalos a agregar.
Análogamente se puede probar que

Proposición 4. Dado el orden reticular, el operador SupLO

puede expresarse como

SupLO([a1, b1], . . . , [an, bn]) = [Maxi{ai},Maxi{bi}].

Tampoco en este caso el resultado es, necesariamente, un
elemento del conjunto de intervalos a agregar:

SupLO([2, 5], [3, 4]) = [3, 5].

B. Funciones intervalo valoradas, crecimiento y promedio
respecto a un orden

Una vez formalizado el concepto de promedio para interva-
los, estudiamos qué operadores de agregación para intervalos
verifican la definición vista.

En primer lugar, podemos comprobar que el operador
InfLO, caracterizado en la proposición 3 es un ⪯LO-
promedio, lo cual es muy natural.

Proposición 5. El operador InfLO : L(R)n −→ L(R) es un
⪯LO-promedio.

Sin embargo, no es un promedio cuando se consideran
algunos de los órdenes totales más habituales. El problema
radica en que no se tiene garantizada la monotonı́a.

Contraejemplo 6. El operador InfLO no es ⪯α+-creciente
para ningún α ∈ [0, 1) ni ⪯α−-creciente para ningún α ∈
(0, 1].

Este resultado indica que InfLO no es monótona para los
órdenes lexicográficos ni para el de Xu y Yager. Recordemos
que en la familia ⪯α+ están el orden lexicográfico de tipo 1
(α = 0) y el orden de Xu y Yager (α = 0.5). La familia ⪯α−
incluye al orden lexicográfico de tipo 2 (α = 1).

Ambos resultados se pueden trasladar al supremo. Es un
promedio para el orden reticular.

Proposición 7. El operador SupLO : L(R)n −→ L(R) es un
⪯LO-promedio.

Pero no lo es para los órdenes del tipo ⪯α+ o ⪯α−.

Contraejemplo 8. El operador SupLO no es ⪯α+-creciente
para ningún α ∈ [0, 1) ni ⪯α−-creciente para ningún α ∈
(0, 1].

Aunque otros operadores podrı́an tener más interés en el
ámbito de los números borrosos, el operador de agregación
por antonomasia es la media aritmética. Por eso en este trabajo
preliminar hemos comenzado por ella. Vamos a formalizar la
idea de media de un conjunto de intervalos y después estudiar
si es un ⪯-promedio para los órdenes más habituales.

Definición 22. Dada una colección de intervalos
[a1, b1], . . . , [an, bn], su media se define como

Mean([a1, b1], . . . , [an, bn]) =
[
a1+···+an

n , b1+···+bn
n

]
.

Como cabı́a esperar, esta media presenta un buen compor-
tamiento con respecto a los órdenes más habituales. Es un
promedio respecto al orden reticular.

Proposición 9. El operador Mean : L(R)n −→ L(R) es un
⪯LO-promedio.

Y también es un promedio respecto a los órdenes admisibles
generados más comunes:

Proposición 10. El operador Mean : L(R)n −→ L(R) es:

• un ⪯α+-promedio para cualquier α ∈ [0, 1),
• un ⪯α−-promedio para cualquier α ∈ (0, 1].

De modo que en particular, es un promedio con respecto a
los órdenes lexicográfico de tipo 1 y 2 y al de Xu y Yager.

De igual modo que, sobre números reales se pueden definir
medias generalizadas, en este trabajo consideramos la idea
de media generalizada para intervalos. Para formalizar este
concepto necesitamos definir previamente las potencias de un
intervalo.
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Definición 23. Dado [a, b] ∈ L(R), y n ∈ N, definimos la
enésima potencia del intervalo [a, b] como

[a, b]n =

{
[0,max{an, bn}] si 0 ∈ [a, b]

[min{an, bn},max{an, bn}] en otro caso

si n es un número par, y como [a, b]n = [an, bn], si n es un
número impar.

También seguimos la misma idea que en números reales
para definir la raı́z de intervalos.

Definición 24. Dado un intervalo [a, b] con a ≥ 0 y n ≥ 2
y par, se define la raı́z enésima de [a, b] como n

√
[a, b] =

[ n
√
a, n

√
b].

Sin embargo, si el ı́ndice es impar, la raı́z se puede definir
para cualquier intervalo, tal como se muestra a continuación.

Definición 25. Dado un intervalo [a, b] ∈ L(R) y n ≥ 3
e impar, se define la raı́z enésima de [a, b] como n

√
[a, b] =

[ n
√
a, n

√
b].

Formalizados los conceptos de potencia y raı́z de un inter-
valo, ya podemos definir la media generalizada de orden m
en el contexto de datos intervalares.

Definición 26. Llamamos media generalizada de or-
den m, y lo denotamos por mPM a la función
mPM : L(R)n −→ L(R) definida por

mPM(I1, . . . , In) =
m
√
Im1 + · · ·+ Imn

n
.

La definición anterior permite una caracterización en
términos de medias generalizadas de orden m de ciertos
elementos del intervalo.

Proposición 11. Dada una colección de intervalos {Ii =
[ai, bi]}ni=1 ⊂ L(R), su media generalizada de orden m puede
escribirse como:

mPM(I1, . . . , In) =[
m

√∑n
i=1 Minxi∈[ai,bi]

{xm
i }

n ,
m

√∑n
i=1 Max{am

i ,bmi }
n

]
.

Cabe notar que esta caracterización requiere de la expresión
anterior para el caso de órdenes pares. En el caso de impares,
se obtiene una expresión más sencilla e intuitiva: para m impar
los extremos inferior y superior de la media generalizada de
orden m son (respectivamente) las medias generalizadas de
orden m de los extremos inferiores y superiores de los inter-
valos a agregar. Esto simplifica la demostración del siguiente
resultado.

Proposición 12. El operador mPM : L(R)n −→ L(R) es
un ⪯LO-promedio para todo m ≥ 3 impar.

Sorprendentemente, el resultado no se cumple para ningún
m par ya que en este caso no se puede garantizar la monotonı́a.

Contraejemplo 13. El operador mPM : L(R)n −→ L(R)
no es ⪯LO-creciente para ningún m ≥ 2 par.

Este mal comportamiento se soluciona si nos restringimos
a intervalos de números no negativos.

Proposición 14. El operador mPM : L(R+)n −→ L(R) es
un ⪯LO-promedio para todo m ≥ 2.

En el conjunto de los intervalos positivos, el buen compor-
tamiento se extiende a los órdenes lexicográficos 1 y 2.

Proposición 15. El operador mPM : L(R+)n −→ L(R) es
• un ⪯Lex1-promedio para todo m ≥ 2,
• un ⪯Lex2-promedio para todo m ≥ 2.

Sin embargo, no es un promedio para ningún otro orden
de la familia, incluso restringiendo el dominio a los intervalos
positivos.

Contraejemplo 16. El operador mPM : L(R)n −→ L(R)
no es ⪯α+-creciente ni ⪯α−-creciente para ningún α ∈ (0, 1)
para m ≥ 2.

IV. CONCLUSIONES

Este es un trabajo sobre el estudio de funciones promedio
para datos intervalares. En él hemos formalizado la idea de
función promedio y hemos visto que esta debe depender del or-
den (entre intervalos) considerado. También hemos estudiado
el comportamiento de algunas de las funciones de agregación
más habituales: las medias aritméticas generalizadas. Los
resultados obtenidos no siempre han sido satisfactorios, ya que
estos operadores son promedios para los órdenes más clásicos,
pero no para muchos órdenes admisibles generados.

Se trata de un trabajo preliminar. Queremos estudiar
más funciones que permitan promediar intervalos, ver sus
propiedades y caracterizaciones, ası́ como explorar para qué
órdenes verifican la definición aquı́ introducida de promedio.
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Abstract—Ordering interval-valued fuzzy sets is an open ques-
tion. Admissible orders are a clever method to order them.
Previous research has established the relationship between the
most used admissible orders, linear transformations and aggre-
gation functions. In this context, we provide a method to generate
the most common admissible orders using Principal Component
Analysis with random variables.

Index Terms—Interval-valued fuzzy sets, admissible orders,
Principal Component Analysis

I. INTRODUCTION

The use of intervals is very common in the literature. The
main disadvantage compared to using numbers is the absence
of a universally accepted order, which would allow us to
compare any pair of intervals. The typical order considered,
known as lattice order, contains incomparabilities, and various
approaches have been proposed to address this issue. In
particular, Bustince et al. proposed a linear order for intervals
in [4], which preserves the lattice order and is referred to as an
admissible order. In fact, they introduced a method to derive
admissible orders using aggregation functions. As it is stated
in [7], there are several reasons to study such type of order,
and in particular, by the fact that they find applications in
many different areas as, for instance, image processing [3],
classification [8] or decision making [5], for instance.

If we consider the field of image processing, independently
of the previous comments, a very well-known technique is
Principal Component Analysis (PCA) [6], which reduces the
linear dimensionality of data. Thus, the main purpose of this
paper is to link the PCA method with the most used admissible
orders. It is organized as follows: Section II provides the
theoretical background of both admissible orders and Principal
Component Analysis. Additionally, it details some random
variables. The next section discusses the relationship between
the Lexicographical order, the Xu-Yager order, and random
variables using PCA. Finally, the last part provides some
concluding remarks and a guideline of future work.

This work was supported by the Spanish Ministry of Science and Innovation
(Project PID2022-139886NB-l00).

II. PRELIMINARIES

A. Admissible orders

Let Z denotes the universe of discourse. An interval-valued
fuzzy set of Z is a mapping A : Z → L[0, 1] such that A(x) =
[A(x), A(x)], where L[0, 1] = {[r, s] | 0 ≤ r ≤ s ≤ 1}, that
is, it is the set of all closed intervals included in the interval
[0, 1] [2]. An order ⪯ on the set L([0, 1]) is a binary relation
on L([0, 1]) which is reflexive, antisymmetric and transitive,
i.e.,

• Reflexivity: a ⪯ a, ∀a ∈ L([0, 1]).
• Antisymmetric: If a ⪯ b and b ⪯ a, then a = b, ∀a, b ∈

L([0, 1]).
• Transitivity: If a ⪯ b and b ⪯ c, then a ⪯ c, ∀a, b, c ∈

L([0, 1]).
The most usual order in L([0, 1]) is the Lattice order, which
is defined as follows: a ≤2 b if and only if a ≤ b and a ≤ b
with a = [a, a], b = [b, b]. It is clear that it is induced by the
typical order in R2.

A linear order is an order defined for any pair of elements
of L([0, 1]), that is, a ⪯ b or b ⪯ a for any a, b ∈ L([0, 1]).
Otherwise, it is said to be partial.

A very important family of linear orders are the admissible
orders. Thus, it is said that ⪯ is an admissible order on
L([0, 1]) if it is a linear order that preserves the Lattice order,
i.e., a ≤2 b implies a ⪯ b.

The following relations are very typical examples of admis-
sible orders:

• Lexicographical order: [a, a] ⪯Lex1 [b, b](≡)def.(a < b)∨
[(a = b) ∧ (a ≤ b)]. We denote the lexicographical order
in R2 as ≤Lex1: (r1, r2) ≤Lex1 (s1, s2) when (r1 < s1)∨
[(r1 = s1) ∧ (r2 ≤ s2)].

• Antilexicographical order: [a, a] ⪯Lex2 [b, b](≡)def.(a <
b) ∨ [(a = b) ∧ (a ≤ b)].

• Xu and Yager’s order [9]: [a, a] ⪯xu-yager [b, b] if and only
if

(a+a < b+b) or [(a+a = b+b)∧(a−a ≤ b−b)]. (1)

Concerning the Xu-Yager’s order, if we consider the upper
triangle of the unit square, K([0, 1]) = {(x, y) ∈ [0, 1]2 |
x ≤ y}, this order projects the points onto the diagonal. In
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1

1

[a, a]

[b, b]

[c, c]

x+ y = 0
y − x = 0

Fig. 1. Projections of the Xu and Yager’s order into the diagonal or orthogonal
projections.

case of equal projections over the diagonal, it compares the
orthogonal projection (Fig. 1).

The following theorem characterises the generation of ad-
missible orders using linear transformations.

Proposition 1. [1] Let W be a 2 × 2 matrix. The binary
relation

[a, a] ⪯ [b, b] if and only if (a, a) ·W ≤Lex1 (b, b) ·W (2)

is an admissible order if and only if W is full rank and for
every row of W the first non null element is positive.

Example 1. The Lexicographic order can be represented by

WLex1 =

(
1 0
0 1

)
, (3)

and the Xu-Yager’s order as

Wxu-yager =

(
1 −1
1 1

)
. (4)

B. Random Variables

A random variable is a mathematical variable used in Proba-
bility Theory and Statistics to represent numerical outcomes of
random phenomena. It’s essentially a variable whose possible
values are outcomes of a random event. One of the most well-
known random variables is the uniform distribution. This is a
random variable with a constant probability density or mass
function that assigns equal probability o density to any value
within the domain.

Example 2. If the region of the domain is K([0, 1]), then the
density function of a uniform variable (X,Y ) is

p(x, y) =

{
2 0 ≤ x ≤ y ≤ 1,

0 otherwise
(5)

with matrix of covariances

Σ =

(
σ2
X σXY

σXY σ2
Y

)
=

(
1
18

1
36

1
36

1
18

)
, (6)

as E(X) =
∫ ∫

K([0,1])
xp(x, y) dx dy, E(Y ) =∫ ∫

K([0,1])
yp(x, y) dx dy, σ2

X =
∫ ∫

K([0,1])
(x −

E(X))2p(x, y) dx dy, σ2
Y =

∫ ∫
K([0,1])

(y −
E(Y ))2p(x, y) dx dy and σXY =

∫ ∫
K([0,1])

(x− E(X))(y −
E(Y ))p(x, y) dx dy.

Of course, this is just an example of random variable defined
in K([0, 1]). Some other examples are shown below.

Example 3. The following random variable

p(x, y) =

{
1

1−x 0 ≤ x ≤ y ≤ 1,

0 otherwise
(7)

has the covariance matrix

Σ =

(
1
12

1
24

1
24

7
144

)
. (8)

Example 4. The discrete variable

Pr(X = x, Y = y) =

{
1
4 x ∈ {0, 1

2}, y ∈ { 1
2 , 1},

0 otherwise
(9)

shows the covariance matrix

Σ =

(
1
4 0
0 1

4

)
. (10)

C. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method
used for analysing and simplifying high-dimensional data
while retaining its essential features [6]. It descomposes the
covariance matrix obtaining its eigenvectors and eigenvalues.
Eigenvectors represent the directions of maximum variance in
the data, and eigenvalues represent the magnitude of variance
along those directions. The first principal component, which
corresponds to the eigenvector with greater eingenvalue, ex-
plain the most variance followed by the other eigenvectors.
They are orthogonal.

Suppose that X is a vector of p random variables with a
known covariance matrix Σ, vk is an eigenvector of Σ corre-
sponding to the kth largest eigenvalue λk for k = 1, 2, . . . , p. If
Σ is the matrix of variances and covariances, then eigenvalues
λ are the solution of

det(Σ− λI) = 0 (11)

with I the p × p identity matrix, and Σ · vk = λkvk. The
full principal components decomposition of X can therefore
be given as Z = XV where V is a p × p orthogonal matrix
whose k column corresponds to the k eigenvector, zk = xkvk

and Var(xkvk) = λk.

Example 5. In particular, the eigenvectors of a matrix of
covariances

Σ =

(
r s
s t

)
(12)

with r > 0, t > 0 and s ̸= 0 are

v1 =

(
−−r + t−

√
r2 + 4s2 − 2rt+ t2

2s
, 1

)
, (13)
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v2 =

(
−−r + t+

√
r2 + 4s2 − 2rt+ t2

2s
, 1

)
, (14)

with eigenvalues

λ1 =
1

2

(√
r2 − 2rt+ 4s2 + t2 + r + t

)
, (15)

and
λ2 =

1

2

(
−
√
r2 − 2rt+ 4s2 + t2 + r + t

)
(16)

respectively.

Example 6. When the random variables are uncorrelated, the
covariance matrix becomes

Σ =

(
r 0
0 t

)
(17)

with r > 0 and t > 0. The eigenvalues are λ1 = r and λ2 = t
with eigenvectors

v1 = (1, 0) and v2 = (0, 1), (18)

respectively.

III. GENERATING SOME ADMISSIBLE ORDERS USING PCA

PCA method provides a linear transformation of data. In the
case of a uniform distribution over K([0, 1]), the eigenvectors
(13) and (14) of the covariance matrix (6) form the columns
of a square matrix

W =

(
1 −1
1 1

)
. (19)

On the other hand, the Xu-Yager’s order can be represented
through a linear transformation using the lexicographical or-
der: [a, a] ⪯g [b, b] if and only if (a, a) ·W ≤Lex1 (b, b) ·W
with

(a, a) ·W = (a, a) ·
(
1 −1
1 1

)
= (a+ a, a− a). (20)

Indeed, the process of deriving an admissible order from
a random variable using the covariance matrix enables us
to encapsulate the maximum variance inherent in the data.
The subsequent inquiry pertains to identifying the inherent
characteristics of random variables that universally yield an
admissible order.

Let W be a linear transformation of PCA that generates the
Xu-Yager order,

W =

(
w11 w12

w21 w22

)
(21)

What prerequisites must be satisfied by the covariance matrix
to engender this admissible order?

Proposition 2. A random variable defined in K[0, 1] =
{(x, y) | 0 ≤ x ≤ y ≤ 1} generates the Xu-Yager order
through the Principal Component Analysis method (20) if and
only if the covariance matrix is

Σ =

(
σ2
X σX,Y

σX,Y σ2
Y

)
(22)

with σ2
X = σ2

Y and σX,Y ̸= 0.

Proof. Suppose that Σ is a matrix of the type

Σ =

(
r s
s r

)
(23)

with r > 0 and s > 0. Then its orthogonal PCA transfor-
mations (13) and (14) become (19). And this is the linear
transformation of the Xu-Yager method employing the lexico-
graphical order (20).

Consider that the vectors v1 = (1, 1) and v2 = (−1, 1) are
the eigenvectors of a covariance matrix

Σ =

(
σ2
X σXY

σXY σ2
Y

)
. (24)

By the properties of the eigenvectors, it holds that(
σ2
X σXY

σXY σ2
Y

)
·
(
1
1

)
= λ1

(
1
1

)
(25)

(
σ2
X σXY

σXY σ2
Y

)
·
(
−1
1

)
= λ2

(
−1
1

)
(26)

tr(Σ) = σ2
X + σ2

Y = λ1 + λ2 (27)

After some algebraic steps, we obtain that, in the case that
X and Y are non degenerate random varibles (i.e. constant
variables), λ1 ̸= 0, λ1 + λ2 > 0 and

σ2
X = σ2

Y =
λ1 + λ2

2
, σXY =

λ1 − λ2

2
. (28)

If σXY = 0, Σ becomes (17) with eigenvectors (18),
different to v1 = (1, 1) and v2 = (−1, 1). Therefore, it results
that σXY ̸= 0.

Example 7. The uniform distribution of Example 2 generates
the Xu-Yager order.

In the previous case, we have characterised the Xu-Yager
order as a PCA transformation of correlated random variables.
In particular, the uniform distribution over K[0, 1] generates
this order. Let us check out the case when the random variables
are uncorrelated.

Proposition 3. A random variable defined in K[0, 1] =
{(x, y) | 0 ≤ x ≤ y ≤ 1} generates the lexicographical
order through the Principal Component Analysis method (20)
if and only if the covariance matrix is

Σ =

(
σ2
X 0
0 σ2

Y

)
. (29)

Proof. The linear transformation associated to the lexico-
graphical order is

W =

(
1 0
0 1

)
(30)

Taking into account (17) and (18), the proof is trivial.

So, when the variables are uncorrelated, they generate the
lexicographical order.
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Example 8. The discrete random variable of Example 4
generates the lexicographical order.

In general, we can characterise the linear transformations of
PCA that become admissible orders using the following result.

Theorem 1. A random variable (X,Y ) defined in K[0, 1] =
{(x, y) | 0 ≤ x ≤ y ≤ 1} generates an admissible order
through the Principal Component Analysis method if and only
if they are uncorrelated (σXY = 0) or when σXY ̸= 0, we
have that

−
−σ2

X + σ2
Y −

√
σ4
X + 4σ2

XY − 2σ2
Xσ2

Y + σ4
Y

2σXY
> 0, (31)

or

−
−σ2

X + σ2
Y −

√
σ4
X + 4σ2

XY − 2σ2
Xσ2

Y + σ4
Y

2σXY
= 0,

−
−σ2

X + σ2
Y +

√
σ4
X + 4σ2

XY − 2σ2
Xσ2

Y + σ4
Y

2σXY
> 0.

(32)

Proof. When X and Y are uncorrelated, it is the Proposition 3.
When the correlation is not zero, then Proposition 1 obtains
the desired result due to that the eigenvectors (13) and (14)
are the columns of the linear transformation matrix W .

IV. CONCLUSIONS

Image processing paves the way to apply the concept of
admissible order of interval-valued fuzzy sets in this field.
Through the Principal Component Analysis, we have estab-
lished the relationship among random variables and the most
used admissible order.

This is a first approach to this problem. Thus, several open
problems need to be studied. In particular, the next step is to
apply such findings in real cases of image processing. This
process entails extrapolating the findings to three-dimensional
data. Apart from that, we are interested on using this method-
ology in the most general environment for admissible orders.
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Abstract—This work addresses the Shortest Path Problem
with interval costs through a bi-criteria perspective. Instead
of optimizing the sum of the interval costs in the paths, it is
suggested to optimize simultaneously both the lower and upper
bounds of those intervals. This transforms the original problem
into a bi-criteria Shortest Path Problem, allowing to solve it
using the TOPSIS optimization method. Interpreting the problem
as a bi-criteria problem leads to the emergence of different
Pareto optimal solutions in practice. The use of TOPSIS as
the optimization technique, ranks every Pareto optimal solution
enabling the Decision Maker to find the shortest path, or best
optimal solution in a network with intervals as costs. This
methodology introduces a new perspective to handle uncertainty
in the Interval Shortest Path Problem context that is both
competitive and effective. The methodology is illustrated through
a case study to demonstrate its performance and simplicity.

Index Terms—Interval Shortest Path Problem, TOPSIS, Bi-
criteria, Decision making

I. INTRODUCTION

The Shortest Path Problem (SPP) is one of the most studied
optimization problems due to its versatility and applications
across various fields, including transportation, logistics and
telecommunications [1], [2]. The SPP seeks to identify the
most efficient route between two points in a network, mini-
mizing a characteristic such as travel time, distance, or cost.

There are multiple variants of the problem tailored to very
specific applications. However, a more general version of these
problems, which is often overlooked, arises when imprecision
is introduced into the data. This imprecision can occur in
various ways, such as in the presence or absence of nodes
or arcs in a network, or in the actual cost of traversing an arc.
This work focuses on addressing the latter type of imprecision,
i.e., when the cost of passing through an arc in a network, is
not an exact real value.

To model such imprecision, there are also different options,
including considering the costs as uncertain random variables
[3] or using fuzzy set theory [4], [5]. However, for ease of
interpretation by non-experts, it has been decided to express
the imprecision of arc costs in the form of intervals. This
implies that the true value of the cost falls within the range

Authors would like to express their gratitude to the Spanish Ministry of
Science and Innovation (fund reference: PREP2022-000355. Project: MCINN-
23-PID2022-139886NB-I00).

defined by the minimum and maximum of the interval. This
approach leads to the Interval Shortest Path Problem (ISPP).

The problem that naturally arises when attempting to solve
the ISPP is the absence of a generic total order in the set of
intervals. This is why there is no general optimal solution for
any given problem, and a methodology or an optimal criterion
must be established to provide a solution. Regarding this, in
[6] a robust shortest path solution is selected as the optimal
solution. The approach involves finding the path that incurs the
least loss when, once chosen, it is subjected to the worst-case
scenario, where the traversed arcs have maximum cost and
the remaining arcs have minimum cost. The cost of the path
is compared to the cost of the shortest path in this scenario.
In [7] a method for comparing intervals based on fuzzy theory
is developed and they used their approach to solve an ISPP.
In [8] a similar strategy is carried out. An acceptability index
to state how true the sentence an interval is preferred over
another is developed, and base on the index, a minimum in a
set of intervals can be established, and thus, solve an ISPP. In
[9], they find the shortest path that simultaneously minimize
the total cost of the path and the risk of considering that path.
The risk for each path is defined in terms of the distance from
a point in the interval to the upper bound and the width of it.

In this work, a different approach has been contemplated to
address the problem. The main idea is to consider each interval
as a cost in a two dimensional space and solve the problem
as if it were a bi-criteria shortest path problem. For that task,
the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) [10] is used, as it is widely used technique
that provides good solutions in different contexts [11], [12].
There are many works where a multicriteria shortest path
problem is solved in different ways (see for example [13]),
but as far as is known, an ISPP has never been solved using
any of these techniques. One of the main advantages of this
approach is that, since the problem has already been addressed
considering various criteria, it is sufficient to correctly make
analogies with the interval problem. Additionally, the problems
that arise due to the low correlation between criteria diminish,
since in this case the endpoints of the interval serve to express
the same magnitude.

The rest of the paper is organized as follows: Section II
introduces the preliminary concepts needed for the rest of the
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work, Section III presents the proposed methodology to solve
the ISPP, in Section IV a problem example is solved, Section
V draws some conclusions about the work and mentions some
research lines to be considered in the future.

II. PRELIMINARIES

This section covers the essential concepts and notations
required to understand the rest of the paper.

In the ISPP, the cost of traversing an edge in a graph
is represented in terms of a closed interval [a, a], where
0 ≤ a ≤ a<∞, meaning that the true cost is some value
between its bounds. In that sense, the wider the interval,
the more imprecision is represented. In the most common
formulation, the objective is to find the path from a source
node to a target node so that the sum of the costs of the
edges in that path is minimized. The sum of two intervals
[a1, a1], [a2, a2] is defined as follows:

[a1, a1]⊕ [a2, a2] = [a1 + a2, a1 + a2] (1)

Note that there exists a natural bijection between the inter-
vals and the plane region:

i : L([a, a]) → K([a, a])

i([a∗, a∗]) = (a∗, a∗)
(2)

where L([a, a]) = {[a∗, a∗] : a ≤ a∗ ≤ a∗ ≤ a} and
K([a, a]) = {(a∗, a∗) : a ≤ a∗ ≤ a∗ ≤ a}.

With this bijection, it is possible to interpret the ISPP as
a bi-objective problem where the objective functions are, on
one hand, minimize the sum of the lower bounds of the edges
in a path from the source to the target node, and on the other,
the corresponding sum of the upper bounds. Mathematically,
the problem can be written as:

min F (x) = (f1(x), f2(x))
subject to: x ∈ U,

(3)

where x ∈ U means that x is a valid path and f1 and f2 are
the mentioned sums.

The main issue to deal with in multi-objective problems,
is that there is not guarantee of having uniqueness of optimal
solution. In general, there exist many solutions that are neither
better nor worse that others. This are often referred as Pareto
optimal solutions [14]. More specifically, a solution x is said
to be Pareto optimal, if there is not another solution y such
that y is equally preferred or preferred in all the objectives and
there is, at least, one objective in which y is strictly preferred
over x. If such y exists, it is said that y dominates x. The
set containing all the Pareto optimal solutions is called the
Pareto set. To refer to the Pareto set of a problem defined by
the objective function F and feasible region U , the notation
PSF,U will be used.

Two interesting points in multi-objective problems are the
Positive Ideal Solution (PIS) F (x)+ and the Negative Ideal
Solution (NIS) F (x)− [15]. These are the combination of the
best and worst values of each considered solution (usually the

Pareto optimal ones). In the bi-objective problem defined by
(3), the PIS and NIS can be written as:

F (x)+ =

(
min

x∈PSF,U

f1(x), min
x∈PSF,U

f2(x)

)
(4)

F (x)− =

(
max

x∈PSF,U

f1(x), max
x∈PSF,U

f2(x)

)
(5)

Note that if there exists x ∈ U such that it minimizes f1(x)
and f2(x), then F (x) = F (x)+ and x is the optimal solution,
although it could happen that more than one x satisfy this
condition. If so, any of them give the same results and it does
not matter the final election. However, this is not the case in
most of the real life problems. The utility that the PIS and the
NIS have is that they can act as reference point to evaluate
the solutions in the feasible region.

III. TOPSIS APPLIED TO THE ISPP

In this section, the proposed method for solving the ISPP
through TOPSIS is introduced, along with the advantages of
using this method in the context of this problem.

Recall that the ISPP is defined as follows: the pair G(V,E)
defines a graph where V = {v1, . . . , vn} is the set of nodes,
and E ⊆ V × V is the set of edges in the graph. Each edge
eij = (vi, vj) ∈ E has an associated interval cost expressed by
ci,j = [ci,j , ci,j ]. Given a source node vs and a target node vt,
the objective is to find the path P from vs to vt that minimizes
the sum of the costs along the path.

The issue here is the lack of a general order in the set
L([a, a]). Therefore, there is no clear minimum when compar-
ing different path costs. A possible approach to address this
problem is the use of admissible orders [16]. These are total
orders that refine the usual partial order in L([a, a]), denote ≾,
defined by [a1, a1] ≾ [a2, a2] if and only if a1 ≤ a2∧a1 ≤ a2.
In [16] it is established how to generate admissible orders
through aggregation functions applied to the bounds of the
intervals. However, when performing comparisons in these
terms, the choice of the aggregation functions may give more
weight to one of the bounds of the interval when making com-
parisons. To avoid this, the use of the bijection i introduced
in Section II is suggested to consider the ISPP as a bi-criteria
problem that can be solved using TOPSIS. Now the aim is to
simultaneously minimize the following objective functions

f1(P ) =
∑

eij∈P

ci,j , f2(P ) =
∑

eij∈P

ci,j (6)

With the problem defined in this manner, we can now apply
the TOPSIS method. Nevertheless, it is convenient to make
some brief notes on how to use the method in this case.

A. TOPSIS procedure

The following describes how TOPSIS is applied to solve
the bi-criteria problem equivalent to ISPP. From now on, it is
assumed that the Pareto set PS = {P1, . . . , Pk} of optimal
paths has already been found. Each path Pi ∈ PS has a pair
of costs ci = (ci, ci).
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When dealing with multi-objective problems, it is common
for the involved functions to measure different aspects of the
problem, being necessary a standardization to compare the
performances of solutions in the objective space. The classical
TOPSIS method also includes this step. However, in this case,
it can be skipped, due to the the fact that the lower and upper
bounds of the intervals measure, in the same scale, the same
magnitude in the problem.

The next step in TOPSIS is the selection of weights ω1, ω2

to reflect the importance of the objective functions f1 and f2
respectively. Nevertheless, as it is supposed that there is not
additional information apart from that the true value of the
costs of the edges is between their bounds, equal weights are
considered and this step can also be skipped.

After that, the PIS and NIS need to be identified. To do so,
let PS0 = {P(1), . . . , P(k)} be the Pareto set of optimal paths
PS, ordered according to the first component of their costs.
Each path P(i) ∈ PS0 has a pair of costs c(i) = (c(i), c(i))

and c(i)<c(j) if i<j, i, j = {1, . . . , k}. The PIS and NIS are
characterized by the following proposition.

Proposition 3.1: Let PS0 = {P(1), . . . , P(k)} be the Pareto
set of a bi-criteria problem defined by an ISPP such as
c(1)<c(2)< . . .<c(k). Then, ck<c(k−1)< . . .<c(1).

Proof: Lets see that min
i∈{1,...,k}

{c(i)} = c(k).

Suppose that there exists cj , j ̸= k such as c(j)<c(k). Then,

f1(P(j)) = c(j)<c(k) = f1(P(k))

and
f2(P(j)) = c(j)<c(k) = f2(P(k)).

Therefore, P(j) dominates P(k) and P(k) /∈ PS0. That is a
contradiction, so

min
i∈{1,...,k}

{c(i)} = c(k).

To proof the rest of the inequalities, it is sufficient to apply
an iterative reasoning considering the set PS0 \ {P(k)}.

Note that strict inequalities are not restrictive at all in bi-
criteria problems. If c(i) = c(j) for i ̸= j, then, two cases can
occur: if c(i) ≤ c(j), P(j) /∈ PS0 and if c(i) = c(j), either P(j)

or P(i) /∈ PS0.
In view of Proposition 3.1, it is possible to easily identify

the PIS and NIS of the problem:

F (P )+ = (c(1), c(k)), F (P )− = (c(k), c(1)). (7)

Once the PIS and NIS are identified, the distance in the
objective space from each solution Pi in PS to F (P )+ and
F (P )− is computed. This distances are denoted D+

i and D−
i

respectively. Any distance can be used at this stage. In this
case, the euclidean distance has been chosen.

Finally, each solution Pi ∈ PS gets a score Ri defined by

Ri =
D−

i

D+
i +D−

i

(8)

and all are ranked in decreasing order of score. This score
measures how far is each Pareto optimal solution from the
NIS and how near they are to the PIS.

IV. CASE STUDY

In this section a brief example to show how the proposed
approach can help to solve the ISPP is presented. A directed
graph with just 9 nodes has been considered to provide clarity
to the methodology. The aim is to find the shortest path from
vs to vt. The graph can be seen in Fig. 1.

The first step is to interpret every cost as a pair in R2. After
that, the Pareto set needs to be found. To do it, there are many
strategies that one can follow. If it is desired to find the whole
Pareto set, the multicriteria Dijkstra’s algorithm presented in
[17] can be used. If just an approximation of the Pareto set
is needed, any genetic or evolutionary algorithm is more than
sufficient to find it. As in this case, the number of nodes is 9
and the number of edges is 28, there is a reasonable number
of paths and an evolutionary algorithm has many chances to
find the entire Pareto set in a very short time. For that reason,
the code provided by Xavier Ma in the GitHub repository1,
that follows the approaches in [18] and [19], has been used.
In Table I, the Pareto optimal paths found for the problem are
displayed.

As can be seen, despite working with a small network of
only 9 nodes, a total of 5 optimal paths have been found. This
fact highlights the need for a technique to handle potential so-
lutions when dealing with a larger and more realistic problem.
The Pareto front of the problem along with the PIS and NIS
is shown in Fig. 2.

Finally, in order to rank the five alternatives, the score ratio
(8) is used. The scores obtained by each path can be seen
in Table II, where they have also been arranged in order of
preference from left to right.

vs v2

v3

v4

v5

v6

v7

v8 vt[4, 8]

[3, 10]

[2, 5]

[0, 3]

[7, 8]

[2, 3]

[1, 2]

[1, 9]

[3, 9]

[2, 8]

[3, 4]

[4, 6] [2, 10]
[8, 9]

[0, 12] [6, 8]

[3, 4]

[2, 3]

Fig. 1. Graph representing the ISPP.

1https://github.com/Xavier-MaYiMing/The-MOEAD-for-the-multi-
objective-shortest-path-problem
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TABLE I
PARETO OPTIMAL PATHS OF THE ISPP DEFINED IN FIG. 1.

Label Shortest path Interval costs
P1 vs − v3 − v7 − vt [6, 22]
P2 vs − v2 − v6 − vt [8, 14]
P3 vs − v3 − v2 − v6 − vt [7, 19]
P4 vs − v4 − v6 − vt [9,13]
P5 vs − v4 − vt [10, 12]

In view of Table II, the minimum path chosen by this
approach to the ISPP is P2, the path located between the two
most extreme solutions in terms of interval width. Addition-
ally, it is worth noting that the path with the widest interval,
P1, and thus the greatest uncertainty, has turned out to be the
worst option for the method. However, this is not necessarily
general, as no pattern seems to be observed that relates the
path scores to the width of the cost interval, although it is an
interesting topic to consider for future research.

As a final note, it is worth mentioning that TOPSIS is a
widely used technique in multicriteria optimization problems,
which is not only employed to select the best alternative from
a set but also to narrow down a manageable set of alternatives
for a human. Since the method provides a preference ranking
for all options, a desired number of optimal solutions can be
preset, allowing the technique to provide the Decision Maker
(DM) with that number of alternatives from which they can
make the final decision. In this case, if just three paths are
desired, the chosen ones will be P2, P4 and P5, and an expert
DM can then decide based on its own perspective.

V. CONCLUSION

In this work, the use of the direct relationship of the space
of positive intervals with a subset of R+2, to treat the ISPP as
a bi-criteria optimization problem has been proposed. To solve
this problem, TOPSIS has been employed, as it is a widely
used technique and has shown to perform well in a variety of
contexts. Due to the nature of the problem, it is sufficient to
use a simplified version of TOPSIS, without the need
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Fig. 2. Costs of the Pareto optimal paths for the ISPP defined in Fig 1.

TABLE II
SCORES OF THE PARETO OPTIMAL PATHS ACCORDING TO TOPSIS

CRITERION.

Path (Pi) P2 P4 P5 P3 P1

Score (Ri) 0.7446 0.7412 0.7143 0.3750 0.2857

of several steps such as the standardization of the objectives
or assigning weights to them.

To find the Pareto set a MOEA/D algorithm has been
used. It is important understand that although there is not
guarantee that this kind of algorithms will find the entire
Pareto set of a multicriteria problem, for large scale problems,
the approximations of the set of optimal solutions that they
provide are more than enough. In addition, it is also relevant
to keep always in mind that by definition, the Pareto set is
form by all the solutions such as there are not others better
than them, so even in the case of an incomplete Pareto, the
final solution will be adequate.

The proposed approach has been applied to a toy example
and has shown to choose a sensible solution. In addition, the
use of TOPSIS to create a reduced Pareto set has also been
mentioned and seem to be a good use of this technique.

In summary, the idea of solving the ISPP using a technique
designed to address multicriteria problems such as TOPSIS has
benefited from the advantages of these well-studied techniques
and has yielded promising and satisfactory results.

As future research lines, it is planned to investigate whether
there is any relationship between the solutions provided by the
method and the properties of the intervals involved in the prob-
lems, such as the midpoint, width, and endpoints. Discovering
such relationships, if they exist, could be highly beneficial for
relaxing the computational costs of the method by focusing
the search on solutions that satisfy specific criteria. It also
seems natural to consider using other bi-criteria optimization
techniques and comparing the solutions provided with those
of TOPSIS, in addition to studying the same properties for the
intervals.
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Abstract—Aggregation functions simplify complex problems
by deriving a single value from multiple inputs, often used
in decision-making and image processing. Penalty functions
complement aggregation by quantifying the cost of deviating
from a consensus value, gaining attention for their versatility.
Interval-valued functions are also rising in importance, especially
in uncertain scenarios. This paper extends penalty functions to
intervals demonstrating their applicability in handling interval-
valued data and providing a structured approach to decision-
making in uncertain environments.

Index Terms—Penalty function, interval, admissible order,
aggregation function

I. INTRODUCTION

Nowadays, numerous situations involve multidimensional
problems. To simplify complex problems, aggregation func-
tions prove invaluable, as they enable the derivation of a
singular value from a multitude of input values [2], [11]. This
characteristic has proven particularly beneficial for researchers
dealing with challenges in decision-making and image pro-
cessing [8], [16].

Penalty functions play a crucial role in this process by pro-
viding a mechanism to quantify the cost or penalty associated
with deviating from a consensus value. Imagine a scenario
where you have several inputs representing potential values,
but you need to choose a single representative value for further
analysis or decision-making. You need a tool that helps you to
decide which value should be chosen and penalty functions can
overcome this task. Since they were introduced, the interest in
penalty functions has grown among researchers due to their
ability to assign a cost to the divergence of each value from
the selected consensus value (see for instance [4], [6]).

Simultaneously, the significance of interval-valued functions
is on the rise, especially in real-world scenarios where ob-
taining an accurate value can be challenging, prompting a
preference for using interval-valued data [3].

Considering the aforementioned points, our focus is on
exploring the aggregation of interval-valued functions and
analyzing the determination of the most suitable aggregation
method. From a sample of interval-valued data we will choose
the one with less penalty value associated.

This paper is organized as follows: Section II gives the basic
concepts about intervals such as admissible orders. In Section

Authors would like to thank for the support of the Spanish Ministry of
Science and Innovation (project PID2022-139886NB-I00).

III, we review some historical definitions of penalty function.
Section IV presents a first approach to penalty functions
with interval-valued data, along with some examples. Finally,
conclusions and future work are presented in Section V.

II. PRELIMINARIES

We denote by L(R) the family of closed intervals of the
real line, i.e., L(R) = {x = [x, x] : x, x ∈ R and x ≤ x}.

In this work, it will be essential to arrange intervals in
a specific order. Hence, establishing a total order between
intervals becomes necessary. A common partial order is the
lattice order:

Definition 2.1: [10] The lattice order �Lo in L([0, 1]) is
given by x �Lo y iff x ≤ y and x ≤ y.

Using this partial order, a total order between intervals can
be defined as follows:

Definition 2.2: [5] The order � on L([0, 1]) is called an
admissible order if:
• � is a total order on L([0, 1]),
• � refines the lattice order on L([0, 1]), i.e., for all
x, y ∈ L([0, 1]), x � y whenever x �Lo y.

Example 2.1: In the literature some examples of admissible
orders can be found:
• Lexicographical order type 1 [5]:

a �Lex1 b if a < b or (a = b and a ≤ b)

• Lexicographical order type 2 [5]:

a �Lex2 b if a < b or (a = b and a ≤ b)

• The Xu and Yager order [13]:

a �XY b if a+a < b+b or a+a = b+b and a−a ≤ b−b)

Bustince et. al [5] also proposed a method to construct
admissible orders using aggregation functions.

Definition 2.3: [1], [12] Let A : [0, 1]n → [0, 1] such that
• A(0, 0, . . . , 0) = 0,A(1, 1, . . . , 1) = 1,
• A is increasing in each variable,

 XX Conferencia de la Asociación Española para la Inteligencia Artificial 347



then A is an aggregation function.

There is a natural bijection between L([0, 1]) and
K([0, 1]) = {(u, v) ∈ [0, 1]2 |u ≤ v} linking the interval
[a, a] to the point formed by its endpoints in R2. Aggregation
methods allow us to combine information presented as an
interval.

Proposition 2.1: [5] Let A,B be continuous aggregation
functions, such that for all (u, v), (u′, v′) ∈ K([0, 1]), the
equalities A(u, v) = A(u′, v′) and B(u, v) = B(u′, v′) can
only hold if (u, v) = (u′, v′). Define the relation �A,B on
L([0, 1]) by a �A,B b if and only if

A(a, a) < A(b, b)

or
A(a, a) = A(b, b) and B(a, a) ≤ B(b, b)

Then �A,B is an admissible order on L([0, 1]).

Example 2.2: The lexicographical orders type 1 and type 2
or the Xu and Yager order can be constructed by aggregation
functions:
• Lexicographical order type 1:

– ALex1(u, v) = u
– BLex1(u, v) = v

• Lexicographical order type 2:
– ALex2(u, v) = v
– BLex2(u, v) = u

• The Xu and Yager order:
– AXY(u, v) = u+ v
– BXY(u, v) = u− v

In our case, we are dealing with intervals on the real line;
thus, we need to extend this admissible order from L([0, 1])
to L(R). This extension is trivial and occurs naturally.

Finally, we introduce the concept of aggregation function
for intervals that we will use in order to characterize the
penalty functions. This is a tricky concept as the original
definition of aggregation function is defined on the unit
interval [0, 1]. As we are considering intervals in L(R),
we also need to extend this notion. Based on the ideas of
Grabisch [11], the natural extension would be something as
follows:

A function A : L(R)n → L(R) is called an aggregation
function for intervals if:
• A is non decreasing with respect to a prefixed order

(�o), i.e., if x1, . . . , xn, y ∈ L(R), and there exists
i ∈ {1, . . . , n} such that y �o xi, then

A(x1, . . . , xi−1, y, xi+1, . . . , xn) �o A(x1, . . . , xn)

• A fulfills that

inf
x1,...,xn∈L(R)

{A(x1, . . . , xn)} = inf{L(R)}

and

sup
x1,...,xn∈L(R)

{A(x1, . . . , xn)} = sup{L(R)}

where inf and sup obviously would depend on the prefixed
order. It is well known that L(R) has neither infimum nor
supremum for the classical orders. In this preliminary contri-
bution, in order to overcome this situation, we will not work
in the most general situation, L(R) but we will restrict to an
interval in R: the greatest interval that includes all the intervals
xi = [xi, xi] to be aggregated, i.e., L([a, a]) where:

a = min{xi}ni=1

and
a = max{xi}ni=1

In that way, we guarantee the existence of the infimum and
supremum.

Definition 2.4: Let [a, b] ∈ L(R) and let � be an order such
that (L([a, b]),�) is a lattice. A function A : L([a, b])n →
L([a, b]) is called an �-aggregation function for intervals if:
• A is non decreasing with respect to �, i.e., if

x1, . . . , xn, y ∈ L([a, b]), and exist i ∈ {1, . . . , n} such
that y � xi, then

A(x1, . . . , xi−1, y, xi+1, . . . , xn) � A(x1, . . . , xn)

• A fulfills that

inf
x1,...,xn∈L([a,b])

{A(x1, . . . , xn)} = inf{L([a, b])}

and

sup
x1,...,xn∈L([a,b])

{A(x1, . . . , xn)} = sup{L([a, b])}

where inf and sup are the infimum and supremum with
respect to �.

Observe that since we have asked (L([a, b]),�) to be a lattice,
the existence of the infimum and supremum are guaranteed.
The lattice order and therefore any admissible order are
examples of orders that can be used to properly define an
aggregation function for intervals.

III. PENALTY FUNCTION

In this section, we briefly revisit some historical definitions.
A more in-depth exploration can be found in [4].

In 1993, Yager [14] introduced the initial concepts of
employing a penalty function to support aggregation functions.
He proposed associating a penalty or cost with each data point
xi, payable if we disregard it when concluding the aggregation
process with a conflicting value for y.

Subsequently, in 1997, Yager and Rybalov [15] advocated
minimizing a penalty function as a means to obtain a fused
value for n observations. Their approach is outlined as follows:
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Definition 3.1: [4] The function LP : R2 → R+ is a local
penalty function if, for any xi, xj , y ∈ R and i, j = 1, ..., n,
it satisfies:

• LP (xi, y) = 0, if xi = y,
• LP (xi, y) > 0 if xi 6= y,
• LP (xi, y) ≥ LP (xj , y) if |xi − y| > |xj − y|,

where y is termed the fused value related to each observation
in x.

They construct penalty functions from local penalty
functions.

Definition 3.2: [4] Let LP : R2 → R+ be a local penalty
function. A penalty function P : Rn+1 → R+ is defined, for
any x ∈ Rn and y ∈ R as:

P (~x, y) =

n∑
i=1

LP (xi, y)

where y is called the fused value related to each observation
in x.

Using penalty functions allows us to measure the total
penalty incurred when y serves as the fused value of x. The
optimal fused value y∗ for x minimizes the penalty function,
obtained as:

P (~x, y∗) = min
y
P (~x, y).

With this definition, the set of minimizers of P (~x, ·)
may not exist or be unique in general. Several authors have
discussed this topic, as seen in [6], [7] and [9]. We would
like to highlight the following definition of a penalty function
given by Beliakov and James [9]:

Definition 3.3: The function P : [0, 1]n+1 → [0,∞] is a
penalty function if and only if it satisfies:

• P (xi, y) = 0, if xi = y,
• P (xi, y) > 0 if xi 6= y,
• For every fixed ~x, the set of minimizers of P (~x, ·) is

either a singleton or a connected set.

Later, Bustince et. al [4] proposed the following definition,
giving a more direct characterization. In this definition, they
consider I as an interval contained in the real line.

Definition 3.4: The function P : In × L([0, 1])→ R+ is a
penalty function if and only if there exists c ∈ R such that:

• P (~x, y) ≥ c, for all ~x ∈ In, y ∈ L([0, 1]).
• P (~x, y) = c if and only if xi = y for all i = 1, .., n.
• P is quasi-convex lower semi-continuous in y for each
~x ∈ In.

Some examples of penalty function can be found in [4].

IV. PENALTY FUNCTIONS FOR INTERVALS

As we previously commented, interval-valued functions are
experiencing increasing importance, particularly in practical
situations where acquiring precise values is challenging. In this
section, we will introduce a first approach to the definition of
penalty function for intervals.

To introduce the concept of penalty function for intervals,
as an initial step, we will consider a finite number of interval-
valued data and an admissible order �. Therefore, we denote
by ~x an interval-valued vector, i.e.:

~x = (x1, x2, . . . , xn)

where xi ∈ L(R), for all i = 1, . . . , n.
As mentioned previously, we will consider the largest

interval a = [a, a] where a and a represent, respectively, the
lowest lower bound and the greatest upper bound over all the
intervals xi.

Definition 4.1: A function P : L([a, a])n+1 → R+ is called
penalty function for intervals in L([a, a]) if the following
properties are fulfill:
P1: P (~x, y) ≥ 0 for all x ∈ L([a, a])n, y ∈ L([a, a])
P2: P (~x, y) = 0 if xi = y for all i ∈ {1, . . . , n}

It is important to note that in this case, it is not necessary to
introduce the conditions of quasi-convexity and lower semi-
continuity. In the case of working in R instead of L([a, a]),
Bustince et al. [4] asked for those two conditions in order
to guarantee the existence of a new y ∈ R that minimizes
the penalty function considered. In our case, we can skip
those two conditions because we are working with a finite
number of intervals, ensuring the existence of a minimum and
a maximum. Also, as we are in L([a, a]), an admissible order
ensures the existence of an infimum and a supremum, in fact,
even for the lattice order (and therefore for any admissible
order) the existence of a minimum (the interval [a, a]) and a
maximum (the interval [a, a]) is guaranteed.

The idea is that P (~x, y) = f~x(y) because we aim to find
the fused value y ∈ {x1, x2, . . . , xn} that best summarizes
~x ∈ L([a, a])n.

Proposition 4.1: Let ε > 0 and ~x ∈ L([a, a])n. The function
f~x : L([a, a]))→ [0, 1] given by:

P (~x, y) = f~x(y) =

{
0 if xi = y,∀i = 1, . . . , n

ε otherwise

is a penalty function for intervals in L([a, a]).

Proof:
• As ε > 0, we have that P (~x, y) ≥ 0 for all x ∈ L([a, a])n,

y ∈ L([a, a])
• If xi = y for all i ∈ {1, . . . , n}, then P (~x, y) = 0.
Proposition 4.2: Fixed ~x ∈ L([a, a])n. Let � be an

admissible order, A : L(R)n → L(R) an aggregation function
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for intervals and g : R2 → (0, a] increasing and continuous.
The function f~x : L(R)→ [0, 1] given by:

P (~x, y) = f~x(y) =


0 if xi = y,∀i = {1, . . . , n}
g
(
y, y
)

if y � A(x1, ..., xn)

a otherwise

is a penalty function for intervals in L([a, a]).

Proof: We have to check whether the axioms of Definition 4.1
are fulfilled:

P1: It is clear by definition that P (~x, y) ≥ 0 for all x ∈
L([a, a])n, y ∈ L([a, a])

P2: If xi = y for all i ∈ {1, . . . , n}, then P (~x, y) = 0.

Example 4.1: Let us suppose that we have these ten
intervals:

x1 = [1, 8] x2 = [3, 5] x3 = [2, 7]

x4 = [4, 10] x5 = [6, 12] x6 = [9, 15]

x7 = [8, 14] x8 = [5, 12] x9 = [7, 13]

x10 = [10, 20]

Since a = min{xi}10i=1 = 1 and a = max{xi}10i=1 = 20,
the space we are working on is L([1, 20]).

If we consider the penalty function f~x : L([1, 20])→ [0, 1]
given by:

f~x(y) =


0 if xi = y,∀i = {1, . . . , 10}
g
(
y, y
)

if y � Amean(x1, ..., x10)
20 otherwise

where

Amean(x1, ..., x10) =

[∑10
i=1 xi

10
,

∑10
i=1 xi
10

]
and

g(y, y) =
y + y

2
.

It is easy to see that Amean(x1, ..., x10) = [5.5, 11.6].
Table I shows the penalty values using lexicographical

order type 1, lexicographical order type 2 and Xu and Yager
order, respectively. In each example, the intervals with the
least penalization are [6, 12], [5, 12] and [6, 12], respectively.

Example 4.2: Let us suppose we have the ten previous
intervals and the penalty function fx : L([1, 20]) → [0, 1]
given by:

f~x(y) =


0 if xi = y,∀i = {1, . . . , 10}
g
(
y, y
)

if y � Amin(x1, ..., x10)
20 otherwise

TABLE I
VALUES OF THE PENALTY FUNCTION USING Amean

i 1 2 3 4 5
xi [1, 8] [3, 5] [2, 7] [4, 10] [6, 12]

Lex1 f~x(xi) 20 20 20 20 9
Lex2 f~x(xi) 20 20 20 20 9
XY f~x(xi) 20 20 20 20 9

i 6 7 8 9 10
xi [9, 15] [8, 14] [5, 12] [7, 13] [10, 20]

Lex1 f~x(xi) 13 11 20 10 15
Lex2 f~x(xi) 13 11 8.5 10 15
XY f~x(xi) 13 11 20 10 15

where

Amin(x1, ..., x10) =
[

min
i={1,...,10}

{xi}, min
i={1,...,10}

{xi}
]

and

g(y, y) =
y + y

2
.

It is easy to see that Amin(x1, ..., x10) = [1, 6].
As all the intervals are greater than [1, 6], we obtain the

same values for the three orders, which are displayed in Table
II

TABLE II
VALUES OF THE PENALTY FUNCTION USING Amin

i 1 2 3 4 5
xi [1, 8] [3, 5] [2, 7] [4, 10] [6, 12]

f~x(xi) 4.5 4 4.5 7 9

i 6 7 8 9 10
xi [9, 15] [8, 14] [5, 12] [7, 13] [10, 20]

f~x(xi) 13 11 8.5 10 15

The case where there is not just one minimizer can appear
as we will see in the next example.

Example 4.3: Let us change the fifth interval of the
previous examples:

x1 = [1, 8] x2 = [3, 5] x3 = [2, 7]

x4 = [4, 10] x5 = [6, 14] x6 = [9, 15]

x7 = [8, 14] x8 = [5, 12] x9 = [7, 13]

x10 = [10, 20]

We are working again in L([1, 20]).
Let us consider the penalty function f~x : L([1, 20])→ [0, 1]

given by:

f~x(y) =


0 if xi = y,∀i = {1, . . . , 10}
g
(
y, y
)

if y � Amean(x1, ..., x10)
20 otherwise
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where

Amean(x1, ..., x10) =

[∑10
i=1 xi

10
,

∑10
i=1 xi
10

]
and

g(y, y) =
y + y

2
.

It is easy to see that Amean(x1, ..., x10) = [5.5, 11.8].
The penalty values using lexicographical order type 1

are shown in Table III, where the intervals with the least
penalization are [6, 14], and [7, 13].

In the Examples 4.1 and 4.2 there is only one minimizer,
so it is clear which interval is chosen. On the other hand,
in Example 4.3 the minimum of the penalty function is
not unique. In this case, the interval selected depends on
the criterion of the researcher. However, we recognize the
importance of further research and development in a more
robust technique to choose just one minimizer.

TABLE III
VALUES OF THE PENALTY FUNCTION USING

LEXICOGRAPHICAL ORDER TYPE 1 AND Amean

i 1 2 3 4 5
xi [1, 8] [3, 5] [2, 7] [4, 10] [6, 14]

f~x(xi) 20 20 20 20 10

i 6 7 8 9 10
xi [9, 15] [8, 14] [5, 12] [7, 13] [10, 20]

f~x(xi) 13 11 20 10 15

V. CONCLUSIONS

In this study, we explored the concept of penalty functions
for interval-valued data, extending their application from vec-
tors to vectors of intervals using admissible orders and aggre-
gation functions. Through illustrative examples, we demon-
strated the versatility and effectiveness of these functions in
handling interval-valued data, particularly in scenarios charac-
terized by imprecision and uncertainty. It is important to note
that the definition proposed in this study specifically applies to
intervals contained between all the intervals considered. This
perspective could be useful in some context where we want
to summarize a set with one value of the sets, such as when
the median is used.

As future work, we aim to extend the definition of penalty
functions for intervals to encompass any interval on the real
number line, rather than confining it to the original intervals
considered. This extension would broaden the applicability of
penalty functions and provide a more comprehensive frame-
work for handling interval-valued data in various domains.
An interesting aproach could be extending the notions of
lower semicontinuous and quasiconvexity to intervals, and
then guarantee the existence of an interval that minimizes the
penalty function considered.
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Abstract—Este artı́culo resume resultados recientes [1] sobre
el aprendizaje de tipos de datos difusos en ontologı́as difusas.
Concretamente, se describe brevemente la herramienta Datil y
se discuten algunos ejemplos de aplicaciones reales.

Index Terms—Ontologı́as difusas, aprendizaje, agrupamiento

I. MOTIVACIÓN

Uno de los factores del reciente éxito de la Inteligencia
Artificial es la posibilidad de usar conocimiento. El estándar de
facto actual para la representación del conocimiento de un do-
minio de interés en aplicaciones inteligentes son las ontologı́as.
A pesar de su éxito, las ontologı́as clásicas no son suficientes
para manejar conocimiento impreciso, lo que es necesario
en numerosas aplicaciones del mundo real. Para superar esta
limitación, se han propuesto las ontologı́as difusas [2], que
extienden las ontologı́as clásicas con elementos de la lógica
difusa. Las ontologı́as clásicas describen un dominio mediante
clases, instancias de dichas clases, propiedades que relacionan
parejas de instancias o asocian una instancia a un valor de
un tipo de dato y axiomas sobre los elementos anteriores
(por ejemplo, inclusión de una subclase en una superclase).
En las ontologı́as difusas, las clases se representan medi-
ante conjuntos difusos, las propiedades mediante relaciones
difusas, los axiomas pueden cumplirse parcialmente (en un
cierto grado) y puede haber tipos de datos difusos (descritos
mediante conjuntos difusos triangulares, trapezoidales, etc.).

Las ontologı́as difusas se han usado en varias aplicaciones
y hay algunos recursos disponibles: lenguajes como Fuzzy
OWL 2 [3], razonadores como fuzzyDL [4] y metodologı́as
de desarrollo. Sin embargo, existen pocas ontologı́as difusas
públicamente disponibles y uno de los posibles motivos puede
ser la escasez de herramientas que faciliten su aprendizaje.

Usualmente, se asume que existe un experto humano en-
cargado de definir los tipos de datos difusos. En este artı́culo
nos centraremos en un caso diferente, donde no hay expertos
disponibles pero sı́ ejemplos de datos numéricos que se pueden
usar para el aprendizaje. Concretamente, presentaremos un
resumen de [1], donde se propone una nueva estrategia para
el aprendizaje de tipos de datos difusos en ontologı́as difusas.

II. HERRAMIENTA DATIL

Datil (del inglés, “DATatypes with Imprecision Learner”) es
una herramienta software que implementa un algoritmo propio
de aprendizaje de tipos de datos difusos para propiedades con

un rango de valor numérico. La aplicación está públicamente
disponible en http://webdiis.unizar.es/∼ihvdis/Datil.

La idea principal consiste en aplicar un algoritmo de
agrupamiento basado en centroides y usarlos para calcular
funciones de pertenencia difusa que formen una partición
del dominio. Concretamente, los centroides se pueden usar
como los parámetros de una función izquierda (left-shoulder),
varias funciones triangulares y una función derecha (right-
shoulder). La Figura 1 ilustra el proceso: a partir de un vector
que incluya todos los valores de una cierta propiedad P (de
rango numérico) para todos los individuos de la ontologı́a, se
aplica un algoritmo de agrupamiento que produce un vector de
centroides (en el ejemplo, {10, 20, 30}) y, a partir de ellos, se
construyen las funciones de pertenencia. En el ejemplo: una
función izquierda left(10, 20), que corresponde a BajoP, una
función triangular tri(10, 20, 30), que corresponde a NeutroP,
y una función derecha right(20, 30), que corresponde a AltoP.

Las principales contribuciones de Datil son las siguientes:
• Es independiente del dominio de aplicación y puede

usarse en múltiples escenarios, siempre que los atributos
sean numéricos y haya un gran volumen de datos.

• Admite diferentes formatos de archivos de entrada: CSV,
FDL (el formato del razonador fuzzyDL) y OWL, que
abarca OWL 2 (para extender ontologı́as clásicas al caso
difuso) y Fuzzy OWL 2 (para enriquecer ontologı́as
difusas). Como salida, admite Fuzzy OWL 2 y FDL.

• Soporta tres conocidos algoritmos de agrupamiento no
supervisado: k-medias, c-medias difusas y mean shift.
Podrı́a ampliarse para admitir cualquier algoritmo de
agrupación que devuelva un conjunto de centroides.

• Asigna automáticamente nombres legibles a las etiquetas
de los tipos de datos difusos calculados, combinando
modificadores como Muy, las etiquetas básicas Bajo,
Neutro y Alto, y el nombre de la propiedad P .

• Permite evitar durante el aprendizaje datos atı́picos (out-
liers) o con valor cero (pues a veces se usan en ficheros
CSV para representar un valor desconocido), ası́ como
restringirse a un subconjunto (segmento) de los valores.

• Un razonador semántico (no difuso) recupera valores de
las propiedades representados explı́cita e implı́citamente.

• La herramienta tiene una interfaz gráfica de usuario
intuitiva para ordenadores de escritorio pero también una
versión móvil para dispositivos Android.

• Propone una versión incremental del algoritmo para per-
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Fig. 1. Esquema general del aprendizaje de tipos de datos difusos

mitir aprendizaje dinámico, que implica cambios en la
definición de los tipos de datos difusos de Fuzzy OWL 2.

III. EVALUACIÓN

Datil se ha usado con éxito en varias aplicaciones reales:
• Identificación de estilos de vida de los usuarios (como

“TrabajadorMediterráneaneo”) a partir de datos de sen-
sores wearable (como el horario tardı́o y la duración
larga del almuerzo) [5]. Datil calculó tipos de datos
difusos, como “AlmuerzoLargo”, que se usaron después
para aprender definiciones de clases complejas basadas
en ellos. Para validar la propuesta, se usaron datos reales
de voluntarios, proporcionados por una empresa privada.

• Recomendación de cervezas en el sistema GimmeHop,
para dispositivos Android y basado en ontologı́as di-
fusas [6]. Datil aprendió a partir de datos reales etiquetas
lingüı́sticas para la cantidad de alcohol o el amargor de
las cervezas, aptas para las consultas al sistema.

• Reconocimiento de la marcha humana [7]. Dada una
secuencia de datos de una persona caminando, se de-
vuelve el individuo más similar conocido o se detecta
que pertenece a un individuo desconocido. Datil permite
mejorar la interpretabilidad del sistema, usando términos
lingüı́sticos al explicar la decisión del sistema.

• Diagnóstico de la hepatitis C, donde investigadores in-
dependientes usaron Datil para construir tipos de datos
difusos en un sistema de soporte a la toma de deci-
siones clı́nicas basado en una ontologı́a difusa y una red
bayesiana difusa [8].

También se han evaluado la calidad y el rendimiento:
• Para evaluar la calidad de los tipos de datos difusos

aprendidos para la recomendación de cervezas, un grupo
de aficionados clasificó el nivel de alcohol de algunas
cervezas y se compararon con los resultados calculados
por Datil, para diferentes algoritmos de agrupamiento y

parámetros. Los mejores resultados se obtuvieron con
mean-shift, usando un valor de umbral máximo para
reducir datos atı́picos.

• También se comparó el tiempo de aprendizaje en la
versión móvil de Datil y en la versión de escritorio, para
diferentes tamaños de ontologı́as. Aunque el tiempo es
mayor en el teléfono de gama media-baja considerado,
podrı́a ser aceptable pues el aprendizaje tı́picamente se
realiza una única vez. Además, el algoritmo de agru-
pamiento tiene un impacto: por ejemplo, mean-shift
puede llegar a ser un 20% más lento que k-medias.
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Abstract—This work is about the paper ‘Calculating the
interaction index: a polynomial approach based on sampling’,
published in the journal Fuzzy Sets and Systems in 2023. That pa-
per explored the challenge of calculating fuzzy measures indices.
Building upon the concept of fuzzy sets, Murofushi and Soneda
introduced an interaction index to analyze relationships between
two individuals. Grabisch later extended this index within a
unified framework. Both indices are foundational in the field of
fuzzy measures. However, the calculation process remains highly
complex, lacking an approximate solution. To address this gap,
we proposed an alternative characterization of the interaction
index based on a representation of the Shapley value using
orders. This alternative representation simplifies the handling
of these indices, offering insights for both pairwise interactions
and more complex scenarios involving arbitrary sets. We also
proposed two polynomial methods based on sampling to estimate
the interaction index, along with a method to approximate its
generalized version. Computational experiments were conducted
to assess the effectiveness of the proposed algorithms.

Index Terms—Fuzzy Measures, Interaction Index, Interaction
Representation, Shapley Value, Sampling Algorithm

I. INTRODUCTION AND STATE OF ART

The measure theory [1] has had a great deal of importance
in the develop of several areas, as the fuzzy measures [2],
the necessity and possibility measures [3], [4], the capacity
measures [5], etc. Specifically, we focus on fuzzy measures,
monotonic set functions which define a type of non-additive
measures encompassing many measures such as belief, possi-
bility, necessity or plausibility measures [6]. Fuzzy measures
have been widely analyzed [7], [8] and applied in many
fields. Unfortunately, the practical implementation of fuzzy
measures is complex (2n coefficients are needed to define a
fuzzy measure over n individuals), and the related semantic
is difficult to understand [9]. Many researchers have focused
on the characterization, interpretation and representation of
fuzzy measures, which may be understood as some specific
cooperative games for which monotony holds.

Grant Plan Nacional de I+D+i, PID2020-116884GB-I00, PID2021-
122905NB-C21.

To understand them, the analysis of the interactions between
individuals turns essential. Regarding the importance index
Shapley value [10], essential tool in game theory adapted to
the field of fuzzy measures, that could be understood as an
indication of the importance of each singleton. It has been
deeply studied from a theoretical point of view [11], [12], but
the calculation of its real value for general fuzzy measures is
a NP -problem. Until not that long ago, there were only a few
works to approximate it in some specific problems [13], [14].
In 2009, Castro et al. proposed a method based on sampling
to approximate the Shapley value [15], generalized in [16] by
a stratified random sampling with optimum allocation process.

Regarding interactions among several elements [17], Muro-
fushi and Soneda defined the interactions index between two
individuals [18], which quantifies its average contribution con-
sidering all the subsets it is part of. Then, Grabisch proposed
an extension of it to deal with sets involving more than two
elements [19]. As with the Shapley value, the approximation
of the real value of these indices has not been studied in depth
for general scenarios, due to its great complexity.

In our paper ‘Calculating the interaction index of a fuzzy
measure: a polynomial approach based on sampling’, pub-
lished in 2023 in the journal Fuzzy Sets and Systems [20],
we proposed an alternative characterization based on orders
of this interaction index, for both the simple case related to
pairs of elements, and the corresponding extension to deal with
any set. This new formulation of the interaction index (and
of the representation index), provides a different and intuitive
understanding of this it. Then, following the idea of sampling
in [15], [16], we defined two methods to approach the value
of the interaction index. Both are based on sampling, where
the second one is a refinement of the very first, but also using
stratified random sampling with optimum allocation.

II. MAIN CONTRIBUTIONS

• Proposal of an alternative characterization of the inter-
action index based on orders. [18] introduced an interaction
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index Iij(µ) based on multi-attribute utility theory to model
interactions between pairs of elements i, j regarding the fuzzy
measure µ, i.e. to estimate the degree to which a pair of
elements interact. Iij(µ) can be seen as an average of the
added value obtained by considering i and j in the same
coalition, depending on µ. In fact, considering a singleton,
the Shapley value coincides with the interaction index. We
worked in an alternative characterization of the interaction
index based on orders and permutations, which provides a
simpler view of it. On the other hand, in [19], by analogy
with the first- and second-order classes, Grabisch proposed a
generalization of Iij , IT (µ) to represent interactions among
the elements of any set T regarding the fuzzy measure µ.
This representation index is useful to quantify the average
contribution of a coalition when considering all the subsets
it is part of. Again, for T = {i}, recovers Shi (µ), and Iij
for T = {i, j}. We also defined an alternative characterization
of IT based on orders. These characterizations gave us a new
view of the interaction indices as an average of the added
value obtained by considering them in the same coalition.
• Development of a new methodology to approach the
real value of the interaction index (and the representation
index). The complexity of Shapley value calculation is well-
known: it is a NP−problem for general fuzzy measures.
Although it has been deeply analyzed from a theoretical
perspective, until not that long ago, there were only a few
works about its real calculation until the proposals in [15],
[16]. This lack of practical analysis also occurs with the
interaction index. Its calculation can be done in polynomial
time only for a few simple fuzzy measure, and there is not
much research about feasible estimations of it. We proposed a
new polynomial-time methodology to approach the interaction
index, developed on the basis of its alternative characterization
based on orders. We defined two polynomial-time algorithms
to estimate the real value of the interaction index. The first one,
named ApproInteraction, is based on simple random sampling.
We detailed the step-by-step process and provide its pseudo-
code for easy adaptation to any programming language. The
obtained estimation has some desirable properties, specifically,
it is unbiased and consistent in probability.

For situations with large variance caused by simple random
sampling in which the ApproInteraction algorithm is not
accurately enough, we proposed a refinement with the use of
stratified random sampling named StratifiedApproInteraction,
which improves the performance of the original method for
cases with high variance. The key is to divide the whole
population into subpopulations, each of which is internally
homogeneous and as heterogeneous as possible with respect
the others groups. We showed a detailed explanation of the
StratifiedApproInteraction algorithm, as well as its pseudo-
code. Again, the estimated value has desirable statistical
properties, as being unbiased and consistent in probability.

Because of the lack of methods to estimate the interaction
index, we could not compare our algorithms with others. Then,
we calculated the real value of I for several simple fuzzy
measures for which this calculation is feasible in polynomial-

time (considering the alternative characterization based on
orders), and we compared the real value with the estima-
tions. Both methods were so accurate and the results were
exact and reliable, so we could confirm the goodness of our
methodology. Although we thoroughly explained and test the
methods with respect to the interaction index, the stratified
procedure could be generalized in much the same way to
estimate other values, specifically for the representation index
IT . The process was summarized by its pseudo-code in the
full text, named Stratified ApproInteraction T algorithm.

Although we focused on fuzzy measures, all the contribu-
tions may be adapted to a more general scenario related to
cooperative game (as fuzzy measures can be understood as a
subset of cooperative games with monotony).
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[15] J. Castro, D. Gómez, and J. Tejada, “Polynomial calculation of the

Shapley value based on sampling,” Computers & Operations Research,
vol. 36, no. 5, pp. 1726–1730, 2009.
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Marı́a Barroso1,3, Daniel Gómez1, Inmaculada Gutiérrez1

1Faculty of Statistics, Complutense University Puerta de Hierro, s/n, 28040 Madrid, Spain
3E-mail: mbarro10@ucm.es

Abstract—Social Network Analysis has evolved significantly,
driven by real-world data and advancements in analytics. The
focus on addressing community detection problems has prompted
to refinements in classical algorithms like Louvain, aimed at
overcoming inherent challenges. This research introduced a novel
supervised technique, leveraging the Louvain algorithm and
flow extended fuzzy graphs. Our approach, a parametric and
aggregation supervised method, surpasses limitations of local so-
lutions, marking a substantial advancement beyond prior results.
Operating within the machine learning paradigm and considering
directed modularity, this study signified a noteworthy progression
in community detection algorithms. Rigorous evaluation across
diverse benchmark and real-world networks underscores the
efficacy of our supervised technique, positioning it favorably
among existing algorithms.

Index Terms—Community Detection, Complex Networks, Flow
Extended Fuzzy Graph, Flow Capacity Louvain, Directed Mod-
ularity

I. INTRODUCTION

In this review, we summarise our research entitled ”A
supervised approach to community detection problem: How to
improve Louvain algorithm by considering fuzzy measures”,
published in Springer in 2022 [1]. Where we introduced a
supervised technique aimed at enhancing clustering methods
and the quality measure of resulting partitions in Community
Detection Problems (CDP) within complex networks. While
the search for the ’best community structure technique’ has
predominantly focused on the structural information of a graph
[2], [3], our work addresses the limitations of such local
approaches. Notably, algorithms like the Louvain algorithm [4]
have gained popularity due to their speed and effectiveness in
large network, but they may encounter challenges in capturing
global information.

Our emphasis lies in the enhancement of CDP techniques,
particularly through the introduction of the Flow Capacity
Louvain [5]. This method integrates the structural information
of a graph with flow considerations, utilizing the concept of
flow extended fuzzy graphs [5]. Given a crisp directed graph
G = (V,E) and the fuzzy measure defined as flow capacity
measure µF : 2V −→ [0, 1] defined over the set of nodes, the
triplet G̃ = (V,E, µF ) obtained from considering together the
graph with the fuzzy measure which models the flow amongs
nodes, is called flow extended fuzzy graph.

As a result, the Flow Capacity Louvain is a multi-phase
heuristic algorithm based on the directed Louvain [6], incor-

porating an importance parameter α ∈ [0, 1] to balance the
influence of flow in the partitioning process. The analysis
of this aggregation process is meant to be addressed in this
work. Therefore, the aggregation of additional information is
facilitated by the directed interaction index [5], represented by
the matrix ID, being

(
IDij

)
i,j∈V

=
fij∑

l,m∈V flm
, the elements

of that matrix with manages the flow information among
nodes (fij) modeled by the fuzzy measure µF . Then G̃ is
summarized by AD, the directed adjacency matrix of the
graph and ID. The aggregation process is represented by an
aggregation function Φ : Rn×n × Rn×n → Rn×n, where the
matrix M = Φ(AD, ID) is obtained, and the parameter α
gives weight to each matrix.

On the other hand, to evaluate the quality of partitions
in CDP, it is extensively considered the directed modularity
[7] Qd(A

D), adapted from the traditional modularity [8].
One widely employed technique for characterizing pattern
structures is the Louvain algorithm [4] based on modularity
maximization and local node movements. In the Flow Ca-
pacity Louvain, we extended this approach by incorporating
the maximization of modularity, considering ∆Qd

i (j) with
AD

ij = Mij . Then, we provided a supervised approach in which
we aim to find values of α that yield high modularity values
in both undirected and directed networks [7], [8].

II. A SUPERVISED APPROACH IN COMMUNITY DETECTION
PROBLEMS

In this section, we outline the methodology of our super-
vised approach for addressing CDP through the Flow Capacity
Louvain algorithm. Our primary objective involves acquiring
essential components for formulating the objective function
that maximizes modularity in the associated flow extended
fuzzy graph. The algorithm relies on two critical matrices: the
adjacency matrix of the crisp graph (AD) and the directed
interaction matrix derived from the flow capacity measure
µF (ID). To streamline the computation, we exploit the 2-
additivity property of µF [5], which significantly reduces
computational complexity [9]. The aggregate matrix M is
then formed through parametric aggregations, where Φ ap-
proximates a linear combination using a weighted sum of
both matrices: M = Φ(AD, ID) = αAD + (1 − α)ID. This
approach is specifically chosen for its computational efficiency,
given its ability to provide flexibility in capturing community
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structures. Additionally, in our exploration of diverse networks
drawn from the literature, encompassing both directed and
undirected types, we highlight the versatile nature of the Flow
Capacity Louvain algorithm. Originally devised for directed
networks, is adaptable to undirected graphs by treating non-
directed edges as pairs of directed edges.

Thereafter, incorporating a machine learning supervised
framework, our methodology unfolds in two distinct phases
– training and testing. In the training phase, we systematically
explore a range of α values, spanning from 0.01 to 0.01 within
the interval [0, 1). This exploration involves the execution of
the Flow Capacity Louvain, generating a set of partitions with
100 α values, each labeled with its corresponding modularity
Qd [7]. The subsequent calculation of the average modularity
Q.ℓ

d =
∑n

i=1 Qiℓ
d

n for each αℓ (∀ℓ = 1 . . . 100) allows us to
pinpoint the optimal α∗ that maximizes modularity.

Moving to the testing phase, the identified optimal α∗

undergoes validation on selected networks. Following success-
ful validation, hypothesis testing is employed to statistically
affirm the robustness of the optimal α∗ determined through
our supervised technique. This meticulous and systematic
approach guarantees the generalizability and effectiveness of
the Flow Capacity Louvain algorithm across varied networks,
leveraging an appropriate and validated α∗.

III. EVALUATION AND BENCHMARKING

In this section, we present the computational results to
assess the efficacy of the introduced supervised approach
in CDP. The evaluation is carried out using the Python
software, implementing the two phases elucidated earlier. The
outcome of this approach yields distinct community structures
within the network contingent upon the value of α. These
proposed sets are subsequently evaluated based on the directed
modularity measure Qd [7].

In Figure 1 the average modularity obtained with varying
α are compared with the Louvain algorithm [4], specifically
when α = 1. The depicted values are restricted within the
range of 0.5 to 1, where values exhibit a discernible increase
in the average modularity across the training set.

Fig. 1. Summarise the average modularity Q.ℓ
d , performing αℓ ∈ [0.5, 1]

ℓ = {51 . . . 101} for the training set

The optimal α∗ value, determined as 0.77, is selected based
on its ability to yield consistently high average modularity
across diverse datasets. To validate the effectiveness of this
selected α∗, the Flow Capacity Louvain and the Louvain
algorithm are executed on a test dataset. Then hypothesis
testing is employed to ascertain the statistical significance
of the results, determining whether the average modularity
under both algorithms is statistically equal. With the Wilcoxon
signed rank test, significance levels were set at 1.25%.

Based on the outcomes of the test, we confidently propose
an interval for α∗ within [0.75 − 0.82] at the specified sig-
nificance level. This interval signifies a reliable range where
improvements in modularity can be accepted. By incorporating
this optimal α∗ range, there is a high probability, specifically
98.75%, of enhancing the results obtained by the Louvain
algorithm. This underscores the effectiveness and credibility
of the proposed supervised technique in elevating community
detection outcomes.

IV. CONCLUSIONS

Our study offers a comprehensive perspective by extending
the supervised approach to other algorithms, contributing
significantly to the field of CDP. In particular, [10] introduced
a novel proposal aimed at enhancing the overall performance
of algorithms in CDP, specifically in directed networks. So
that, the incorporation of fuzzy measures and meticulous
preprocessing considerations emerges as a promising area,
providing valuable insights for optimizing algorithm efficacy.
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Universidad de Jaén
Jaén, España

martin@ujaen.es

Abstract—This keywork encapsulates the primary points dis-
cussed in A Fuzzy-set based formulation for Minimum Cost Con-
sensus Models [1]. While Minimum Cost Consensus (MCC) mod-
els have been widely utilized in Group Decision-Making (GDM)
scenarios, prior extensions of these models lack comprehensive
analysis concerning their interrelationships and applicability,
thus impeding their practical utility. This paper introduces a
redefined approach to MCC models for GDM issues utilizing
Fuzzy Set Theory. The proposed fuzzy-based MCC (FZZ-MCC)
framework enhances comprehension of MCC models and their
extensions while offering a robust and adaptable methodology
for tackling diverse GDM challenges.

Index Terms—Minimum cost consensus, Fuzzy sets, Group
decision-making, Optimization

I. PRELIMINARIES

Formally, a group decision-making (GDM) problem com-
prises a set of n ∈ N alternatives X = {x1, x2, ..., xn} and
a set of m ∈ N decision-makers (DMs) E = {e1, e2, ..., em}
who assess these alternatives using a specific preference struc-
ture. Henceforth, GDM problems will be denoted by their
associated pairs (E,X).

Minimum cost consensus (MCC) models are automatic
consensus-reaching processes that convert a GDM problem
into a mathematical programming problem. Initially pro-
posed by Ben-Arieh and Easton [2], these models are de-
signed to minimize the cost associated with adjusting DMs’
preferences, ensuring that the resulting individualized opin-
ions align closely (within a predefined threshold, ε ∈]0, 1])
with the group consensus. Given initial preference values
(o1, o2, ..., om) ∈ Rn and a cost vector (c1, c2, ..., cm) ∈ Rn

+,
the MCC model is defined as:

min
o′

m∑
k=1

ck | o′k − ok |

s.t. | o′k − o′ |≤ ε, k = 1, 2, . . . ,m
(MCC)

where (o′1, . . . , o
′
m) are the adjusted opinions of the DMs, o′

represents the collective opinion, and ε ∈]0, 1] is the maximum
absolute deviation of each DM and the collective opinion.

This work is partially supported by the Junta de Andalucı́a Andalusian
Plan for Research, Development, and Innovation (POSTDOC 21-00461) and
by the Grants for the Requalification of the Spanish University System for
2021-2023 in the Marı́a Zambrano modality (UJA13MZ).

It is possible to find many extensions of MCC models
[3], [4], all of them with common elements (see Fig. 1).
However, there is a lack of a unified framework that allows
systematically generating new ones.

II. GENERALIZED MINIMUM COST CONSENSUS

Here it is presented a reformulation of MCC models con-
sidering a new definition of their elements [5] according to
Fuzzy Set Theory.

A. Main elements of MCC models

The following key elements are generalized (see Fig. 1):
1) Preference Structure: Refers to the format used by the

DMs to give their preferences.
Definition 1 (Discrete Numeric Preference Structure): Given

a GDM problem (E,X), a numeric preference structure for
the alternative set X is a subset P ⊂ F(Xd), where d = 1, 2.

Example 1: According to the previous definitions, the Dis-
crete Numeric Preference Structure corresponding to Fuzzy
Preference Relations (FPRs) [6] is:

PA := {P ∈ F(X ×X) : P (xi, xj) + P (xj , xi) = 1,

i, j = {1, 2, ..., n}}

We additionally characterize the DMs’ preferences with a
fuzzy set on E ×Xd.

Definition 2 (Numeric Ratings associated to P): Given a
GDM problem (E,X) and a discrete numeric preference
structure P, a numeric rating is a fuzzy set P : (E,Xd) →
[0, 1] such that for every k = 1, 2, ...,m, P (ek, ·) ∈ P. The
set containing all the possible numeric ratings for the GDM
(E,X) and the preference structure P, which is a subset of
F(E,Xd), will be denoted by P and called the numeric
ratings set associated to P.

Example 2: The numeric ratings set for FPRs is given by:

PA := {P ∈ F(E,X ×X) : P (ek, xi, xj) + P (ek, xj , xi) = 1,

∀ i, j = {1, 2, ..., n} ∀ k = {1, 2, ...,m}} .

2) Aggregation of information: The primary goal of a GDM
problem is to formulate a cohesive collective opinion by
combining the preferences of all DMs.

Definition 3 (Collective Opinion): Let us consider a GDM
problem (E,X), a preference structure P ⊂ F(Xd) and an
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Fig. 1. Structure of classical MCC [2], MCC with generic aggregations [3], and Comprehensive MCC [4].

aggregation operator M : [0, 1]m → [0, 1]. For P ∈ P ,
the fuzzy set P : Xd → [0, 1] defined as P (xi) :=
Mm

k=1P (ek, xi) ∀ i = 1, 2, ..., nd is called the collective
opinion of P under M . When an aggregation operator M :
[0, 1]m → [0, 1] preserves the preference structure, i.e. P ∈ P,
the respective induced collective opinion operator M : Pm →
P is well-defined.

Example 3: For FPRs, the collective opinion may be given
by A : Pm

A → PA:

A(P1, ..., Pm)(xi, xj) =
1

m

m∑
k=1

Pk(xi, xj)

∀ i, j ∈ {1, 2, ..., n} , ∀ P1, ..., Pm ∈ PA.

3) Consensus measurement: To reconceptualize the notion
of a consensus measure using fuzzy sets, the main aim is to
calculate a sort of distance between the opinions held by DMs.

Definition 4 (Consensus measure): Given a GDM problem
(E,X) and a preference structure P, the consensus measure
for P associated to an aggregation operator M̂ : [0, 1]mnd →
[0, 1] and the restricted dissimilarity function δ is a function
κ : P → [0, 1] defined as

κ(P ) = M̂k=1,...,m;i=1,...ndδ(P (ek, xi), P (xi)) ∀ P ∈ P,

where P ∈ P is the collective opinion of P under an
aggregation operator M : [0, 1]m → [0, 1].

Example 4: As an example of consensus measure for FPRs,
we can consider the function κ : PA → [0, 1]

κ(P ) =
m∑

k=1

1

m

n∑
i=1

n∑
j=1

1

n(n− 1)
| P (ek, xi, xj)−P (xi, xj) |,

for P ∈ PA.
4) Cost function: A cost function quantifies the weighted

disparity between the original opinions of DMs and their
adjusted ones.

Definition 5 (Cost function): Given a GDM problem (E,X),
a preference structure P, an initial numeric rating P0 ∈ P ,
a relative cost vector c ∈ [0, 1]m satisfying

∑m
k=1 ck = 1

and a distance measure D : P × P → [0, 1]. A cost function
is a mapping ξc : P → [0, 1] defined as ξc(P, P0) =∑m

k=1 ckD(P (ek, ·), P0(ek, ·)), For simplicity, we will use the
notation ξ : P → [0, 1] to denote a cost function in which all
the relative costs are equal, i.e., ck = 1

m ∀ k = 1, 2, ...,m.

Example 5: A cost function for FPRs is the function ξ :
PA → [0, 1]

ξ(P ) =
∑m

k=1
1
m

∑n
i,j=1

1
n(n−1) | P (ek, xi, xj)− P0(ek, xi, xj) |

for P ∈ PA, where P0 is an initial numeric rating.

B. Fuzzy-Set-based formulation for MCC models
In this section, we present a unified global model that

incorporates the Fuzzy-Set-based reinterpretations of the clas-
sical elements found in MCC models mentioned earlier. This
method extends previous suggestions and simplifies the pro-
cess of adapting new MCC models to tackle particular real-
world challenges.

Definition 6 (Fuzzy-Set-based MCC model): Let (E,X) be
a GDM problem and a preference structure P. Given an initial
numeric rating P0 ∈ P , a cost function ξc : P → [0, 1] for P0

and a family of q ∈ N consensus metrics κ = (κ1, ..., κq) :
P → [0, 1]q , the corresponding Fuzzy-Set-based MCC model
is given by:

min
P∈P

ξc(P, P0)

s.t. κ(P ) ≤ (ε1, ..., εq),
(FZZ-MCC)

where (ε1, ..., εq) ∈ [0, 1]q is the vector of desired parameters
to control the q consensus metrics.

III. CONCLUSIONS

This keywork has generalized classical MCC models by
introducing a new formulation based on fuzzy set theory. By
using this general version, it is possible to derive new MCC
models that may be tailored to specific decision scenarios.
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Matemática aplicada
Universidad de Málaga

Málaga, España
pcordero@uma.es

Emilio Muñoz Velasco
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Resumen—Las conexiones de Galois parecen estar omnipre-
sentes en las matemáticas. Se han utilizado para modelizar solu-
ciones de problemas tanto puros como orientados a aplicaciones.
A lo largo del artı́culo, el marco general es un retı́culo completo
difuso sobre un retı́culo residuado completo. En este trabajo, se
estudia la existencia de conexiones difusas de Galois (antı́tonas
e isótonas) entre cuatro conjuntos ordenados especı́ficos. Lo más
interesante es que los sistemas de cierre difusos, los operadores
de cierre difusos y las relaciones de cierre difusas fuertes son
conceptos formales (puntos fijos) de estas conexiones de Galois
difusas.

Index Terms—Sistema de clausura, Retı́culo difuso, Conexión
de Galois

I. Estructuras de cierre difusas como conceptos
formales

Esta contribución resume los artı́culos [3], [5], en los que
se detalla la construcción de conexiones de Galois difusas de
las cuales los puntos fijos son estructuras de clausura difusas.

A partir de las cuatro estructuras de cierre difusas prin-
cipales, es decir, los operadores de clausura, sistemas de
clausura, sistemas de clausura difusos y las relaciones de
clausura difusas fuertes, que fueron introducidas en [2], [4],
consideramos ahora las propiedades algebraicas de las aplica-
ciones que las relacionan. Por ejemplo, en [4] se estableció
una correspondencia biyectiva entre los operadores de cierre
y los sistemas de cierre difusos. Esta correspondencia puede
verse como un par de aplicaciones, una definida desde el
conjunto de los sistemas de cierre difusos al conjunto de los
operadores de cierre, denotada por ĉ, y la otra del conjunto
de los operadores de cierre al conjunto de los sistemas de
cierre difusos, denotada por Ψ̃. Como se ha demostrado en [4],
estas aplicaciones son una la inversa de la otra. Un enfoque
interesante es considerar estas aplicaciones y definirlas en
dominios más generales. Por ejemplo, en lugar de considerar
el conjunto de los operadores de clausura, consideramos el

Este trabajo ha sido financiado parcialmente por la Agencia estatal de inves-
tigación (AEI), el Ministerio de Ciencia, Innovación y Universidades (MCIU),
el Fondo Social Europeo (FEDER), la Junta de Andalucı́a (JA), y la Universi-
dad Málaga (UMA) a través del contrato predoctoral FPU10/01467 (MCIU),
el proyecto de investigación VALID (PID2022-140630NB-I00 financiado por
MCIN/ AEI/ 10.13039/ 501100011033) y el proyecto de investigación con
referencia PID2021-127870OB-I00 (MCIU/AEI/FEDER, UE).

conjunto de todas las aplicaciones isótonas sobre A y en
lugar de considerar el conjunto de los sistemas de clausura,
consideramos el conjunto de todos los subconjuntos difusos
de A.

El par de aplicaciones (ĉ, Ψ̃) definido sobre estos conjuntos
no sólo está bien definido sino que forma una conexión de
Galois difusa [3]. Además, los pares formados por un sistema
de cierre difuso y su correspondiente operador de cierre son
puntos fijos de esta conexión de Galois. Existen, además,
puntos fijos que no están formados por un operador de cierre
ni un sistema de cierre difuso, como muestran los ejemplos
en el artı́culo. Un razonamiento similar puede aplicarse para
cada una de las correspondencias establecidas en [2], [4]. Ası́,
obtenemos las conexiones de Galois difusas que aparecen en la
figura 1. La relación entre los puntos fijos de estas conexiones
de Galois y las estructuras de cierre se estudia en [3].

(LA, S) o
(ĉ,Ψ̃) / (Isot(AA), ρ̃)

(LA, S) o
(κ,Ψ̂) / (IsotTot(LA×A), ρ̂)

(IsotTot(LA×A), ρ̂)
(−1,−≈) / (Isot(AA), ρ̃)o

.

Figura 1. Conexiones de Galois antı́tonas/isótonas

Concluimos el estudio analizando la composición entre estas
tres conexiones de Galois y examinamos la conmutatividad
de los diagramas inducidos. El diagrama completo no es
conmutativo, pero encontramos algunos resultados parciales
sobre la conmutatividad de diagramas más pequeños y, como
resultado final, obtenemos la caracterización de los dominios
que proporcionan la conmutatividad deseada.

Nótese que todo el estudio anterior se ha hecho para álge-
bras difusas, el conjunto de subconjuntos difusos con la inclu-
sión difusa, el conjunto de funciones isótonas y el conjunto de
relaciones isótonas y totales; pero para ser exhaustivos, inclui-
mos también en este problema el conjunto de los subconjuntos
clásicos. Esto se realizó en un estudio independiente [5]. Dado
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que (2A,⊆) es un retı́culo clásico, hay dos formas principales
de afrontar el problema. Por un lado, podemos considerar
el 1-corte de las relaciones difusas anteriores y estudiar el
problema buscando conexiones de Galois clásicas. Por otro
lado, podemos considerar la fuzzificación de la relación de
inclusión, es decir, utilizar la relación S en lugar de ⊆ y
estudiar el problema difuso.

En el problema clásico, tenemos que tratar con las aplica-
ciones representadas en la figura 2.

(2A,⊆) (Isot(AA), ρ̃1)/(c̃,F)o

(Ext(LA),⊆) o
(ĉ,Ψ̃) / (Isot(AA), ρ̃1)

(2A,⊆)
(−1,−≈) / (Ext(LA),⊆)o

(Isot(AA), ρ̃1)
(−1,−≈) / (IsotTot(LA×A), ρ̂1)o

(Ext(LA),⊆) o
(κ,Ψ̂) / (IsotTot(LA×A), ρ̂1),

Figura 2. Conexiones de Galois clásicas

Parte de este estudio es un caso particular de las conexiones
de Galois difusas mencionadas anteriormente. Los resultados
de [3] se mantienen ya que el 1-corte de una conexión de
Galois difusa es una conexión de Galois en el sentido clásico.

El par estudiado es, en efecto, una conexión de Galois clási-
ca. Como era de esperar, los operadores y sistemas de cierre
son de nuevo componentes de puntos fijos de la conexión de
Galois. En este caso, a diferencia de los anteriores, todos los
puntos fijos de esta conexión están formados por un operador
de cierre y su sistema de cierre asociado.

Para que el par (−1,−≈) sea una conexión de Galois
clásica, necesitamos restringir, como en casos anteriores, los
subconjuntos difusos a los subconjuntos extensionales. Esta
restricción mantiene las conexiones de Galois descritas ante-
riormente, ya que las imágenes de las funciones implicadas son
siempre conjuntos extensionales. Además, los subconjuntos
extensionales con la inclusión forman un subretı́culo difuso de
todos los subconjuntos difusos con la inclusión, por lo que la
mayor parte del análisis puede adaptarse a este nuevo conjunto.

De nuevo, los sistemas de cierre y los sistemas de cierre
difusos son componentes de puntos fijos de la adjunción, o
conexión de Galois isótona. Por otro lado, no todos los puntos
fijos de la adjunción están formados por un sistema de cierre o
un sistema de cierre difuso. Esto se puede ver en el ejemplo 1.

Ejemplo 1. Sea L el intervalo unidad con la t-norma y el
residuo de Łukasiewicz, U = {u}, consideremos el conjunto
potencia (LU , S) y el conjunto X = {{u/0,5}} ⊆ LU .

Entonces,

(X≈)({u/α}) = ({u/α} ≈ {u/0,5})
= mı́n{1, 1− α+ 0,5} ⊗mı́n{1, 1− 0,5 + α}
= mı́n{1, 1,5− α} ⊗mı́n{1, 0,5 + α}

=

{
1,5− α, if α ≥ 0,5

0,5 + α, if α ≤ 0,5

Ası́, (X≈)({u/α}) = 1 si y sólo si α = 0,5, eso es, (X≈)1 =
X , el par (X,X≈) es un punto fijo de la adjunción pero X no
es un sistema de clausura ya que U /∈ X . De manera similar,
por X≈(U) = 0,5 ̸= 1 tenemos que X≈ no es un sistema de
clausura difuso.

Se estudia ahora el problema difuso, es decir, consideramos
la extensión difusa de la relación de inclusión e intentamos
establecer una conexión de Galois difusa entre el conjunto de
los subconjuntos clásicos con la inclusión difusa y las aplica-
ciones isótonas con el orden puntual. Sorprendentemente, esta
conexión de Galois difusa se tiene si y sólo si (A, ρ) es un
retı́culo clásico, es decir, ρ sólo toma los valores 0 y 1, lo que
concluye esta vı́a de investigación.

De forma similar al artı́culo anterior, estudiamos si existe
conmutatividad en el diagrama formado por las conexiones
de Galois clásicas. Como estaba previsto, no la hay, pero
obtenemos algunos resultados parciales y proporcionamos
algunos subdiagramas conmutativos. Además, algunos de los
resultados pueden ser mejorados si el retı́culo residuado sub-
yacente es un álgebra de Heyting.

II. Conclusiones y trabajo futuro

En esta contribución se recopilan los resultados más rele-
vantes de [3], [5]. En los artı́culos originales, se estudian los
operadores, sistemas y relaciones de clausura desde el punto
de vista de ser puntos fijos de ciertas conexiones de Galois.
Los resultados muestran que las estructuras de cierre son
puntos fijos de las conexiones de Galois propuestas, aunque
el recı́proco no siempre se cumple, es decir, hay puntos fijos
que no son estructuras de cierre.

Como trabajo futuro, nos planteamos estudiar la naturaleza
de estos puntos fijos que no son estructuras de cierre, ya
que su caracterización podrı́a dar lugar a unas estructuras de
preclausura al estilo de Čech [1].
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Abstract—We analyze the conditions under which an aggre-
gation of a set of T -subgroups defined over the same group is
again a T -subgroup. The necessary and sufficient conditions for
this depend on the nature of the group. We also introduce some
relaxed forms of domination to address this problem.

I. INTRODUCTION

Aggregation operators are applied in many research areas
when the objective is to combine information. For this reason,
the aggregation of fuzzy structures has been an intense area
of research in recent years. In particular, there exist different
works regarding the aggregation of T -subgroups (see for
instance [2], [3], [4]). The existing relationship between T -
subgroups and T -indistinguishability operators (see [5]) could
provide several fields of application of the aggregation of T -
subgroups such as image processing or approximate reasoning.
There are two ways to define such aggregation, namely on sets
and on products (see [6]). The aim of this work is to obtain
a characterization of the aggregation operators that preserve
T -subgroups on products of a given group depending on the
structure of such a group. The following results and discussion
summarize the article [8].

II. PRELIMINARIES

In this section we present some definitions that will be
important in the following discussion. The definition of fuzzy
T -subgroup by means of a t-norm T was first given by
Anthony and Sherwood in [1].

Definition 1. Let G be a group, µ : G → [0, 1] a fuzzy subset
of G and T a t-norm. µ is called fuzzy T -subgroup of G if:
G1. µ(e) = 1 where e ∈ G denotes the neutral element.
G2. µ(x) = µ(x−1) ∀x ∈ G.
G3. µ(xy) ≥ T (µ(x), µ(y)) ∀x, y ∈ G.

Aggregation operators are well known functions that allow
to fuse information. Fuzzy set theory is one of its application
areas.

Definition 2. Let n ∈ N and A : [0, 1]n → [0, 1] be a function.
A is called aggregation operator or aggregation function if:
A1. For all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈

[0, 1]n such that xi ≤ yi ∀i ∈ {1, . . . , n}, we have
A(x1, . . . , xn) ≤ A(y1, . . . , yn).

A2. A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

We can follow [2] to define the aggregation of fuzzy T -
subgroups on products.

Definition 3. Let A : [0, 1]n → [0, 1], be an aggregation
operator, T a t-norm and n ∈ N. Given n fuzzy T -subgroups
µ1, . . . , µn of a group G, we denote by µ̃ the map µ̃ :∏n

i=1 G → [0, 1]n with:

µ̃(x) = (µ1(x1), . . . , µn(xn))

for x = (x1, . . . , xn) in
∏n

i=1 G. We define the aggregation
of fuzzy subgroups on products as A ◦ µ̃, where:

A ◦ µ̃(x) = A(µ1(x1), . . . , µn(xn)).

We will say that A preserves the structure of T-subgroup on
products if and only if A ◦ µ̃ is a T-subgroup for any µ̃ as
above.

III. DIFFERENT FORMS OF DOMINATION

The dominance relation introduced in [7] is a a key concept
regarding the preservation of different fuzzy properties as T -
indistinguishability operators or T-subgroups. We are inter-
ested in the domination over a t-norm.

Definition 4. An aggregation operator A : [0, 1]n → [0, 1]
dominates a t-norm T if:

A(T (x1, y1), . . . , T (xn, yn)) ≥
≥ T (A(x1, . . . , xn), A(y1, . . . , yn))

for all (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n. We denote this fact
by A ≫ T .

We now define a new concept related to domination which
is key in this work. We need first to establish some notation
about t-norms.

Definition 5. Let T be a t-norm, x ∈ [0, 1] and k ∈ N. We
define x

(k)
T as:

x
(k)
T =

{
x if k = 1,

T (x
(k−1)
T , x) if k ̸= 1.

Remark 6. Note that, in the sense of Definition 5, the
sequence {x(k)

T }k∈N is non-increasing due to the monotonicity
of the t-norm T .
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(a) Type-2 domination
with TP

(b) Type-5 domination
with TP

(c) Type-2 domination
with TL

(d) Type-5 domination
with TL

Fig. 1: To ensure that A ≫k T , (1) must hold as long as the
point (xi, yi) lies in the gray area of the corresponding plot
for all i ∈ {1, . . . , n}.

The next definition provides an interesting property that
appears repeatedly in the results about preservation of T -
subgroups.

Definition 7 (Type-k domination). Given k ∈ N, we say that
an aggregation operator A, type-k dominates a t-norm T if:

A(T (x1, y1), . . . , T (xn, yn)) ≥ (1)
≥ T (A(x1, . . . , xn), A(y1, . . . , yn))

for all (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such that for each
i ∈ {1, . . . , n} one of the following conditions applies:

- max{xi, yi} = 1.
- min {xi, yi} ≥ (max {xi, yi})(k)T .

We denote this fact by A ≫k T .
For k = 0 we say that A type-0 dominates T if (1)

holds for all (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such that
max{xi, yi} = 1 for each i ∈ {1, . . . , n} and we denote it
A ≫0 T .

Remark 8. Note that type-k domination relaxes the conditions
of domination since it reduces the domain where inequality (1)
is required (see Figure 1). Moreover, given k1, k2 ∈ N where
k1 ≥ k2, we have the following chain of implications:

A ≫ T ⇒ A ≫k1
T ⇒ A ≫k2

T ⇒ A ≫0 T.

IV. AGGREGATION OF T -SUBGROUPS ON PRODUCTS

In this section, we study the necessary and sufficient con-
ditions for the structure of T -subgroup to be preserved under
a specific aggregation operator. The next result shows that the
dominance property and type-k domination play a fundamental
role depending on the ambient group. We have compiled the
results included in [8] into a single theorem.

Theorem 9. Given a group G, an aggregation operator A
and a t-norm T . The following statements hold:

1) If G ∼= Z2, then A preserves T -subgroups of G on
products if and only if A ≫0 T .

2) If G ∼= Z4, then A preserves T -subgroups of G on
products if and only if A ≫1 T .

3) If G ∼= Zp being p > 2 a prime number, then A
preserves T -subgroups of G on products if and only if
A ≫ p−3

2
T .

4) For the rest of the groups, A preserves T -subgroups of
G on products if and only if A ≫ T .

V. CONCLUSIONS AND FUTURE WORK

We study the cases where the aggregation of T -subgroups
on products is again a T -subgroup. We have shown that any
aggregation operator preserving T -subgroups of a group with
non prime order and non-isomorphic to Z4 on products must
dominate the t-norm T . For the rest of the cases, it is necessary
and sufficient for that operator to type-k dominate T with the
adequate election of k. Additionally, there is another way to
define the aggregation of fuzzy structures, known as on sets.
However, this concept will be studied in a future work that is
about to be finished.
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Abstract—The current research work is a comprehensive
summary of our previous article published in 2022 [2]. To respect,
this work studies the structure of the set of functions from [0,1]
to {0, 1} (expanding the set considered by Bustince et al. in 2015),
from which we have removed the constant function 0, obtaining
a different study to the one carried out by Walker and Walker.
More specifically, we consider join and meet operations, partial
order derived from each one, and the negation operators in that
set. Among other results, we provide new characterisations of
join and meet operations, and of partial orders on the set of
functions from [0,1] to {0, 1}; we also present the first negation
operators on this set.

Index Terms—Fuzzy truth values, Interval type-2 fuzzy sets,
join and meet operators, negations, partial orders, subalgebras.

I. INTRODUCTION

Type-2 fuzzy sets (T2FSs) were introduced by L.A. Zadeh
in 1975 [7] as an extension of type-1 fuzzy sets (FSs).
Whereas for FSs the degree of membership of an element
is determined by a value in the interval [0, 1], the degree of
membership of an element for T2FSs is a fuzzy set in [0,1].
Then, a T2FS, A, is determinated by a membership function
µA : X → M, where M = Map([0,1],[0,1]), and µA(x) the
degree in which x belongs to the set, is merely a label of
the linguistic variable “TRUTH”. Moreover, the membership
degrees in interval type-2 fuzzy sets (IT2FSs) only take their
values in {0, 1}. There are many open problems regarding a
theoretical structure of IT2FSs. To respect, we continue with
the study started in papers [1], [4], [5], delving further into
the properties and operations of IT2FSs. Thus, in this work
we study the partial orders in this set, with the maximum and
minimum elements of each one; we also analyse the possible
lattice structure and negations. All this will enable us to tackle
contradiction, similarity, entropy, etc., in future research. To do
so, we must first consider that the support of each membership
degree could be a union of intervals, some of them open or
half-open, a case that has not yet been considered in previous
papers. We see how this fact affects the characterisations and
results presented in [4].

This work has been partially supported by Universidad San Sebastián
(Chile), the Government of Spain (grant PID2021-122905NB-C22) and Uni-
versidad Politécnica de Madrid (Spain).

II. PRELIMINARIES

For more details, in [2], one can consult the definitions,
operations and properties summarized in this Section II.

Definition 1: A T2FS, A, is said to be an IT2FS if
(µA(x))(u) = fx(u) ∈ {0, 1} for all x and u, and fx ̸= 0
(0 is the constant function 0(y) = 0, ∀y ∈ [0, 1]), that is,
fx ∈ K = Map ([0, 1], {0, 1}) \ {0}.

Why do we demand fx ̸= 0? As any other knowledge-
based system, fuzzy systems may be affected by the lack of
information. In particular, in the case of type-2 fuzzy systems,
any membership degree constant a (with a ∈ [0, 1]) represents
a lack of information. Moreover, when we concentrate on
Map ([0, 1], {0, 1}), the constant function a is limited to two
cases, 1 and 0. Hence, so as not to consider two different
labels to represent the lack of information, we must choose
only one of them, and as a label of the “TRUTH” variable
must have some value in the truth degrees, that is, with a non
empty support, then we eliminate the case 0.

A function f ∈ M is normal if sup{f(x) : x ∈ [0, 1]} = 1,
and it is convex if for any x ≤ y ≤ z, the inequality f(y) ≥
f(x)∧f(z) holds. L denotes the set of all normal and convex
functions of M. We consider the subset of K, denoted by KF

c ,
constituted by the functions whose support is the finite union
of closed intervals.

Definition 2: The operations ⊔, ⊓, ¬, the elements 0̄, 1̄, and
the auxiliaries functions fL, fR, are defined on M as follows:

(f ⊔ g)(x) = sup{f(y) ∧ g(z) : y ∨ z = x},

(f ⊓ g)(x) = sup{f(y) ∧ g(z) : y ∧ z = x},

¬f(x) = sup{f(y) : 1− y = x} = f(1− x),

0̄(x) =

ß
1 if x = 0
0 if x ̸= 0

, 1̄(x) =

ß
1 if x = 1
0 if x ̸= 1.

,

fL(x) = sup{f(y) : y ≤ x}, fR(x) = sup{f(y) : y ≥ x},

where ∨ and ∧ are, respectively, the maximum and minimum
operations on the lattice ([0, 1],≤).

M = (M,⊔,⊓,¬, 0̄, 1̄) does not have a lattice structure [6],
however, the operations ⊔ and ⊓ have the properties required
to each define a partial order on M.
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Definition 3: The partial orders defined on M are as follows:

f ⊑ g if f ⊓ g = f ; f ⪯ g if f ⊔ g = g.

These two partial orders do not generally coincide. But,
both partial orders are equivalent (⊑≡⪯) on L, and L =
(L,⊔,⊓,¬, 0̄, 1̄) has a bounded lattice structure.

Definition 4: ([3]) Let (A,≤A, 0≤A
, 1≤A

) be a bounded
partial order set (poset). A function N : A → A is a
negation if it is decreasing and satisfies N(0≤A

) = 1≤A
and

N(1≤A
) = 0≤A

. If, additionally, N(N(x)) = x ∀x ∈ A, it is
said to be a strong negation.

In order to find negations, the authors introduced and studied
the following operation in [3].

Definition 5: ([3]) Let n be a negation in ([0, 1],≤), such
that n is a surjective function. The operation Nn : M → M is
given by, (Nn(f))(x) = sup{f(y) : n(y) = x}, ∀x ∈ [0, 1].

III. SOME ORIGINAL RESULTS

Below we present the most remarkable results obtained in
our work [2].

A. Results About the Algebra of the IT2FSs

• K = (K,⊔,⊓,¬, 0̄, 1̄) and KF
c = (KF

c ,⊔,⊓,¬, 0̄, 1̄),
are subalgebras of M, but neither of them has a lattice
structure. Moreover, ⋢=⪯ in these subalgebras.

• The posets (K,⪯), (KF
c ,⪯), (K,⊑) and (KF

c ,⊑) are
bounded, and 0̄ and 1̄ are, respectively, the smallest and
the largest elements.

• Let f, g ∈ K. Then

(f⊔g)(x) =
ß
f(x) ∨ g(x) if x ∈ Supp(fL) ∩ Supp(gL)

0 otherwise,

(f⊓g)(x) =
ß
f(x) ∨ g(x) if x ∈ Supp(fR) ∩ Supp(gR)

0 otherwise.

• Let f, g ∈ K, then
f ⊑ g ⇐⇒ If ≤I∗ Ig and f(x) ≥ g(x), ∀x ∈ If .
f ⪯ g ⇐⇒ If ≤I∗ Ig and g(x) ≥ f(x), ∀x ∈ Ig .
where If = Supp(fL) ∩ Supp(fR) = /a, b/ ≤I∗ Ig =
Supp(gL) ∩ Supp(gR) = /c, d/ if and only if a ≤ c,
b ≤ d, /c, d/(a) ≤ /a, b/(a), and /a, b/(d) ≤ /c, d/(d).

The notation for intervals between two slashes, for exam-
ple /a, b/, refers to any non-empty interval in [0, 1],and
/a, b/ is its characteristic function.

B. Results About Negations on the IT2FSs

• The operation ¬, and generally, Nn are not negations on
(K,⪯), (K,⊑), (KF

c ,⪯), and (KF
c ,⊑).

• Let f ∈ K, vi = inf{Supp(f)}, vs = sup{Supp(f)},
n1, n2 negations in [0,1], such that n1(x) ≤ n2(x) for
all x ∈ [0, 1]. Then, the operations

Nn1,n2
(f) = [n1(vs), n2(vi)],

and if n1, n2 are strictly decreasing

N∗
n1,n2

(f) = /n1(vs), n2(vi)/,

are negations, but not strong, on (K,⊑), (K,⪯), (KF
c ,⊑)

and (KF
c ,⪯).

• The operations

N∧(f) =

ß
1̄, if f = 0̄
0̄, if f ̸= 0̄

, N∨(f) =

ß
0̄, if f = 1̄
1̄, if f ̸= 1̄

are, respectively, the minimum and the maximum nega-
tions in (K,⊑), (K,⪯), (KF

c ,⊑), and (KF
c ,⪯).

• Let n be a negation in [0, 1]. Then the operations

Nn
r (f) =

 0̄, if f(1) = 1
1̄, if f = 0̄

1 − fR ◦ n, otherwise
,

Nn
l (f) =

 1̄, if f(0) = 1
0̄, if f = 1̄

1 − fL ◦ n, otherwise
,

are negations, not strong, on (K,⊑) and (K,⪯), But, they
are not negations on (KF

c ,⊑) and (KF
c ,⪯).

IV. CONCLUSIONS

In our article published in the journal “IEEE Transaction
on Fuzzy Systems” [2] we carried out a detailed study of
the algebraic structure of K and KF

c , showing that they are
subalgebras of M and bounded posets, obtaining the maximum
and minimum elements. We also achieved characterizations of
the operations ⊔,⊓, and of the partial orders ⊑,⪯ on K and
KF

c . These characterisations often make some processes easier.
Furthermore, for the first time, negations in the sets K and

KF
c in relation to each partial order, have been presented.
This study opens the door to future research on other topics,

such as strong negations, continuous negations, t-norms, t-
conorms, aggregation, contradiction, similarity, etc., on the sets
K and KF

c .
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Resumen—Continuamos estudiando las propiedades del f -
ı́ndice de inclusión y mostramos que, dado un par fijo de
conjuntos difusos, su f -ı́ndice de inclusión puede vincularse a una
conjunción difusa que forma parte de un par adjunto. También
mostramos que, cuando este par se utiliza como estructura
subyacente para proporcionar una interpretación difusa de la
regla de inferencia modus ponens, proporciona el máximo valor
de verdad posible en la conclusión entre todos los valores
obtenidos por modus ponens difuso utilizando cualquier otro par
adjunto.

Keywork: N. Madrid and M. Ojeda-Aciego. The f-index of
inclusion as optimal adjoint pair for fuzzy modus ponens. Fuzzy Sets
and Systems, 466:Article 108474, 2023

I. INTRODUCCIÓN

El origen del f -ı́ndice de inclusión se remonta a la incorpo-
ración de la negación en programas lógicos multiadjuntos [8]
que, como es sabido, puede hacer surgir inconsistencias.
Al estudiar los programas lógicos normales residuados bajo
la semántica de conjunto-respuesta [2], quedó claro que la
(in)consistencia no debe considerarse como una noción nı́tida
cuando se aplica en teorı́as de lógica difusa (general). Como
resultado, introdujimos la noción de contradicción débil en [1]
en el marco general de la teorı́a de conjuntos difusos.

Animados a buscar algunos aspectos motivacionales a la
noción de contradicción débil, nos dimos cuenta de que
estaba estrechamente relacionada con un tipo de inclusión.
Por lo tanto, poco después de introducir medidas para la
contradicción débil, empezamos a imaginar algún tipo de
enfoque basado en funciones para medir la inclusión entre
conjuntos difusos, y presentamos las primeras ideas sobre el
f -ı́ndice de inclusión en [6], donde introdujimos la noción de
inclusión mediante la asignación de una función a cada par
de conjuntos difusos. Posteriormente, en [5], analizamos el f -
ı́ndice de inclusión en términos de las definiciones axiomáticas
más comunes de medida de inclusión, y probamos que es
compatible con los conocidos axiomas propuestos en [9]. En
este trabajo analizamos la relación del f -ı́ndice de inclusión
con las medidas difusas estándar de inclusión basadas en la
implicación residuada.

Parcialmente financiado por el Ministerio de Ciencia e Innovación, Agencia
Estatal de Investigación y los fondos FEDER a través del proyecto VALID,
PID2022-140630NB-I00/AEI/10.13039/501100011033/ FEDER, UE.

II. f - ÍNDICE DE INCLUSIÓN

El f -ı́ndice de inclusión se define en tres pasos. En el
primero, definimos cuales son los “grados” con los que repre-
sentaremos o mediremos la inclusión entre conjuntos difusos.

Definición 1: El conjunto de f -ı́ndices, denotado por Ω, es
el conjunto formado por las funciones crecientes f : [0, 1] →
[0, 1] que cumplen f(x) ≤ x para todo x ∈ [0, 1].

En el segundo de los pasos, definimos cuándo un par de
conjuntos difusos satisface un “grado” de f -inclusión.

Definición 2: Sean A y B dos conjuntos difusos y sea
f ∈ Ω. Decimos que A está f -incluido en B (denotado por
A ⊆f B) si y solo si la desigualdad f(A(u)) ≤ B(u) se
cumple para todo u ∈ U .

Finalmente, hay que tener en cuenta que no representaremos
la inclusión con una única f -inclusión, sino con todas ellas.
En concreto la idea es representar la inclusión siguiendo la
idea de que “cuantas más f -inclusiones se satisfagan entre
dos conjuntos difusos, mayor será la inclusión”. Puede demos-
trarse [5] que el conjunto de las f -inclusiones que satisfacen
dos conjuntos difusos tiene estructura de sub-retı́culo y, de
hecho, está caracterizado por el máximo de todas ellas. Por
ese motivo, el tercero de los pasos consiste en definir el f -
ı́ndice de inclusión de la siguiente forma:

Definición 3 (f -ı́ndice de inclusión): Sean A y B
dos conjuntos difusos, el f -ı́ndice de inclusión de A en B,
denotado por Inc(A,B), se define como

Inc(A,B) = máx{f ∈ Ω | A ⊆f B}

Es fácil comprobar que la inclusión difusa estándar

S(A,B) =
∧
u∈U

A(u) → B(u) (1)

donde → es una implicación residuada,1 es equivalente a un
grado particular de f -inclusión. En concreto, dado un par
adjunto (∗,→), tenemos para todo α ∈ [0, 1] la equivalencia

α ≤ A(u) → B(u) ⇐⇒ A(u) ∗ α ≤ B(u).

1En lo que sigue asumimos que el lector conoce la terminologı́a básica de
retı́culos residuados y, en particular, la propiedad de adjunción.
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Por tanto, si consideramos fα(x) = x ∗ α, que obviamente
pertenece a Ω, tenemos:

α ≤
∧
u∈U

A(u) → B(u) ⇐⇒ α ≤ A(u) → B(u)a ∀u ∈ U

⇐⇒ A está fα-incluido en B

Como resultado, la desigualdad α ≤ S(A,B) equivale a decir
que A está fα-incluido en B. Por lo tanto, el procedimiento
estándar para asignar grados de verdad a una fórmula del tipo
∀u
(
A(u) → B(u)

)
mediante pares adjuntos, coincide con un

caso especı́fico de f -inclusión.

Podemos definir una variación del f -ı́ndice de inclusión
restringida a un determinado conjunto de ı́ndices de inclusión
de la siguiente manera:

Definición 4: Sean A y B dos conjuntos difusos y Θ
un sub-retı́culo de Ω; es decir, Θ es cerrado bajo supremos
arbitrarios y contiene a ⊥ y id. Entonces, el f -ı́ndice de
inclusión restringido a Θ, denotado por IncΘ(A,B), se define
como

IncΘ(A,B) = sup{f ∈ Θ | A ⊆f B}.

El siguiente resultado muestra que IncΘ(A,B) generaliza
efectivamente la medida estándar de inclusión dada por la
Ecuación (1) cuando se basa en pares adjuntos.

Teorema 1: Sea (∗,→) un par adjunto, A y B conjuntos
difusos y Θ = {x ∗ α | α ∈ [0, 1]}, entonces

IncΘ(A,B)(x) = x ∗

(∧
u∈U

A(u) → B(u)

)
.

A continuación, mostramos una especie de afirmación in-
versa, a saber, que cuando el universo es finito, el f -ı́ndice
original de inclusión siempre puede estar vinculado a un par
adjunto. Para demostrar tal relación, necesitamos introducir en
primer lugar el siguiente resultado.

Proposición 1: Sean A y B dos conjuntos difusos
sobre un universo finito U . Entonces, existe una función
Inc(A,B) : [0, 1] → [0, 1] tal que (Inc(A,B), Inc(A,B))
forma un par adjunto.

Ahora ya enunciamos el resultado recı́proco, que tiene
importantes repercusiones, ya que muestra que en el caso de
un universo finito, el f -ı́ndice de inclusión puede asociarse al
menos a un par adjunto formado por una conjunción difusa y
una implicación difusa.

Teorema 2: Sean A y B dos conjuntos difusos sobre un
universo finito U . Entonces, existe un par adjunto (∗,→) con
∗ una conjunción difusa conmutativa y α ∈ [0, 1] tal que

Inc(A,B)(x) = x ∗ α.

III. EL f - ÍNDICE DE INCLUSIÓN COMO OPERADOR
ÓPTIMO PARA MODUS PONENS DIFUSO

Si identificamos los valores de
∧

u∈U A(u) → B(u) y
A(u0) con α y β (en [0, 1]), una opción para representar el
modus ponens difuso es la siguiente:

A ⇒ B ≡ α
A(u) ≡ β

∴ B(u) ≥ β ∗ α
(2)

y la corrección de tal inferencia viene dada por la propiedad
de adjunción del par (∗,→).

El siguiente teorema nos indica la maximalidad de la
respuesta obtenida al aplicar modus ponens difuso usando el f -
ı́ndice de inclusión, con respecto del valor obtenido mediante
cualquier otro par adjunto.

Teorema 3: Sean A y B dos conjuntos difusos definidos
sobre un universo finito U y sea u0 ∈ U , entonces:

B(u0) ≥ Inc(A,B)(A(u0)) ≥ A(u0) ∗

(∧
u∈U

A(u) → B(u)

)
para todo par de pares residuados (∗,→) y x ∈ [0, 1].

IV. CONCLUSIONES Y TRABAJO FUTURO

Se ha presentado una versión muy preliminar de un posible
sistema de inferencia difusa basado en el f -ı́ndice de inclusión
y su uso para recuperar datos que faltan. Para completar dicho
sistema, es necesario comprobar diferentes posibilidades en la
técnica de construcción y probar los resultados de los datos que
no se han utilizado en el conjunto de datos de entrenamiento.
Desde un punto de vista teórico, estudiaremos el problema de
construir una t-norma ∗ compatible con el Teorema 2.

Que el f -ı́ndice de inclusión se comporte de forma similar
a una implicación abre la posibilidad de incluirlo en una
estructura residuada. En tal caso, podrı́amos utilizar el f -ı́ndice
de inclusión directamente como una implicación y aplicarlo
en todas aquellas áreas en las que la estructura subyacente sea
residuada, por ejemplo, el Análisis de Conceptos Formales
Difuso [7] o la Morfologı́a Matemática Difusa [3], [4].
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University of Granada
Granada, España

zerjioi@ugr.es

Juan Miguel Tapia
dept. Métodos Cuantit. Econo. y Empresa

Universidad de Granada
Granada, España

jmtaga@ugr.es

Enrique Herrera-Viedma
dept. Ciencias de la Computación e IA

Universidad de Granada
Granada, España

viedma@decsai.ugr.es

Francisco Javier Cabrerizo
dept. Ciencias de la Computación e IA

Universidad de Granada
Granada, España

cabrerizo@decsai.ugr.es

Abstract—Este trabajo es un resumen del artı́culo Eng. Appl.
Artif. Intell., vol. 130, art. nro. 107737, 2024. En ese artı́culo,
se presenta un nuevo enfoque basado en computación granular
que está compuesto por dos procesos para resolver problemas
de toma de decisiones en grupo con múltiples criterios. Ası́, en
primer lugar, se desarrolla un proceso automático basado en una
asignación no uniforme de la granularidad de la información
para maximizar tanto el consenso como la consistencia de las
relaciones de preferencia difusas que modelan las opiniones de
los participantes en el problema de decisión. Sobre esta base, en
segundo lugar, se introduce un proceso interactivo que requiere la
implicación de los integrantes del grupo y que también pretende
maximizar tanto el consenso como la consistencia. Para mostrar
la esencia de este nuevo enfoque, ası́ como su rendimiento y flexi-
bilidad, se realizan diversos estudios experimentales. Finalmente,
con el objetivo de validar su eficacia y viabilidad en la resolución
de problemas prácticos del mundo real, se aplica para resolver
un problema de decisión sobre rehabilitación de edificios.

Index Terms—Consenso, consistencia, relación de preferencia
difusa, granularidad de la información, toma de decisiones en
grupo

I. PROPUESTA

Un problema de toma de decisiones en grupo con múltiples
criterios se define como una situación en la que una serie
de personas, P = {p1, . . . , pn}, tienen que seleccionar de
forma colectiva la mejor alternativa de entre un conjunto de
estas, A = {a1, . . . , am}, teniendo en cuenta para ello una
serie de criterios, C = {c1, . . . , co}. Para resolver este tipo de
problemas, se debe hacer frente, entre otras, a dos cuestiones:
la consistencia individual de las opiniones proporcionadas por
las personas participantes y el consenso alcanzado entre ellas.

Esta publicación es parte del proyecto de I+D+i PID2022-139297OB-
I00, financiado por MICIU/AEI/10.13039/501100011033 y por FEDER/UE.
También se ha realizado gracias a la ayuda PREP2022-000352 financiada por
MICIU/AEI /10.13039/501100011033.

En vista de que es inusual que las opiniones individuales
sean totalmente consistentes y, sobre todo, llegar a un consenso
al inicio del proceso de decisión, se han propuesto diferentes
métodos que pretenden mejorar la consistencia, el consenso, e
incluso ambos, particularmente en entornos con incertidumbre.
Es decir, entornos en los que los conjuntos difusos y sus
extensiones se han mostrado útiles para modelar las opiniones
de los participantes en el problema de toma de decisiones
[1]. Estos métodos se esfuerzan en mejorar la consistencia y
el consenso. Sin embargo, la mayorı́a consiguen este objetivo
de manera que producen desviaciones grandes entre la opinión
inicial dada por el participante y las modificadas. Esto conduce
a una importante pérdida de información. Afortunadamente,
se pueden introducir ciertas restricciones en este proceso de
modificación de las opiniones para tratar de minimizar esta
pérdida de información.

La granularidad de la información [2], concepto clave dentro
del paradigma de la computación granular, se ha empleado en
los últimos años para controlar la diferencia entre las opiniones
iniciales y las modificadas. La idea consiste en modelar las
opiniones en términos de gránulos de información (represen-
tados generalmente como intervalos), los cuales proporcionan
la flexibilidad necesaria para incrementar el acuerdo y la con-
sistencia mientras se controla la pérdida de información [3].
Siguiendo este razonamiento, se han propuesto varios modelos
de toma de decisiones en grupo cuya caracterı́stica común es
que emplean una distribución uniforme de la granularidad de
la información. Aunque estos modelos permiten aumentar la
consistencia y el consenso, a la vez que restringen el rango en
el que pueden cambiar las opiniones, gracias a los gránulos
de información, se ha demostrado que su rendimiento y
flexibilidad podrı́a mejorarse con una distribución no uniforme
de la granularidad de la información [4].
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Existen, sin embargo, cuestiones sin resolver en los modelos
basados en una distribución no uniforme de la granularidad
de la información. Por ejemplo, algunos modelos solamente
mejoran la consistencia [5], o el consenso [6]. Además,
se basan en un proceso automático de modificación de las
opiniones, el cual no implica la participación de los miembros
del grupo. Sin embargo, en problemas reales, las opiniones
deberı́an modificarse y volver a evaluarse con la participación
esencial de estos. Por su parte, otros modelos mejoran tanto
el consenso como la consistencia, pero no en problemas con
múltiples criterios [4], [7]. Por último, existen modelos que
mejoran tanto la consistencia como el consenso en problemas
de decisión en grupo con múltiples criterios [8], [9]. Sin
embargo, estos modelos no implican la participación de los
miembros del grupo en el proceso de modificación.

Con el fin de mejorar los modelos existentes basados en
una asignación no uniforme de la granularidad de la infor-
mación, la propuesta presentada en [10] presenta el primer
enfoque basado en una distribución de la granularidad de la
información que mejora tanto la consistencia como el consenso
en problemas de toma de decisiones en grupo con múltiples
criterios y que permite la participación de los miembros del
grupo en este proceso de modificación. Asumiendo relaciones
de preferencia difusas para modelar las opiniones de los
miembros del grupo e intervalos para modelar los gránulos
de información, este objetivo general condujo a las siguientes
contribuciones principales:

• Desarrollo de un proceso automático de mejora de la
consistencia y el consenso que asume un nivel medio
de granularidad de la información para asignarla de
forma no uniforme entre las entradas de las relaciones
de preferencia difusas. El nivel medio de granularidad de
la información admitido por la persona es sinónimo de su
flexibilidad, es decir, cuanto mayor sea el valor admitido,
mayor será la cooperación de esta persona para mejorar
el consenso y la consistencia. Existe un desajuste entre la
pérdida de información y la mejora de la consistencia y
el consenso, es decir, un incremento de la consistencia
y el consenso significa también un incremento de la
pérdida de información. No obstante, el nivel medio de
granularidad de la información, el cual está acotado,
permite maximizar el consenso y la consistencia con una
pérdida de información limitada entre las relaciones de
preferencia difusas iniciales y las modificadas.

• Desarrollo de un proceso interactivo que implica la par-
ticipación de los miembros del grupo. Este proceso se
basa en el anterior y proporciona un marco de aplicación
completo para la resolución de problemas de toma de
decisiones en grupo con múltiples criterios en entornos
del mundo real.

Para ilustrar la esencia del enfoque propuesto, ası́ como
su flexibilidad y rendimiento, se llevan a cabo diversos estu-
dios experimentales y se realiza un análisis comparativo. En
comparación con los enfoques basados en una distribución
uniforme de la granularidad de la información, el enfoque

propuesto en este trabajo alcanza mayores valores para el
consenso y la consistencia. Esto se debe a que una distribución
no uniforme de la granularidad de la información permite un
uso más eficiente de los recursos al asignar mayores niveles
de granularidad a las entradas de las relaciones de preferencia
difusas que más lo requieren. Esto conduce a mejores resul-
tados en la toma de decisiones, ya que se alcanzan mayores
valores de consistencia y consenso.

Además, se presenta un caso de estudio sobre la recon-
strucción de un edificio no residencial en un edificio residen-
cial, el cual ayuda a entender la eficacia y la aplicabilidad de
este nuevo enfoque granular en la resolución de problemas del
mundo real. En concreto, el proyecto preveı́a la decoración
exterior del edificio, la instalación de ventanas de metal
y plástico, ventilación (aire acondicionado), un sistema de
suministro de agua, calefacción y tejas. Sin embargo, no
preveı́a la intervención o el traslado de ninguna estructura
situada en el lugar del diseño ni la eliminación de la vegetación
existente. Por tanto, habı́a que renovar el sistema de suministro
de agua, la calefacción, la ventilación, las ventanas y el tejado
del edificio. Entre ellos, el artı́culo se centra en la renovación
de la ventilación, en donde habı́a que elegir entre cinco
empresas diferentes (Danfoss, KERMI, BT-Service, VIKMA
LTD, Behtc) considerando para ello cuatro indicadores (nivel
de ruido, durabilidad, precio, presión máxima).
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Abstract—Esta contribución trata de difundir el artı́culo “A
group decision-making method based on the experts’ behaviour
during the debate” que ha sido recientemente publicado en la
revista “IEEE Transactions on Systems, Man, and Cybernetics”
[1]. El debate es un proceso que consiste en llegar a una decisión
razonada sobre una serie de alternativas en el que los individuos
deben ser capaces de defender sus propias opiniones. Se ha
utilizado en problemas de toma de decisiones en grupo (TDG)
para ayudar a los expertos a tomar mejores decisiones. Sin
embargo, si los expertos se enzarzan en un debate enérgico,
puede dar lugar al uso de un lenguaje agresivo que disminuya el
consenso, que es el principal objetivo de la TDG. Para evitarlo,
presentamos un método novedoso para problemas de TDG
que puede identificar comentarios agresivos durante el debate
incorporando un clasificador basado en técnicas de análisis de
sentimientos. A diferencia de los métodos de TDG existentes, este
nuevo enfoque puede aprovechar la información extraı́da durante
el debate (es decir, el comportamiento de los expertos) a lo largo
de todo el proceso de decisión, lo que lo hace más similar a los
procesos de TDG del mundo real.

Index Terms—Toma de decisiones en grupo, Consenso, Análisis
de sentimientos

I. INTRODUCCION

EN este trabajo hemos presentado un nuevo método de
TDG basado en el comportamiento de los expertos du-

rante la etapa de debate llevada a cabo antes de proporcionar
las evaluaciones. Los métodos de TDG existentes [2] no tienen
en cuenta el comportamiento de los expertos durante la etapa
de debate en el resto del proceso de toma de decisiones y,

Esta publicación es parte del proyecto de I+D+i PID2022-139297OB-I00,
financiado por MICIU/AEI/10.13039/501100011033 y por FEDER/UE y del
proyecto C-ING-165-UGR23, cofinanciado por la Consejerı́a de Universidad,
Investigación e Innovación y por la Unión Europea con cargo al Programa
FEDER Andalucı́a 2021-2027

al no considerarlo, se pierde información que podrı́a ser de
interés. Sin embargo, este nuevo método de TDG incorpora
un clasificador basado en técnicas de análisis de sentimientos
[3] que puede extraer datos adicionales generados durante la
etapa de debate y aprovecharlo. Concretamente, basándonos en
el comportamiento de los expertos, hemos desarrollado dos
procedimientos para asignar pesos a los expertos y se han
propuesto dos nuevas medidas de consenso.

II. METODOLOGÍA Y RESULTADOS

Aunque los modelos para TDG traten diferentes aspectos
del proceso de toma de decisiones, la comparación de los
resultados devueltos por un modelo con otros no es una tarea
sencilla. Las caracterı́sticas consideradas por los modelos son
diferentes y, como consecuencia, una comparación cuantitativa
no serı́a significativa. De todas formas, a continuación, anal-
izamos algunas ventajas y limitaciones del enfoque propuesto:

• Al incorporar un clasificador, que se basa en técnicas
de análisis de sentimientos y hace uso de diferentes
caracterı́sticas lingüı́sticas, el modelo propuesto puede
categorizar el comportamiento de los expertos durante la
etapa de debate. Dicho clasificador está compuesto por las
siguientes etapas (ver Fig. 1): (i) detección de lenguaje
agresivo durante el debate, (ii) provisión de evaluaciones,
(iii) cálculo de los pesos de los expertos, (iv) análisis
de consenso, (v) cálculo de una evaluación colectiva, y
(vi) clasificación de las alternativas.
En comparación con los métodos existentes podemos
observar una ventaja notable porque se ha demostrado
que, primero, un lenguaje agresivo afecta negativamente
a la confiabilidad del hablante y a su credibilidad y,
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Fig. 1. Esquema general del método propuesto.

segundo, también conduce al deterioro del debate. Ambos
escenarios deben evitarse porque dificultan el logro del
consenso, que es el punto más importante en los procesos
de TDG. Por lo tanto, el modelo propuesto en este estu-
dio, al explotar la información devuelta por el clasificador
basado en análisis de sentimientos, puede modelar mejor
el proceso de alcanzar consenso llevado a cabo en un
proceso de TDG.

• Además, este nuevo modelo, introduce dos nuevos pro-
cedimientos para asignar pesos a los expertos según su
comportamiento durante la etapa de debate. Esto permite
considerar el comportamiento de los expertos en el resto
del proceso de TDG, especı́ficamente, en el análisis
del consenso (al calcular el consenso alcanzado entre
las evaluaciones de los expertos) y en el cálculo de la
evaluación colectiva (cuando se agregan las evaluaciones
individuales de los expertos). Por una parte, el proced-
imiento para calcular el peso global obtiene un promedio
ponderado de los comentarios agresivos proporcionados
por un experto. Su ventaja es que incluso si todos los
comentarios proporcionados en una ronda son agresivos,
el peso del experto puede compensarse en otras rondas
donde no se proporcione ningún comentario agresivo. Sin
embargo, tiene la desventaja de que es más general, lo
que implica que el comportamiento del experto solo se
puede ver durante el debate en su conjunto y no en cada
ronda. Por otro lado, el procedimiento para calcular el
peso iterativo utiliza el peso de la ronda anterior para
calcular el nuevo. Esto tiene la ventaja de que se puede
analizar en cada ronda de una manera más detallada
porque el peso relacionado con el experto se altera según
la ronda anterior. Sin embargo, es más estricto porque

en el caso de que todos los comentarios proporcionados
por un experto sean agresivos, el peso de este experto
será igual a cero, aunque, en las otras rondas, el experto
no proporcione ningún comentario agresivo. Por lo tanto,
mediante el uso de estos dos nuevos procedimientos,
se proponen dos nuevas medidas de consenso y dos
nuevos métodos para calcular la evaluación colectiva que
consideran el comportamiento de los expertos durante la
etapa de debate.

• El clasificador basado en técnicas de análisis de sen-
timientos utiliza diferentes caracterı́sticas lingüı́sticas que
proporcionan información relevante al clasificar los co-
mentarios. Presenta las siguientes ventajas: Primero, de-
tecta comentarios agresivos utilizando diferentes carac-
terı́sticas lingüı́sticas que completan el preprocesamiento.
Algunas de ellas ya se han utilizado, como el uso de
POS-tagging, pero otras son nuevas, como el número
de palabras completas escritas en letras mayúsculas o el
número consecutivo de exclamaciones repetidas, por citar
algunos ejemplos. Segundo, utiliza una matriz de pre-
procesamiento optimizada construida mediante diferentes
métodos para eliminar palabras que no proporcionan in-
formación útil y para reducir palabras a sus raı́ces (reduce
el número de elementos en el conjunto de palabras). Sin
embargo, su inconveniente es que podrı́a no descubrir
todas las caracterı́sticas lingüı́sticas que están presentes.
Como resultado, la matriz numérica serı́a menos completa
y esto podrı́a generar algunos falsos negativos, es decir,
un comentario agresivo podrı́a ser clasificado como un
comentario no agresivo.

• Medidas de consenso. Por lo general, el consenso se
determina observando la diferencia entre las evaluaciones
de los expertos. Sin embargo, esto es incompleto ya que
el comportamiento de los expertos puede ser tan relevante
como las evaluaciones. Por ejemplo, dos expertos pueden
estar de acuerdo en que una determinada alternativa
es mejor que otra, pero las razones dadas por cada
experto pueden ser diferentes. En consecuencia, ambos
expertos tienen la misma opinión, pero los argumentos
considerados para dar esa opinión son diferentes. Por
esta razón, las medidas de consenso propuestas en este
estudio no solo consideran las evaluaciones, sino también
el comportamiento mostrado para proporcionarlas. Esto
hace que las medidas de consenso sean más completas
que si solo se consideraran las evaluaciones de los exper-
tos.
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Resumen—Este trabajo recopila resultados recientes sobre el
uso de intensificadores en el marco de los retı́culos de conceptos
multiadjuntos que se han presentado en el artı́culo cientı́fico
Attribute implications in multi-adjoint concept lattices with hedges,
Fuzzy Sets and Systems 479:108854, 2024.
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I. INTRODUCCIÓN

Desde que se introduce el Análisis de Conceptos Formales
(FCA, de sus siglas en inglés) en los ochenta [1], se han
propuesto numerosas generalizaciones difusas, a fin de poder
trabajar con la información imprecisa y compleja presente en
las bases de datos. El uso de intensificadores en FCA ha
propiciado mejorar el modelado de bases de datos [4]. El
marco difuso de los retı́culos de conceptos multiadjuntos [2]
surge como un nuevo ambiente más general y flexible que
engloba otros enfoques difusos presentes en la literatura.
La incorporación de intensificadores en los operadores de
formación de conceptos de los retı́culos multiadjuntos ha sido
recientemente estudiada en [3]. A continuación, se presenta
un resumen de las propiedades obtenidas para los operadores
de formación de conceptos con intensificadores.

II. RETÍCULOS DE CONCEPTOS MULTIADJUNTOS
CON INTENSIFICADORES

Los intensificadores permiten abordar con mayor flexibili-
dad la modelización de la información deseada, lo que hace
interesante su incorporación en los retı́culos de conceptos
multiadjuntos [2]. En este trabajo, consideramos una generali-
zación de la noción de intensificador introducida por Hájek [5],
en términos de triples adjuntos [6].

Definición 1: Dado un conjunto parcialmente ordenado aco-
tado superiormente (P,≤,>) y un triple adjunto (&,↙,↖)
con respecto a (P,≤,>), un ↙-intensificador es una función
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unaria ∗ : P → P que satisface las siguientes propiedades,
para todo x, y, z ∈ P :

∗ (>) = > (condición de frontera)
∗ (x) ≤ x (condicion subdiagonal)
∗ (z ↙ y) ≤ ∗(z)↙ ∗(y) (condición de ↙-regularidad)
∗ (∗(x)) = ∗(x) (idempotencia)

Análogamente, se define un ↖-intensificador para (P,≤,>).
Para presentar formalmente el marco de trabajo de los

retı́culos de conceptos multiadjuntos con intensificadores, es
necesario incluir previamente las nociones de marco multiad-
junto y contexto.

Definición 2:
(L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)
es un marco multiadjunto donde (L1,�1) y (L2,�2) son
retı́culos completos, (P,≤) es un conjunto parcialmente
ordenado y (&i,↙i,↖i) es un triple adjunto con
respecto a (L1,�1), (L2,�2), (P,≤), para todo
i ∈ {1, . . . , n}.
(A,B,R, σ) es un contexto donde A y B son conjun-
tos no vacı́os (atributos y objetos, respectivamente), la
aplicación R : A × B → P es una relación P -difusa y
σ : A × B → {1, . . . , n} asocia cualquier elemento en
A×B con un triple adjunto particular del marco.

A continuación, presentamos las nociones de operadores de
formación de conceptos y retı́culo de conceptos multiadjunto,
considerando intensificadores.

Definición 3: Consideremos un marco multiadjunto
(L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n), un
contexto (A,B,R, σ), ∗A una familia arbitraria de ↙-
intensificadores en L1 y ∗B una familia arbitraria de
↖-intensificadores en L2, definidas como:

∗A = {∗a : L1 → L1 | ∗a es un↙ -intensificador, para todo a ∈ A}

∗B = {∗b : L2 → L2 | ∗b es un↖ -intensificador, para todo b ∈ B}

Los operadores de formación de conceptos con intensi-
ficadores ↑∗σ : LB2 → LA1 y ↓

∗σ
: LA1 → LB2 se definen,

para todo g ∈ LB2 , f ∈ LA1 , a ∈ A, b ∈ B, como:

g↑∗σ (a) = ı́nf{R(a, b′)↙σ(a,b′) ∗b′(g(b′)) | b′ ∈ B}
f↓
∗σ

(b) = ı́nf{R(a′, b)↖σ(a′,b) ∗a′(f(a′)) | a′ ∈ A}
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El contexto asociado con los operadores de formación
de conceptos previos se denota como (A∗A , B∗B , R, σ).
Un concepto es un par 〈g, f〉 satisfaciendo que g ∈ LB2 ,
f ∈ LA1 y g↑∗σ = f , f↓

∗σ
= g.

El retı́culo de conceptos multiadjunto con intensificado-
res, denotado como (M∗,�), asociado al marco multi-
adjunto y al contexto (A∗A , B∗B , R, σ), es el conjunto:

M∗ = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 , g↑∗σ = f, f↓
∗σ

= g}

donde el orden viene definido por 〈g1, f1〉 � 〈g2, f2〉 si
y solo si g1 �2 g2 (o equivalentemente, f2 �1 f1).

A fin de simplificar la notación, escribiremos (↑∗ ,↓
∗

) en lugar
de (↑∗σ ,↓

∗σ
). Conviene mencionar que estos operadores no

forman una conexión de Galois antı́tona, en general, como se
muestra en el siguiente ejemplo.

Ejemplo 1: Consideremos el marco multiadjunto
([0, 1]2,≤, (&DP,↙DP,↖DP)), los contextos (A,B,R, σ) y
(A∗A , B∗B , R, σ), donde [0, 1]2 = {0, 0.5, 1} es una partición
del intervalo unidad en dos trozos, A = {a1, a2, a3},
B = {b1, b2, b3}, la relación R : A × B → [0, 1]2 viene dada
por la Tabla I, (&DP,↙DP,↖DP) es el triple adjunto definido
a partir de la discretización de la t-norma producto [3] en
[0, 1]2, σ es constantemente (&DP,↙DP,↖DP) y las familias

∗A = {∗a : [0, 1]2 → [0, 1]2 | ∗a es el ↙- intensificador
globalización, para todo a ∈ A}

∗B = {∗b : [0, 1]2 → [0, 1]2 | ∗b es el ↖-intensificador
identidad, para todo b ∈ B}

Tabla I

R a1 a2 a3
b1 0.5 1 0.5
b2 1 0.5 0
b3 0 0.5 1

Valores para calcular f↓∗ a1 a2 a3
∗a(f) 1 0 0

R(a, b1)↖DP ∗a(f(a)) 0.5 1 1
R(a, b2)↖DP ∗a(f(a)) 1 1 1
R(a, b3)↖DP ∗a(f(a)) 0 1 1

Valores para calcular f↓∗↑∗ b1 b2 b3
∗b(f↓∗ ) 0.5 1 0

R(a1, b)↙DP ∗b(f↓∗ (b)) 1 1 1

R(a2, b)↙DP ∗b(f↓∗ (b)) 1 0.5 1

R(a3, b)↙DP ∗b(f↓∗ (b)) 1 0 1

Dado f = {1/a1, 0.5/a3}, calculamos su clausura f↓
∗↑∗ .

Aplicando la definición de los operadores ↓
∗

y ↑∗ , ası́ como
teniendo en cuenta los datos de la Tabla I, obtenemos:

f↓
∗
(b1) = ı́nf{R(a, b1)↖DP ∗a(f(a)) | a ∈ A} = 0.5

f↓
∗
(b2) = ı́nf{R(a, b2)↖DP ∗a(f(a)) | a ∈ A} = 1

f↓
∗
(b3) = ı́nf{R(a, b3)↖DP ∗a(f(a)) | a ∈ A} = 0

f↓
∗↑∗(a1) = ı́nf{R(a1, b)↙DP ∗b(f↓

∗
(b)) | b ∈ B} = 1

f↓
∗↑∗(a2) = ı́nf{R(a2, b)↙DP ∗b(f↓

∗
(b)) | b ∈ B} = 0.5

f↓
∗↑∗(a3) = ı́nf{R(a3, b)↙DP ∗b(f↓

∗
(b)) | b ∈ B} = 0

Por tanto, f↓
∗↑∗ = {1/a1, 0.5/a2}. En consecuencia, existe

f ∈ [0, 1]A2 tal que f � f
↓∗↑∗ , contradiciendo las propiedades

exigidas en la definición de conexión de Galois. Este hecho
nos lleva a concluir que (↑∗ , ↓

∗
) no es una conexión de Galois

antı́tona, en general.

III. PROPIEDADES DE LOS OPERADORES DE FORMACIÓN
DE CONCEPTOS CON INTENSIFICADORES

En esta sección se presentan propiedades básicas de los ope-
radores ↑∗ y ↓

∗
que tienen cierta similitud con las propiedades

de las conexiones de Galois antı́tonas. Antes de introducir
las propiedades mencionadas, se hace necesario considerar el
siguiente subconjunto difuso de atributos:

∗̄A(f) : A→ L1, definido como ∗̄A(f)(a) = ∗a(f(a)),
para todo ∗a ∈ ∗A, a ∈ A y f ∈ LA1 .

y el siguiente subconjunto difuso de objetos:

∗̄B(g) : B → L2, definido como ∗̄B(g)(b) = ∗b(g(b)),
para todo ∗b ∈ ∗B , b ∈ B y g ∈ LB2 .

Proposición 1: Consideremos un marco multiadjunto
(L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n) y los
contextos (A,B,R, σ) y (A∗A , B∗B , R, σ). Los operadores
de formación de conceptos ↑∗ y ↓

∗
satisfacen las siguientes

propiedades, para todo g ∈ LB2 , f ∈ LA1 , a ∈ A, b ∈ B:

g↑ �1 g
↑∗ f↓ �2 f

↓∗

∗̄B(g) �2 g
↑∗↓∗ ∗̄A(f) �1 f

↓∗↑∗

g↑∗ = ∗̄B(g)↑∗ f↓
∗

= ∗̄A(f)↓
∗

Además, si asumimos que L1 = L2 = P y que los conjuntores
de los triples adjuntos del marco multiadjunto satisfacen las
condiciones de frontera, para todo g, g1, g2 ∈ LB1 y f, f1, f2 ∈
LA1 , se cumple que:

If g1 �1 g2 then g↑∗2 �1 g
↑∗
1 If f1 �1 f2 then f↓

∗

2 �1 f
↓∗
1

∗̄A(g↑∗) �1 g
↑∗↓∗↑∗ �1 g

↑∗ ∗̄B(f↓
∗
) �1 f

↓∗↑∗↓∗ �1 f
↓∗

∗̄A(g↑∗) = ∗̄A(g↑∗↓
∗↑∗) ∗̄B(f↓

∗
) = ∗̄B(f↓

∗↑∗↓∗)

g↑∗↓
∗

= g↑∗↓
∗↑∗↓∗ f↓

∗↑∗ = f↓
∗↑∗↓∗↑∗

IV. CONCLUSIONES Y TRABAJO FUTURO

En este artı́culo se han presentado propiedades de los
operadores de formación de conceptos con intensificadores en
el marco multiadjunto. Como trabajo futuro, se profundizará
en el estudio de estos operadores, a fin de poder definir la es-
tructura algebraica de los retı́culos de conceptos multiadjuntos
con intensificadores.
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Resumen—Las reglas de decisión son una herramienta útil
tanto para la extracción de información de conjuntos de datos,
como para inferir el comportamiento de nuevos datos. Este
trabajo propone dos métodos para clasificar nuevos objetos en el
marco de la teorı́a de conjuntos rugosos difusos. Ambos métodos
tienen como punto de partida la comparativa entre el nuevo dato
a clasificar y las reglas de decisión consideradas en el estudio.
La principal diferencia radica en la noción difusa en la que se
sustentan, grado de idoneidad y grado de representatividad.

Palabras clave—Teorı́a de conjuntos rugosos difusos, reglas de
decisión, métodos de clasificación.

I. INTRODUCCIÓN
La teorı́a de conjuntos rugosos [7]–[9] y la teorı́a de con-

juntos rugosos difusos (FRST, de sus siglas en inglés, Fuzzy
Rough Set Theory) [4], [6], [11], son herramientas matemáticas
eficaces para el tratamiento de información incompleta o
imprecisa en conjuntos de datos relacionales, interpretados
como tablas de decisión. Ambas teorı́as se apoyan en reglas
de decisión [5] para el manejo de dichas tablas en términos
lógicos, facilitando ası́ considerablemente el análisis de la
información y la extracción del conocimiento. Este trabajo
presenta dos métodos de clasificación de nuevos objetos,
propuestos en [1], que se sustentan en la filosofı́a de FRST y
en las reglas de decisión. La clasificación de nuevos objetos es
una tarea ı́ntimamente relacionada con la toma de decisiones,
siendo esta última un problema de gran interés en la actua-
lidad, puesto que aborda multitud de procesos relacionados
con el descubrimiento de patrones y su aplicación a nuevos
escenarios, entre otros.

II. TEORÍA DE CONJUNTOS RUGOSOS DIFUSOS

Esta sección recuerda las nociones más importantes de
FRST [2] para el desarrollo de este trabajo. Para comenzar,
presentamos las tablas de decisión, que permiten el tratamiento
de conjuntos de datos en términos matemáticos.

Definición 1. Sean U y A conjuntos no vacı́os de objetos y
atributos, respectivamente. Una tabla de decisión es una tupla

Parcialmente subvencionado por el proyecto PID2019-108991GB-I00 fi-
nanciado por MICIU/AEI/10.13039/501100011033, por el proyecto PID2022-
137620NB-I00 financiado por MICIU/AEI/10.13039/501100011033 y por
FEDER, UE, por el proyecto TED2021-129748B-I00 financiado por MI-
CIU/AEI/10.13039/501100011033 y por la Unión Europea NextGeneratio-
nEU/PRTR, por el proyecto PR2023-009 financiado por la Universidad de
Cádiz y por el Programa de Fomento e Impulso de la Investigación y la
Transferencia de la Universidad de Cádiz.

(U,Ad,VAd
,Ad) tal que Ad = A ∪ {d} con d /∈ A, VAd

=
{Va | a ∈ Ad}, donde Va es el conjunto de valores asociados
al atributo a sobre U , y Ad = {ā : U → Va | a ∈ Ad}.

A continuación, introducimos diversas nociones fundamen-
tales para expresar la información contenida en tablas de
decisión en términos lógicos. Es conveniente destacar que, con
el objetivo de realizar estudios más precisos, en lo que sigue
consideraremos relaciones de tolerancia separables [10].

Definición 2. Sean S = (U,Ad,VAd
,Ad) una tabla de

decisión, T = {Ta : Va × Va → [0, 1] | a ∈ Ad} una familia
de [0, 1]-relaciones de tolerancia difusas separables, B ⊆ Ad

y C ⊆ A.
• El conjunto de fórmulas asociadas a B, denotado como

For(B), se construye a partir de pares atributo valor
(a, v), donde a ∈ B y v ∈ Va, por medio del conectivo
lógico de conjunción ∧.

• La aplicación ∥ · ∥TS : For(B) → [0, 1]
U se define

inductivamente como:

∥Φ∥TS (x) = Ta(ā(x), v)

para todo x ∈ U y Φ = (a, v), donde a ∈ B y v ∈ Va.
Por tanto, ∥Φ∥TS (x) es el grado de satisfacibilidad del
objeto x con respecto a la fórmula Φ.

• Para cada Φ,Ψ ∈ For(B), la conjunción de fórmulas
se define, para todo x ∈ U , como sigue:

∥Φ ∧Ψ∥TS (x) = mı́n{∥Φ∥TS (x), ∥Ψ∥TS (x)}
• Una regla de decisión en S es una expresión Φ → Ψ,

donde Φ ∈ For(C),Ψ ∈ For({d}) son el antecedente y
consecuente de la regla de decisión, respectivamente.

Finalmente, presentamos la noción de T -soporte en FRST.
Este indicador de relevancia proporciona la representatividad
de la regla de decisión dada en la tabla de decisión bajo
consideración, y viene dado en función del cardinal difuso [3].

Definición 3. Sean S = (U,Ad,VAd
,Ad) una tabla de

decisión, T = {Ta : Va × Va → [0, 1] | a ∈ Ad} una familia
de [0, 1]-relaciones de tolerancia difusas separables y Φ → Ψ
una regla de decisión en S. Se denomina T -soporte de la regla
de decisión Φ → Ψ al valor:

suppTS (Φ,Ψ) = cardF (∥Φ ∧Ψ∥TS )
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Tabla I
RESUMEN DE CADA MÉTODO DE CLASIFICACIÓN PRESENTADO EN LA SECCIÓN III.

Método de Idoneidad Método de ε-representatividad
Noción difusa σDec(S) ρε

Dec(S)

Paso 1 Calcular la noción difusa anterior para cada decisión posible
Paso 2 Comparar los valores obtenidos en el paso 1 y tomar decisión si alguna es concluyente

Paso 3 Agregar más valores, comparar los resultados y
tomar decisión si alguna es concluyente Cambiar el umbral ε y volver al paso 1

Paso 4 Considerar otra agregación y volver al paso 2

donde cardF (·) denota el cardinal de un conjunto difuso.

III. MÉTODOS DE CLASIFICACIÓN

En este trabajo, la clasificación de nuevos datos se basa en la
información extraı́da de una tabla de decisión por medio de un
conjunto de reglas de decisión. De esta forma, dado un objeto
no perteneciente a dicha tabla, y del que solo se desconoce
el valor del atributo de decisión d, se pretende determinar
el mejor valor en dicho atributo. Para ello, la información
conocida sobre este objeto se compara con la dada por cada
una de las reglas anteriores. De ahora en adelante, el universo
de objetos se define como unión de dos conjuntos, U=U∪U c,
donde U son los objetos de la tabla de decisión dada y U c los
nuevos objetos a clasificar. El primer método de clasificación
introducido en [1] se basa en la siguiente definición.

Definición 4. Sean S = (U,Ad,VAd
,Ad) una tabla de

decisión y Dec(S) un conjunto de reglas de decisión. Para
cada nuevo objeto x ∈ U c y v ∈ Vd, el grado de idoneidad de
la decisión d̄(x) = v de acuerdo a Dec(S) viene dado por la
aplicación σDec(S) : U

c × Vd → [0, 1], definida como:

σDec(S)(x, v) = máx{∥Φ∥TS (x) | Φ → Ψ ∈ Dec(S),Ψ = (d, v)}

El primer método de clasificación propuesto comienza cal-
culando el grado de idoneidad de cada decisión v ∈ Vd para
el objeto nuevo x ∈ U c. Si existe una decisión cuyo grado
de idoneidad sea elevado y suficientemente diferente del resto
entonces se toma dicha decisión. En caso caso contrario, en
la definición de σDec(S) se puede cambiar el máximo por
otro operador de agregación que no tenga en cuenta solo el
máximo, y se vuelven a comparar los resultados obtenidos.

El segundo método de clasificación se introduce en [1] con
el fin de tener en cuenta un indicador tan importante como es
el T -soporte de las reglas en los casos en los que el primer
método no arroje una clasificación clara del nuevo objeto.

Definición 5. Sean S = (U,Ad,VAd
,Ad) una tabla de

decisión y Dec(S) un conjunto de reglas de decisión. Dado
ε ∈ [0, 1], para cada nuevo objeto x ∈ U c y v ∈ Vd, el grado
de ε-representatividad de la decisión d̄(x) = v de acuerdo a
Dec(S) viene dado por la aplicación ρεDec(S) : U

c × Vd →
[0, 1], definida como:

ρεDec(S)(x, v) =

∑
{Φ→Ψ∈Dec(S)|ε≤∥Φ∥T

S (x),Ψ=(d,v)}

∥Φ∥TS (x) · suppTS (Φ,Ψ)

∑
{Φ→Ψ∈Dec(S)|ε≤∥Φ∥T

S (x)}

∥Φ∥TS (x) · suppTS (Φ,Ψ)

El umbral ε es fundamental para seleccionar aquellas re-
glas con antecedentes más similares al objeto considerado,
y permite al usuario adaptar los estudios a sus necesidades.
La filosofı́a del segundo método es similar a la del primero,
calculando en primer lugar el grado de ε-representatividad de
cada decisión posible y tomando una decisión si su grado es
elevado y suficientemente diferente del resto. En otro caso, el
usuario debe cambiar el umbral ε para recalcular el grado de
ε-representatividad y poder tomar una decisión robusta.

Los métodos de clasificación presentados se muestran resu-
midos en la Tabla I y se desarrollan con mayor detalle en [1].

IV. CONCLUSIONES Y TRABAJO FUTURO

En este trabajo se ha abordado el estudio de la toma de
decisiones en FRST por medio de la clasificación de nuevos
objetos. Con este propósito, se han presentado dos métodos
que afrontan este proceso desde perspectivas diferentes ofre-
ciendo conclusiones complementarias. Como trabajo futuro,
se investigarán nuevos métodos de clasificación empleados en
otros ámbitos, como en la minerı́a de datos, y se extenderán
al marco de trabajo de FRST. También se analizará cómo
afecta la reducción de atributos en la toma de decisiones,
prestando especial atención al uso de reductos y algoritmos de
decisión que conserven la eficiencia tras realizar la reducción
correspondiente.
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Resumen—En este keywork presentamos un resumen del traba-
jo titulado Enriching interactive explanations with fuzzy temporal
constraint networks, publicado originalmente en la revista Inter-
national Journal of Approximate Reasoning en enero de 2024 [1].
La versión inicial del trabajo fue enviada el 13 de enero de 2023,
fue aceptado finalmente el 14 de enero de 2024 y está disponible
en lı́nea desde el 17 de enero de 2024 en acceso abierto.

Index Terms—Redes de Restricciones Temporales Difusas, Ra-
zonamiento Temporal Difuso, Grafos de Conocimiento, Grandes
Modelos de Lenguaje, Agentes Conversacionales

I. INTRODUCCIÓN

Los modelos de lengua preentrenados a gran escala (Large
Language Models, LLM) dan excelentes resultados en muchas
tareas lingüı́sticas, pero presentan algunos inconvenientes co-
mo su falta de transparencia y de capacidad de razonamiento
temporal exhaustivo. Por lo tanto, el uso de tales modelos pue-
de provocar diálogos incoherentes o incorrectos en el contexto
de los agentes conversacionales cuyo objetivo sea proporcionar
a los usuarios de sistemas inteligentes explicaciones interac-
tivas. En el trabajo “Enriching interactive explanations with
fuzzy temporal constraint networks”publicado originalmente
en la revista International Journal of Approximate Reasoning
[1], propusimos un modelo de razonamiento temporal difuso
para superar algunas inconsistencias detectadas en la aplica-
ción de LLM al diseño de un agente conversacional. Más
concretamente, partiendo de un grafo que proporciona una
representación intuitiva de las entidades y relaciones en el
dominio de aplicación, describimos cómo mapear la informa-
ción temporal en una red difusa de restricciones temporales.
Este formalismo nos permitió representar información tem-
poral imprecisa y proporcionar mecanismos para comprobar
coherencia en las conversaciones. Además, como prueba de
concepto, desarrollamos el agente conversacional TimeVersa,

Esta publicación es parte del proyecto de I+D+i TED2021-130295B-C33,
financiado por MCIN/AEI/10.13039/501100011033/ y por la “Unión Europea
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yectos PID2021-123152OB-C21 y PID2020-112623GB-I00 financiados por
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Desarrollo Regional (ayudas ED431G2019/04 y ED431C2022/19). La investi-
gación cuenta con financiación del “European Union’s Horizon 2020 Research
and Innovation Programme”(Marie Skłodowska-Curie Grant Agreement No.
860621).

que integra el modelo propuesto en un dominio de aplicación
(información horaria de transportes) que requiere el manejo
de restricciones temporales imprecisas. Ilustramos en un caso
de uso cómo el agente puede identificar inconsistencias tem-
porales y responder a consultas relacionadas con información
temporal correctamente. Los resultados de un estudio de usua-
rios indican que la percepción de coherencia por parte de los
usuarios es significativamente mayor en una conversación con
TimeVersa que en una conversación similar utilizando el LLM
GPT-3, cuando se trata de información temporal imprecisa.
Nuestro enfoque es un paso adelante para el desarrollo de
agentes conversacionales que operen en ámbitos que requieren
razonamiento temporal en condiciones de incertidumbre.

A pesar de sus impresionantes capacidades, los LLM plan-
tean graves problemas. En primer lugar, su entrenamiento
requiere enormes capacidades de computación, lo que supone
un enorme consumo de energı́a y un reto desde el punto
de vista de la sostenibilidad. En segundo lugar, debido a su
naturaleza opaca, no se entiende bien cómo funcionan, cómo
se han entrenado y validado, ni qué propiedades emergentes
presentan. En casos concretos como GPT-3 (único modelo
de OpenAI disponible de forma gratuita), se han identificado
otras limitaciones como que los resultados pueden carecer de
coherencia semántica, lo que da lugar a textos incompren-
sibles, especialmente cuando se alarga la conversación, los
resultados incorporan todos los sesgos que pueden encontrarse
en los datos de entrenamiento, o pueden corresponder a
afirmaciones que no están en consonancia con la verdad.
Además, el rendimiento mostrado en tareas de Procesamiento
del Lenguaje Natural con lenguas de escasos recursos (por
ejemplo, euskera, gallego o gaélico) es mucho peor que en
inglés, porque dichas lenguas estaban infrarrepresentadas en
los datos de entrenamiento. Cabe señalar que, aunque versio-
nes posteriores como GPT-4 anuncian que resuelven algunas
de las limitaciones anteriores, su naturaleza opaca permanece,
ya que GPT-4 sigue siendo un modelo de caja negra distribuido
en forma de software como servicio y es imposible validar
su rendimiento desde un punto de vista cientı́fico riguroso.
Estas deficiencias son comunes a otros LLM que también
podrı́an devolver resultados incoherentes en algunos casos.
La posible incoherencia en los resultados de los LLM podrı́a
explicarse por su falta de razonamiento lógico o porque sus
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capacidades deductivas e inductivas son muy simples. Por
ejemplo, esos modelos no comprenden bien el razonamiento
temporal y su memoria a veces se queda corta, por lo que
no pueden tener en cuenta incluso una restricción temporal
simple que pudiera haberse introducido unos pocos mensajes
antes. También sufren el llamado olvido catastrófico cuando se
afinan para tareas especı́ficas. Además, una dificultad añadida
es la continua presencia de expresiones imprecisas en el
uso del lenguaje natural por parte de los humanos, que a
menudo utilizamos expresiones que incluyen términos vagos
o imprecisos como “más o menos”, “un poco más”, “no
tanto”, “aproximadamente”, etc. Estas expresiones captan la
imprecisión del lenguaje y resumen la información de forma
adecuada para la comunicación humana. Hay que tener en
cuenta que el razonamiento automático y, más concretamente,
el razonamiento temporal se vuelven más difı́ciles de manejar
cuando se trata con este tipo de expresiones. Teniendo en
cuenta todo lo anterior, la principal contribución del trabajo
[1] fue enriquecer las explicaciones interactivas con un modelo
que permita razonar con información temporal imprecisa. Con
este objetivo, propusimos un modelo que combina una Red
Difusa de Restricciones Temporales con un grafo de conoci-
miento, y describimos cómo opera en un agente conversacional
cuidadosamente diseñado para proporcionar a los usuarios de
sistemas inteligentes explicaciones interactivas dentro de un
dominio de aplicación especı́fico. En concreto, desarrollamos
un caso de uso ilustrativo para el sector turı́stico para mostrar
cómo el agente maneja adecuadamente algunos problemas
potenciales de inconsistencia temporal. Además, para llevar a
cabo un proceso de validación exhaustivo del modelo descrito,
también llevamos a cabo un estudio empı́rico de usuarios en el
que los participantes pudieron evaluar algunos aspectos de las
conversaciones relacionados con el razonamiento temporal.

II. PROPUESTA

Nuestro modelo para gestionar expresiones temporales di-
fusas y detectar incoherencias entre ellas parte de un grafo
de conocimiento (KG) representativo del dominio especı́fico,
y proyecta la información temporal sobre un grafo difuso
de restricciones temporales, que proporciona mecanismos de
razonamiento para comprobar la coherencia y responder a
consultas explicativas. Más concretamente, suponemos que
el KG es conocido, está dado de antemano, representa el
conocimiento sobre un dominio de aplicación especı́fico y
proporciona una abstracción concisa e intuitiva de los datos
implicados. A continuación, utilizamos el conocido formalis-
mo de las Redes de restriccions temporales difusas (FTCN),
para disponer de un mecanismo que nos permite representar
información temporal difusa y razonar con ella. Seguidamente,
describimos un algoritmo para proyectar la información de
dominio contenida en el KG sobre la FTCN, lo que nos
va a permitir formular y responder consultas acerca de la
información contenida en ella. El procedimiento de proyección
comienza por los nodos del KG conectados por una relación
temporal y continúa con la proyección de las relaciones no
temporales que puedan existir.

III. CASO DE USO Y VALIDACIÓN

En el trabajo presentamos un caso de uso ilustrativo para
mostrar cómo nuestro modelo aborda varias incoherencias
relacionadas con el razonamiento temporal. Para facilitar la
reproducibilidad, y de acuerdo con las directrices para el
desarrollo de una IA responsable, hemos puesto a disposición
el código para ejecutar este caso de uso ilustrativo. El caso
de uso es el agente conversacional TimeVersa para informar,
recomendar, reservar y dar información sobre horarios de
viajes, al objeto de centrar el caso en un contexto de infor-
mación temporal. El agente puede responder adecuadamente a
preguntas sobre duración y horario de los barcos que realizan
un trayecto, disponibilidad de restaurantes, y duración de rutas
de senderismo. También ayuda a los usuarios a reservar el
restaurante o comprar los billetes para el viaje. Como vali-
dación comparamos el comportamiento del modelo propuesto
con el de uno de de los modelos lingüı́sticos preentrenados
disponibles gratuitamente y más populares (GPT-3) en un
caso de uso similar y planteamos un estudio empı́rico con
evaluadores humanos para examinar las diferencias en la
percepción que tienen los usuarios en cuanto a la consisten-
cia de una conversación con un agente, dependiendo de si
el agente incluı́a nuestro modelo de razonamiento temporal
difuso (agente TimeVersa) o no lo incluı́a (agente OpenAI,
con el LLM GPT-3). El objetivo fue validar las dos hipótesis
de investigación siguientes:

H1: Cuando se incluye información temporal imprecisa,
la interacción con el agente TimeVersa se percibe más
coherente que con el agente OpenAI.
H2: Cuando se incluye información temporal imprecisaa,
la interacción con el agente TimeVersa que incorpora
el modelo de razonamiento temporal se percibe como
más coherente que cuando incorpora la versión nı́tida
del modelo.

Los resultados del estudio, en el que participaron 130 usuarios
humanos a través de la plataforma Prolific, indicaron que
las diferencias observadas en cuanto a la consistencia de la
conversación con el agente TimeVersa frente al agente OpenAI
fueron estadı́sticamente significativas a favor de TimeVersa.
Asimismo, encontramos una mejor percepción al utilizar un
modelo difuso frente a un modelo nı́tido en cuanto a la
coherencia de la conversación, con diferencias estadı́stica-
mente significativas, si bien resultaron pequeñas en términos
absolutos.
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Abstract—Aggregation theory is devoted to the fusion of
information from different sources in a unique final value. In
some applied problems, the aggregated information is associated
to an empirical measurement that can be interpreted as a random
sampling of a population. With this point of view, it is quite
natural to consider the inputs of the aggregation function to
be realizations of random elements. In this paper, we define
the concept of aggregation of random elements over bounded
lattices from the very beginning. The boundary and monotonicity
conditions are generalized by using stochastic orders. In addition,
several properties and particular examples are provided.

Index Terms—Aggregation, Probability Theory, Partial orders

I. INTRODUCTION

Aggregation theory focuses on the study of functions that
take n elements of certain type and return another element
of the same type, fulfilling some boundary and monotonicity
conditions. Besides its use in fuzzy set theory or dependence
modeling, they appear frequently in data analysis [1, 2]. Con-
sidering the usual probabilistic approach made in Statistics, we
can consider the inputs of the aggregations to have a random
behavior. In this direction, the notion of aggregation of random
variables was introduced in [3], redefining the boundary and
monotonicity conditions by means of stochastic orders.

The notions and results summarized in this paper are deeply
studied in [4], in which aggregations of random elements over
bounded lattices were introduced. This paper is a summary
of that work and it is organized as follows. The construction
of the definition of aggregations of random elements over
bounded lattices is provided in Section II. Section III is de-
voted to the study of some desirable properties. Finally, some
examples and the conclusions are provided in Sections IV
and V.

II. AGGREGATION OF RANDOM ELEMENTS OVER
BOUNDED LATTICES

Let us consider (S,≤) as a partially ordered set. We recall
that an upper set of (S,≤) is a subset U ⊆ S such that for any
u ∈ U , if s ≥ u then s ∈ U . Similarly a lower set is defined
as L ⊆ S such that for any l ∈ L, if s ≤ l then s ∈ L.

The publication was supported by the Spanish Ministry of Economy and
Competitiveness (PGC2018-099402-B-I00) and the Principality of Asturias
(BP21048).

In order to define random elements over S, it must be
endowed with a sigma-algebra F . For constructing this sigma-
algebra, we can consider first the semi sigma-algebra (Propo-
sition 3.1 in [4]):

Fs = {A ⊆ S : A = AL ∩AU ,

AL lower set of (S,≤), AU upper set of (S,≤)}

and then the sigma-algebra

F = {B ⊆ S : B = ∪∞
i=1Bi, Bi ∈ Fs} .

The resulting pair (S, F ) is a measurable space. For any pair
of elements r, t ∈ S such that r ≤ t, the subset consisting of
the elements greater than r and smaller than t will be denoted
as [r, t] = {s ∈ S : r ≤ s ≤ t}. We can extend the partially
ordered set and the measurable space structure to the Cartesian
product of S, Sn = S × · · · × S. The partially ordered set
(Sn,≤po) is defined by considering the product order on Sn

using as reference the initial order ≤. The sigma-algebra Fn

is defined using a semi sigma-algebra consisting on Cartesian
products of elements of Fs (Proposition 3.2 in [4]).

Starting from a probabilistic space (Ω,Σ, P ), we define
as Ln

[r,t] the set of measurable functions from Ω to Sn with
support [r, t]n. In symbols,

Ln
[r,t] = {f : Ω → Sn : f is measurable, f−1([r, t]n) = Ω}

To provide a way to order these functions, which can be
considered as random vectors of elements of the bounded
lattice, we consider the following stochastic order.

Definition 2.1: Let f, g ∈ Ln
[s,t]. If P (f−1(M)) ≤

P (g−1(M)) for every M measurable upper set of Sn, then
it is said that f is smaller than or equal to g in the usual
stochastic order and it is denoted by f ≤st g.

This stochastic order is transitive, i.e. f ≤st g, g ≤st h =⇒
f ≤st h, fulfills that f ≤st g, g ≤st h if and only if f and
g have the same distribution and in coherent with respect to
the initial order ≤ when considering degenerate distributions
(Proposition 3.3 in [4]).

With all this settlement, we can define the concept of
aggregation of random elements over bounded lattices.

Definition 2.2: The function A : Ln
[r,t] → L[r,t] is an

aggregation of random elements over a bounded lattice with
respect to ≤st if the following conditions are fulfilled:
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• For any f, g ∈ Ln
[r,t] such that f ≤st g, A(f) ≤st A(g).

• If f(Ω) = {(r, . . . , r)}, A(f)(Ω) = {r}.
• If f(Ω) = {(t, . . . , t)}, A(f)(Ω) = {t}.

III. ADDITIONAL PROPERTIES AND FAMILIES

The concept of aggregation of random elements over
bounded lattices goes beyond the simply composing usual
aggregation functions over lattices and random vectors, since
its definition is not very restrictive. In the following, we
define some families of aggregations of random elements
over bounded lattices and some coherent properties that can
be considered when additional restrictions are needed, for
instance, in applied problems.

Definition 3.1: Let A : Ln
[r,t] → L[r,t] an aggregation of

random elements over a bounded lattice. Then:
• If there exists an aggregation function Â : [r, t]n → [r, t]

such that A(X⃗) = Â ◦ f for any f ∈ Ln
[r,t], A is said to

be induced (by Â).
• If there exists f ∈ Ln

[r,t] and v⃗ ∈ f(Ω) with P (f = v⃗) >
0 such that the conditional distribution of A(f) given
f = v⃗ is not degenerate, A is said to be random.

• If A(f) has degenerate distribution for any f ∈ Ln
[r,t], A

is said to be degenerate.
• If for any f, g ∈ Ln

[r,t] such that f and g have the same
distribution, A(f) and A(g) have the same distribution,
A is said to be coherent in distribution.

• If for any v⃗ ∈ [r, t]n and any f ∈ Ln
[r,t] such that

v⃗ ∈ f(Ω), P (f = v⃗) > 0 the conditional distribution
of A(f) given f = v⃗ is always the same, A is said to be
conditional coherent.

• If for any f ∈ Ln
[r,t], P (f = (r, . . . , r)) ≤ P (A(f) = r)

and P (f = (t, . . . , t)) ≤ P (A(f) = t), A is said to be
boundary coherent.

Let us discuss very briefly some results and relations
between the introduced concepts. It can be proved that families
of induced, random and degenerate aggregations of random
elements over bounded lattices are disjoint (Proposition 3.4
in [4]). Distribution coherence is always fulfilled (Proposition
3.5 in [4]). If r ̸= t, degenerate aggregations cannot be
boundary coherent (Proposition 3.7 in [4]) . Finally, induced
aggregations fulfill all three coherence properties (Theorem
3.2 in [4]).

IV. SOME EXAMPLES

The construction of aggregations of random elements over
bounded lattices may seem very abstract, but there are many
examples of applications for different structures.

The most prominent example is the aggregation of random
variables, in which (S,≤) is considered as the real line R
with the usual order of the real numbers. In the following,
we provide an example of non-trivial aggregation of random
variables.

Example 4.1: Let r, t ∈ R with r < t and
(
UX⃗ , X⃗ ∈ Ln

[r,t]

)
a family of standard uniform random variables such that UX⃗

is independent of X⃗ for any X⃗ ∈ Ln
[s,t]. Consider the function

A : Ln
[r,t] → L[r,t] that takes a random vector X⃗ and returns

the random variable A(X⃗) = (max(X⃗) − min(X⃗))UX⃗ +

min(X⃗) is an aggregation of random variables.
The latter aggregation is random, distribution coherent,

conditional coherent and boundary coherent and it can be seen
as a generalization of the estimation procedure for an uniform
random variable.

Another interesting example is the aggregation of random
graphs, that can be considered, for instance, in social choice
theory or in reliability theory [5]. In this case, S is the set
of graphs with a fixed set of nodes V and the order is
considered to be the inclusion order of the edge sets, i.e.
(V,E1) ≤ (V,E2) ⇐⇒ E1 ⊆ E2. The most important
aggregations are the union and intersection of the edges.

As the last example, we can consider the aggregation of
semi-positive definite matrices. Random semi-positive matri-
ces appear in the estimation of the covariance matrix of a
population, and its aggregation is relevant in some statis-
tical models such as the Multivariate Analysis of Variance
(MANOVA) [6], in which the covariance estimations in the
different groups are fused in an unique estimation (under ho-
moscedasticity). In this case, the natural order is the Loewner
order, defined as M1 ≤ M2 if and only if M2 −M1 is semi-
positive definite.

V. CONCLUSIONS

In this paper, the concept of aggregation of random ele-
ments over bounded lattices is constructed. In addition, some
properties, families and examples are provided. We aim this
work to be one of the first steps in the inclusion of probability
and statistical procedures in the area of aggregations functions
over bounded lattices. For a more detailed explanation of the
concepts, additional results and more examples, we refer the
reader to the original paper [4].
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Resumen—Este artı́culo es un resumen del trabajo publicado
en la revista IEEE Transactions on Fuzzy Systems [1]. En este
trabajo, presentamos una contribución a la teorı́a de las Fun-
ciones de Equivalencia Restringida (REF), que permite comparar
elementos multivaluados. Extendemos el concepto de REF de L a
Ln y presentamos una nueva construcción de similitud en Ln. A
partir de esta filosofı́a se construyen medidas de similitud entre
multiconjuntos difusos y se presenta un ejemplo aplicado en en
el contexto de la difusión anisotrópica de imágenes en color.

Palabras clave—multiconjuntos difusos, función de equivalen-
cia restringida, comparación multivaluada, medida de similitud

I. INTRODUCCIÓN

Las Funciones de Equivalencia Restringida (REF) son unas
conocidas funciones para la comparación de números en el in-
tervalo unidad. Fueron presentadas en [2] para la comparación
de grados de pertenencia de conjuntos difusos, mediante la
adaptación de los axiomas originales de las Funciones de
Equivalencia, dados por Fodor y Roubens [3]. Tomamos
L = [0, 1].

Definición 1.1: Una función R : L× L → L es una REF,
si para todo x, y, z ∈ L satisface:

(R1) R(x, y) = 1 si y sólo si x = y.
(R2) R(x, y) = 0 si y sólo si {x, y} = {0, 1}.
(R3) R(x, y) = R(y, x).
(R4) Si x ≤ y ≤ z, entonces R(x, z) ≤ R(x, y) y R(x, z) ≤

R(y, z).
Las medidas de similitud han sido extensamente estudiadas
en la literatura en diversas aplicaciones [4], [5]. Dada la
diversidad de elementos a comparar, se han requerido distintos
axiomas y propiedades para la construcción de las mismas.
Teniendo en cuenta el concepto inicial de medida de similitud

Proyecto PID2022-136627NB-I00 financiado por
MCIN/AEI/10.13039/501100011033/FEDER, UE; Proyec-
tos TED2021-131295B-C32, PID2021-123673OB-C31 del
MCIN/AEI/10.13039/501100011033 Proyecto PROMETEO
CIPROM/2021/077 Conselleria de Innovación, Universidades, Ciencia
y Sociedad Digital - Generalitat Valenciana Ayuda PAID-06-23 del
Vicerrectorado de Investigación de la U. Politècnica de València (UPV)

entre conjuntos difusos [6], se adaptaron los axiomas de la
siguiente manera [7].

Definición 1.2: Sea U un conjunto no vacı́o y F (U) el
conjunto de todos los conjuntos difusos. Una medida de
similitud entre dos conjuntos difusos es una función S :
F (U) × F (U) → L tal que para todos los conjuntos difusos
A,B,C ∈ F (U) satisface las siguientes propiedades:

(S1) S(A,B) = S(B,A).
(S2) S(A,B) = 0 si y sólo si {A(u),B(u)} = {0, 1} para

todo u ∈ U .
(S3) S(A,B) = 1 si y sólo si A(u) = B(u), para todo

u ∈ U .
(S4) Si A ≤ B ≤ C entonces S(A,C) ≤ S(A,B) y

S(C,A) ≤ S(C,B).
Las medidas de similitud entre conjuntos difusos pueden
construirse a partir de funciones de agregación y REFs [7].

II. FUNCIONES DE EQUIVALENCIA RESTRINGIDA EN Ln

En este trabajo se presentan dos extensiones de las REF en
vectores de Ln diferenciadas por sus axiomatizaciones. Las
diferencias entre dichas propuestas radican en la consideración
de qué elementos son considerados complementarios entre sı́,
ası́ como en el orden de los elementos multivalorados. Es
importante señalar que para las REFs en Ln, no es necesario
un orden total y con un orden parcial entre vectores es
suficiente para su definición. Consideramos el orden parcial
entre dos vectores X = (x1, . . . , xn), Y = (y1, . . . , yn) ∈ Ln

como X ≤P Y si y sólo si xi ≤ yi, para todo i ∈ {1, . . . , n}.
En la primera propuesta, se consideran como elementos

complementarios el 0 = (0, . . . , 0) con el 1 = (1, . . . , 1).
Definición 2.1: Sea n un entero positivo. Una función RL1

:
Ln × Ln → Ln es denominada REF en Ln de tipo 1, si
satisface, para todo X,Y, Z ∈ Ln las siguientes propiedades:

(RL11) RL1(X,Y ) = 1 si y sólo si X = Y .
(RL21) RL1

(X,Y ) = 0 si y sólo si {X,Y } = {0, 1}.
(RL31) RL1

(X,Y ) = RL1
(Y,X).

(RL41) Si X ≤P Y ≤P Z, entonces RL1(X,Z) ≤P

RL1
(X,Y ) y RL1

(X,Z) ≤P RL1
(Y,Z).
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Por otro lado, para la segunda propuesta, en lugar de
considerar los elementos 0 y 1 como complementarios, con-
sideramos cualquier par complementario de elementos crisp,
que conducen al valor mı́nimo de similitud.

Definición 2.2: Sea n un entero positivo. Una función RL2 :
Ln × Ln → Ln es denominada REF en Ln de tipo 2, si
satisface, para todo X,Y, Z ∈ Ln las siguientes propiedades:

(RL12) RL2
(X,Y ) = 1 si y sólo si X = Y .

(RL22) RL2(X,Y ) = 0 si y sólo si {xi, yi} = {0, 1}.
(RL32) RL2(X,Y ) = RL2(Y,X)
(RL42) Si min(xi, zi) ≤ yi ≤ max(xi, zi), entonces

RL2(X,Z) ≤P RL2(X,Y ) y RL2(X,Z) ≤P

RL2(Y,Z), para todo i ∈ {1, . . . , n}.

III. MEDIDAS DE SIMILITUD ENTRE MULTICONJUNTOS
DIFUSOS

Los tipos de axiomas introducidos difieren en la forma
de entender la complementariedad en los entornos de n-
tuplas, siendo los primeros más restictivos que los segundos.
Estas consideraciones permiten introducir dos tipos diferentes
de medidas de similitud entre multiconjuntos difusos. Los
multiconjuntos difusos considerados en este trabajo tienen
una única pertenencia y una dimensionalidad fija n. Es decir,
consideramos un multiconjunto sobre U como una función
A : U → Ln.

Definición 3.1: Sea U un conjunto no vacı́o y LF (U) el
conjunto de todos los multiconjuntos difusos. Una función
SL1

: LF (U)×LF (U) → Ln es denominada una medida de
similitud de tipo 1 entre dos multiconjuntos difusos si satisface
los siguientes axiomas para todo A,B, C,D ∈ LF (U):

(SL11) SL1(A,B) = 1 si y sólo si A = B.
(SL21) SL1

(A,B) = 0 si y sólo si A y B son {A(u),B(u)} =
{0, 1}, para todo u ∈ U .

(SL31) SL1
(A,B) = SL1

(B,A).
(SL41) Si A ⊆ B ⊆ C ⊆ D entonces SL1

(A,D) ≤P

SL1
(B, C).

Definición 3.2: Sea U un conjunto no vacı́o y LF (U) el
conjunto de todos los multiconjuntos difusos. Una función
SL1

: LF (U)×LF (U) → Ln es denominada una medida de
similitud de tipo 2 entre dos multiconjuntos difusos si satisface
los siguientes axiomas para todo A,B, C,D ∈ LF (U):

(SL12) SL2(A,B) = 1 si y sólo si A = B.
(SL22) SL2

(A,B) = 0 si y sólo si A(u) ∈ {0, 1}n y B(u) =
1 −A(u), para todo u ∈ U

(SL32) SL2
(A,B) = SL2

(B,A).
(SL42) Si para todo u ∈ U , min(A(u)i,D(u)i) ≤ B(u)i y

max(A(u)i,D(u)i) ≥ C(u)i, entonces SL2
(A,D) ≤P

SL2
(B, C) (donde A(u)i es el i-ésimo elemento de una

n-tupla A(u)).
Se ha presentado un método de construcción para cada

medida de similitud, utilizando un tipo de REF en Ln para
cada una. Para ello, consideramos un entero positivo m,
U = {u1, . . . , um} y una función RL : Ln × Ln → Ln

REFs en Ln de tipo 1 ó 2. Sea GL : (Ln)m → Ln

una funcion de agregación n-dimensional m-aria, tal que,

para todo X1, . . . , Xm ∈ Ln, GL(X1, . . . , Xm) = 0 im-
plica X1 = . . . = Xm = 0 y GL(X1, . . . , Xm) = 1
implica X1 = . . . = Xm = 1. Entonces la función
SL : LF (U) × LF (U) → Ln dada por SL1

(A,B) =
GL (RL(A(u1),B(u1)), . . . , RL(A(um),B(um))) es una
medida de similitud entre multiconjuntos difusos, de tipo 1
si RL = RL1 , o de tipo 2 si RL = RL2 .

IV. APLICACIÓN

Como caso de estudio hemos seleccionado el modelo de
difusión anisotrópica Perona-Malik (PMAD), un algoritmo
de procesamiento de imagen para el suavizado sensible al
contenido. Éste método se basa en la comparación de datos
semi-local para estimar la necesidad de suavizado alrededor de
cada pı́xel de la imagen. Para medir su eficacia, utilizamos una
medida de homogeneidad para obtener lo similar que son los
colores en la vecindad de un pı́xel, obteniendo una imagen de
homogeneidad que refleja dónde las regiones son homogéneas
y dónde hay cambios relevantes.

Comparando nuestro enfoque con otros métodos con Mean-
Shift y el Filtrado Bilateral vemos que los resultados son
similares a los que no utilizan un automorfismo especı́fico. Por
un lado, en términos de suavizado de objetos estos métodos
son equivalentes a nuestra propuesta, que tiene un valor de
homogeneidad ligeramente mejor. Por otro lado, el suavizado
del fondo es peor que nuestro método, especialmente cuando
se utiliza el Filtrado Bilateral.

V. CONCLUSIÓN

Por último, podemos ver que la extensión de las REF al
dominio Ln es una medida de comparación adecuada entre
elementos multivaluados, dando pie a la generación de otras
medidas de comparación entre estructuras multivaluadas, como
los multiconjuntos difusos. Podemos afirmar que diferentes
parametrizaciones de estas funciones conducen a resultados
de difusión anisotrópica distintos en la aplicación especı́fica
propuesta, verificando la sensibilidad de estas funciones a la
configuración de los parámetros y su adecuación a diferentes
escenarios.
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Abstract—Social Networking Sites (SNS) offer a full set of 
possibilities to perform opinion studies such as polling or market 
analysis. Normally, artificial intelligence techniques are applied, 
and they often require supervised datasets. The process of 
building them is complex, time-consuming and expensive. In this 
paper, it is proposed to assist the labelling task by taking 
advantage of social network mechanics. In order to do that, it is 
introduced the co-retweet relation to build a graph that allows to 
propagate user labels to their similarity neighbourhood. 
Therefore, it is possible to build supervised datasets with 
significant less human effort and with higher accuracy than other 
weak-supervision techniques. The proposal was tested with 3 
datasets labelled by an expert committee, and results showed that 
it outperforms other weak-supervision techniques. This 
methodology may be adapted to other social networks and topics, 
it is relevant for applications like informed decision-making (e.g. 
content moderation), specially when interpretability is required.  
 

Keywords— Terms—human-in-the-loop labelling, opinion 
mining, social network analysis, user profiling, supervised learning. 

I.  INTRODUCTION  
In this article it is proposed a methodology to reduce the effort 
required to produce a supervised dataset. It is made by using 
semantic network representations and label propagation 
mechanisms. This methodology can be divided in different 
steps that start with data retrieval. Meta-data regarding user 
interaction is used to compute a similarity graph, and most 
relevant documents are labelled using oracles. These labels are 
aggregated and propagated through the graph to obtain 
information regarding unknown users. Since not all labels are 
accurate, oracles are asked to validate new information and 
check for potential conflicts. This makes our proposal a 
human-in-the-loop approach to produce weak-supervised 
dataset with improved quality. 

The main contributions of this article are (1) a methodology 
to reduce the effort when producing labelled dataset from SNS 
data, (2) a novel similarity-based network representation (the 
co-retweet graph), and (3) a label propagation mechanism that 
takes into account the relevance and coherence of the network. 
Both the network representation and the propagation 
mechanism are two possible implementations of our 
methodology, that we tested using (4) a proof-of-concept 
platform that follows aforementioned steps to build weak-
supervised datasets from Twitter. Results show that this 
methodology is able to reduce labour costs by 75 percent and 
it outperforms other weak-supervision techniques.  

II. PROPOSED METHODOLOGY 
    We propose the use of a system that would allow us to infer 
properties of unknown users from other previously annotated 
documents. The basic workflow would be: 
1) Rank tweets by utility. 
2) Ask an oracle to annotate the top n tweets. 
3) Expand properties to other user profiles using a deep relation. 
4) Rank automatically-generated user annotations by utility. 
5) Ask an oracle to validate the top m autoannotations. 
6) Repeat from step 2 until necessary. 
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Fig. 1. Workflow of the system 

 
And the keys of the system are:  

A. Similarity Graph 
It calculates the retweets that any two users have in common. As 
we stated above, the retweet mechanic implies that the user is 
interested in the topic and also that they agree with the opinion of 
the original author. Therefore, if users A and B have retweeted 
something from C, the retweet graph would have three directed 
links, from A to C and from B to C; with our proposal, both links 
would be undirected and a new edge would arise between A and 
B. Note that original tweets are considered copies (retweets) of 
themselves. Consequently, each node in the co-retweet graph 
would stand for a Twitter user and edges connecting 

B. Property expansion 
Given a similarity graph (in our case, co-retweet graph), it is 
possible to infer property values for new users in the 
neighbourhood of known users through a process of weighted 

III. DEVELOPMENT AND EXPERIMENTS 
In order to check the performance of our proposal against current 
weak-supervision techniques.  We applied several classic 
machine learning algorithms (Support Vector Machine (SVM), 
Random Forest (RF), AdaBoost (AB) and Multinomial Naive 
Bayes (MNB). We applied our methodology to datasets of tweets 
regarding Spanish National Elections (spanish), Madrid Regional 
Elections (madrid) and USA Presidential Elections (usa). 

IV. RESULTS AND DISCUSSION 
Results shows that the number of automatic annotations grows 
quickly with the first annotations due to the ranking strategy, and 
it stabilises after the annotation process reach non-influential 
users. For example, for the Spanish National Elections dataset, 
the top 25% has more than 191 connected users, hence the grow. 
The ratio between number of accepted annotations versus total 
annotations has a mean value of 0.89, with an almost negligible 
standard deviation of 0.0045. It keeps steady regardless of the 
number of manual annotations. This points out that the chosen 
user representation (co-retweet graph) behaves coherently. Our 
proposal significantly improves the results of other weak-
supervision techniques when the number of annotations is low.  
When annotating tweets, it is common to assume that the cost of 
evaluating a tweet is uniform [42], since documents have 240 

characters as much. The number of manual annotations is called 
effort. Table 6 shows the effort required to reach at least .75 in 
f1-score. Note that we stopped several experiments before they 
reached the threshold. Our proposal is the method that requires 
less human annotations therefore it is ideal to reduce labelling 
costs. 

V. CONCLUSION 
SNS are used frequently to study the opinion of customers, 
citizens, voters and almost any other role a human can assume 
while using Social Media. However, these analysis present 
limitations that should be considered, such as users age range and 
digital literacy. Normally, artificial intelligence techniques can be 
used to perform these analyses, which often require supervised 
datasets. Labelling datasets is an expensive task that needs a lot of 
resources, regardless that it is conducted in-house or outsourced 
to companies or freelancers. 
    Most SNS have similar mechanics, such as liking and 
befriending, that may offer more information than the 
contentitself. We introduced the co-retweet, that is built upon user 
interactions and represents the network as a similarity graph. 
Therefore, it constitutes a way to infer knowledge of unknown 
users from others in their neighbourhood. In order to do this, we 
presented a methodology that iteratively propagates labels 
through a similarity graph, generating predictions that can be 
reviewed automatically, in most cases, or manually. Our 
experiments show that our proposal outperforms other weak-
supervision techniques when the effort is low, and it behaves at 
least as well as the number of manual annotations grows. 
   These results are relevant in the field of opinion mining for 
applications like market analysis, recommendation system and 
trend predictions, and it is particularly useful since it significantly 
improves the required time to build a supervised dataset without 
sacrificing interpretability or quality. 
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Resumen—Este trabajo es un resumen del trabajo publicado
en las actas del congreso de la 13th Conference of the European
Society for Fuzzy Logic and Technology (EUSFLAT 2023) [3] y
sometido a la revista [4] para su presentación en la Multiconfe-
rencia CAEPIA’24 (ESTYLF 2024) KeyWorks.

Index Terms—Z-números de Zadeh, Número borroso discreto,
Orden Total, Orden admisible, Ranking de Z-números.

I. RESUMEN

Los Z-números de Zadeh se han posicionado como un in-
teresante modelo lingüı́stico computacional que se ha utilizado
en múltiples aplicaciones y, en particular, en problemas de
toma de decisiones. Formalmente [7], una pareja ordenada de
números borrosos (A,B) se entenderá como un Z-número.
Cuando un Z-número es asociado a una variable de incerti-
dumbre real valorada X , el triplete ordenado (X,A,B) es en-
tendido como una Z-valoración, donde la primera componente
A es interpretada como una restricción sobre los valores que
puede tomar X y la segunda componente B nos indica el grado
de certeza (seguridad, confianza, posibilidad, probabilidad...)
que se tiene sobre el valor descrito por A. Este modelo permite
modelizar oraciones del tipo “Usualmente, el tiempo de viaje
entre Madrid y Barcelona es aproximadamente tres horas”,
siendo la Z-valoración asociada a esta frase Z1=(X= “tiempo
de viaje entre Madrid y Barcelona”, A=“aproximadamente tres
horas”, B=“usualmente”).

Si bien este modelo lingüı́stico permite modelar muchas
oraciones imprecisas del lenguaje natural, tiene grandes des-
ventajas a la hora de realizar operaciones con este tipo de
estructuras. Este problema ya fue mencionado por el propio
L. Zadeh en [7] “Problems involving computation with Z-
numbers are easy to state but far from easy to solve”. Con
el objetivo de reducir el coste computacional cuando se
efectúan operaciones entre Z-valoraciones, algunos autores
han propuesto una nueva perspectiva de los Z-números de
Zadeh [1]. En esta nueva formulación, los Z-números se
representan por pares de números borrosos discretos (A,B)
donde la segunda componente describe el grado de certeza

(certidumbre, confianza, fiabilidad, ...) de la primera com-
ponente y además no se interpreta desde un punto de vista
estrictamente probabilı́stico, sino como una evaluación basada
en un número borroso discreto [6] facilitando los cálculos entre
Z-valoraciones utilizando operadores de agregación sobre el
conjunto de números borrosos discretos [2]. Esta nueva pers-
pectiva resuelve en gran medida el problema de los elevados
costes computacionales asociados a la definición clásica de Z-
números, manteniendo la esencia lingüı́stica establecida en la
idea original propuesta por Zadeh. Recordemos a continuación
la notación básica que se empleará en este trabajo ası́ una
definición esencial para el mismo.

Denotemos por ALn
1 , donde Ln = {0, · · · , n} es una cadena

finita, el conjunto de números borrosos discretos cuyo soporte
({x ∈ Ln tales que A(x) > 0}) es un intervalo cerrado
de la cadena finita Ln y por ALn×Ym

1 el subconjunto de
números borrosos discretos A ∈ ALn

1 tales que su función
de pertenencia A(x) ∈ Ym = {y1 = 0, y2, · · · , ym = 1}.
Recordemos que el núcleo de cualquier elemento A ∈ ALn

1

es el conjunto Núcleo(A) = {x ∈ Ln tales que A(x) = 1}.
Definición 1: Sean Ln y Lk dos cadenas finitas. Una

pareja ordenada de números borrosos discretos (A,B) con
A ∈ ALn

1 , B ∈ ALk
1 la llamaremos (Ln, Lk)-Z-número

borroso discreto. Si asociamos un (Ln, Lk)-Z-número borro-
so discreto a una variable de incertidumbre X , la primera
componente A desempeñará la función de restricción borrosa
sobre X , mientras que el número borroso discreto B descri-
birá una estimación imprecisa de la confianza sobre A. El
triplete ordenado (X,A,B) será llamado Z-valoración y se
escribirá X es (A,B). El conjunto de Z-números discretos
será denotado por Z(Ln, Lk) y un elemento arbitrario de
este conjunto por Z(A,B). En particular, denotaremos por
Z(Ln, Lk×Ym) al conjunto de (Ln, Lk)-Z-números borrosos
discretos cuya segunda componente sea finita valorada, esto
es, si Z(A,B) ∈ Z(Ln, Lk × Ym) , se tiene que A ∈ ALn

1 y
B ∈ ALk×Ym

1 .
El principal objetivo de los trabajos [3], [4] es el estudio de

ordenes totales en el conjunto Z(Ln, Lk ×Ym) que sean con-

 XX Conferencia de la Asociación Española para la Inteligencia Artificial 387



sistentes con el significado lingüı́stico de las dos componentes
del Z-número discreto de acuerdo a la propuesta original
establecida por Zadeh [7], que es una de las principales
carencias que tienen los órdenes sobre Z-números conocidos
en la literatura [5].

Para ello, un primer paso fue estudiar el cardinal del con-
junto ALk×Ym

1 , siendo su valor
(
k+2m−2
2m−2

)
. Este cardinal nos

permite definir la función de ordenación relativa que será bási-
ca para definir un orden total en el conjunto Z(Ln, Lk×Ym).

Definición 2: Sea ⪯ un orden total en ALk×Ym
1 y CA =

{X ∈ ALk×Ym
1 | X ⪯ A}. Se define la función ω que

determina el rango relativo de un número borroso discreto A
tal como sigue:
ω : ALk×Ym

1 −→ (0, 1]

A −→ ω(A) = |CA|∣∣∣ALk×Ym
1

∣∣∣ , siendo |CA| el

cardinal de CA.
Una propiedad esencial de esta función ω es que es compa-

tible con el orden total ⪯ fijado en ALk×Ym
1 , esto es, A ⪯ B

si y solo si ω(A) ≤ ω(B). Notar que para calcular el rango
relativo de un número borroso discreto, es necesario calcular
todos los números borrosos discretos de ALk×Ym

1 . Para ello,
se han establecido tres algoritmos que permiten generarlos y
ordenarlos. Haciendo uso de la función ω, se construye la
siguiente función que nos permitirá establecer finalmente una
relación de orden total en el conjunto Z(Ln, Lk × Ym).

Definición 3: Sea Z(A,B) ∈ Z(Ln, Lk × Ym). Se define
AB , la función transformada de A por B como:

AB(x) =

 A(x) + f(ω(B))(1−A(x)), si x ∈ soporte(A),

0 en otro caso,

donde f : (0, 1] −→ [0, 1) es una función estrictamente
decreciente tal que f(1) = 0 y ω es el rango relativo en
Z(Ln, Lk × Ym).

Es importante destacar que AB no sólo mantiene el mismo
núcleo y soporte del número borroso discreto inicial A. Como
puede verse en su definición, el valor positivo f(ω(B))(1 −
A(x)) se añade a la pertenencia de cada elemento del soporte
de A. Este valor es mayor cuanto menor es el rango relativo de
B en Lk×Ym, es decir, cuanto menor es la fiabilidad/confianza
de A. De este modo, esta transformación modifica la incerti-
dumbre de A (aumentando los valores de pertenencia fuera
del núcleo) en función de la fiabilidad/confianza de A propor-
cionada por B. Ahora, estamos en condiciones de definir en
Z(Ln, Lk × Ym) un orden total. Para ello, consideremos la
siguiente relación binaria:

Definición 4: Consideremos dos ordenes totales, ⪯A, ⪯B,
en ALn

1 y en ALk×Ym
1 respectivamente. Definimos la relación

binaria en Z(Ln, Lk × Ym) asociada a ⪯A and ⪯B de la
siguiente manera:

Dados Z(A,B), Z(A′, B′) ∈ Z(Ln, Lk × Ym),

Z(A,B) ⪯ Z(A′, B′) ⇔ ((AB ≺A A′
B′) o

(AB = A′
B′ y B ⪯B B′)).

La idea de esta relación es la siguiente:

Si se consideran las Z-valoraciones Z(A,B), Z(A′, B′) ∈
Z(Ln, Lk × Ym), primero se comparan AB y A‘B′ ya que
estos dos números borrosos discretos representan, en cada
caso, la información dada por la restricción borrosa sobre la
variable que se quiere modelar transformada por medio de
la credibilidad de esta restricción borrosa. En el caso en que
estos números sean iguales, se considerará más relevante el
que tenga mayor credibilidad. Finalmente, se demuestra que
dicha relación es un orden total.

Teorema 5: La relación binaria establecida anteriormente es
un orden total en el conjunto ALk×Ym

1 .
En conclusión, en este trabajo se ha presentado un método

de construcción de órdenes totales en el conjunto Z(Ln, Lk×
Ym) que mantienen la coherencia lingüı́stica de las frases que
se modelan de acuerdo al modelo lingüı́stico computacional
inicialmente propuesto por L. Zadeh en [7] y que, además
puede ser usado con facilidad en problemas de toma de
decisiones. Como futuro trabajo queremos definir funciones
de agregación para Z-números discretos basados en el orden
total que hemos establecido. Además, pretendemos ampliar
este orden para los llamados Z-números mixtos Z(A,B), en
los que A no es necesariamente un número borroso discreto
sino que puede ser cualquier número borroso.
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Abstract—Este artı́culo es un resumen del trabajo publicado en
la revista Information Fusion [1]. En este artı́culo explorábamos
el reemplazo del operador de pooling máximo comunmente em-
pleado en redes neuronales convolucionales (CNNs) por funciones
(a, b)-grouping. Estas funciones extienden el concepto de función
de grouping clásica [2] a un intervalo cerrado [a, b], siguiendo
la filosofı́a de [3]. En el contexto del operador de pooling,
estas nuevas funciones ayudan a la optimización de los modelos
suavizando los gradientes en el proceso de retropropagación y
obteniendo resultados competitivos con métodos más complejos.

Index Terms—Redes neuronales convolucionales, funciones
grouping, funciones pooling, clasificación de imagen

I. INTRODUCCIÓN

En el contexto de un problema de clasificación de imagen,
las redes neuronales convolucionales CNN [4] operan tradi-
cionalmente siguiendo un proceso alterno consistente en (1) la
extracción de caracterı́sticas visuales mediante la convolución
de filtros de imagen y (2) la reducción de la información
extraı́da mediante estos filtros en las llamadas capas de “pool-
ing”.

Este segundo proceso lleva a cabo un proceso de reducción
de imagen sustituyendo ventanas disjuntas de la imagen por
una agregación de sus valores como la media aritmética o,
más comunmente, el máximo. No obstante, en el contexto
de un problema de optimización convexa, el máximo tiene
el problema de hacer cero el gradiente de todos los valores
agregados a excepción de uno, lo que puede afectar al proceso
de optimización.

Pese a ello, priorizar las activaciones altas extraı́das por
la CNN es un comportamiento deseable, especialmente al
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emplear la funciones rectificadas como función de activación.
Esto nos lleva a explorar otras funciones pertenecientes a
la familia de las funciones grouping [2], a la que el propio
máximo pertenece.

Definición 1.1: Una función de grouping n-dimensional G :
[0, 1]n → [0, 1] es una función de agregación que cumple que
para todo x ∈ [0, 1]n:

(G1) G es simétrica;
(G2) G(x) = 0 si y solo si xi = 0 para todo i ∈

{1, . . . , n};
(G3) G(x) = 1 si y solo si existe i ∈ {1, . . . , n} tal que

xi = 1;
(G4) G es creciente;
(G5) G es continua.

II. FUNCIONES DE (a, b)-GROUPING

Las entradas y representaciones internas de una red neuronal
son valores reales no acotados al intervalo [0, 1]. En la práctica
es posible asumir que los valores generados tras cada capa se
encuentran acotados a un intervalo [a, b] con a, b ∈ R. En [3]
presentamos una estrategia que permite extender el dominio de
cualquier función de agregación a un intervalo [a, b], poniendo
especial énfasis en las propiedades fundamentales de cada
familia de funciones.

Definición 2.1: Una función Ga,b : [a, b]n → [a, b] es una
función de grouping (a, b) si, para todo x ∈ [a, b]n se cumple:

(GAB1)Ga,b es simétrica;
(GAB2)Ga,b(x⃗) = a si y solo si xi = a para todo i ∈

{1, . . . , n};
(GAB3)Ga,b(x⃗) = b si y solo si existe i ∈ {1, . . . , n} tal

que xi = b;
(GAB4)Ga,b es creciente;
(GAB5)Ga,b es continua.
La anterior definición hace sencilla la construcción de

funciones de (a, b)-grouping a partir de funciones de grouping
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mediante el uso de un isomorfismo ϕ : [a, b] → [0, 1] de la
siguiente forma:

Teorema 2.1: Sean una función de fusión G : [0, 1]n →
[0, 1], una función creciente y biyecctiva ϕ : [a, b] → [0, 1] y
una función de fusión (a, b)Ga,b : [a, b]n → [a, b] dada, para
todo x = (x1, . . . , xn) ∈ [a, b], por

Ga,b(x) = ϕ−1 (G (ϕ(x1), . . . , ϕ(xn))) , (1)

Entonces, Ga,b es una función de (a, b)-grouping n-
dimensional si y solo si G es una función de grouping n-
dimensional.

Al igual que las funciones de grouping n-dimensionales, las
funciones de (a, b)-grouping son autocerradas con respecto a
composición. Además, la combinación convexa de distintas
funciones de (a, b)-grouping, da como resultado otra función
(a, b)-grouping. Estos métodos de construcción alternativos
nos dan flexibilidad a la hora de construir nuevas funciones
de grouping (a, b) en entornos aplicados.

III. RESULTADOS EXPERIMENTALES

Con el objetivo de validar nuestra propuesta, llevamos a
cabo una serie de validaciones experimentales usando modelos
de CNN y dataset estándar. Debido a limitaciones de espacio,
solo incluimos en este trabajo un resumen superficial de las
pruebas realizadas. Se pueden consultar los detalles de la
validación experimental en [1].

Para este estudio sustituimos las capas de pooling de los
modelos LeNet-5 [5] y VGG16 [6] por una serie de funciones
(a, b)-groupings. De modo similar, también sustituimos las
convoluciones encargadas del proceso de reducción de ima-
gen en un modelo ResNet-56 [6] por las mismas funciones.
Además de comparar nuestra propuesta con el pooling máximo
y promedio, también la comparamos con alternativas como
“mixed” pooling y “gated” pooling [7] o el pooling basado en
el mecanismo de atención [8].

Los resultados obtenidos con los mejores (a, b)-groupings
para el conjunto CIFAR-10 [9] se presentan en la Tabla I.
En general, los resultados obtenidos con (a, b)-groupings son
comparables con los obtenidos con métodos que dependen de
parámetros adicionales como los pooling “gated” o el pooling
basado en atención, pese a no requerir ningún parámetro extra.

Adicionalmente, motivado por los buenos resultados
obtenidos por el “mixed” pooling, completamos nuestra prop-
uesta probando a combinar distintos (a, b)-groupings con la
media aritmética mediante una combinación convexa. Esta
modificación facilita la utilización de algunas funciones de
(a, b)-grouping que generan gradientes no estables en la
retropropagación por sı́ mismos. En general, el rendimiento
del método mejora, sin suponer un sobrecoste en tiempo de
ejecución al algoritmo.

IV. CONCLUSIÓN

Este artı́culo demuestra que existen alternativas sencillas
que pueden mejorar el funcionamiento de redes neuronales
complejas cuando se estudian las propiedades necesarias. En
concreto, las funciones de (a, b)-grouping representan una

TABLE I
COMPARACIÓN ENTRE EL MEJOR (a, b)-GROUPING Y EL RESTO DE

MÉTODOS

CIFAR-10
LeNet-5 VGG16 ResNet

Avg 0.825± 0.003 0.915± 0.001 0.919± 0.004
Max 0.837± 0.003 0.911± 0.003 0.919± 0.003
Best (a, b)-grouping 0.839± 0.003 0.916± 0.002 0.923± 0.001
Mixed pooling 0.842± 0.001 0.916± 0.002 0.922± 0.002
Gated pooling 0.842± 0.003 0.913± 0.003 0.922± 0.002
Attention pooling 0.836± 0.002 0.884± 0.008 0.923± 0.003

buena alternativa al operador de pooling máximo que permiten
incorporar información de más de uno de los elementos de
entrada, aún priorizando los más elevados. Además, también
comprobamos que combinar algunas de estas expresiones con
la media aritmética suaviza los gradientes generados durante
el proceso de retropropagación, facilitando el aprendizaje del
modelo.
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Abstract—This paper discusses utilizing data mining tech-
niques and fuzzy logic for extracting hidden knowledge from
medical records. Existing challenges such as lack of interpretabil-
ity and data understanding due to overemphasis on classification,
prediction and knowledge extraction are recognized. The pro-
posed system addresses these challenges by a) preprocessing the
database, b) fuzzifying the data to account for natural uncer-
tainty, c) discovering patterns and relationships among different
data features and d) visualizing results for easier analysis and
interpretation. Increased comprehension and interpretability of
medical data for end-users has been achieved, with real-life case
studies included to demonstrate the system’s effectiveness.

Index Terms—association rules fuzzy logic data mining medical
records

I. INTRODUCTION

Increasing interest is being shown by corporations and re-
searchers in the development of robust systems for health data
analysis due to the expanding need in this field. The crucial
challenges lie in extracting concealed knowledge from health
data, conducting diagnostic and co-morbidity analyses, opti-
mizing healthcare services, and enhancing the interpretability
of data mining systems [1].

High interpretability allows users to comprehend the ratio-
nale behind decisions or consistently predict model outcomes,
and is substantially improved using techniques like associa-
tion rules extraction and fuzzy logic [2]. The former helps
explore large datasets to find unique patterns, while the latter
enables better representation and analysis of real-world data
by managing incomplete or vague information [3].

Within medical databases, there are often incomplete and
imprecise data. As a solution, fuzzy association rules, a
suitable tool for discretizing numerical values and revealing
hidden relationships in a user-friendly manner, have been
employed [4]. Noting that standard association rule mining
algorithms often overlook correlations between tasks, we have
focused on a distributed approach to resolving multitasking
rule problems, bringing together several rules, and dividing
the problem into individual tasks [5], [6].

Given that medical databases mainly store patients’ histori-
cal data, implementing algorithms in a distributed environment
is necessary when dealing with voluminous data [reference].

In this context, we propose a distributed, fuzzy-based med-
ical system for pattern mining. This system, using tools like
association rules, fuzzy logic, and Big Data, enables end-
users to uncover and interpret hidden patterns from health-
related data, aiding diagnostic analysis, subsequent treatment,
and early potential disease prevention. The proposed system is
entirely automatic and can support both labeled and unlabeled
data. Our primary contributions are data enrichment, feature
fuzzification, and efficient visualization [references].

Section-wise, this paper first reviews significant work in this
field, presents the proposed fuzzy-based system for pattern
mining, provides a case study from real-world medical data
and discusses the resulting findings, and finally presents the
derived conclusions.
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II. BACKGROUND

In this paper, we propose a novel fuzzy information-based
system for uncovering hidden patterns and connections to
improve the interpretability and diagnostic and co-morbidity
analysis of medical data [7], [8]. A central challenge in this
field is how results are presented to the end user, leading our
research to focus on enhancing the interpretability of findings
via data mining techniques such as association rule discovery
and fuzzy logic.

Practical interpretation of medical data often requires em-
ployment of fuzzy techniques to convert vague data into
decipherable information for end users. Prominent studies
have introduced measures of accuracy for the extraction of
fuzzy association rules from medical relational databases,
streamlined prescriptions for diabetic patients using wearable
sensors, and applied a fuzzy programming algorithm to negate
uncertainty [9]–[11].

Considering co-morbidity, or the occurrence of a second
disease due to the existence of a primary disease in the same
patient, we are able to interpret patients as simple, medium,
or complex based on their count of co-morbidity diagnoses
[12], [13].

This paper presents a comprehensive system for managing
and extracting information in healthcare systems employing
big data architecture. This includes a transformative process
of data integration, enrichment, and the novel implementation
of fuzzy techniques to address data uncertainty. The system
employs an algorithm for the extraction of fuzzy association
rules and implements visualization tools to enhance end-user
interpretation of results.

III. PATTERN MINING SYSTEM WITH FUZZY LOGIC IN BIG
DATA

We propose a robust system for managing and extracting
data in big health systems through the implementation of
big data architecture. The process integrates data, refines it,
and introduces fuzzy techniques to handle uncertainty. It also
embeds an algorithm to extract fuzzy association rules and
visualization tools to improve interpretability of the results by
the users.

Implemented in two Spanish hospitals, the system is capable
of collecting and merging varied patient data from multiple
hospital sources, creating a patient-centric model. Data pre-
processing and enrichment is performed using information
from external taxonomies and databases, improving the inter-
pretability of variables, especially those involving diagnoses,
patient origin, reasons for admission or discharge, surgical
procedures, and the like. This constellates into a unique
’fuzzification’ process, guided by expert knowledge, that paves
the way for more interpretable results.

IV. CONCLUSION

This research developed a data mining system using the
Big Data framework, applied to datasets from two hospitals
in southern Spain. Improvements were made in data inter-
pretability by enriching features and applying a fuzzification

algorithm. The system was deployed using the Spark platform,
facilitating the analysis of large volumes of data generated
in hospitals. Practical experimentation with real data demon-
strated the system’s efficacy, discovering meaningful rules
connecting various patient conditions, which could be utilized
in predicting diseases, exploring relationships across features,
and analyzing co-morbidity.
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